1
|
Zhu J, Jin A, Pan B, Guo W, Yang W, Wang B. Exploring the role of KIR3DL2 on NK cells in hepatocellular carcinoma and its potential prognostic implications. iScience 2024; 27:110637. [PMID: 39262781 PMCID: PMC11388180 DOI: 10.1016/j.isci.2024.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a globally prevalent malignancy with a high recurrence rate, significantly impacting prognosis and survival. This study aims to identify prognostic molecular markers using single-cell sequencing of tumors and adjacent tissues in primary and recurrent HCC patients. We analyzed single-cell sequencing data from tumor and adjacent normal tissues of primary and recurrent HCC cases to compare immune cell quantity and gene expression profiles. Recurrent HCC patients exhibited a significant reduction in infiltrating NK cells expressing KIR3DL2. Pseudotemporal and cell communication analyses revealed these KIR3DL2high NK cells were in a quiescent state, suggesting NK cell exhaustion and poor prognosis. KIR3DL2 expression in peripheral blood NK cells correlated with that in tissues, highlighting its potential as a prognostic marker for HCC.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Anli Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai 201104, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361015, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai 200940, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Jung EK, Chu TH, Kim SA, Vo MC, Nguyen VT, Lee KH, Jung SH, Yoon M, Cho D, Lee JJ, Yoon TM. Efficacy of natural killer cell therapy combined with chemoradiotherapy in murine models of head and neck squamous cell carcinoma. Cytotherapy 2024; 26:242-251. [PMID: 38142382 DOI: 10.1016/j.jcyt.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AIMS Natural killer (NK) cell-based cancer immunotherapy is effective when combined with other treatment modalities such as irradiation and chemotherapy. NK cell's antitumor function to treat solid tumor, including head and neck squamous cell carcinoma (HNSCC), has been targeted recently. This study assessed NK cell recruitment in response to chemoradiation therapy (CRT) in HNSCC. METHODS Ex vivo expansion of NK cell, flow cytometry, cell viability assay, cytotoxicity assay, immunohistochemistry, and animal model were performed. RESULTS Mouse NK cells were recruited to the tumor site by CRT in a nude mouse model. Furthermore, expanded and activated human NK cells (eNKs) were recruited to the tumor site in response to CRT, and CRT enhanced the anti-tumor activity of eNK in an NOD/SCID IL-2Rγnull mouse model. Various HNSCC cancer cell lines exhibited different NK cell ligand activation patterns in response to CRT that correlated with NK cell-mediated cytotoxicity. CONCLUSIONS Identifying the activation patterns of NK cell ligands during CRT might improve patient selection for adjuvant NK cell immunotherapy combined with CRT. This is the first study to investigate the NK cell's antitumor function and recruitment with CRT in HNSCC mouse model.
Collapse
Affiliation(s)
- Eun Kyung Jung
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Tan-Huy Chu
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea; Department of Hematology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Sun-Ae Kim
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Manh-Cuong Vo
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Van-Tan Nguyen
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Sung-Hoon Jung
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Meesun Yoon
- Department of Radiation Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea.
| | - Tae Mi Yoon
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea.
| |
Collapse
|
3
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
4
|
Zhao H, Zhang Y, Zhang Y, Chen C, Liu H, Yang Y, Wang H. The role of NLRP3 inflammasome in hepatocellular carcinoma. Front Pharmacol 2023; 14:1150325. [PMID: 37153780 PMCID: PMC10157400 DOI: 10.3389/fphar.2023.1150325] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Inflammasomes play an important role in innate immunity. As a signal platform, they deal with the excessive pathogenic products and cellular products related to stress and injury. So far, the best studied and most characteristic inflammasome is the NLR-family pyrin domain-containing protein 3(NLRP3) inflammasome, which is composed of NLRP3, apoptosis associated speck like protein (ASC) and pro-caspase-1. The formation of NLRP3 inflammasome complexes results in the activation of caspase-1, the maturation of interleukin (IL)-1β and IL-18, and pyroptosis. Many studies have demonstrated that NLRP3 inflammasome not only participates in tumorigenesis, but also plays a protective role in some cancers. Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality. Currently, due to the lack of effective treatment methods for HCC, the therapeutic effect of HCC has not been ideal. Therefore, it is particularly urgent to explore the pathogenesis of HCC and find its effective treatment methods. The increasing evidences indicate that NLRP3 inflammasome plays a vital role in HCC, however, the related mechanisms are not fully understood. Hence, we focused on the recent progress about the role of NLRP3 inflammasome in HCC, and analyzed the relevant mechanisms in detail to provide reference for the future in-depth researches.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yiming Zhang
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Yanting Zhang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
- *Correspondence: Honggang Wang, ; Chaoran Chen,
| | - Huiyang Liu
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yihan Yang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Honggang Wang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
- *Correspondence: Honggang Wang, ; Chaoran Chen,
| |
Collapse
|
5
|
Hosseinalizadeh H, Habibi Roudkenar M, Mohammadi Roushandeh A, Kuwahara Y, Tomita K, Sato T. Natural killer cell immunotherapy in glioblastoma. Discov Oncol 2022; 13:113. [PMID: 36305981 PMCID: PMC9616998 DOI: 10.1007/s12672-022-00567-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022] Open
Abstract
Glioblastoma (GBM) is one of the most difficult cancers to treat because GBM has the high therapeutic resistance. Recently, immunotherapies for GBM have been used instead of conventional treatments. Among them, Natural killer (NK) cell-based immunotherapy has the potential to treat GBM due to its properties such as the absence of restriction by antigen-antibody reaction and deep penetration into the tumor microenvironment. Especially, genetically engineered NK cells, such as chimeric antigen receptor (CAR)-NK cells, dual antigen-targeting CAR NK cells, and adapter chimeric antigen receptor NK cells are considered to be an important tool for GBM immunotherapy. Therefore, this review describes the recent efforts of NK cell-based immunotherapy in GBM patients. We also describe key receptors expressing on NK cells such as killer cell immunoglobulin-like receptor, CD16, and natural killer group 2, member D (NKG2DL) receptor and discuss the function and importance of these molecules.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
6
|
Jung EK, Chu TH, Vo MC, Nguyen HPQ, Lee DH, Lee JK, Lim SC, Jung SH, Yoon TM, Yoon MS, Cho D, Lee JJ, Cho HH. Natural killer cells have a synergistic anti-tumor effect in combination with chemoradiotherapy against head and neck cancer. Cytotherapy 2022; 24:905-915. [PMID: 35778350 DOI: 10.1016/j.jcyt.2022.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The use of natural killer (NK) cells is a promising approach in the field of cancer immunotherapy; however, combination treatments are required to enhance the effects of NK cell immunotherapy. In this study, we assessed the potential of irradiation and cisplatin as a chemoradiotherapy (CRT) regimen to augment the effects of NK cell immunotherapy in head and neck squamous cell carcinoma (HNSCC). METHODS NK cells were expanded using our recently established K562-OX40 ligand and membrane-bound interleukin (IL)-18 and IL-21 feeder cells in the presence of IL-2/IL-15 from peripheral blood of healthy donors. RESULTS The results showed an increase in the purity of NK cells and expression of activation markers such as NKG2D and lymphocyte function-associated antigen 1 during the expansion process, which is positively correlated to the NK cell infiltration and overall survival in patients with HNSCC. CRT induced NK cell activation ligand (ULBP2) and adhesion molecules (ICAM-1, -2 and -3) on HNSCC, leading to enhanced cytotoxicity of NK cells against HNSCC. CONCLUSIONS Our findings suggest that the NK cells have a potent anti-tumor effect in combination with CRT against HNSCC.
Collapse
Affiliation(s)
- Eun Kyung Jung
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, South Korea
| | - Tan-Huy Chu
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea
| | - Manh-Cuong Vo
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Huy Phuoc Quang Nguyen
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea
| | - Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, South Korea
| | - Joon Kyoo Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, South Korea
| | - Sang Chul Lim
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, South Korea
| | - Sung-Hoon Jung
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Tae-Mi Yoon
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, South Korea
| | - Mee Sun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea.
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
7
|
Xue JS, Ding ZN, Meng GX, Yan LJ, Liu H, Li HC, Yao SY, Tian BW, Dong ZR, Chen ZQ, Hong JG, Wang DX, Li T. The Prognostic Value of Natural Killer Cells and Their Receptors/Ligands in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:872353. [PMID: 35464489 PMCID: PMC9021421 DOI: 10.3389/fimmu.2022.872353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background Natural killer (NK) cells play major roles in eliminating tumor cells. Preliminary studies have shown that NK cells and their receptors/ligands have prognostic value in malignant tumors. However, the relevance of NK cells and their receptors/ligands level to the prognosis of hepatocellular carcinoma (HCC) remains unclear. Methods Several electronic databases were searched from database inception to November 8, 2021. Random effects were introduced to this meta-analysis. The relevance of NK cells and their receptors/ligands level to the prognosis of HCC was evaluated using hazard ratios (HRs) with 95% confidence interval (95%CI). Results 26 studies were included in the analysis. The pooled results showed that high NK cells levels were associated with better overall survival (HR=0.70, 95%CI 0.57–0.86, P=0.001) and disease-free survival (HR=0.61, 95%CI 0.40-0.93, P=0.022) of HCC patients. In subgroup analysis for overall survival, CD57+ NK cells (HR=0.70, 95%CI 0.55-0.89, P=0.004) had better prognostic value over CD56+ NK cells (HR=0.69, 95%CI 0.38-1.25, P=0.224), and intratumor NK cells had better prognostic value (HR=0.71, 95%CI 0.55-0.90, P=0.005) over peripheral NK cells (HR=0.66, 95%CI 0.41-1.06, P=0.088). In addition, high level of NK cell inhibitory receptors predicted increased recurrence of HCC, while the prognostic role of NK cell activating receptors remained unclear. Conclusion NK cells and their inhibitory receptors have prognostic value for HCC. The prognostic role of NK cell activating receptors is unclear and more high-quality prospective studies are essential to evaluate the prognostic value of NK cells and their receptors/ligands for HCC.
Collapse
Affiliation(s)
- Jun-Shuai Xue
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Chao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Sheng-Yu Yao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China.,Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
8
|
DNM1: A Prognostic Biomarker Associated with Immune Infiltration in Colon Cancer-A Study Based on TCGA Database. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4896106. [PMID: 34888380 PMCID: PMC8651384 DOI: 10.1155/2021/4896106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
Aim The aim of our work was to determine the utility of DNM1 as a biomarker for the diagnosis and prognosis of colon cancer (CC). Methods DNM1 expression variations in CC vs. normal tissues were investigated using The Cancer Genome Atlas (TCGA) database. The association of DNM1 expression levels with the clinicopathological variables in CC prognosis was investigated using logistic regression analyses. Independent prognostic factors for CC were evaluated using univariate and multivariate Cox regression analyses. The correlation between DNM1 expression and immune cell infiltration was estimated using single-sample Gene Set Enrichment Analysis (ssGSEA). Results DNM1 expression in CC tissues was significantly higher than that in normal tissues. High DNM1 expression was significantly correlated with M stage, N stage, perineural invasion and lymphatic invasion and predicted poor prognosis. The univariate analysis highlighted that DNM1 was an independent CC risk factor. Results of ssGSEA showed that DNM1 was linked to several cancer-related pathways, including the neuroactive ligand-receptor interaction, hypertrophic cardiomyopathy, ECM-receptor interaction, dilated cardiomyopathy, and calcium signaling pathway. Moreover, DNM1 expression was positively correlated with the level of infiltration by Neutrophils, Tregs, NK cells, and Macrophages. Conclusion DNM1 has a significant function and has diagnostic and prognostic potential for CC.
Collapse
|
9
|
Li YR, Dunn ZS, Zhou Y, Lee D, Yang L. Development of Stem Cell-Derived Immune Cells for Off-the-Shelf Cancer Immunotherapies. Cells 2021; 10:cells10123497. [PMID: 34944002 PMCID: PMC8700013 DOI: 10.3390/cells10123497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cell-based cancer immunotherapy has revolutionized the treatment of hematological malignancies. Specifically, autologous chimeric antigen receptor-engineered T (CAR-T) cell therapies have received approvals for treating leukemias, lymphomas, and multiple myeloma following unprecedented clinical response rates. A critical barrier to the widespread usage of current CAR-T cell products is their autologous nature, which renders these cellular products patient-selective, costly, and challenging to manufacture. Allogeneic cell products can be scalable and readily administrable but face critical concerns of graft-versus-host disease (GvHD), a life-threatening adverse event in which therapeutic cells attack host tissues, and allorejection, in which host immune cells eliminate therapeutic cells, thereby limiting their antitumor efficacy. In this review, we discuss recent advances in developing stem cell-engineered allogeneic cell therapies that aim to overcome the limitations of current autologous and allogeneic cell therapies, with a special focus on stem cell-engineered conventional αβ T cells, unconventional T (iNKT, MAIT, and γδ T) cells, and natural killer (NK) cells.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA;
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
10
|
Abakushina EV, Popova LI, Zamyatnin AA, Werner J, Mikhailovsky NV, Bazhin AV. The Advantages and Challenges of Anticancer Dendritic Cell Vaccines and NK Cells in Adoptive Cell Immunotherapy. Vaccines (Basel) 2021; 9:1363. [PMID: 34835294 PMCID: PMC8625865 DOI: 10.3390/vaccines9111363] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
In the last decade, an impressive advance was achieved in adoptive cell therapy (ACT), which has improved therapeutic potential and significant value in promising cancer treatment for patients. The ACT is based on the cell transfer of dendritic cells (DCs) and/or immune effector cells. DCs are often used as vaccine carriers or antigen-presenting cells (APCs) to prime naive T cells ex vivo or in vivo. Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are used as major tool effector cells for ACT. Despite the fact that NK cell immunotherapy is highly effective and promising against many cancer types, there are still some limitations, including insignificant infiltration, adverse conditions of the microenvironment, the immunosuppressive cellular populations, and the low cytotoxic activity in solid tumors. To overcome these difficulties, novel methods of NK cell isolation, expansion, and stimulation of cytotoxic activity should be designed. In this review, we discuss the basic characteristics of DC vaccines and NK cells as potential adoptive cell preparations in cancer therapy.
Collapse
Affiliation(s)
- Elena V. Abakushina
- Department for Development and Research in Immunology, LLC “Tecon Medical Devices”, 123298 Moscow, Russia; (L.I.P.); (N.V.M.)
| | - Liubov I. Popova
- Department for Development and Research in Immunology, LLC “Tecon Medical Devices”, 123298 Moscow, Russia; (L.I.P.); (N.V.M.)
| | - Andrey A. Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (J.W.); (A.V.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Nikolay V. Mikhailovsky
- Department for Development and Research in Immunology, LLC “Tecon Medical Devices”, 123298 Moscow, Russia; (L.I.P.); (N.V.M.)
| | - Alexandr V. Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (J.W.); (A.V.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| |
Collapse
|
11
|
Specific Blood Cells Derived from Pluripotent Stem Cells: An Emerging Field with Great Potential in Clinical Cell Therapy. Stem Cells Int 2021; 2021:9919422. [PMID: 34434242 PMCID: PMC8380505 DOI: 10.1155/2021/9919422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/06/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Widely known for self-renewal and multilineage differentiation, stem cells can be differentiated into all specialized tissues and cells in the body. In the past few years, a number of researchers have focused on deriving hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) as alternative sources for clinic. Existing findings demonstrated that it is feasible to obtain HSCs and certain mature blood lineages from PSCs, except for several issues to be addressed. This short review outlines the technologies used for hematopoietic differentiation in recent years. In addition, the therapeutic value of PSCs as a potential source of various blood cells is also discussed as well as its challenges and directions in future clinical applications.
Collapse
|
12
|
Eresen A, Yang J, Scotti A, Cai K, Yaghmai V, Zhang Z. Combination of natural killer cell-based immunotherapy and irreversible electroporation for the treatment of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1089. [PMID: 34423001 PMCID: PMC8339821 DOI: 10.21037/atm-21-539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/05/2021] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal cancer types despite great advancement in overall survival of the patients over the last decades. Surgical resection or partial hepatectomy has been approved as the curative treatment for early-stage HCC patients however only up to 30% of them are eligible for the procedures. Natural killer (NK) cells are cytotoxic lymphocytes recognized for killing virally infected cells and improving immune functions for defending the body against malignant cells. Although autologous NK cells failed to demonstrate significant clinical benefit, transfer of allogeneic adoptive NK cells arises as a promising approach for the treatment of solid tumors. The immunosuppressive tumor microenvironment and inadequate homing efficiency of NK cells to tumors can inhibit adoptive transfer immunotherapy (ATI) efficacy. However, potential of the NK cells is challenged by the transfection efficiency. The local ablation techniques that employ thermal or chemical energy have been investigated for the destruction of solid tumors for three decades and demonstrated promising benefits for individuals not eligible for surgical resection or partial hepatectomy. Irreversible electroporation (IRE) is one of the most recent minimally invasive ablation methods that destruct the cell within the targeted region through non-thermal energy. IRE destroys the tumor cell membrane by delivering high-frequency electrical energy in short pulses and overcomes tumor immunosuppression. The previous studies demonstrated that IRE can induce immune changes which can facilitate activation of specific immune responses and improve transfection efficiency. In this review paper, we have discussed the mechanism of NK cell immunotherapy and IRE ablation methods for the treatment of HCC patients and the combinatorial benefits of NK cell immunotherapy and IRE ablation.
Collapse
Affiliation(s)
- Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alessandro Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Vahid Yaghmai
- Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Shokouhifar A, Anani Sarab G, Yazdanifar M, Fereidouni M, Nouri M, Ebrahimi M. Overcoming the UCB HSCs -Derived NK cells Dysfunction through Harnessing RAS/MAPK, IGF-1R and TGF-β Signaling Pathways. Cancer Cell Int 2021; 21:298. [PMID: 34098947 PMCID: PMC8185927 DOI: 10.1186/s12935-021-01983-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/13/2021] [Indexed: 01/10/2023] Open
Abstract
Background The natural killer (NK) cells differentiated from umbilical cord blood (UCB) hematopoietic stem cells (HSCs) may be more suitable for cell-based immunotherapy compared to the NK cells from adult donors. This is due to the possibility to choose alloreactive donors and potentially more robust in vivo expansion. However, the cytotoxicity of UCB-HSC-derived NK cells against cancer cells might be suboptimal. To overcome this obstacle, we attempted to generate NK cells with potent antitumor activity by targeting RAS/MAPK, IGF-1R and TGF-β signaling pathways using IL-15, IGF-1 and SIS3 respectively. Methods The CD34 + cells were isolated from human UCB mononuclear cells through magnetic activation cell sorting (MACS) with purity of (≥ 90%) and were subjected to differentiate into NK cells. After 21 days of induction with SFTG36 (SCF, FLt-3L, TPO, GM-CSF, IL-3 and IL-6), IS721 (IGF-1, SIS3, IL-7 and IL-21) and IL-15/Hsp70 media, NK cells phenotypes were studied and their cytotoxicity against K562 human erythroleukemia cells and SKOV3 ovarian carcinoma cells was analyzed. Results The NK cells induced in SFTG36/IS721 medium were selected for activation due to their higher expression of CD56 + 16 + CD3 − (93.23% ± 0.75) and mean fluorescence intensity (MFI) of NKG2D + (168.66 ± 20.00) and also a higher fold expansion potential (11.893 ± 1.712) compared to the other groups. These cells once activated with IL-15, demonstrated a higher cytotoxicity against K562 (≥ 90%; P ≤ 0.001) and SKOV3 tumor cells (≥ 65%; P ≤ 0.001) compared to IL-15/Hsp70-activated NK cells. Conclusions The differentiation of ex vivo expanded CD34 + cells through manipulation of RAS/MAPK, IGF-1R and TGF-β signaling pathways is an efficient approach for generating functional NK cells that can be used for cancer immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01983-z.
Collapse
Affiliation(s)
- Alireza Shokouhifar
- Department of Molecular Medicine, Genomic Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gholamreza Anani Sarab
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mohammad Fereidouni
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoumeh Nouri
- R&D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Marzieh Ebrahimi
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
14
|
Kim JM, Cho SY, Rhu J, Jung M, Her JH, Lim O, Choi GS, Shin EC, Hwang YK, Joh JW. Adjuvant therapy using ex vivo-expanded allogenic natural killer cells in hepatectomy patients with hepatitis B virus related solitary hepatocellular carcinoma: MG4101 study. Ann Hepatobiliary Pancreat Surg 2021; 25:206-214. [PMID: 34053923 PMCID: PMC8180393 DOI: 10.14701/ahbps.2021.25.2.206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
Backgrounds/Aims Fewer reports have been published regarding hepatectomy patients with solitary hepatocellular carcinoma (HCC) who received immunotherapeutic agents as adjuvant therapy. We evaluated the safety and efficacy of ex vivo-expanded allogenic natural killer (NK) cells in those patients with modified International Union Against Cancer (UICC) stage T3. Methods From August 2014 to October 2015, five patients who underwent hepatic resection received ex vivo-expanded allogenic NK cells. Patients received five rounds of NK cells (2-3×107 cells/kg) at postoperative 4, 6, 8, 12, and 16 weeks. This study is registered with ClinicalTrials.gov, number NCT02008929. Results The median age of the five patients (three men and two women) was 44.8 years (range, 36-54 years). All had hepatitis B virus-related HCC, and the median tumor size was 2.2 cm (range, 2.1-8.2 cm). None of the patients had any adverse events. HCC recurrence developed in two patients at one year after hepatic resection, but four patients were alive at 3 years. The two recurrence-free patients showed a higher ratio of CD8+ T lymphocyte populations before and after administration of ex vivo-expanded allogenic NK cells compared with the three patients who experienced recurrence. Conclusions Immunotherapy using ex vivo-expanded allogenic NK cells in hepatectomy patients can be used safely. Further studies should be investigated for efficacy.
Collapse
Affiliation(s)
- Jong Man Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Yoo Cho
- Cell Therapy Research Center, GC LabCell, Yongin, Korea
| | - Jinsoo Rhu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Miyoung Jung
- Cell Therapy Research Center, GC LabCell, Yongin, Korea
| | - Jung Hyun Her
- Cell Therapy Research Center, GC LabCell, Yongin, Korea
| | - Okjae Lim
- Cell Therapy Research Center, GC LabCell, Yongin, Korea
| | - Gyu-Seong Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | - Jae-Won Joh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
15
|
The Advances and Challenges of NK Cell-Based Cancer Immunotherapy. ACTA ACUST UNITED AC 2021; 28:1077-1093. [PMID: 33652996 PMCID: PMC8025748 DOI: 10.3390/curroncol28020105] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells can be widely applied for cancer immunotherapy due to their ability to lyse tumor targets without prior sensitization or human leukocyte antigens-matching. Several NK-based therapeutic approaches have been attempted in clinical practice, but their efficacy is not sufficient to suppress tumor development mainly because of lacking specificity. To this end, the engineering of NK cells with T cell receptor along with CD3 subunits (TCR-NK) has been developed to increase the reactivity and recognition specificity of NK cells toward tumor cells. Here, we review recent advances in redirecting NK cells for cancer immunotherapy and discuss the major challenges and future explorations for their clinical applications.
Collapse
|
16
|
Jiang Z, Shi Y, Tan G, Wang Z. Computational screening of potential glioma-related genes and drugs based on analysis of GEO dataset and text mining. PLoS One 2021; 16:e0247612. [PMID: 33635875 PMCID: PMC7909668 DOI: 10.1371/journal.pone.0247612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Considering the high invasiveness and mortality of glioma as well as the unclear key genes and signaling pathways involved in the development of gliomas, there is a strong need to find potential gene biomarkers and available drugs. METHODS Eight glioma samples and twelve control samples were analyzed on the GSE31095 datasets, and differentially expressed genes (DEGs) were obtained via the R software. The related glioma genes were further acquired from the text mining. Additionally, Venny program was used to screen out the common genes of the two gene sets and DAVID analysis was used to conduct the corresponding gene ontology analysis and cell signal pathway enrichment. We also constructed the protein interaction network of common genes through STRING, and selected the important modules for further drug-gene analysis. The existing antitumor drugs that targeted these module genes were screened to explore their efficacy in glioma treatment. RESULTS The gene set obtained from text mining was intersected with the previously obtained DEGs, and 128 common genes were obtained. Through the functional enrichment analysis of the identified 128 DEGs, a hub gene module containing 25 genes was obtained. Combined with the functional terms in GSE109857 dataset, some overlap of the enriched function terms are both in GSE31095 and GSE109857. Finally, 4 antitumor drugs were identified through drug-gene interaction analysis. CONCLUSIONS In this study, we identified that two potential genes and their corresponding four antitumor agents could be used as targets and drugs for glioma exploration.
Collapse
Affiliation(s)
- Zhengye Jiang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Yanxi Shi
- Department of Cardiology, Jiaxing Second Hospital, Jiaxing, China
| | - Guowei Tan
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Park DJ, Sung PS, Kim JH, Lee GW, Jang JW, Jung ES, Bae SH, Choi JY, Yoon SK. EpCAM-high liver cancer stem cells resist natural killer cell-mediated cytotoxicity by upregulating CEACAM1. J Immunother Cancer 2020; 8:jitc-2019-000301. [PMID: 32221015 PMCID: PMC7206970 DOI: 10.1136/jitc-2019-000301] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Background Natural killer (NK) cells can recognize and kill cancer cells directly, but their activity can be attenuated by various inhibitory molecules expressed on the surface. The expression of epithelial cell adhesion molecule (EpCAM), a potential marker for cancer stem cells (CSCs), is known to be strongly associated with poor clinical outcomes in hepatocellular carcinoma (HCC). NK cells targeting CSCs may be a promising strategy for anti-tumor therapy, but little is known about how they respond to EpCAMhigh CSCs in HCC. Methods EpCAM expression was assessed by immunohistochemistry in 280 human HCC tissues obtained from curative surgery. To investigate the functional activity of NK cells against liver CSCs, EpCAMhigh and EpCAMlow Huh-7 cells were sorted by flow cytometry. The functional role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), which is related to NK cells, was determined by in vitro co-culture of NK cells and hepatoma cells using Hepa1–6 mouse hepatoma cells, as well as in vivo experiments using C57/BL6 mice. Results The frequency of recurrence after curative surgery was higher in patients with positive EpCAM expression than in those with negative EpCAM expression. In subsequent analysis based on the anatomical location of EpCAM expression, patients with peritumoral EpCAM expression showed worse prognosis than those with pantumoral EpCAM expression. Co-culture experiments demonstrated that CEACAM1 was upregulated on the surface of EpCAMhigh HCC cells, resulting in resistance to NK cell-mediated cytotoxicity. Inversely, silencing CEACAM1 restored cytotoxicity of NK cells against EpCAMhigh Huh-7 cells. Moreover, neutralizing CEACAM1 on the NK cell surface enhanced killing of Huh-7 cells, suggesting that homophilic interaction of CEACAM1 is responsible for attenuated NK cell–mediated killing of CEACAM1high cells. In mouse experiments with Hepa1–6 cells, EpCAMhigh Hepa1–6 cells formed larger tumors and showed higher CEACAM1 expression after NK cell depletion. NK-mediated cytotoxicity was enhanced after blocking CEACAM1 expression using the anti-CEACAM1 antibody, thereby facilitating tumor regression. Moreover, CEACAM1 expression positively correlated with EpCAM expression in human HCC tissues, and serum CEACAM1 levels were also significantly higher in patients with EpCAM+ HCC. Conclusion Our data demonstrated that EpCAMhigh liver CSCs resist NK cell–mediated cytotoxicity by upregulation of CEACAM1 expression.
Collapse
Affiliation(s)
- Dong Jun Park
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gil Won Lee
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Hospital Pathology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
18
|
Polidoro MA, Mikulak J, Cazzetta V, Lleo A, Mavilio D, Torzilli G, Donadon M. Tumor microenvironment in primary liver tumors: A challenging role of natural killer cells. World J Gastroenterol 2020; 26:4900-4918. [PMID: 32952338 PMCID: PMC7476172 DOI: 10.3748/wjg.v26.i33.4900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, several studies have been focused on elucidate the role of tumor microenvironment (TME) in cancer development and progression. Within TME, cells from adaptive and innate immune system are one of the main abundant components. The dynamic interactions between immune and cancer cells lead to the activation of complex molecular mechanisms that sustain tumor growth. This important cross-talk has been elucidate for several kind of tumors and occurs also in patients with liver cancer, such as hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Liver is well-known to be an important immunological organ with unique microenvironment. Here, in normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as liver sinusoidal endothelial cells and Kupffer cells, favoring self-tolerance against gut antigens. The presence of underling liver immunosuppressive microenvironment highlights the importance to dissect the interaction between HCC and iCCA cells with immune infiltrating cells, in order to understand how this cross-talk promotes tumor growth. Deeper attention is, in fact, focused on immune-based therapy for these tumors, as promising approach to counteract the intrinsic anti-tumor activity of this microenvironment. In this review, we will examine the key pathways underlying TME cell-cell communications, with deeper focus on the role of natural killer cells in primary liver tumors, such as HCC and iCCA, as new opportunities for immune-based therapeutic strategies.
Collapse
Affiliation(s)
- Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Ana Lleo
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Internal Medicine, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Matteo Donadon
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| |
Collapse
|
19
|
Janssen E, Subtil B, de la Jara Ortiz F, Verheul HMW, Tauriello DVF. Combinatorial Immunotherapies for Metastatic Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12071875. [PMID: 32664619 PMCID: PMC7408881 DOI: 10.3390/cancers12071875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent and deadly forms of cancer. About half of patients are affected by metastasis, with the cancer spreading to e.g., liver, lungs or the peritoneum. The majority of these patients cannot be cured despite steady advances in treatment options. Immunotherapies are currently not widely applicable for this disease, yet show potential in preclinical models and clinical translation. The tumour microenvironment (TME) has emerged as a key factor in CRC metastasis, including by means of immune evasion-forming a major barrier to effective immuno-oncology. Several approaches are in development that aim to overcome the immunosuppressive environment and boost anti-tumour immunity. Among them are vaccination strategies, cellular transplantation therapies, and targeted treatments. Given the complexity of the system, we argue for rational design of combinatorial therapies and consider the implications of precision medicine in this context.
Collapse
Affiliation(s)
- Eline Janssen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
| | - Beatriz Subtil
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
| | - Fàtima de la Jara Ortiz
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
| | - Henk M. W. Verheul
- Department of Medical Oncology, Radboud University Medical Center, PO Box 9101, 6500 HBNijmegen, The Netherlands;
| | - Daniele V. F. Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
- Correspondence:
| |
Collapse
|
20
|
Hashemi E, Malarkannan S. Tissue-Resident NK Cells: Development, Maturation, and Clinical Relevance. Cancers (Basel) 2020; 12:cancers12061553. [PMID: 32545516 PMCID: PMC7352973 DOI: 10.3390/cancers12061553] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells belong to type 1 innate lymphoid cells (ILC1) and are essential in killing infected or transformed cells. NK cells mediate their effector functions using non-clonotypic germ-line-encoded activation receptors. The utilization of non-polymorphic and conserved activating receptors promoted the conceptual dogma that NK cells are homogeneous with limited but focused immune functions. However, emerging studies reveal that NK cells are highly heterogeneous with divergent immune functions. A distinct combination of several activation and inhibitory receptors form a diverse array of NK cell subsets in both humans and mice. Importantly, one of the central factors that determine NK cell heterogeneity and their divergent functions is their tissue residency. Decades of studies provided strong support that NK cells develop in the bone marrow. However, evolving evidence supports the notion that NK cells also develop and differentiate in tissues. Here, we summarize the molecular basis, phenotypic signatures, and functions of tissue-resident NK cells and compare them with conventional NK cells.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
21
|
Yang C, Li Y, Yang Y, Chen Z. Overview of Strategies to Improve Therapy against Tumors Using Natural Killer Cell. J Immunol Res 2020; 2020:8459496. [PMID: 32411806 PMCID: PMC7201677 DOI: 10.1155/2020/8459496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/24/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
NK cells are lymphocytes with antitumor properties and can directly lyse tumor cells in a non-MHC-restricted manner. However, the tumor microenvironment affects the immune function of NK cells, which leads to immune evasion. This may be related to the pathogenesis of some diseases. Therefore, great efforts have been made to improve the immunotherapy effect of natural killer cells. NK cells from different sources can meet different clinical needs, in order to minimize the inhibition of NK cells and maximize the response potential of NK cells, for example, modification of NK cells can increase the number of NK cells in tumor target area, change the direction of NK cells, and improve their targeting ability to malignant cells. Checkpoint blocking is also a promising strategy for NK cells to kill tumor cells. Combination therapy is another strategy for improving antitumor ability, especially in combination with oncolytic viruses and nanomaterials. In this paper, the mechanisms affecting the activity of NK cells were reviewed, and the therapeutic potential of different basic NK cell strategies in tumor therapy was focused on. The main strategies for improving the immune function of NK cells were described, and some new strategies were proposed.
Collapse
Affiliation(s)
- Chaopin Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Yaozhang Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| |
Collapse
|
22
|
Lanuza PM, Pesini C, Arias MA, Calvo C, Ramirez-Labrada A, Pardo J. Recalling the Biological Significance of Immune Checkpoints on NK Cells: A Chance to Overcome LAG3, PD1, and CTLA4 Inhibitory Pathways by Adoptive NK Cell Transfer? Front Immunol 2020; 10:3010. [PMID: 31998304 PMCID: PMC6962251 DOI: 10.3389/fimmu.2019.03010] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint receptors (IC) positively or negatively regulate the activation of the host immune response, preventing unwanted reactions against self-healthy tissues. In recent years the term IC has been mainly used for the inhibitory ICs, which are critical to control Natural Killer (NK) and Cytotoxic CD8+ T cells due to its high cytotoxic potential. Due to the different nature of the signals that regulate T and NK cell activation, specific ICs have been described that mainly regulate either NK cell or T cell activity. Thus, strategies to modulate NK cell activity are raising as promising tools to treat tumors that do not respond to T cell-based immunotherapies. NK cell activation is mainly regulated by ICs and receptors from the KIR, NKG2 and NCRs families and the contribution of T cell-related ICs is less clear. Recently, NK cells have emerged as contributors to the effect of inhibitors of T cell-related ICs like CTLA4, LAG3 or the PD1/PD-L1 axes in cancer patients, suggesting that these ICs also regulate the activity of NK cells under pathological conditions. Strikingly, in contrast to NK cells from cancer patients, the level of expression of these ICs is low on most subsets of freshly isolated and in vitro activated NK cells from healthy patients, suggesting that they do not control NK cell tolerance and thus, do not act as conventional ICs under non-pathological conditions. The low level of expression of T cell-related ICs in “healthy” NK cells suggest that they should not be restricted to the detrimental effects of these inhibitory mechanisms in the cancer microenvironment. After a brief introduction of the regulatory mechanisms that control NK cell anti-tumoral activity and the conventional ICs controlling NK cell tolerance, we will critically discuss the potential role of T cell-related ICs in the control of NK cell activity under both physiological and pathological (cancer) conditions. This discussion will allow to comprehensively describe the chances and potential limitations of using allogeneic NK cells isolated from a healthy environment to overcome immune subversion by T cell-related ICs and to improve the efficacy of IC inhibitors (ICIs) in a safer way.
Collapse
Affiliation(s)
- Pilar M Lanuza
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - Carlota Calvo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Medical Oncopediatry Department, Aragón Health Research Institute (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Julian Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Aragón i + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
23
|
Peighambarzadeh F, Najafalizadeh A, Esmaeil N, Rezaei A, Ashrafi F, Ganjalikhani Hakemi M. Optimization of In Vitro Expansion and Activation of Human Natural Killer Cells against Breast Cancer Cell Line. Avicenna J Med Biotechnol 2020; 12:17-23. [PMID: 32153734 PMCID: PMC7035457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/16/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Regarding to the increase of cancer deaths in recent years and disability of common therapies to eradicate cancers, as well as expansion of Natural Killer (NK) cell therapy, it seems so vital to find new useful therapies against cancers. Breast cancer is the second main cause of cancer death among women. As it is impossible for a majority of patients to receive NK cell therapy, an attempt was made to establish a low-cost and efficient method for expanding and activating NK cells against breast cancer cell line (MCF7). METHODS NK cells were isolated from Peripheral Blood Mononuclear Cells (PBMCs) applying either MACS based NK cell enrichment kit or antibodies and complement as cytotoxic method. Then, the NK cells were cultured in Stem Cell Growth Medium (SCGM) with feeder layer (irradiated PBMCs) along with PHA or OKT3. IL-2, IL-15 and IL-21 were used to expand NK cells and finally their cytotoxic activity was investigated by flow cytometry. RESULTS Highly pure NK cells were obtained and no significant difference between the two isolation methods was found. Using IL-2 plus IL-15, the number of NK cells increased up to100 fold after 16 days. No significant effect was observed after IL-21 treatment. CONCLUSION Our data indicated that cytotoxicity method can be considered a low-cost alternative for NK cell isolation kits. It seems that culturing NK cells for 14 days in either PHA or OKT3 supplemented SCGM medium would be more effective than culturing for 16 days in the presence of IL-21.
Collapse
Affiliation(s)
- Farzaneh Peighambarzadeh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Najafalizadeh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Ashrafi
- Hematology Division, Department of Internal Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
24
|
Mu YX, Zhao YX, Li BY, Bao HJ, Jiang H, Qi XL, Bai LY, Wang YH, Ma ZJ, Wu XY. A simple method for in vitro preparation of natural killer cells from cord blood. BMC Biotechnol 2019; 19:80. [PMID: 31752805 PMCID: PMC6869212 DOI: 10.1186/s12896-019-0564-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background Cord Blood (CB) has been considered a promising source of natural killer (NK) cells for cellular immunotherapy. However, it is difficult to expand the large numbers of highly pure NK cells from CB without cell sorting and feeder cells/multiple cytokines. In this study, we try to develop a simple, safe and economical method for ex vivo expansion and purification of NK cells from CB without cell sorting and feeder cells/multiple cytokines. Results The large numbers (mean: 1.59 × 1010) of highly pure (≥90%) NK cells from CB could be obtained through interleukin-2, group A streptococcus and zoledronate stimulation of mononuclear cells using the 21-day culture approach. When compared to resting NK cells, expanded NK cells were a higher expression of activating receptors CD16, NKG2D, NKp30, NKp44, NKp46 and activating markers CD62L and CD69, while the inhibitory receptors, CD158a and CD158b remained largely unchanged. In addition, these cells showed a higher concentration of IFN-γ, TNF-α and GM-CSF secretion and cytotoxicity to K562 cells and acute myeloid leukemia targets than resting NK cells. Conclusion We develop a simple, safe and economical method to obtain high yield, purity, and functionality NK cells from CB without cell sorting and feeder cells/multiple cytokines.
Collapse
Affiliation(s)
- Yong Xu Mu
- Interventional Department, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Yu Xia Zhao
- Department of Blood, the People's Hospital of Xing'an League, Xing'an League, Inner Mongolia, China
| | - Bing Yao Li
- Department of Medicine, Chifeng Cancer Hospital, Chifeng, Inner Mongolia, China
| | - Hong Jing Bao
- Department of Blood, the People's Hospital of Xing'an League, Xing'an League, Inner Mongolia, China
| | - Hui Jiang
- Department of Blood, the People's Hospital of Xing'an League, Xing'an League, Inner Mongolia, China
| | - Xiao Lei Qi
- Department of Blood, the People's Hospital of Xing'an League, Xing'an League, Inner Mongolia, China
| | - Li Yun Bai
- Department of Blood, the People's Hospital of Xing'an League, Xing'an League, Inner Mongolia, China
| | - Yun Hong Wang
- Department of Technology, Stem Cell Medicine Engineering & Technology Research Center of Inner Mongolia, Huhhot, Inner Mongolia, China.,Department of Research and Development, Beijing Jingmeng Stem Cell Technology CO., LTD, Beijing, China
| | - Zhi Jie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Xiao Yun Wu
- Department of Technology, Stem Cell Medicine Engineering & Technology Research Center of Inner Mongolia, Huhhot, Inner Mongolia, China. .,Department of Research and Development, Beijing Jingmeng Stem Cell Technology CO., LTD, Beijing, China.
| |
Collapse
|
25
|
Wu X, Huang S. HER2-specific chimeric antigen receptor-engineered natural killer cells combined with apatinib for the treatment of gastric cancer. Bull Cancer 2019; 106:946-958. [DOI: 10.1016/j.bulcan.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/03/2019] [Accepted: 03/14/2019] [Indexed: 01/04/2023]
|
26
|
Kim KW, Jeong JU, Lee KH, Uong TNT, Rhee JH, Ahn SJ, Kim SK, Cho D, Quang Nguyen HP, Pham CT, Yoon MS. Combined NK Cell Therapy and Radiation Therapy Exhibit Long-Term Therapeutic and Antimetastatic Effects in a Human Triple Negative Breast Cancer Model. Int J Radiat Oncol Biol Phys 2019; 108:115-125. [PMID: 31605787 DOI: 10.1016/j.ijrobp.2019.09.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 01/26/2023]
Abstract
PURPOSE We investigated whether adoptive cell therapy with ex vivo-activated natural killer (NK) cells enhances the therapeutic efficacy of local tumor radiation therapy (RT) using a human triple-negative breast cancer xenograft model. METHODS AND MATERIALS NK cells from healthy donors were expanded ex vivo. MDA-MB-231/Luc-GFP cells were subcutaneously implanted into the thighs of NSG mice. The animals were divided into 4 experimental groups: control, RT, NK, and RT + NK. On day 17 after tumor implantation, tumors from the RT groups were irradiated. The ex vivo-expanded NK cells were intravenously administered twice, on days 17 and 19. Primary and secondary tumors were evaluated using long-term bioluminescence imaging, and histopathology was performed on resected tumor tissue specimens. RESULTS The luciferase signals of the primary tumors in the RT + NK group were significantly lower than those of comparably sized primary tumors in the RT group. The long-term migration and infiltration of NK cells into the primary tumor sites were significantly higher in RT + NK than in NK mice. Moreover, lymphatic metastasis to the axillary lymph nodes and liver and lung metastases were highly suppressed in the RT + NK group, as demonstrated by BLI and p53 immunohistochemistry. The long-term survival of the RT + NK group was significantly higher than that of the RT or NK groups. CONCLUSIONS Reduction in tumor burden by combining RT and systemic NK cell therapy improved the suppression of primary tumor growth, with efficient NK cell migration and penetration into the primary tumor site. Administered NK cells were maintained in the primary tissue for a significantly longer time in RT + NK group compared with NK group. Both lymphatic spread and distant metastasis to the lungs and liver were effectively suppressed by the combined therapy.
Collapse
Affiliation(s)
- Kyung Won Kim
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea
| | - Jae-Uk Jeong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Tung Nguyen Thanh Uong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea
| | - Joon Haeng Rhee
- Department of Microbiology and Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea
| | - Sung-Ja Ahn
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Sang-Ki Kim
- Department of Companion & Laboratory Animal Science, Kongju National University, Yesan, Republic of Korea
| | - Duck Cho
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Huy Phuoc Quang Nguyen
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea
| | - Chanh Tin Pham
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Mee Sun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea.
| |
Collapse
|
27
|
Bari R, Granzin M, Tsang KS, Roy A, Krueger W, Orentas R, Schneider D, Pfeifer R, Moeker N, Verhoeyen E, Dropulic B, Leung W. A Distinct Subset of Highly Proliferative and Lentiviral Vector (LV)-Transducible NK Cells Define a Readily Engineered Subset for Adoptive Cellular Therapy. Front Immunol 2019; 10:2001. [PMID: 31507603 PMCID: PMC6713925 DOI: 10.3389/fimmu.2019.02001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023] Open
Abstract
Genetic engineering is an important tool for redirecting the function of various types of immune cells and their use for therapeutic purpose. Although NK cells have many beneficial therapeutic features, genetic engineering of immune cells for targeted therapy focuses mostly on T cells. One of the major obstacles for NK cell immunotherapy is the lack of an efficient method for gene transfer. Lentiviral vectors have been proven to be a safe tool for genetic engineering, however lentiviral transduction is inefficient for NK cells. We show in this study that lentiviral vectors pseudotyped with a modified baboon envelope glycoprotein can transduce NK cells 20-fold or higher in comparison to VSV-G pseudotyped lentiviral vector. When we investigated the mechanism of transduction, we found that activated NK cells expressed baboon envelope receptor ASCT-2. Further analysis revealed that only a subset of NK cells could be expanded and transduced with an expression profile of NK56bright, CD16dim, TRAILhigh, and CX3CR1neg. Using CD19-CAR, we could show that CD19 redirected NK cells efficiently and specifically kill cell lines expressing CD19. Taken together, the results from this study will be important for future genetic modification and for redirecting of NK cell function for therapeutic purpose.
Collapse
Affiliation(s)
- Rafijul Bari
- Lentigen, a Miltenyi Biotec Company, Miltenyi Biotec Company, Gaithersburg, MD, United States
| | | | - Kam Sze Tsang
- Miltenyi Biotec Inc, Gaithersburg, MD, United States
| | - Andre Roy
- Lentigen, a Miltenyi Biotec Company, Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Winfried Krueger
- Lentigen, a Miltenyi Biotec Company, Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Rimas Orentas
- Lentigen, a Miltenyi Biotec Company, Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Dina Schneider
- Lentigen, a Miltenyi Biotec Company, Miltenyi Biotec Company, Gaithersburg, MD, United States
| | | | | | - Els Verhoeyen
- CIRI, Université de Lyon 1, INSERM U1111, CNRS UMR 5308, ENS de Lyon, Lyon, France
- Université Côte d'Azur, INSERM U1065, C3M, Nice, France
| | - Boro Dropulic
- Lentigen, a Miltenyi Biotec Company, Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Wing Leung
- Miltenyi Biotec Inc, Gaithersburg, MD, United States
| |
Collapse
|
28
|
Patel S, Burga RA, Powell AB, Chorvinsky EA, Hoq N, McCormack SE, Van Pelt SN, Hanley PJ, Cruz CRY. Beyond CAR T Cells: Other Cell-Based Immunotherapeutic Strategies Against Cancer. Front Oncol 2019; 9:196. [PMID: 31024832 PMCID: PMC6467966 DOI: 10.3389/fonc.2019.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Chimeric antigen receptor (CAR)-modified T cells have successfully harnessed T cell immunity against malignancies, but they are by no means the only cell therapies in development for cancer. Main Text Summary: Systemic immunity is thought to play a key role in combatting neoplastic disease; in this vein, genetic modifications meant to explore other components of T cell immunity are being evaluated. In addition, other immune cells—from both the innate and adaptive compartments—are in various stages of clinical application. In this review, we focus on these non-CAR T cell immunotherapeutic approaches for malignancy. The first section describes engineering T cells to express non-CAR constructs, and the second section describes other gene-modified cells used to target malignancy. Conclusions: CAR T cell therapies have demonstrated the clinical benefits of harnessing our body's own defenses to combat tumor cells. Similar research is being conducted on lesser known modifications and gene-modified immune cells, which we highlight in this review.
Collapse
Affiliation(s)
- Shabnum Patel
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Rachel A Burga
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Allison B Powell
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Elizabeth A Chorvinsky
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, United States
| | - Nia Hoq
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Sarah E McCormack
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Stacey N Van Pelt
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, United States
| | - Conrad Russell Y Cruz
- GW Cancer Center, The George Washington University, Washington, DC, United States.,Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, United States
| |
Collapse
|
29
|
Golán I, Rodríguez de la Fuente L, Costoya JA. NK Cell-Based Glioblastoma Immunotherapy. Cancers (Basel) 2018; 10:E522. [PMID: 30567306 PMCID: PMC6315402 DOI: 10.3390/cancers10120522] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/01/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and most common malignant primary brain tumor diagnosed in adults. GB shows a poor prognosis and, unfortunately, current therapies are unable to improve its clinical outcome, imposing the need for innovative therapeutic approaches. The main reason for the poor prognosis is the great cell heterogeneity of the tumor mass and its high capacity for invading healthy tissues. Moreover, the glioblastoma microenvironment is capable of suppressing the action of the immune system through several mechanisms such as recruitment of cell modulators. Development of new therapies that avoid this immune evasion could improve the response to the current treatments for this pathology. Natural Killer (NK) cells are cellular components of the immune system more difficult to deceive by tumor cells and with greater cytotoxic activity. Their use in immunotherapy gains strength because they are a less toxic alternative to existing therapy, but the current research focuses on mimicking the NK attack strategy. Here, we summarize the most recent studies regarding molecular mechanisms involved in the GB and immune cells interaction and highlight the relevance of NK cells in the new therapeutic challenges.
Collapse
Affiliation(s)
- Irene Golán
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxia, CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, IDIS, 15782 Santiago de Compostela, Spain.
| | - Laura Rodríguez de la Fuente
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxia, CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, IDIS, 15782 Santiago de Compostela, Spain.
| | - Jose A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxia, CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, IDIS, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
30
|
Sung PS, Jang JW. Natural Killer Cell Dysfunction in Hepatocellular Carcinoma: Pathogenesis and Clinical Implications. Int J Mol Sci 2018; 19:ijms19113648. [PMID: 30463262 PMCID: PMC6274919 DOI: 10.3390/ijms19113648] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is currently the third leading cause of malignancy-related mortalities worldwide. Natural killer (NK) cells are involved in the critical role of first line immunological defense against cancer development. Defects in NK cell functions are recognized as important mechanisms for immune evasion of tumor cells. NK cell function appears to be attenuated in HCC, and many previous reports suggested that NK cells play a critical role in controlling HCC, suggesting that boosting the activity of dysfunctional NK cells can enhance tumor cell killing. However, the detailed mechanisms of NK cell dysfunction in tumor microenvironment of HCC remain largely unknown. A better understanding of the mechanisms of NK cell dysfunction in HCC will help in the NK cell-mediated eradication of cancer cells and prolong patient survival. In this review, we describe the various mechanisms underlying human NK cell dysfunction in HCC. Further, we summarize current advances in the approaches to enhance endogenous NK cell function and in adoptive NK cell therapies, to cure this difficult-to-treat cancer.
Collapse
Affiliation(s)
- Pil Soo Sung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Jeong Won Jang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|
31
|
Malaer JD, Marrufo AM, Mathew PA. 2B4 (CD244, SLAMF4) and CS1 (CD319, SLAMF7) in systemic lupus erythematosus and cancer. Clin Immunol 2018; 204:50-56. [PMID: 30347240 DOI: 10.1016/j.clim.2018.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/08/2023]
Abstract
Signaling Lymphocyte Activation Molecule (SLAM) family receptors are expressed on different types of hematopoietic cells and play important role in immune regulation in health and disease. 2B4 (CD244, SLAMF4) and CS1 (CD319, CRACC, SLAMF7) were originally identified as NK cell receptors regulating NK cell cytolytic activity. 2B4 is expressed on all NK cells, a subpopulation of T cells, monocytes and basophils. Unlike other activating and inhibitory receptors, 2B4 (CD244) interaction with its ligand CD48 has been shown to mediate both activating and inhibitory functions. Defective signaling via 2B4 due to mutations in signaling adaptor SAP contributes to X-linked lymphoproliferative Disease (XLP). Expression of 2B4 and CS1 are altered in systemic lupus erythematosus (SLE). CS1 is overexpressed in multiple myeloma (MM) and anti-CS1 mab (Elotuzumab/Empliciti) has been approved by FDA as a breakthrough drug for treatment for MM patients. CAR -T cells or CAR- NK cells containing full length CS1 or the signaling domain of 2B4 with TCR-ζ have shown promising results to treat cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Joseph D Malaer
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Armando M Marrufo
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Porunelloor A Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
32
|
Min B, Choi H, Her JH, Jung MY, Kim HJ, Jung MY, Lee EK, Cho SY, Hwang YK, Shin EC. Optimization of Large-Scale Expansion and Cryopreservation of Human Natural Killer Cells for Anti-Tumor Therapy. Immune Netw 2018; 18:e31. [PMID: 30181919 PMCID: PMC6117513 DOI: 10.4110/in.2018.18.e31] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 12/01/2022] Open
Abstract
Allogeneic natural killer (NK) cell therapy is a potential therapeutic approach for a variety of solid tumors. We established an expansion method for large-scale production of highly purified and functionally active NK cells, as well as a freezing medium for the expanded NK cells. In the present study, we assessed the effect of cryopreservation on the expanded NK cells in regards to viability, phenotype, and anti-tumor activity. NK cells were enormously expanded (about 15,000-fold expansion) with high viability and purity by stimulating CD3+ T cell-depleted peripheral blood mononuclear cells (PBMCs) with irradiated autologous PBMCs in the presence of IL-2 and OKT3 for 3 weeks. Cell viability was slightly reduced after freezing and thawing, but cytotoxicity and cytokine secretion were not significantly different. In a xenograft mouse model of hepatocellular carcinoma cells, cryopreserved NK cells had slightly lower anti-tumor efficacy than freshly expanded NK cells, but this was overcome by a 2-fold increased dose of cryopreserved NK cells. In vivo antibody-dependent cell cytotoxicity (ADCC) activity of cryopreserved NK cells was also demonstrated in a SCID mouse model injected with Raji cells with rituximab co-administration. Therefore, we demonstrated that expanded/frozen NK cells maintain viability, phenotype, and anti-tumor activity immediately after thawing, indicating that expanded/frozen NK cells can provide ‘ready-to-use’ cell therapy for cancer patients.
Collapse
Affiliation(s)
- Bokyung Min
- BioMedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea.,Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Hana Choi
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Jung Hyun Her
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Mi Young Jung
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Hyo-Jin Kim
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Mi-Young Jung
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | | | - Sung Yoo Cho
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Yu Kyeong Hwang
- Cell Therapy Research Center, GC LabCell, Yongin 16924, Korea
| | - Eui-Cheol Shin
- BioMedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea.,Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
33
|
Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol 2018; 9:1869. [PMID: 30150991 PMCID: PMC6099181 DOI: 10.3389/fimmu.2018.01869] [Citation(s) in RCA: 667] [Impact Index Per Article: 111.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are the predominant innate lymphocyte subsets that mediate anti-tumor and anti-viral responses, and therefore possess promising clinical utilization. NK cells do not express polymorphic clonotypic receptors and utilize inhibitory receptors (killer immunoglobulin-like receptor and Ly49) to develop, mature, and recognize “self” from “non-self.” The essential roles of common gamma cytokines such as interleukin (IL)-2, IL-7, and IL-15 in the commitment and development of NK cells are well established. However, the critical functions of pro-inflammatory cytokines IL-12, IL-18, IL-27, and IL-35 in the transcriptional-priming of NK cells are only starting to emerge. Recent studies have highlighted multiple shared characteristics between NK cells the adaptive immune lymphocytes. NK cells utilize unique signaling pathways that offer exclusive ways to genetically manipulate to improve their effector functions. Here, we summarize the recent advances made in the understanding of how NK cells develop, mature, and their potential translational use in the clinic.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Excellence in Prostate Cancer, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
34
|
Fang F, Xiao W, Tian Z. Challenges of NK cell-based immunotherapy in the new era. Front Med 2018; 12:440-450. [PMID: 30047028 DOI: 10.1007/s11684-018-0653-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
Natural killer cells (NKs) have a great potential for cancer immunotherapy because they can rapidly and directly kill transformed cells in the absence of antigen presensitization. Various cellular sources, including peripheral blood mononuclear cells (PBMCs), stem cells, and NK cell lines, have been used for producing NK cells. In particular, NK cells that expanded from allogeneic PBMCs exhibit better efficacy than those that did not. However, considering the safety, activities, and reliability of the cell products, researchers must develop an optimal protocol for producing NK cells from PBMCs in the manufacture setting and clinical therapeutic regimen. In this review, the challenges on NK cell-based therapeutic approaches and clinical outcomes are discussed.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230027, China
| | - Weihua Xiao
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230027, China.
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230027, China.
| |
Collapse
|
35
|
Celik AA, Simper GS, Huyton T, Blasczyk R, Bade-Döding C. HLA-G mediated immune regulation is impaired by a single amino acid exchange in the alpha 2 domain. Hum Immunol 2018; 79:453-462. [DOI: 10.1016/j.humimm.2018.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 01/04/2023]
|
36
|
Uong TNT, Lee KH, Ahn SJ, Kim KW, Min JJ, Hyun H, Yoon MS. Real-Time Tracking of Ex Vivo-Expanded Natural Killer Cells Toward Human Triple-Negative Breast Cancers. Front Immunol 2018; 9:825. [PMID: 29770131 PMCID: PMC5941970 DOI: 10.3389/fimmu.2018.00825] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction Ex vivo-expanded natural killer (NK) cells are a potential candidate for cancer immunotherapy based on high cytotoxicity against malignant tumor cells. However, a limited understanding of the migration of activated NK cells toward solid tumors is a critical dilemma in the development of effective and adoptive NK cell-based immunotherapy. Methods Ex vivo-expanded NK cells from healthy donors were stained with near-infrared fluorophores at different concentrations. NK cell proliferation and cytotoxicity were assessed using a WST-8 assay, while the expression levels of surface molecules were analyzed by flow cytometry. To investigate the biodistribution of NK cells in both normal and tumor-bearing NSG mice, NK cells labeled with ESNF13 were subjected to NIR fluorescence imaging using the Mini-FLARE imaging system. Finally, mice were sacrificed and histopathological tests were performed in resected organs. Results The signal intensity of ESNF-stained NK cells was long-lasting at 72 h using concentrations as low as 0.04 µM. At a low dose range, ESNF13 did not affect NK cell purity, expression levels of surface receptors, or cytotoxic functions against MDA-MB-231 cancer cells. Ex vivo-expanded NK cells labeled with ESNF13 had a 4-h biodistribution in non-tumor-bearing NSG mice that mainly localized to the lungs immediately after injection and then fully migrated to the kidney after 4 h. In an MDA-MB-231 tumor-bearing NSG mice with extensive metastasis in both lungs, the fluorescence signal was dominant in both lungs and steady at 1, 2, and 4 h post-injection. In a early phase of tumor progression, administered NK cell migrated to the lungs and tumor sites within 30 min post-injection, the signal dominated the tumor site after 1 h, and remained steady at 4 h. Conclusion Optical imaging with NIR fluorophore ESNF13 is a highly sensitive, applicable, and inexpensive method for the real-time tracking of ex vivo-expanded NK cells both in vitro and in vivo. Administered NK cells had different patterns of NK cell distribution and accumulation to the tumor site according to tumor progression in triple-negative breast cancer xenograft models.
Collapse
Affiliation(s)
- Tung Nguyen Thanh Uong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea.,Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Sung-Ja Ahn
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Kyung Won Kim
- Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Mee Sun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea.,Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea.,Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanam-do, South Korea
| |
Collapse
|
37
|
Haploidentical IL-15/41BBL activated and expanded natural killer cell infusion therapy after salvage chemotherapy in children with relapsed and refractory leukemia. Cancer Lett 2018; 422:107-117. [DOI: 10.1016/j.canlet.2018.02.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/01/2018] [Accepted: 02/21/2018] [Indexed: 12/17/2022]
|
38
|
Liu J, Jin Y, Feng X, Zou S, Lv G, Zhang Z, Yang Z. Solubility-enhanced gMYL6 fused with a hexa-lysine tag promotes the cytotoxicity of human NK cells. Immunol Lett 2018; 198:66-73. [PMID: 29679602 DOI: 10.1016/j.imlet.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 11/25/2022]
Abstract
Goat myosin light chain 6 (gMYL6) is a constituent of certain extracted immunization-induced goat anti-cancer bioactive peptides (ACBPs). However, little is known about its activity onto NK cells which are the basic cellular attackers in cancer immunotherapy for patients with malignancies. Because of the complicated extraction process and low yield of gMYL6 out of the goat ACBPs' mixture, the Nano-flow liquid chromatography and C-terminal polycationic tag expression strategy were used to identify and enrich the peptide to investigate its bioactivity against cancers/tumors. The solubility-enhanced gMYL6 fused with a hexa-lysine tag showed a capacity of promoting the NK cells' cytotoxicity, making it a novel promising heterogeneous peptide cytokine against cancers.
Collapse
Affiliation(s)
- Juanjuan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaozhou Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sen Zou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangxin Lv
- North China University of Science and Technology, Tangshan, China
| | - Zhifei Zhang
- North China University of Science and Technology, Tangshan, China.
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
39
|
Su Z, Wang X, Zheng L, Lyu T, Figini M, Wang B, Procissi D, Shangguan J, Sun C, Pan L, Qin L, Zhang B, Velichko Y, Salem R, Yaghmai V, Larson AC, Zhang Z. MRI-guided interventional natural killer cell delivery for liver tumor treatment. Cancer Med 2018; 7:1860-1869. [PMID: 29601672 PMCID: PMC5943467 DOI: 10.1002/cam4.1459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/31/2022] Open
Abstract
While natural killer (NK) cell‐based adoptive transfer immunotherapy (ATI) provides only modest clinical success in cancer patients. This study was hypothesized that MRI‐guided transcatheter intra‐hepatic arterial (IHA) infusion permits local delivery to liver tumors to improve outcomes during NK‐based ATI in a rat model of hepatocellular carcinoma (HCC). Mouse NK cells were labeled with clinically applicable iron nanocomplexes. Twenty rat HCC models were assigned to three groups: transcatheter IHA saline infusion as the control group, transcatheter IHA NK infusion group, and intravenous (IV) NK infusion group. MRI studies were performed at baseline and at 24 h, 48 h, and 8 days postinfusion. There was a significant difference in tumor R2* values between baseline and 24 h following the selective transcatheter IHA NK delivery to the tumors (P = 0.039) when compared to IV NK infusion (P = 0.803). At 8 days postinfusion, there were significant differences in tumor volumes between the control, IV, and IHA NK infusion groups (control vs. IV, P = 0.196; control vs. IHA, P < 0.001; and IV vs. IHA, P = 0.001). Moreover, there was a strong correlation between tumor R2* value change (∆R2*) at 24 h postinfusion and tumor volume change (∆volume) at 8 days in IHA group (R2 = 0.704, P < 0.001). Clinically applicable labeled NK cells with 12‐h labeling time can be tracked by MRI. Transcatheter IHA infusion improves NK cell homing efficacy and immunotherapeutic efficiency. The change in tumor R2* value 24 h postinfusion is an important early biomarker for prediction of longitudinal response.
Collapse
Affiliation(s)
- Zhanliang Su
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Xifu Wang
- Hematology/Oncology, Northwestern University, Chicago, Illinois, 60611
| | - Linfeng Zheng
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Tianchu Lyu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Matteo Figini
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Bin Wang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Daniel Procissi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Chong Sun
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Lei Qin
- Hematology/Oncology, Northwestern University, Chicago, Illinois, 60611
| | - Bin Zhang
- Hematology/Oncology, Northwestern University, Chicago, Illinois, 60611.,Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, 60611
| | - Yury Velichko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611.,Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, 60611
| | - Riad Salem
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611.,Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, 60611
| | - Vahid Yaghmai
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611.,Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, 60611
| | - Andrew C Larson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611.,Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, 60611
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611.,Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, 60611
| |
Collapse
|
40
|
Jeong JU, Uong TNT, Chung WK, Nam TK, Ahn SJ, Song JY, Kim SK, Shin DJ, Cho E, Kim KW, Cho D, Yoon MS. Effect of irradiation-induced intercellular adhesion molecule-1 expression on natural killer cell-mediated cytotoxicity toward human cancer cells. Cytotherapy 2018; 20:715-727. [PMID: 29572116 DOI: 10.1016/j.jcyt.2018.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/05/2018] [Accepted: 01/28/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND AIMS Irradiation enhances the adhesion between natural killer (NK) cells and target cells by up-regulating intercellular adhesion molecule-1 (ICAM-1) on target cells. Therefore, we investigated the effect of irradiation-induced ICAM-1 expression on human cancer cells on NK cell-mediated cytotoxicity. METHODS Expression levels of ICAM-1 on the target cell surface before and after irradiation of six human cancer cell lines (HL60, SKBR-3, T47D, HCT-116, U937 and U251) were analyzed by flow cytometry. Ex vivo expansion of NK cells from human peripheral blood mononuclear cells was performed by co-culture with irradiated K562 cells. The related adhesion molecule lymphocyte function-associated antigen 1 (LFA-1) on NK cells was analyzed by flow cytometry. An enzyme-linked immunosorbent assay was used to detect interferon-γ (IFN-γ), and WST-8 assays were performed to check NK cell cytotoxicity. Finally, blocking assays were performed using monoclonal antibodies against ICAM-1 or LFA-1. RESULTS LFA-1 expression increased on NK cells after expansion (P <0.001). The expression of ICAM-1 was significantly upregulated by irradiation after 24 h in various cell lines, including HL60 (P <0.001), SKBR-3 (P <0.001), T47D (P <0.001) and U937 (P <0.001), although the level of expression depended on the cell line. ICAM-1 expression was extremely low before and after irradiation in U251 cells. NK cell-mediated cytotoxicity increased after irradiation of HL60 (P <0.001), SKBR-3 (P <0.001), T47D (P = 0.003), and U937 (P = 0.004) cells, in which ICAM-1 expression was significantly increased after irradiation. IFN-γ production by NK cells in response to HL60 (P <0.001) and T47D (P = 0.011) cells significantly increased after irradiation. NK cell-mediated cytotoxicity against irradiated SKBR-3 (P <0.001) and irradiated T47D cells (P = 0.035) significantly decreased after blocking of ICAM-1. Blocking of LFA-1 on NK cells resulted in reduced cytotoxicity against irradiated HL60 (P <0.001) and irradiated SKBR-3 (P <0.001). CONCLUSIONS Irradiation upregulates ICAM-1 expression on the surface of human cancer cells and enhances activated NK cell-mediated cytotoxicity. Therefore, irradiation combined with NK cell therapy may improve the antitumor effects of NK cells.
Collapse
Affiliation(s)
- Jae-Uk Jeong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Tung Nguyen Thanh Uong
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Woong-Ki Chung
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Taek-Keun Nam
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sung-Ja Ahn
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ju-Young Song
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sang-Ki Kim
- Department of Companion & Laboratory Animal Science, Kongju National University, Yesan, Republic of Korea
| | - Dong-Jun Shin
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea; Department of Companion & Laboratory Animal Science, Kongju National University, Yesan, Republic of Korea
| | - Eugene Cho
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea; Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Kyoung Won Kim
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Duck Cho
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mee Sun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea; Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea.
| |
Collapse
|
41
|
Guo Y, Feng X, Jiang Y, Shi X, Xing X, Liu X, Li N, Fadeel B, Zheng C. PD1 blockade enhances cytotoxicity of in vitro expanded natural killer cells towards myeloma cells. Oncotarget 2018; 7:48360-48374. [PMID: 27356741 PMCID: PMC5217023 DOI: 10.18632/oncotarget.10235] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/03/2016] [Indexed: 01/12/2023] Open
Abstract
Aiming for an adoptive natural killer (NK) cell therapy, we have developed a novel protocol to expand NK cells from peripheral blood. With this protocol using anti-human CD16 antibody and interleukin (IL)-2, NK (CD3-CD56+) cells could be expanded about 4000-fold with over 70% purity during a 21-day culture. The expanded NK (exNK) cells were shown to be highly cytotoxic to multiple myeloma (MM) cells (RPMI8226) at low NK-target cell ratios. Furthermore, NK cells expanded in the presence of a blocking antibody (exNK+PD1-blockage) against programmed cell death protein-1 (PD1), a key counteracting molecule for NK and T cell activity, demonstrated more potent cytolytic activity against the RPMI8226 than the exNK cells without PD1 blocking. In parallel, the exNK cells showed significantly higher expression of NK activation receptors NKG2D, NKp44 and NKp30. In a murine model of MM, transfusion of exNK cells, exNK+PD1-blockage, and exNK plus intratumor injection of anti-PD-L2 antibody (exNK+PD-L2 blockage) all significantly suppressed tumor growth and prolonged survival of the myeloma mice. Importantly, exNK+PD1-blockage presented more efficient therapeutic effects. Our results suggest that the NK cell expansion protocol with PD1 blockade presented in this study has considerable potential for the clinical application of allo- and auto-NK cell-based therapies against malignancies.
Collapse
Affiliation(s)
- Yanan Guo
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoli Feng
- Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Clinical Laboratory Department of The Second Hospital, Shandong University, Jinan, China
| | - Yang Jiang
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoyun Shi
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Xiangling Xing
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoli Liu
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Nailin Li
- Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China.,Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Bengt Fadeel
- Karolinska Institutet, Institute of Environmental Medicine, Division of Molecular Toxicology, Stockholm, Sweden.,Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Chengyun Zheng
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China.,Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
Zhu H, Lai YS, Li Y, Blum R, Kaufman D. Concise Review: Human Pluripotent Stem Cells to Produce Cell-Based Cancer Immunotherapy. Stem Cells 2018; 36:134-145. [PMID: 29235195 PMCID: PMC5914526 DOI: 10.1002/stem.2754] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/09/2017] [Accepted: 11/25/2017] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (PSCs) provide a promising resource to produce immune cells for adoptive cellular immunotherapy to better treat and potentially cure otherwise lethal cancers. Cytotoxic T cells and natural killer (NK) cells can now be routinely produced from human PSCs. These PSC-derived lymphocytes have phenotype and function similar to primary lymphocytes isolated from peripheral blood. PSC-derived T and NK cells have advantages compared with primary immune cells, as they can be precisely engineered to introduce improved anti-tumor activity and produced in essentially unlimited numbers. Stem Cells 2018;36:134-145.
Collapse
Affiliation(s)
- Huang Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Yi-Shin Lai
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Ye Li
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Robert Blum
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Dan Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
43
|
Gomes-Silva D, Ramos CA. Cancer Immunotherapy Using CAR-T Cells: From the Research Bench to the Assembly Line. Biotechnol J 2018; 13:10.1002/biot.201700097. [PMID: 28960810 PMCID: PMC5966018 DOI: 10.1002/biot.201700097] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/20/2017] [Indexed: 11/08/2022]
Abstract
The focus of cancer treatment has recently shifted toward targeted therapies, including immunotherapy, which allow better individualization of care and are hoped to increase the probability of success for patients. Specifically, T cells genetically modified to express chimeric antigen receptors (CARs; CAR-T cells) have generated exciting results. Recent clinical successes with this cutting-edge therapy have helped to push CAR-T cells toward approval for wider use. However, several limitations need to be addressed before the widespread use of CAR-T cells as a standard treatment. Here, a succinct background on adoptive T-cell therapy (ATCT)is given. A brief overview of the structure of CARs, how they are introduced into T cells, and how CAR-T cell expansion and selection is achieved in vitro is then presented. Some of the challenges in CAR design are discussed, as well as the difficulties that arise in large-scale CAR-T cell manufacture that will need to be addressed to achieve successful commercialization of this type of cell therapy. Finally, developments already on the horizon are discussed.
Collapse
Affiliation(s)
- Diogo Gomes-Silva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
44
|
Huang YX, Chen XT, Guo KY, Li YH, Wu BY, Song CY, He YJ. Sunitinib Induces NK-κB-dependent NKG2D Ligand Expression in Nasopharyngeal Carcinoma and Hepatoma Cells. J Immunother 2018; 40:164-174. [PMID: 28452850 DOI: 10.1097/cji.0000000000000168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Multitargeted tyrosine kinase inhibitors (MTKIs) have been shown to combine with natural killer (NK) cell adoptive transfer for the treatment in various cancers. MTKIs sensitize cancer cells to NK cell therapy through upregulation of nature killer group 2 member D ligands (NKG2DLs) on tumor cells. However, the molecular mechanism of MTKIs-mediated upregulation of NKG2DLs is still unknown. In this study, we confirmed sunitinib induced downregulation of its targets, such as vascular endothelial growth factor, platelet-derived growth factor, and c-kit in multiple-drug-resistant nasopharyngeal carcinoma cell line CNE2/DDP and hepatoma cell line HepG2. Then, we further showed sunitinib induced cell proliferation inhibition, apoptosis, and DNA damage in CNE2/DDP and HepG2 cells. Coculture experiments showed that sunitinib-treated CNE2/DDP and HepG2 cells were able to increase the activation and cytotoxicity of NK cells. Quantitative polymerase chain reaction results showed that sunitinib upregulated NKG2DLs, apoptotic genes, DNA damage repair genes, and nuclear factor (NF)-κβ family genes. Silencing of NF-κβ1, NF-κβ2, or RelB (NF-κβ pathway) inhibited sunitinib-induced upregulation of NKG2DLs. Taken together, we concluded that sunitinib upregulated NKG2DLs through NF-κβ signaling noncanonical pathway which might mediate higher cytotoxic sensitivity of CNE2/DDP and HepG2 cells to NK cells.
Collapse
Affiliation(s)
- Yu-Xian Huang
- *Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China †Mount Sinai School of Medicine, Institute of Genomics and Multiscale Biology, New York State University, New York, NY
| | | | | | | | | | | | | |
Collapse
|
45
|
Lieberman NAP, Vitanza NA, Crane CA. Immunotherapy for brain tumors: understanding early successes and limitations. Expert Rev Neurother 2018; 18:251-259. [DOI: 10.1080/14737175.2018.1425617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nicole A. P. Lieberman
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Nicholas A. Vitanza
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Courtney A. Crane
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
46
|
Zeng J, Tang SY, Toh LL, Wang S. Generation of "Off-the-Shelf" Natural Killer Cells from Peripheral Blood Cell-Derived Induced Pluripotent Stem Cells. Stem Cell Reports 2017; 9:1796-1812. [PMID: 29173894 PMCID: PMC5785702 DOI: 10.1016/j.stemcr.2017.10.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023] Open
Abstract
Current donor cell-dependent strategies can only produce limited “made-to-order” therapeutic natural killer (NK) cells for limited patients. To provide unlimited “off-the-shelf” NK cells that serve many recipients, we designed and demonstrated a holistic manufacturing scheme to mass-produce NK cells from induced pluripotent stem cells (iPSCs). Starting with a highly accessible human cell source, peripheral blood cells (PBCs), we derived a good manufacturing practice-compatible iPSC source, PBC-derived iPSCs (PBC-iPSCs) for this purpose. Through our original protocol that excludes CD34+ cell enrichment and spin embryoid body formation, high-purity functional and expandable NK cells were generated from PBC-iPSCs. Above all, most of these NK cells expressed no killer cell immunoglobulin-like receptors (KIRs), which renders them unrestricted by recipients' human leukocyte antigen genotypes. Hence, we have established a practical “from blood cell to stem cells and back with less (less KIRs)” strategy to generate abundant “universal” NK cells from PBC-iPSCs for a wide range of patients. A GMP-compatible iPSC source has been generated from peripheral blood cells An industry-friendly protocol has been developed to produce NK cells from iPSCs These iPSC-derived NK cells are high-purity, functional, and KIR negative These iPSC-derived NK cells recognize and kill a wide variety of cancer cells
Collapse
Affiliation(s)
- Jieming Zeng
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore.
| | - Shin Yi Tang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Lai Ling Toh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore
| | - Shu Wang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
47
|
Alderdice M, Dunne PD, Cole AJ, O'Reilly PG, McArt DG, Bingham V, Fuchs MA, McQuaid S, Loughrey MB, Murray GI, Samuel LM, Lawler M, Wilson RH, Salto-Tellez M, Coyle VM. Natural killer-like signature observed post therapy in locally advanced rectal cancer is a determinant of pathological response and improved survival. Mod Pathol 2017; 30:1287-1298. [PMID: 28621318 DOI: 10.1038/modpathol.2017.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/18/2022]
Abstract
Around 12-15% of patients with locally advanced rectal cancer undergo a pathologically complete response (tumor regression grade 4) to long-course preoperative chemoradiotherapy; the remainder exhibit a spectrum of tumor regression (tumor regression grade 1-3). Understanding therapy-related transcriptional alterations may enable better prediction of response as measured by progression-free and overall survival, in addition to aiding the development of improved strategies based on the underlying biology of the disease. To this end, we performed high-throughput gene expression profiling in 40 pairs of formalin-fixed paraffin-embedded rectal cancer biopsies and matched resections following long-course preoperative chemoradiotherapy (discovery cohort). Differential gene expression analysis was performed contrasting tumor regression grades in resections. Enumeration of the tumor microenvironment cell population was undertaken using in silico analysis of the transcriptional data, and real-time PCR validation of NCR1 undertaken. Immunohistochemistry and survival analysis was used to measure CD56+ cell populations in an independent cohort (n=150). Gene expression traits observed following long-course preoperative chemoradiotherapy in the discovery cohort suggested an increased abundance of natural killer cells in tumors that displayed a clinical response to CRT in a tumor regression grade-dependent manner. CD56+ natural killer-cell populations were measured by immunohistochemistry and found to be significantly higher in tumor regression grade 3 patients compared with tumor regression grade 1-2 in the validation cohort. Furthermore, it was observed that patients positive for CD56 cells after therapy had a better overall survival (HR=0.282, 95% CI=0.109-0.729, χ2=7.854, P=0.005). In conclusion, we have identified a novel post-therapeutic natural killer-like transcription signature in patients responding to long-course preoperative chemoradiotherapy. Furthermore, patients with a higher abundance of CD56-positive natural killer cells post long-course preoperative chemoradiotherapy had better overall survival. Therefore, harnessing a natural killer-like response after therapy may improve outcomes for locally advanced rectal cancer patients. Finally, we hypothesize that future assessment of this natural killer-like response in on-treatment biopsy material may inform clinical decision-making for treatment duration.
Collapse
Affiliation(s)
- Matthew Alderdice
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
| | - Aidan J Cole
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
- Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | - Paul G O'Reilly
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
| | - Darragh G McArt
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
| | - Vicky Bingham
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
| | - Marc-Aurel Fuchs
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
| | - Stephen McQuaid
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
| | - Maurice B Loughrey
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
- Department of Tissue Pathology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | - Graeme I Murray
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Leslie M Samuel
- Department of Clinical Oncology, Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, UK
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
| | - Richard H Wilson
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
- Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | - Manuel Salto-Tellez
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
- Department of Tissue Pathology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | - Vicky M Coyle
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland
- Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland
| |
Collapse
|
48
|
Cappuzzello E, Sommaggio R, Zanovello P, Rosato A. Cytokines for the induction of antitumor effectors: The paradigm of Cytokine-Induced Killer (CIK) cells. Cytokine Growth Factor Rev 2017. [PMID: 28629761 DOI: 10.1016/j.cytogfr.2017.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cytokine-Induced killer (CIK) cells are raising growing interest in cellular antitumor therapy, as they can be easily expanded with a straightforward and inexpensive protocol, and are safe requiring only GMP-grade cytokines to obtain very high amounts of cytotoxic cells. CIK cells do not need antigen-specific stimuli to be activated and proliferate, as they recognize and destroy tumor cells in an HLA-independent fashion through the engagement of NKG2D. In several preclinical studies and clinical trials, CIK cells showed a reduced alloreactivity compared to conventional T cells, even when challenged across HLA-barriers; only in a few patients, a mild GVHD occurred after treatment with allogeneic CIK cells. Additionally, their antitumor activity can be redirected and further improved with chimeric antigen receptors, clinical-grade monoclonal antibodies or immune checkpoint inhibitors. The evidence obtained from a growing body of literature support CIK cells as a very promising cell population for adoptive immunotherapy. In this review, all these aspects will be addressed with a particular emphasis on the role of the cytokines involved in CIK cell generation, expansion and functionalization.
Collapse
Affiliation(s)
- Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy
| | - Roberta Sommaggio
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy
| | - Paola Zanovello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy; Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy; Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
49
|
Qin Z, Chen J, Zeng J, Niu L, Xie S, Wang X, Liang Y, Wu Z, Zhang M. Effect of NK cell immunotherapy on immune function in patients with hepatic carcinoma: A preliminary clinical study. Cancer Biol Ther 2017; 18:323-330. [PMID: 28353401 DOI: 10.1080/15384047.2017.1310346] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We investigated the effectiveness of adoptive transfer of KIR ligand-mismatched highly activated nature killer (HANK) cells in patients with hepatic carcinoma. Peripheral blood mononuclear cells were obtained and cultured in vitro to induce expansion and activation of HANK cells. After 12 d of culture, the cells were divided into 3 parts and infused intravenously on days 13 to 15. The patients (n = 16) were given one to 6 courses of immunotherapy. No side effects were observed. The lymphocyte subsets and cytokine, thymidine kinase 1 (TK1) and circulating tumor cell (CTC) levels were measured 1 day before treatment and 1 month after the final infusion: the absolute number of total T cells and NK cells and the IL-2 and TNF-β levels were significantly higher, and the TK1 and CTC levels were significantly lower at 1 month after treatment. The percentage of patients who experienced partial response, disease stabilization, and disease progression at 3 months after treatment was 18.8%, 50.0% and 31.2%, respectively. The total follow-up period was 2-12 months. The median progression-free survival from treatment was 7.5 months. This is the first study on the benefits of HANK cell immunotherapy for hepatic carcinoma These encouraging preliminary observations imply that HANK cell immunotherapy is safe, can improve the immune function of patients with liver cancer, and may even reduce the rate of tumor metastasis and recurrence. However, further studies on larger samples of patients with a longer follow-up period are required to confirm these findings.
Collapse
Affiliation(s)
- Zilin Qin
- a School of Medicine , Jinan University , Guangdong Province , Guangzhou , China
| | - Jibing Chen
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Jianying Zeng
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Lizhi Niu
- a School of Medicine , Jinan University , Guangdong Province , Guangzhou , China.,b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Silun Xie
- c Hank Bioengineering Co., Ltd. , Shenzhen , China
| | - Xiaohua Wang
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Yingqing Liang
- b Fuda Cancer Hospital , Jinan University School of Medicine, Guangzhou Fuda Cancer Institute , Guangzhou , Guangdong , China
| | - Zhenyi Wu
- c Hank Bioengineering Co., Ltd. , Shenzhen , China
| | | |
Collapse
|
50
|
da Silva MB, da Cunha FF, Terra FF, Camara NOS. Old game, new players: Linking classical theories to new trends in transplant immunology. World J Transplant 2017; 7:1-25. [PMID: 28280691 PMCID: PMC5324024 DOI: 10.5500/wjt.v7.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 02/05/2023] Open
Abstract
The evolutionary emergence of an efficient immune system has a fundamental role in our survival against pathogenic attacks. Nevertheless, this same protective mechanism may also establish a negative consequence in the setting of disorders such as autoimmunity and transplant rejection. In light of the latter, although research has long uncovered main concepts of allogeneic recognition, immune rejection is still the main obstacle to long-term graft survival. Therefore, in order to define effective therapies that prolong graft viability, it is essential that we understand the underlying mediators and mechanisms that participate in transplant rejection. This multifaceted process is characterized by diverse cellular and humoral participants with innate and adaptive functions that can determine the type of rejection or promote graft acceptance. Although a number of mediators of graft recognition have been described in traditional immunology, recent studies indicate that defining rigid roles for certain immune cells and factors may be more complicated than originally conceived. Current research has also targeted specific cells and drugs that regulate immune activation and induce tolerance. This review will give a broad view of the most recent understanding of the allogeneic inflammatory/tolerogenic response and current insights into cellular and drug therapies that modulate immune activation that may prove to be useful in the induction of tolerance in the clinical setting.
Collapse
|