1
|
Giri A, Mehan S, Khan Z, Das Gupta G, Narula AS, Kalfin R. Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3867-3895. [PMID: 38225412 DOI: 10.1007/s00210-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Neurodegenerative and neuropsychiatric disorders are two broad categories of neurological disorders characterized by progressive impairments in movement and cognitive functions within the central and peripheral nervous systems, and have emerged as a significant cause of mortality. Oxidative stress, neuroinflammation, and neurotransmitter imbalances are recognized as prominent pathogenic factors contributing to cognitive deficits and neurobehavioral anomalies. Consequently, preventing neurodegenerative and neuropsychiatric diseases has surfaced as a pivotal challenge in contemporary public health. This review explores the investigation of neurodegenerative and neuropsychiatric disorders using both synthetic and natural bioactive compounds. A central focus lies on melatonin, a neuroregulatory hormone secreted by the pineal gland in response to light-dark cycles. Melatonin, an amphiphilic molecule, assumes multifaceted roles, including scavenging free radicals, modulating energy metabolism, and synchronizing circadian rhythms. Noteworthy for its robust antioxidant and antiapoptotic properties, melatonin exhibits diverse neuroprotective effects. The inherent attributes of melatonin position it as a potential key player in the pathophysiology of neurological disorders. Preclinical and clinical studies have demonstrated melatonin's efficacy in alleviating neuropathological symptoms across neurodegenerative and neuropsychiatric conditions (depression, schizophrenia, bipolar disorder, and autism spectrum disorder). The documented neuroprotective prowess of melatonin introduces novel therapeutic avenues for addressing neurodegenerative and psychiatric disorders. This comprehensive review encompasses many of melatonin's applications in treating diverse brain disorders. Despite the strides made, realizing melatonin's full neuroprotective potential necessitates further rigorous clinical investigations. By unravelling the extended neuroprotective benefits of melatonin, future studies promise to deepen our understanding and augment the therapeutic implications against neurological deficits.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia, 1113, Bulgaria
- Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad, 2700, Bulgaria
| |
Collapse
|
2
|
Huang J, Zhang Y, Turhon M, Zheng Z, Li W, Kang H, Wang C, Liu J, Jiang P. Dimethyl fumarate treatment for unruptured intracranial aneurysms: a study protocol for a double-blind randomised controlled trial. BMJ Open 2024; 14:e080333. [PMID: 38772883 PMCID: PMC11110581 DOI: 10.1136/bmjopen-2023-080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/26/2024] [Indexed: 05/23/2024] Open
Abstract
INTRODUCTION Intracranial aneurysm (IA) is a common cerebrovascular disease. Considering the risks and benefits of surgery, a significant proportion of patients with unruptured IA (UIA) choose conservative observation. Previous studies suggest that inflammation of aneurysm wall is a high-risk factor of rupture. Dimethyl fumarate (DMF) acts as an anti-inflammatory agent by activating nuclear factor erythroid 2-related factor 2 (Nrf2) and other pathways. Animal experiments found DMF reduces the formation and rupture of IAs. In this study, DMF will be evaluated for its ability to reduce inflammation of the aneurysm wall in high-resolution vessel wall imaging. METHODS AND ANALYSIS This is a multi-centre, randomised, controlled, double-blind clinical trial. Three hospitals will enrol a total of 60 patients who have UIA with enhanced wall. Participants will be assigned randomly in a 1:1 proportion, taking either 240 mg DMF or placebo orally every day for 6 months. As the main result, aneurysm wall enhancement will be measured by the signal intensity after 6 months of DMF treatment. Secondary endpoints include morphological changes of aneurysms and factors associated with inflammation. This study will provide prospective data on the reduction of UIA wall inflammation by DMF. ETHICS AND DISSEMINATION This study has been approved by Medical Ethics Committee of the Beijing Tiantan Hospital, Capital Medical University (approval no: KY2022-064-02). We plan to disseminate our research findings through peer-reviewed journal publication and relevant academic conferences. TRIAL REGISTRATION NUMBER NCT05959759.
Collapse
Affiliation(s)
- Jiliang Huang
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yisen Zhang
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Mirzat Turhon
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhaoxu Zheng
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wenqiang Li
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huibin Kang
- Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Chao Wang
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jian Liu
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peng Jiang
- Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Ri-Wen, Yang YH, Zhang TN, Liu CF, Yang N. Targeting epigenetic and post-translational modifications regulating pyroptosis for the treatment of inflammatory diseases. Pharmacol Res 2024; 203:107182. [PMID: 38614373 DOI: 10.1016/j.phrs.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Inflammatory diseases, including infectious diseases, diabetes-related diseases, arthritis-related diseases, neurological diseases, digestive diseases, and tumor, continue to threaten human health and impose a significant financial burden despite advancements in clinical treatment. Pyroptosis, a pro-inflammatory programmed cell death pathway, plays an important role in the regulation of inflammation. Moderate pyroptosis contributes to the activation of native immunity, whereas excessive pyroptosis is associated with the occurrence and progression of inflammation. Pyroptosis is complicated and tightly controlled by various factors. Accumulating evidence has confirmed that epigenetic modifications and post-translational modifications (PTMs) play vital roles in the regulation of pyroptosis. Epigenetic modifications, which include DNA methylation and histone modifications (such as methylation and acetylation), and post-translational modifications (such as ubiquitination, phosphorylation, and acetylation) precisely manipulate gene expression and protein functions at the transcriptional and post-translational levels, respectively. In this review, we summarize the major pathways of pyroptosis and focus on the regulatory roles and mechanisms of epigenetic and post-translational modifications of pyroptotic components. We also illustrate these within pyroptosis-associated inflammatory diseases. In addition, we discuss the effects of novel therapeutic strategies targeting epigenetic and post-translational modifications on pyroptosis, and provide prospective insight into the regulation of pyroptosis for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ri-Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
4
|
Kapnick SM, Martin CA, Jewell CM. Engineering metabolism to modulate immunity. Adv Drug Deliv Rev 2024; 204:115122. [PMID: 37935318 PMCID: PMC10843796 DOI: 10.1016/j.addr.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.
Collapse
Affiliation(s)
- Senta M Kapnick
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA
| | - Corinne A Martin
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene Street, Suite N9E17, Baltimore, MD, USA.
| |
Collapse
|
5
|
Alwithenani A, Taha Z, Thomson M, Chen A, Wong B, Arulanandam R, Diallo JS. Unlocking the potential of dimethyl fumarate: enhancing oncolytic HSV-1 efficacy for wider cancer applications. Front Immunol 2023; 14:1332929. [PMID: 38169670 PMCID: PMC10758402 DOI: 10.3389/fimmu.2023.1332929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Immunotherapy and specifically oncolytic virotherapy has emerged as a promising option for cancer patients, with oncolytic herpes simplex virus-1 (oHSV-1) expressing granulocyte macrophage colony stimulating factor being the first OV to be approved by the FDA for treatment of melanoma. However, not all cancers are sensitive and responsive to oncolytic viruses (OVs). Our group has demonstrated that fumaric and maleic acid esters (FMAEs) are very effective in sensitizing cancer cells to OV infection. Of note, these FMAEs include dimethyl fumarate (DMF, also known as Tecfidera®), an approved treatment for multiple sclerosis and psoriasis. This study aimed to assess the efficacy of DMF in combination with oncolytic HSV-1 in preclinical cancer models. We demonstrate herewith that pre-treatment with DMF or other FMAEs leads to a significant increase in viral growth of oHSV-1 in several cancer cell lines, including melanoma, while decreasing cell viability. Additionally, DMF was able to enhance ex vivo oHSV-1 infection of mouse-derived tumor cores as well as human patient tumor samples but not normal tissue. We further reveal that the increased viral spread and oncolysis of the combination therapy occurs via inhibition of type I IFN production and response. Finally, we demonstrate that DMF in combination with oHSV-1 can improve therapeutic outcomes in aggressive syngeneic murine cancer models. In sum, this study demonstrates the synergistic potential of two approved therapies for clinical evaluation in cancer patients.
Collapse
Affiliation(s)
- Akram Alwithenani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zaid Taha
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Max Thomson
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Andrew Chen
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Boaz Wong
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Rozanne Arulanandam
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jean-Simon Diallo
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| |
Collapse
|
6
|
Sandouka S, Singh PK, Saadi A, Taiwo RO, Sheeni Y, Zhang T, Deeb L, Guignet M, White SH, Shekh-Ahmad T. Repurposing dimethyl fumarate as an antiepileptogenic and disease-modifying treatment for drug-resistant epilepsy. J Transl Med 2023; 21:796. [PMID: 37940957 PMCID: PMC10634153 DOI: 10.1186/s12967-023-04695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Epilepsy affects over 65 million people worldwide and significantly burdens patients, caregivers, and society. Drug-resistant epilepsy occurs in approximately 30% of patients and growing evidence indicates that oxidative stress contributes to the development of such epilepsies. Activation of the Nrf2 pathway, which is involved in cellular defense, offers a potential strategy for reducing oxidative stress and epilepsy treatment. Dimethyl fumarate (DMF), an Nrf2 activator, exhibits antioxidant and anti-inflammatory effects and is used to treat multiple sclerosis. METHODS The expression of Nrf2 and its related genes in vehicle or DMF treated rats were determined via RT-PCR and Western blot analysis. Neuronal cell death was evaluated by immunohistochemical staining. The effects of DMF in preventing the onset of epilepsy and modifying the disease were investigated in the kainic acid-induced status epilepticus model of temporal lobe epilepsy in rats. The open field, elevated plus maze and T-Maze spontaneous alteration tests were used for behavioral assessments. RESULTS We demonstrate that administration of DMF following status epilepticus increased Nrf2 activity, attenuated status epilepticus-induced neuronal cell death, and decreased seizure frequency and the total number of seizures compared to vehicle-treated animals. Moreover, DMF treatment reversed epilepsy-induced behavioral deficits in the treated rats. Moreover, DMF treatment even when initiated well after the diagnosis of epilepsy, reduced symptomatic seizures long after the drug was eliminated from the body. CONCLUSIONS Taken together, these findings suggest that DMF, through the activation of Nrf2, has the potential to serve as a therapeutic target for preventing epileptogenesis and modifying epilepsy.
Collapse
Affiliation(s)
- Sereen Sandouka
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prince Kumar Singh
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aseel Saadi
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rhoda Olowe Taiwo
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yara Sheeni
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Taige Zhang
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Larin Deeb
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michelle Guignet
- Department of Pharmacy, Center for Epilepsy Drug Discovery, University of Washington, Seattle, WA, USA
| | - Steve H White
- Department of Pharmacy, Center for Epilepsy Drug Discovery, University of Washington, Seattle, WA, USA
| | - Tawfeeq Shekh-Ahmad
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Chu X, Zhang J, Li Y, Yuan K, Wang X, Gui X, Sun Y, Geng C, Ju W, Xu M, Li Z, Zeng L, Xu K, Qiao J. Dimethyl fumarate possesses antiplatelet and antithrombotic properties. Int Immunopharmacol 2023; 120:110381. [PMID: 37245302 DOI: 10.1016/j.intimp.2023.110381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Dimethyl fumarate (DMF) is a methyl ester of fumaric acid and has been approved for treating multiple sclerosis (MS) and psoriasis due to anti-inflammatory effect. There is a close association between platelets and the pathogenesis of MS. Whether DMF affects platelet function remains unclear. Our study intends to evaluate DMF's effect on platelet function. METHODS Washed human platelets were treated with different concentrations of DMF (0, 50, 100 and 200 μM) at 37 °C for 1 h followed by analysis of platelet aggregation, granules release, receptors expression, spreading and clot retraction. In addition, mice received intraperitoneal injection of DMF (15 mg/kg) to assess tail bleeding time, arterial and venous thrombosis. RESULTS DMF significantly inhibited platelet aggregation and the release of dense/alpha granules in response to collagen-related peptide (CRP) or thrombin stimulation dose-dependently without altering the expression of platelet receptors αIIbβ3, GPIbα, and GPVI. In addition, DMF-treated platelets presented significantly reduced spreading on collagen or fibrinogen and thrombin-mediated clot retraction along with the decreased phosphorylation of c-Src and PLCγ2. Moreover, administration of DMF into mice significantly prolonged the tail bleeding time and impaired arterial and venous thrombus formation. Furthermore, DMF reduced the generation of intracellular reactive oxygen species and calcium mobilization, and inhibited NF-κB activation and the phosphorylation of ERK1/2, p38 and AKT. CONCLUSION DMF inhibits platelet function and arterial/venous thrombus formation. Considering the presence of thrombotic events in MS, our study indicates that DMF treatment for patients with MS might obtain both anti-inflammatory and anti-thrombotic benefits.
Collapse
Affiliation(s)
- Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jie Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yingying Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Ke Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Xue Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Chaonan Geng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| |
Collapse
|
8
|
CRISPR metabolic screen identifies ATM and KEAP1 as targetable genetic vulnerabilities in solid tumors. Proc Natl Acad Sci U S A 2023; 120:e2212072120. [PMID: 36724254 PMCID: PMC9963842 DOI: 10.1073/pnas.2212072120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cancer treatments targeting DNA repair deficiencies often encounter drug resistance, possibly due to alternative metabolic pathways that counteract the most damaging effects. To identify such alternative pathways, we screened for metabolic pathways exhibiting synthetic lethality with inhibition of the DNA damage response kinase Ataxia-telangiectasia-mutated (ATM) using a metabolism-centered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 library. Our data revealed Kelch-like ECH-associated protein 1 (KEAP1) as a key factor involved in desensitizing cancer cells to ATM inhibition both in vitro and in vivo. Cells depleted of KEAP1 exhibited an aberrant overexpression of the cystine transporter SLC7A11, robustly accumulated cystine inducing disulfide stress, and became hypersensitive to ATM inhibition. These hallmarks were reversed in a reducing cellular environment indicating that disulfide stress was a crucial factor. In The Cancer Genome Atlas (TCGA) pan-cancer datasets, we found that ATM levels negatively correlated with KEAP1 levels across multiple solid malignancies. Together, our results unveil ATM and KEAP1 as new targetable vulnerabilities in solid tumors.
Collapse
|
9
|
Neuroprotective effects of dimethyl fumarate against depression-like behaviors via astrocytes and microglia modulation in mice: possible involvement of the HCAR2/Nrf2 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1029-1045. [PMID: 35665831 DOI: 10.1007/s00210-022-02247-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
We postulated that dimethyl fumarate (DMF) exerts neuroprotective effects against depression-like behaviors through astrocytes and microglia modulation. To ascertain our hypothesis and define the mechanistic pathways involved in effect of DMF on neuroinflammation, we used the depression model induced by chronic unpredictable mild stress (CUMS), in which, the mice were exposed to stressful events for 28 days and from the 14th day they received DMF in the doses of 50 and 100 mg/kg or fluoxetine 10 mg/kg or saline. On the 29th day, the animals were subjected to behavioral tests. Microglia (Iba1) and astrocyte (GFAP) marker expressions were evaluated by immunofluorescence analyzes and the cytokines TNF-α and IL-Iβ by immunoenzymatic assay. In addition, computational target prediction, 3D protein structure prediction, and docking calculations were performed with monomethyl fumarate (DMF active metabolite) and the Keap1 and HCAR2 proteins, which suggested that these could be the probable targets related protective effects. CUMS induced anxiety- and depressive-like behaviors, cognitive deficit, decreased GFAP, and increased Iba1, TNF-α, and IL-Iβ expression in the hippocampus. These alterations were reversed by DMF. Thus, it is suggested that one of the mechanisms involved in the antidepressant effect of DMF is neuroinflammatory suppression, through the signaling pathway HCAR2/Nrf2. However, more studies must be performed to better understand the molecular mechanisms of this drug.
Collapse
|
10
|
Zhang Y, Zhou YJ, Tang JS, Lan JQ, Kang YY, Wu L, Peng Y. A comparison study between dimethyl itaconate and dimethyl fumarate in electrophilicity, Nrf2 activation, and anti-inflammation in vitro. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:577-588. [PMID: 34292106 DOI: 10.1080/10286020.2021.1949303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Dimethyl itaconate (DMI) is an analog of dimethyl fumarate (DMF), an approved NF-E2-related Factor 2 (Nrf2) activator for multiple sclerosis. This study evaluated the potential of DMI as an anti-inflammatory agent by comparing DMI with DMF in electrophilicity, Nrf2 activation, and anti-inflammation in vitro. The results showed that DMI was less electrophilic but better at inducing a durable activation of Nrf2 when compared with DMF. However, DMI demonstrated poor anti-inflammatory effects in Jurkat cells, bone marrow-derived dendritic cells, and RAW264.7 cells. Our study suggested that DMI was a potent electrophilic Nrf2 activator but was probably not a promising anti-inflammatory agent.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu-Jun Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing-Shu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jia-Qi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu-Ying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Thomas SD, Jha NK, Sadek B, Ojha S. Repurposing Dimethyl Fumarate for Cardiovascular Diseases: Pharmacological Effects, Molecular Mechanisms, and Therapeutic Promise. Pharmaceuticals (Basel) 2022; 15:ph15050497. [PMID: 35631325 PMCID: PMC9143321 DOI: 10.3390/ph15050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Dimethyl fumarate (DMF) is a small molecule that has been shown to assert potent in vivo immunoregulatory and anti-inflammatory therapeutic actions. The drug has been approved and is currently in use for treating multiple sclerosis and psoriasis in the USA and Europe. Since inflammatory reactions have been significantly implicated in the etiology and progression of diverse disease states, the pharmacological actions of DMF are presently being explored and generalized to other diseases where inflammation needs to be suppressed and immunoregulation is desirable, either as a monotherapeutic agent or as an adjuvant. In this review, we focus on DMF, and present an overview of its mechanism of action while briefly discussing its pharmacokinetic profile. We further discuss in detail its pharmacological uses and highlight its potential applications in the treatment of cardiovascular diseases. DMF, with its unique combination of anti-inflammatory and vasculoprotective effects, has the potential to be repurposed as a therapeutic agent in patients with atherosclerotic cardiovascular disease. The clinical studies mentioned in this review with respect to the beneficial effects of DMF in atherosclerosis involve observations in patients with multiple sclerosis and psoriasis in small cohorts and for short durations. The findings of these studies need to be assessed in larger prospective clinical trials, ideally with a double-blind randomized study design, investigating the effects on cardiovascular endpoints as well as morbidity and mortality. The long-term impact of DMF therapy on cardiovascular diseases also needs to be confirmed.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India;
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (B.S.); (S.O.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (B.S.); (S.O.)
| |
Collapse
|
12
|
Mela V, Sayd Gaban A, O’Neill E, Bechet S, Walsh A, Lynch MA. The Modulatory Effects of DMF on Microglia in Aged Mice Are Sex-Specific. Cells 2022; 11:cells11040729. [PMID: 35203379 PMCID: PMC8870377 DOI: 10.3390/cells11040729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
There is a striking sex-related difference in the prevalence of many neurodegenerative diseases, highlighting the need to consider whether treatments may exert sex-specific effects. A change in microglial activation state is a common feature of several neurodegenerative diseases and is considered to be a key factor in driving the inflammation that characterizes these conditions. Among the changes that have been described is a switch in microglial metabolism towards glycolysis which is associated with production of inflammatory mediators and reduced function. Marked sex-related differences in microglial number, phenotype and function have been described in late embryonic and early postnatal life in rodents and some reports suggest that sexual dimorphism extends into adulthood and age and, in models of Alzheimer’s disease, the changes are more profound in microglia from female, compared with male, mice. Dimethyl fumarate (DMF) is a fumaric acid ester used in the treatment of psoriasis and relapsing remitting multiple sclerosis and, while its mechanism of action is unclear, it possesses anti-inflammatory and anti-oxidant properties and also impacts on cell metabolism. Here we treated 16–18-month-old female and male mice with DMF for 1 month and assessed its effect on microglia. The evidence indicates that it exerted sex-specific effects on microglial morphology and metabolism, reducing glycolysis only in microglia from female mice. The data suggest that this may result from its ability to inactivate glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
Collapse
Affiliation(s)
- Virginia Mela
- Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain;
| | - Aline Sayd Gaban
- Trinity College Institute of Neuroscience, Trinity College Dublin, D02 DK07 Dublin, Ireland; (A.S.G.); (E.O.); (S.B.); (A.W.)
| | - Eoin O’Neill
- Trinity College Institute of Neuroscience, Trinity College Dublin, D02 DK07 Dublin, Ireland; (A.S.G.); (E.O.); (S.B.); (A.W.)
| | - Sibylle Bechet
- Trinity College Institute of Neuroscience, Trinity College Dublin, D02 DK07 Dublin, Ireland; (A.S.G.); (E.O.); (S.B.); (A.W.)
| | - Aífe Walsh
- Trinity College Institute of Neuroscience, Trinity College Dublin, D02 DK07 Dublin, Ireland; (A.S.G.); (E.O.); (S.B.); (A.W.)
| | - Marina A. Lynch
- Trinity College Institute of Neuroscience, Trinity College Dublin, D02 DK07 Dublin, Ireland; (A.S.G.); (E.O.); (S.B.); (A.W.)
- Correspondence:
| |
Collapse
|
13
|
Pinto BF, Ribeiro LNB, da Silva GBRF, Freitas CS, Kraemer L, Oliveira FMS, Clímaco MC, Mourão FAG, Santos GSPD, Béla SR, Gurgel ILDS, Leite FDL, de Oliveira AG, Vilela MRSDP, Oliveira-Lima OC, Soriani FM, Fujiwara RT, Birbrair A, Russo RC, Carvalho-Tavares J. Inhalation of dimethyl fumarate-encapsulated solid lipid nanoparticles attenuate clinical signs of experimental autoimmune encephalomyelitis and pulmonary inflammatory dysfunction in mice. Clin Sci (Lond) 2022; 136:81-101. [PMID: 34904644 DOI: 10.1042/cs20210792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
RATIONALE The FDA-approved Dimethyl Fumarate (DMF) as an oral drug for Multiple Sclerosis (MS) treatment based on its immunomodulatory activities. However, it also caused severe adverse effects mainly related to the gastrointestinal system. OBJECTIVE Investigated the potential effects of solid lipid nanoparticles (SLNs) containing DMF, administered by inhalation on the clinical signs, central nervous system (CNS) inflammatory response, and lung function changes in mice with experimental autoimmune encephalomyelitis (EAE). MATERIALS AND METHODS EAE was induced using MOG35-55 peptide in female C57BL/6J mice and the mice were treated via inhalation with DMF-encapsulated SLN (CTRL/SLN/DMF and EAE/SLN/DMF), empty SLN (CTRL/SLN and EAE/SLN), or saline solution (CTRL/saline and EAE/saline), every 72 h during 21 days. RESULTS After 21 days post-induction, EAE mice treated with DMF-loaded SLN, when compared with EAE/saline and EAE/SLN, showed decreased clinical score and weight loss, reduction in brain and spinal cord injury and inflammation, also related to the increased influx of Foxp3+ cells into the spinal cord and lung tissues. Moreover, our data revealed that EAE mice showed signs of respiratory disease, marked by increased vascular permeability, leukocyte influx, production of TNF-α and IL-17, perivascular and peribronchial inflammation, with pulmonary mechanical dysfunction associated with loss of respiratory volumes and elasticity, which DMF-encapsulated reverted in SLN nebulization. CONCLUSION Our study suggests that inhalation of DMF-encapsulated SLN is an effective therapeutic protocol that reduces not only the CNS inflammatory process and disability progression, characteristic of EAE disease, but also protects mice from lung inflammation and pulmonary dysfunction.
Collapse
Affiliation(s)
- Bárbara Fernandes Pinto
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lorena Natasha Brito Ribeiro
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Gisela Bevilacqua Rolfsen Ferreira da Silva
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCAR), Sorocaba, São Paulo, Brazil
- State of São Paulo University (UNESP), Drugs and Medicines Department, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Camila Simões Freitas
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Kraemer
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Marianna Carvalho Clímaco
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Flávio Afonso Gonçalves Mourão
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Center for Technology and Research in Magneto-Resonance (CTPMAG), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Samantha Ribeiro Béla
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Isabella Luísa da Silva Gurgel
- Laboratory of Functional Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fábio de Lima Leite
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCAR), Sorocaba, São Paulo, Brazil
| | - Anselmo Gomes de Oliveira
- State of São Paulo University (UNESP), Drugs and Medicines Department, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Maura Regina Silva da Páscoa Vilela
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Onésia Cristina Oliveira-Lima
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Frederico Marianetti Soriani
- Laboratory of Functional Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Juliana Carvalho-Tavares
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Wang J, Yang J, Cao M, Zhao Z, Cao B, Yu S. The potential roles of Nrf2/Keap1 signaling in anticancer drug interactions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100028. [PMID: 34909662 PMCID: PMC8663926 DOI: 10.1016/j.crphar.2021.100028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), together with its suppressive binding partner Kelch-like ECH-associated protein 1 (Keap1), regulates cellular antioxidant response and drug metabolism. The roles of Nrf2/Keap1 signaling in the pathology of many diseases have been extensively investigated, and small molecules targeting Nrf2/Keap1 signaling have been developed to prevent or treat diseases such as multiple sclerosis, chronic kidney disease and cancer. Notably, Nrf2 plays dual roles in cancer development and treatment. Activation of Nrf2/Keap1 signaling in cancer cells has been reported to promote cancer progression and result in therapy resistance. Since cancer patients are often suffering comorbidities of other chronic diseases, anticancer drugs could be co-administrated with other drugs and herbs. Nrf2/Keap1 signaling modulators, especially activators, are common in drugs, herbs and dietary ingredients, even they are developed for other targets. Therefore, drug-drug or herb-drug interactions due to modulation of Nrf2/Keap1 signaling should be considered in cancer therapies. Here we briefly summarize basic biochemistry and physiology functions of Nrf2/Keap1 signaling, Nrf2/Keap1 signaling modulators that cancer patients could be exposed to, and anticancer drugs that are sensitive to Nrf2/Keap1 signaling, aiming to call attention to the potential drug-drug or herb-drug interactions between anticancer drugs and these Nrf2/Keap1 signaling modulators.
Collapse
Affiliation(s)
- Jingya Wang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, PR China
| | - Jin Yang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, PR China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, PR China
| |
Collapse
|
15
|
Fatty acid nitroalkene reversal of established lung fibrosis. Redox Biol 2021; 50:102226. [PMID: 35150970 PMCID: PMC8844680 DOI: 10.1016/j.redox.2021.102226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue fibrosis occurs in response to dysregulated metabolism, pro-inflammatory signaling and tissue repair reactions. For example, lungs exposed to environmental toxins, cancer therapies, chronic inflammation and other stimuli manifest a phenotypic shift to activated myofibroblasts and progressive and often irreversible lung tissue scarring. There are no therapies that stop or reverse fibrosis. The 2 FDA-approved anti-fibrotic drugs at best only slow the progression of fibrosis in humans. The present study was designed to test whether a small molecule electrophilic nitroalkene, nitro-oleic acid (NO2-OA), could reverse established pulmonary fibrosis induced by the intratracheal administration of bleomycin in C57BL/6 mice. After 14 d of bleomycin-induced fibrosis development in vivo, lungs were removed, sectioned and precision-cut lung slices (PCLS) from control and bleomycin-treated mice were cultured ex vivo for 4 d with either vehicle or NO2-OA (5 μM). Biochemical and morphological analyses showed that over a 4 d time frame, NO2-OA significantly inhibited pro-inflammatory mediator and growth factor expression and reversed key indices of fibrosis (hydroxyproline, collagen 1A1 and 3A1, fibronectin-1). Quantitative image analysis of PCLS immunohistology reinforced these observations, revealing that NO2-OA suppressed additional hallmarks of the fibrotic response, including alveolar epithelial cell loss, myofibroblast differentiation and proliferation, collagen and α-smooth muscle actin expression. NO2-OA also accelerated collagen degradation by resident macrophages. These effects occurred in the absence of the recognized NO2-OA modulation of circulating and migrating immune cell activation. Thus, small molecule nitroalkenes may be useful agents for reversing pathogenic fibrosis of lung and other organs. Small molecule electrophiles, pleiotropic anti-inflammatory and anti-fibrotic drugs. NO2-OA inhibits activated myofibroblasts, induces dedifferentiation to fibroblasts. NO2-OA activates extracellular matrix degradation by macrophages. NO2-OA promotes proliferation of alveolar type 1 and 2 epithelial cells. NO2-OA reverses established lung fibrosis in murine lung slices.
Collapse
|
16
|
Restraint of Fumarate Accrual by HIF-1α Preserves miR-27a-Mediated Limitation of Interleukin 10 during Infection of Macrophages by Histoplasma capsulatum. mBio 2021; 12:e0271021. [PMID: 34749531 PMCID: PMC8576535 DOI: 10.1128/mbio.02710-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) regulates the immunometabolic phenotype of macrophages, including the orchestration of inflammatory and antimicrobial processes. Macrophages deficient in HIF-1α produce excessive quantities of the anti-inflammatory cytokine interleukin 10 (IL-10) during infection with the intracellular fungal pathogen Histoplasma capsulatum (R. A. Fecher, M. C. Horwath, D. Friedrich, J. Rupp, G. S. Deepe, J Immunol 197:565–579, 2016, https://doi.org/10.4049/jimmunol.1600342). Thus, the macrophage fails to become activated in response to proinflammatory cytokines and remains the intracellular niche of the pathogen. Here, we identify the tricarboxylic acid (TCA) cycle metabolite fumarate as the driver of IL-10 during macrophage infection with H. capsulatum in the absence of HIF-1α. Accumulation of fumarate reduced expression of a HIF-1α-dependent microRNA (miRNA), miR-27a, known to mediate decay of Il10 mRNA. Inhibition of fumarate accrual in vivo limited IL-10 and fungal growth. Our data demonstrate the critical role of HIF-1α in shaping appropriate TCA cycle activity in response to infection and highlight the consequences of a dysregulated immunometabolic response.
Collapse
|
17
|
Li Y, Jia Y, Xu Y, Li K. DMF Activates NRF2 to Inhibit the Pro-Invasion Ability of TAMs in Breast Cancer. Front Oncol 2021; 11:706448. [PMID: 34476214 PMCID: PMC8406629 DOI: 10.3389/fonc.2021.706448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Tumor-associated macrophages (TAMs) account for more than 50% of the cells in the tumor immune microenvironment of patients with breast cancer. A high TAM density is associated with a poor clinical prognosis. Targeting TAMs is a promising therapeutic strategy because they promote tumor growth, development, and metastasis. In this study, we found that dimethyl formamide (DMF) significantly inhibited the tumor invasion-promoting ability of TAMs in the co-culture system and further showed that DMF functioned by reducing reactive oxygen species (ROS) production in TAMs. The orthotopic 4T1 cell inoculation model and the spontaneous mouse mammary tumor virus-polyoma middle tumor-antigen tumor model were used to evaluate the antitumor effect of DMF. The results showed that DMF significantly inhibited tumor metastasis and increased T-cell infiltration into the tumor microenvironment. Mechanistically, NRF2 activation was necessary for DMF to exert its function, and DMF can play a role in breast cancer as an anticancer drug targeting TAMs.
Collapse
Affiliation(s)
- Ying Li
- Department of Clinical Laboratory, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Department of Epidemiology, School of Public Health of Suzhou University, Suzhou, China
| | - Yaxu Jia
- Department of Clinical Laboratory, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yurong Xu
- Department of Clinical Laboratory, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Kan Li
- Department of Clinical Laboratory, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
18
|
Dimethyl Fumarate Promotes the Survival of Retinal Ganglion Cells after Optic Nerve Injury, Possibly through the Nrf2/HO-1 Pathway. Int J Mol Sci 2020; 22:ijms22010297. [PMID: 33396673 PMCID: PMC7795407 DOI: 10.3390/ijms22010297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to verify whether dimethyl fumarate (DMF) promotes the survival of retinal ganglion cells (RGCs) after optic nerve crush (ONC) accompanied by activation of the NF-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. We examined changes in the densities of tubulin β3 (TUBB3)-positive RGCs and the amplitudes of the positive scotopic threshold response (pSTR), reflecting the functional activity of RGCs, recorded on an electroretinogram, with daily administration of DMF, on day 7 after ONC. Furthermore, immunohistochemical and immunoblotting analyses were performed to study the activation of the Nrf2/HO-1 pathway using retinas treated with daily administration of DMF. Daily administration of DMF increasedthe density of TUBB3-positive RGCs in a dose-dependent fashion and significantly increased the amplitude of the pSTR. Immunohistochemical analysis showed that DMF administration increased the immunoreactivity for Nrf2 and HO-1, a potent antioxidant enzyme, in RGCs immunolabeled with RNA-binding protein with multiple splicing (RBPMS). Immunoblotting analysis revealed an increase in the nuclear expression of Nrf2 and marked upregulation of HO-1 after DMF administration. These results suggest that DMF has survival-promoting effects in RGC after ONC, possibly via the Nrf2/HO-1 pathway.
Collapse
|
19
|
Timpani CA, Rybalka E. Calming the (Cytokine) Storm: Dimethyl Fumarate as a Therapeutic Candidate for COVID-19. Pharmaceuticals (Basel) 2020; 14:15. [PMID: 33375288 PMCID: PMC7824470 DOI: 10.3390/ph14010015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has rapidly spread worldwide and incidences of hospitalisation from respiratory distress are significant. While a vaccine is in the pipeline, there is urgency for therapeutic options to address the immune dysregulation, hyperinflammation and oxidative stress that can lead to death. Given the shared pathogenesis of severe cases of COVID-19 with aspects of multiple sclerosis and psoriasis, we propose dimethyl fumarate as a viable treatment option. Currently approved for multiple sclerosis and psoriasis, dimethyl fumarate is an immunomodulatory, anti-inflammatory and anti-oxidative drug that could be rapidly implemented into the clinic to calm the cytokine storm which drives severe COVID-19.
Collapse
Affiliation(s)
- Cara A. Timpani
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, St Albans, VIC 3021, Australia
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, St Albans, VIC 3021, Australia
| |
Collapse
|
20
|
Novel Heme Oxygenase-1 (HO-1) Inducers Based on Dimethyl Fumarate Structure. Int J Mol Sci 2020; 21:ijms21249541. [PMID: 33333908 PMCID: PMC7765375 DOI: 10.3390/ijms21249541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/31/2022] Open
Abstract
Novel heme oxygenase-1 (HO-1) inducers based on dimethyl fumarate (DMF) structure are reported in this paper. These compounds are obtained by modification of the DMF backbone. Particularly, maintaining the α, β-unsaturated dicarbonyl function as the central chain crucial for HO-1 induction, different substituted or unsubstituted phenyl rings are introduced by means of an ester or amide linkage. Symmetric and asymmetric derivatives are synthesized. All compounds are tested on a human hepatic stellate cell line LX-2 to assay their capacity for modifying HO-1 expression. Compounds 1b, 1l and 1m stand out for their potency as HO-1 inducers, being 2–3 fold more active than DMF, and for their ability to reverse reactive oxygen species (ROS) production mediated using palmitic acid (PA). These properties, coupled with a low toxicity toward LX-2 cell lines, make these compounds potentially useful for treatment of diseases in which HO-1 overexpression may counteract inflammation, such as hepatic fibrosis. Docking studies show a correlation between predicted binding free energy and experimental HO-1 expression data. These preliminary results may support the development of new approaches in the management of liver fibrosis.
Collapse
|
21
|
Zhu H, Chen G, Wang Y, Lin X, Zhou J, Wang Z, Suo N. Dimethyl fumarate protects nucleus pulposus cells from inflammation and oxidative stress and delays the intervertebral disc degeneration. Exp Ther Med 2020; 20:269. [PMID: 33199994 PMCID: PMC7664592 DOI: 10.3892/etm.2020.9399] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Lower back pain is a common problem in middle-aged and elderly people, and intervertebral disc degeneration (IVDD) is often the main cause. The present study aimed to explore the effects of dimethyl fumarate (DMF) on inflammation and oxidative stress in the intervertebral disc. C57/BL6 mice were used to construct an IVDD model by tail suspension and daily intraperitoneal injections of 10 mg/kg DMF were administered to analyze the effects of DMF on IVDD. In addition, human nucleus pulposus (NP) cells were cultured and stimulated cells with recombinant human IL-1β and DMF to examine the effects of DMF on inflammation and oxidative stress in NP cells. DMF significantly increased the intervertebral disc height index of mice and inhibited the degradation of the extracellular matrix of mouse NP tissue. In addition, DMF also decreased the expression of inflammatory factors [including IL-6, IL-8, matrix metalloproteinase (MMP)3 and MMP13] in NP cells. In terms of oxidative stress, DMF significantly increased the antioxidative stress response in NP cells and reduced endoplasmic reticulum stress. DMF also increased the activity of the nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1 signaling pathway in NP cells and increased the phosphorylation of Akt. DMF also increased the anti-inflammatory and antioxidative ability of NP cells by promoting the activity of the Nrf2/HO-1 and PI3K/Akt signaling pathways, thus delaying IVDD.
Collapse
Affiliation(s)
- Hainian Zhu
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Gang Chen
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Yuhua Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Xuchen Lin
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Jingyuan Zhou
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Zengshun Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Nanangxiu Suo
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
22
|
Solana-Manrique C, Sanz FJ, Ripollés E, Bañó MC, Torres J, Muñoz-Soriano V, Paricio N. Enhanced activity of glycolytic enzymes in Drosophila and human cell models of Parkinson's disease based on DJ-1 deficiency. Free Radic Biol Med 2020; 158:137-148. [PMID: 32726690 DOI: 10.1016/j.freeradbiomed.2020.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative debilitating disorder characterized by progressive disturbances in motor, autonomic and psychiatric functions. One of the genes involved in familial forms of the disease is DJ-1, whose mutations cause early-onset PD. Besides, it has been shown that an over-oxidized and inactive form of the DJ-1 protein is found in brains of sporadic PD patients. Interestingly, the DJ-1 protein plays an important role in cellular defense against oxidative stress and also participates in mitochondrial homeostasis. Valuable insights into potential PD pathogenic mechanisms involving DJ-1 have been obtained from studies in cell and animal PD models based on DJ-1 deficiency such as Drosophila. Flies mutant for the DJ-1β gene, the Drosophila ortholog of human DJ-1, exhibited disease-related phenotypes such as motor defects, increased reactive oxygen species production and high levels of protein carbonylation. In the present study, we demonstrate that DJ-1β mutants also show a significant increase in the activity of several regulatory glycolytic enzymes. Similar results were obtained in DJ-1-deficient SH-SY5Y neuroblastoma cells, thus suggesting that loss of DJ-1 function leads to an increase in the glycolytic rate. In such a scenario, an enhancement of the glycolytic pathway could be a protective mechanism to decrease ROS production by restoring ATP levels, which are decreased due to mitochondrial dysfunction. Our results also show that meclizine and dimethyl fumarate, two FDA-approved compounds with different clinical applications, are able to attenuate PD-related phenotypes in both models. Moreover, we found that they may exert their beneficial effect by increasing glycolysis through the activation of key glycolytic enzymes. Taken together, these results are consistent with the idea that increasing glycolysis could be a potential disease-modifying strategy for PD, as recently suggested. Besides, they also support further evaluation and potential repurposing of meclizine and dimethyl fumarate as modulators of energy metabolism for neuroprotection in PD.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Edna Ripollés
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - M Carmen Bañó
- Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain; Departamento de Bioquímica y Biología Molecular, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain
| | - Josema Torres
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain
| | - Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
23
|
Al-Ani M, Elemam NM, Hundt JE, Maghazachi AA. Drugs for Multiple Sclerosis Activate Natural Killer Cells: Do They Protect Against COVID-19 Infection? Infect Drug Resist 2020; 13:3243-3254. [PMID: 33061471 PMCID: PMC7519863 DOI: 10.2147/idr.s269797] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 infection caused by the newly discovered coronavirus severe acute respiratory distress syndrome virus-19 (SARS-CoV-2) has become a pandemic issue across the globe. There are currently many investigations taking place to look for specific, safe and potent anti-viral agents. Upon transmission and entry into the human body, SARS-CoV-2 triggers multiple immune players to be involved in the fight against the viral infection. Amongst these immune cells are NK cells that possess robust antiviral activity, and which do not require prior sensitization. However, NK cell count and activity were found to be impaired in COVID-19 patients and hence, could become a potential therapeutic target for COVID-19. Several drugs, including glatiramer acetate (GA), vitamin D3, dimethyl fumarate (DMF), monomethyl fumarate (MMF), natalizumab, ocrelizumab, and IFN-β, among others have been previously described to increase the biological activities of NK cells especially their cytolytic potential as reported by upregulation of CD107a, and the release of perforin and granzymes. In this review, we propose that such drugs could potentially restore NK cell activity allowing individuals to be more protective against COVID-19 infection and its complications.
Collapse
Affiliation(s)
- Mena Al-Ani
- Department of Clinical Sciences, College of Medicine and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
24
|
Shippy DC, Ulland TK. Microglial Immunometabolism in Alzheimer's Disease. Front Cell Neurosci 2020; 14:563446. [PMID: 33192310 PMCID: PMC7531234 DOI: 10.3389/fncel.2020.563446] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by amyloid-β (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. In response to Aβ and tau aggregates, microglia, the primary innate immune cells of the central nervous system (CNS), facilitate Aβ and tau clearance and contribute to neuroinflammation that damages neurons. Microglia also perform a wide range of other functions, e.g., synaptic pruning, within the CNS that require a large amount of energy. Glucose appears to be the primary energy source, but microglia can utilize several other substrates for energy production including other sugars and ketone bodies. Recent studies have demonstrated that changes in the metabolic profiles of immune cells, including macrophages, are important in controlling their activation and effector functions. Additional studies have focused on the role of metabolism in neuron and astrocyte function while until recently microglia metabolism has been considerably less well understood. Considering many neurological disorders, such as neurodegeneration associated with AD, are associated with chronic inflammation and alterations in brain energy metabolism, it is hypothesized that microglial metabolism plays a significant role in the inflammatory responses of microglia during neurodegeneration. Here, we review the role of microglial immunometabolism in AD.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
25
|
Kortam MA, Ali BM, Fathy N. The deleterious effect of stress-induced depression on rat liver: Protective role of resveratrol and dimethyl fumarate via inhibiting the MAPK/ERK/JNK pathway. J Biochem Mol Toxicol 2020; 35:e22627. [PMID: 32905656 DOI: 10.1002/jbt.22627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/22/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
This study aimed to uncover the protective potentiality of resveratrol and dimethyl fumarate (DMF) in the liver of a chronic unpredictable mild stress (CUMS)-induced depression animal model. Resveratrol and DMF significantly alleviated CUMS-induced behavioral abnormalities in stressed rats through improving sucrose preference in sucrose preference test and decreasing immobility time in a forced swimming test. They also mitigated serum corticosterone levels and elevated serum serotonin levels, which were formerly disturbed in CUMS rats. The hepatoprotective effect is evidenced by improvement in hepatic histopathological examinations, as well as normalized serum alanine aminotransferase and aspartate aminotransferase activities. Molecular signaling of resveratrol and DMF was estimated by diminishing hepatic expression of phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase1/2 (ERK1/2), and c-Jun N-terminal kinase (JNK). Consequently, they improved the hepatic antioxidant and anti-inflammatory activities as elaborated by the normalization of total antioxidant capacity, glutathione, malondialdehyde, nuclear factor-κB, tumor necrosis factor-α, and myeloperoxidase levels. In addition, they inhibited hepatocyte apoptosis as evidenced by the increased expression of B-cell lymphoma 2, the decreased expression of Bax, as well as the suppressed activity of caspase-3. In conclusion, resveratrol and DMF purveyed a significant anti-depressant effect, which may be mediated, at least in part, via inhibiting the MAPK/ERK/JNK pathway in the CUMS rat model.
Collapse
Affiliation(s)
- Mona A Kortam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, 6th of October University, Cairo, Egypt
| | - Nevine Fathy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Sachinvala ND, Teramoto N, Stergiou A. Proposed Neuroimmune Roles of Dimethyl Fumarate, Bupropion, S-Adenosylmethionine, and Vitamin D 3 in Affording a Chronically Ill Patient Sustained Relief from Inflammation and Major Depression. Brain Sci 2020; 10:E600. [PMID: 32878267 PMCID: PMC7563300 DOI: 10.3390/brainsci10090600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
We had discussed earlier that, after most of the primary author's multiple sclerosis (MS) symptoms were lessened by prior neuroimmune therapies, use of dimethyl fumarate (DMF) gradually subdued his asthma and urticaria symptoms, as well as his MS-related intercostal cramping; and bupropion supplemented with S-adenosylmethionine (SAMe) and vitamin D3 (vit-D3) helped remit major depression (MD). Furthermore, the same cocktail (bupropion plus supplements), along with previously discussed routines (yoga, meditation, physical exercises, and timely use of medications for other illnesses), continued to subdue MD during new difficulties with craniopharyngioma, which caused bitemporal vision loss; sphenoid sinus infections, which caused cranial nerve-VI (CN6) palsy and diplopia; and through their treatments. Impressed by the benefit the four compounds provided, in this manuscript, we focus on explaining current neuroimmune literature proposals on how: (1) DMF impedes inflammation, oxidative stress, and cell death in CNS and peripheral tissues; (2) Bupropion curbs anxiety, MD, and enhances alertness, libido, and moods; (3) SAMe silences oxidative stress and depression by multiple mechanisms; and (4) Vit-D3 helps brain development and functioning and subdues inflammation. we realize that herein we have reviewed proposed mechanisms of remedies we discovered by literature searches and physician assisted auto-experimentation; and our methods might not work with other patients. We present our experiences so readers are heartened to reflect upon their own observations in peer-reviewed forums and make available a wide body of information for the chronically ill and their physicians to benefit from.
Collapse
Affiliation(s)
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba 275-0016, Japan;
| | - Angeline Stergiou
- Department of Medicine, Fairfield Medical Center, 401 North Ewing, Lancaster, OH 43130, USA;
| |
Collapse
|
27
|
Kempe PRG, Chiarotto GB, Barraviera B, Ferreira RS, de Oliveira ALR. Neuroprotection and immunomodulation by dimethyl fumarate and a heterologous fibrin biopolymer after ventral root avulsion and reimplantation. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190093. [PMID: 32518556 PMCID: PMC7250131 DOI: 10.1590/1678-9199-jvatitd-2019-0093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Ventral root avulsion (VRA) is an experimental approach in which there is an abrupt separation of the motor roots from the surface of the spinal cord. As a result, most of the axotomized motoneurons degenerate by the second week after injury, and the significant loss of synapses and increased glial reaction triggers a chronic inflammatory state. Pharmacological treatment associated with root reimplantation is thought to overcome the degenerative effects of VRA. Therefore, treatment with dimethyl fumarate (DMF), a drug with neuroprotective and immunomodulatory effects, in combination with a heterologous fibrin sealant/biopolymer (FS), a biological glue, may improve the regenerative response. Methods: Adult female Lewis rats were subjected to VRA of L4-L6 roots followed by reimplantation and daily treatment with DMF for four weeks. Survival times were evaluated 1, 4 or 12 weeks after surgery. Neuronal survival assessed by Nissl staining, glial reactivity (anti-GFAP for astrocytes and anti-Iba-1 for microglia) and synapse preservation (anti-VGLUT1 for glutamatergic inputs and anti-GAD65 for GABAergic inputs) evaluated by immunofluorescence, gene expression (pro- and anti-inflammatory molecules) and motor function recovery were measured. Results: Treatment with DMF at a dose of 15 mg/kg was found to be neuroprotective and immunomodulatory because it preserved motoneurons and synapses and decreased astrogliosis and microglial reactions, as well as downregulated the expression of pro-inflammatory gene transcripts. Conclusion: The pharmacological benefit was further enhanced when associated with root reimplantation with FS, in which animals recovered at least 50% of motor function, showing the efficacy of employing multiple regenerative approaches following spinal cord root injury.
Collapse
Affiliation(s)
- Paula R G Kempe
- Laboratory of Nerve Regeneration, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | |
Collapse
|
28
|
Pascale CL, Martinez AN, Carr C, Sawyer DM, Ribeiro-Alves M, Chen M, O'Donnell DB, Guidry JJ, Amenta PS, Dumont AS. Treatment with dimethyl fumarate reduces the formation and rupture of intracranial aneurysms: Role of Nrf2 activation. J Cereb Blood Flow Metab 2020; 40:1077-1089. [PMID: 31220996 PMCID: PMC7181091 DOI: 10.1177/0271678x19858888] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress and chronic inflammation in arterial walls have been implicated in intracranial aneurysm (IA) formation and rupture. Dimethyl fumarate (DMF) exhibits immunomodulatory properties, partly via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway which reduces oxidative stress by inducing the antioxidant response element (ARE). This study evaluated the effects of DMF both in vitro, using tumor necrosis factor (TNF)-α-treated vascular smooth muscle cells (VSMC), and in vivo, using a murine elastase model to induce aneurysm formation. The mice were treated with either DMF at 100 mg/kg/day P.O. or vehicle for two weeks. DMF treatment protected VSMCs from TNF-α-induced inflammation as demonstrated by its downregulation of cytokines and upregulation of Nrf2 and smooth muscle cell markers. At higher doses, DMF also inhibited the pro-proliferative action of TNF-α by increasing apoptosis which protected the cells from aponecrosis. In mice, DMF treatment significantly decreased the incidence of aneurysm formation and rupture, at the same time increasing Nrf2 levels. DMF demonstrated a neuroprotective effect in mice with a resultant inhibition of oxidative stress, inflammation, and fibrosis in the cerebrovasculature. This suggests a potential role for DMF as a rescue therapy for patients at risk for formation and rupture of IAs.
Collapse
Affiliation(s)
- Crissey L Pascale
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alejandra N Martinez
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Christopher Carr
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - David M Sawyer
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectology Evandro Chagas (INI)-Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Mimi Chen
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Devon B O'Donnell
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessie J Guidry
- Louisiana State University Health Sciences Center Proteomics Core Facility, New Orleans, LA, USA
| | - Peter S Amenta
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
29
|
Scagliola A, Mainini F, Cardaci S. The Tricarboxylic Acid Cycle at the Crossroad Between Cancer and Immunity. Antioxid Redox Signal 2020; 32:834-852. [PMID: 31847530 DOI: 10.1089/ars.2019.7974] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: The tricarboxylic acid (TCA) cycle is a housekeeping metabolic pathway essential for generation of energy and biosynthetic intermediates. Alterations of the TCA cycle play a pivotal role in oncogenesis and inflammation. As such, some metabolic vulnerabilities, imposed by TCA cycle dysfunction in cancer, have been identified. Similarly, the TCA cycle appeared as an actionable pathway in immunopathologies. Recent Advances: Metabolic changes accompanying cell transformation have been usually considered as adaptive mechanisms to malignant transformation. The identification of oncogenic mutations in some TCA cycle enzymes changed this view, indicating altered mitochondrial metabolism as an instrumental mechanism for cancer initiation. Similarly, the observation that TCA cycle-derived metabolites have multiple signaling roles in immune cells supports the idea of this pathway as a metabolic rheostat of immune responses. Critical Issues: This review summarizes the crucial role of the TCA cycle in pathophysiology describing the post-translational and epigenetic impact of oncometabolites accumulation in cancer and immune cells. Future Directions: Additional studies will be necessary to further explore the role of oncometabolites in paracrine signaling and to identify genuine metabolic and nutritional liabilities imposed by TCA cycle dysfunction in cancer, hardly to be escaped by resistance mechanisms.
Collapse
Affiliation(s)
- Alessandra Scagliola
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Mainini
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simone Cardaci
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
30
|
Bombeiro AL, Pereira BTN, Bonfanti AP, Oliveira ALRD. Immunomodulation by dimethyl fumarate treatment improves mouse sciatic nerve regeneration. Brain Res Bull 2020; 160:24-32. [PMID: 32305403 DOI: 10.1016/j.brainresbull.2020.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/13/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Traumatic injury to the peripheral nervous system (PNS) often generates sensorimotor deficits that impair the quality of life of the patient. The success of nerve regeneration is related to tissue clearance and the formation of a microenvironment that sustains and stimulates axon growth up to the target. In this sense, macrophages are important for axon and myelin debris removal, neovascularization and the production of neurotrophic factors. Macrophage activation is improved by T helper (Th) lymphocytes, whose role remains few explored upon traumatic nerve injuries. Dimethyl fumarate (DMF) is the first-line drug for the treatment of multiple sclerosis due to its neuroprotective, anti-inflammatory and immunomodulatory properties. DMF improves nerve regeneration via antioxidant and cytoprotective cell signaling pathways. However, the direct activity on the cell immune response following nerve axotomy requires further investigation. In the present study, we evaluated DMF activity on Th cells and macrophage polarization, axonal regeneration and motor recovery following sciatic nerve crush in mice. For this aim, operated animals received DMF or vehicle once a day, starting at 3 days postinjury (dpi). Using an in vivo cell migration assay, we observed reduced lymphocyte infiltration in the nerves of DMF-treated mice at 7 dpi. Flow cytometry revealed DMF-responsive lymphocyte polarization from the pro- (Th1) to anti-inflammatory (Th2) phenotype at 7 dpi but not at 14 dpi. No effect was observed on macrophage polarization (from M1 to M2), although DMF reduced the frequency of the proinflammatory M1 subset from 7 to 14 dpi. Quantification of neurofilament (axon marker) and growth-associated protein 43 (GAP-43) immunolabeling showed improved axonal regeneration under DMF treatment at 14 dpi. Better motor recovery was observed in the DMF-treated group, as verified by an automated walking track test. Overall, our data reinforce the pro-regenerative capacity of DMF after traumatic nerve injury based on downmodulation of the proinflammatory immune response.
Collapse
Affiliation(s)
- André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology. P.O. Box: 6109, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil.
| | - Bruna Toledo Nunes Pereira
- Department of Structural and Functional Biology, Institute of Biology. P.O. Box: 6109, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil.
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, Institute of Biology. P.O. Box: 6109, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil.
| | - Alexandre Leite Rodrigues de Oliveira
- Department of Structural and Functional Biology, Institute of Biology. P.O. Box: 6109, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
31
|
Hennig P, Fenini G, Di Filippo M, Beer HD. Electrophiles Against (Skin) Diseases: More Than Nrf2. Biomolecules 2020; 10:E271. [PMID: 32053878 PMCID: PMC7072181 DOI: 10.3390/biom10020271] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
The skin represents an indispensable barrier between the organism and the environment and is the first line of defense against exogenous insults. The transcription factor NRF2 is a central regulator of cytoprotection and stress resistance. NRF2 is activated in response to oxidative stress by reactive oxygen species (ROS) and electrophiles. These electrophiles oxidize specific cysteine residues of the NRF2 inhibitor KEAP1, leading to KEAP1 inactivation and, subsequently, NRF2 activation. As oxidative stress is associated with inflammation, the NRF2 pathway plays important roles in the pathogenesis of common inflammatory diseases and cancer in many tissues and organs, including the skin. The electrophile and NRF2 activator dimethyl fumarate (DMF) is an established and efficient drug for patients suffering from the common inflammatory skin disease psoriasis and the neuro-inflammatory disease multiple sclerosis (MS). In this review, we discuss possible molecular mechanisms underlying the therapeutic activity of DMF and other NRF2 activators. Recent evidence suggests that electrophiles not only activate NRF2, but also target other inflammation-associated pathways including the transcription factor NF-κB and the multi-protein complexes termed inflammasomes. Inflammasomes are central regulators of inflammation and are involved in many inflammatory conditions. Most importantly, the NRF2 and inflammasome pathways are connected at different levels, mainly antagonistically.
Collapse
Affiliation(s)
- Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Gabriele Fenini
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
32
|
Förster M, Küry P, Aktas O, Warnke C, Havla J, Hohlfeld R, Mares J, Hartung HP, Kremer D. Managing Risks with Immune Therapies in Multiple Sclerosis. Drug Saf 2020; 42:633-647. [PMID: 30607830 DOI: 10.1007/s40264-018-0782-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the introduction of the interferons in the 1990s, a multitude of different immunomodulatory and immunosuppressant disease-modifying therapies for multiple sclerosis (MS) have been developed. They have all shown positive effects on clinical endpoints such as relapse rate and disease progression and are a heterogeneous group of therapeutics comprising recombinant pegylated and non-pegylated interferon-β variants, peptide combinations, monoclonal antibodies, and small molecules. However, they have relevant side effect profiles, which necessitate thorough monitoring and straightforward patient education. In individual cases, side effects can be severe and potentially life-threatening, which is why knowledge about (neurological and non-neurological) adverse drug reactions is essential for prescribing neurologists as well as general practitioners. This paper aims to provide an overview of currently available MS therapies, their modes of action and safety profiles, and the necessary therapy monitoring.
Collapse
Affiliation(s)
- Moritz Förster
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Clemens Warnke
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilian-Universität München, Munich, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilian-Universität München, Munich, Germany.,The Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jan Mares
- Department of Neurology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
33
|
Lynch MA. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog Neurobiol 2019; 184:101719. [PMID: 31704314 DOI: 10.1016/j.pneurobio.2019.101719] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
In the past few years it has become increasingly clear that an understanding of the interaction between metabolism and immune function can provide an insight into cellular responses to challenges. Significant progress has been made in terms of how macrophages are metabolically re-programmed in response to inflammatory stimuli but, to date, little emphasis has been placed on evaluating equivalent changes in microglia. The need to make progress is driven by the fact that, while microglial activation and the cell's ability to adopt an inflammatory phenotype is necessary to fulfil the neuroprotective function of the cell, persistent activation of microglia and the associated neuroinflammation is at the heart of several neurodegenerative diseases. Understanding the metabolic changes that accompany microglial responses may broaden our perspective on how dysfunction might arise and be tempered. This review will evaluate the current literature that addresses the interplay between inflammation and metabolic reprogramming in microglia, reflecting on the parallels that exist with macrophages. It will consider the changes that take place with age including those that have been reported in neurons and astrocytes with the development of non-invasive imaging techniques, and reflect on the literature that is currently available relating to metabolic reprogramming of microglia with age and in neurodegeneration. Finally it will consider the possibility that manipulating microglial metabolism may provide a valuable approach to modulating neuroinflammation.
Collapse
Affiliation(s)
- Marina A Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
34
|
Muhammad JS, Jayakumar MN, Elemam NM, Venkatachalam T, Raju TK, Hamoudi RA, Maghazachi AA. Gasdermin D Hypermethylation Inhibits Pyroptosis And LPS-Induced IL-1β Release From NK92 Cells. Immunotargets Ther 2019; 8:29-41. [PMID: 31687364 PMCID: PMC6800286 DOI: 10.2147/itt.s219867] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/28/2019] [Indexed: 01/09/2023] Open
Abstract
Introduction Although natural killer (NK) are major cells used to treat cancer patients, recent clinical trials showed that NK92 cells can be also used for the same purpose due to their high anti-tumor activity. Here, we examined whether these cells might be inflammatory due to the release of interleukin-1β (IL-1β), and whether the anti-inflammatory molecules dimethyl fumarate (DMF), or monomethyl fumarate (MMF) impair this activity. Methods NK92 cells were examined for the synthesis and release of IL-1β utilizing RT-PCR and ELISA assay, respectively. The expression of hydroxy-carboxylic acid receptors (HCA)1, HCA2 and HCA3 was detected by immunoblotting, flow cytometry, immunofluorescence and RT-PCR assays. The activation of caspase-1 and Gasdermin D (GSDMD) was evaluated by immunoblot assay. Pyroptosis was demonstrated by immunofluorescence imaging. Expression of DNA methyltransferases (DNMTs) mRNA was determined by whole transcriptome and immunoblot analyses. Results LPS-induced the release of IL-1β from NK92 cells, whereas DMF or MMF inhibited this induction. The effect of these drugs was due to inhibiting the conversion of procaspase-1 into active caspase-1. NK92 cells highly expressed GSDMD, a pyroptotic-mediated molecule. However, LPS induced the distribution of GSDMD into the cell membranes, corroborated with the presence of pyroptotic bodies, an activity that was inhibited by DMF or MMF. These molecule also inhibited the generation of GSDMD through DNMT-mediated hypermethylation of the promoter region of GSDMD gene. These results were supported by increased expression of DNMTs mRNA as determined by whole transcriptome analysis. Discussion Our results are the first to show that NK92 cells utilize GSDMD pathway to release IL-1β. Further, DMF and MMF which were previously shown to enhance NK cell cytotoxicity, also inhibit the inflammatory effects of these cells, making them most suitable for treating cancer patients. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/ZT7DsG-nq0o
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Manju Nidagodu Jayakumar
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noha Mousaad Elemam
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Thenmozhi Venkatachalam
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tom Kalathil Raju
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Akram Hamoudi
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Azzam A Maghazachi
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
35
|
Selman M, Ou P, Rousso C, Bergeron A, Krishnan R, Pikor L, Chen A, Keller BA, Ilkow C, Bell JC, Diallo JS. Dimethyl fumarate potentiates oncolytic virotherapy through NF-κB inhibition. Sci Transl Med 2019; 10:10/425/eaao1613. [PMID: 29367345 DOI: 10.1126/scitranslmed.aao1613] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022]
Abstract
Resistance to oncolytic virotherapy is frequently associated with failure of tumor cells to get infected by the virus. Dimethyl fumarate (DMF), a common treatment for psoriasis and multiple sclerosis, also has anticancer properties. We show that DMF and various fumaric and maleic acid esters (FMAEs) enhance viral infection of cancer cell lines as well as human tumor biopsies with several oncolytic viruses (OVs), improving therapeutic outcomes in resistant syngeneic and xenograft tumor models. This results in durable responses, even in models otherwise refractory to OV and drug monotherapies. The ability of DMF to enhance viral spread results from its ability to inhibit type I interferon (IFN) production and response, which is associated with its blockade of nuclear translocation of the transcription factor nuclear factor κB (NF-κB). This study demonstrates that unconventional application of U.S. Food and Drug Administration-approved drugs and biological agents can result in improved anticancer therapeutic outcomes.
Collapse
Affiliation(s)
- Mohammed Selman
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Paula Ou
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Christopher Rousso
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Anabel Bergeron
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ramya Krishnan
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Larissa Pikor
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Andrew Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Brian A Keller
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Carolina Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
36
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Kodukula K, Zamboni RJ. Epigenetic treatment of dermatologic disorders. Drug Dev Res 2019. [DOI: 10.1002/ddr.21562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of PharmacyUniversity of California, San Francisco San Francisco California
- ShangPharma Innovation Inc. South San Francisco California
| | - Douglas V. Faller
- Department of MedicineBoston University School of Medicine Boston Massachusetts
- Cancer Research CenterBoston University School of Medicine Boston Massachusetts
| | - Ioannis P. Glavas
- Department of OphthalmologyNew York University School of Medicine New York City New York
| | - David N. Harpp
- Department of ChemistryMcGill University Montreal Quebec Canada
| | | | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary MedicineAuburn University Auburn Alabama
| | - Whitney R. Powers
- Department of Health SciencesBoston University Boston Massachusetts
- Department of AnatomyBoston University School of Medicine Boston Massachusetts
| | - Konstantina Sampani
- Beetham Eye InstituteJoslin Diabetes Center Boston Massachusetts
- Department of MedicineHarvard Medical School Boston Massachusetts
| | - Kosta Steliou
- Cancer Research CenterBoston University School of Medicine Boston Massachusetts
- PhenoMatriX, Inc. Natick Massachusetts
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis LaboratoryMassachusetts Eye and Ear Infirmary Boston Massachusetts
- Department of OphthalmologyHarvard Medical School Boston Massachusetts
| | - Krishna Kodukula
- ShangPharma Innovation Inc. South San Francisco California
- PhenoMatriX, Inc. Natick Massachusetts
| | | |
Collapse
|
37
|
Miyagi A, Kawashiri T, Shimizu S, Shigematsu N, Kobayashi D, Shimazoe T. Dimethyl Fumarate Attenuates Oxaliplatin-Induced Peripheral Neuropathy without Affecting the Anti-tumor Activity of Oxaliplatin in Rodents. Biol Pharm Bull 2019; 42:638-644. [PMID: 30930422 DOI: 10.1248/bpb.b18-00855] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxaliplatin has been used as a first choice for colorectal, gastric and pancreatic cancer, but it induces peripheral neuropathies. Dimethyl fumarate (DMF) is an oral drug for multiple sclerosis with neuroprotective effects on oxidative stress. Using both in vivo and in vitro models, we investigated the effects of DMF on oxaliplatin-induced peripheral neuropathy and other side effects, as well as on the anti-tumor activity of oxaliplatin. Repeated intraperitoneal injection of 4 mg/kg oxaliplatin (twice per week for 4 weeks) caused mechanical allodynia (as revealed by the von Frey tests), cold hyperalgesia (as revealed by the acetone tests), and axonal degeneration in the sciatic nerve of rats. Co-administration of oral DMF (200 mg/kg, five times per week for 4 weeks) relieved oxaliplatin-induced mechanical allodynia but not cold hyperalgesia, and ameliorated axonal degeneration. In addition, DMF did not exacerbate oxaliplatin-induced body weight loss or bone marrow suppression, such as reduction in red blood cells, white blood cells, neutrophils and lymphocytes. Furthermore, DMF did not inhibit the anti-tumor activity of oxaliplatin in any cultured cancer cell line (C26, mouse colon carcinoma; HCT116, human colon carcinoma; MKN45, human gastric adenocarcinoma; MIA PaCa-2, human pancreatic carcinoma) or C26-bearing mice. These results suggest that DMF prevents oxaliplatin-induced mechanical allodynia and axonal degeneration without affecting the anti-tumor activity of oxaliplatin. Therefore, DMF may be useful for managing oxaliplatin-induced chronic peripheral neuropathy.
Collapse
Affiliation(s)
- Anna Miyagi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Shiori Shimizu
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Nao Shigematsu
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
38
|
Elemam NM, Al-Jaderi Z, Hachim MY, Maghazachi AA. HCT-116 colorectal cancer cells secrete chemokines which induce chemoattraction and intracellular calcium mobilization in NK92 cells. Cancer Immunol Immunother 2019; 68:883-895. [PMID: 30847498 PMCID: PMC11028293 DOI: 10.1007/s00262-019-02319-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
We recently reported that pretreatment of IL-2 activated human natural killer (NK) cells with the drugs dimethyl fumarate (DMF) and monomethyl fumarate (MMF) upregulated the expression of surface chemokine receptor CCR10. Ligands for CCR10, namely CCL27 and CCL28, induced the chemotaxis of these cells. Here, we performed a bioinformatics analysis to see which chemokines might be expressed by the human HCT-116 colorectal cancer cells. We observed that, in addition to CCL27 and CCL28, HCT-116 colorectal cancer cells profoundly express CXCL16 which binds CXCR6. Consequently, NK92 cells were treated with DMF and MMF for 24 h to investigate in vitro chemotaxis towards CXCL16, CCL27, and CCL28. Furthermore, supernatants collected from HCT-116 cells after 24 or 48 h incubation induced the chemotaxis of NK92 cells. Similar to their effects on human IL-2-activated NK cells, MMF and DMF enhanced the expression of CCR10 and CXCR6 in NK92 cells. Neutralizing anti-CXCL16 or anti-CCL28 inhibited the chemotactic effects of 24 and 48 supernatants, whereas anti-CCL27 only inhibited the 48 h supernatant activity, suggesting that 24 h supernatant contains CXCL16 and CCL28, whereas HCT-116 secretes all three chemokines after 48 h in vitro cultures. CXCL16, CCL27, and CCL28, as well as the supernatants collected from HCT-116, induced the mobilization of (Ca)2+ in NK92 cells. Cross-desensitization experiments confirmed the results of the chemotaxis experiments. Finally, incubation of NK92 cells with HCT-116 induced the lysis of the tumor cells. In summary, these results might have important implications in directing the anti-tumor effectors NK cells towards tumor growth sites.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Zaidoon Al-Jaderi
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Mahmood Yaseen Hachim
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
39
|
Ahmad F, Döbel T, Schmitz M, Schäkel K. Current Concepts on 6-sulfo LacNAc Expressing Monocytes (slanMo). Front Immunol 2019; 10:948. [PMID: 31191513 PMCID: PMC6540605 DOI: 10.3389/fimmu.2019.00948] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
The human mononuclear phagocytes system consists of dendritic cells (DCs), monocytes, and macrophages having different functions in bridging innate and adaptive immunity. Among the heterogeneous population of monocytes the cell surface marker slan (6-sulfo LacNAc) identifies a specific subset of human CD14- CD16+ non-classical monocytes, called slan+ monocytes (slanMo). In this review we discuss the identity and functions of slanMo, their contributions to immune surveillance by pro-inflammatory cytokine production, and cross talk with T cells and NK cells. We also consider the role of slanMo in the regulation of chronic inflammatory diseases and cancer. Finally, we highlight unresolved questions that should be the focus of future research.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.,Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universtät Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
40
|
Neuroprotective Role of the Nrf2 Pathway in Subarachnoid Haemorrhage and Its Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6218239. [PMID: 31191800 PMCID: PMC6525854 DOI: 10.1155/2019/6218239] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
The mechanisms underlying poor outcome following subarachnoid haemorrhage (SAH) are complex and multifactorial. They include early brain injury, spreading depolarisation, inflammation, oxidative stress, macroscopic cerebral vasospasm, and microcirculatory disturbances. Nrf2 is a global promoter of the antioxidant and anti-inflammatory response and has potential protective effects against all of these mechanisms. It has been shown to be upregulated after SAH, and Nrf2 knockout animals have poorer functional and behavioural outcomes after SAH. There are many agents known to activate the Nrf2 pathway. Of these, the actions of sulforaphane, curcumin, astaxanthin, lycopene, tert-butylhydroquinone, dimethyl fumarate, melatonin, and erythropoietin have been studied in SAH models. This review details the different mechanisms of injury after SAH including the contribution of haemoglobin (Hb) and its breakdown products. It then summarises the evidence that the Nrf2 pathway is active and protective after SAH and finally examines the evidence supporting Nrf2 upregulation as a therapy after SAH.
Collapse
|
41
|
Hypocomplementemic urticarial vasculitis and multiple Sclerosis: A rare association or an atypical presentation? Mult Scler Relat Disord 2019; 30:244-246. [PMID: 30849680 DOI: 10.1016/j.msard.2019.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Multiple Sclerosis (MS) has been associated with several immune-mediated diseases but the mechanisms that explain such associations, as well as their implications in clinical practice and treatment are rarely discussed. CASE PRESENTATION We report the case of a patient with a history of MS since she was 27 years old, followed by a diagnosis of Hypocomplementemic Urticarial Vasculitis (HUV) seven years later. Several disease-modifying treatments for MS and HUV were used but with limited benefit in both diseases and significant MS progression. Activity of both diseases was later stabilized with Rituximab. We discuss the hypotheses of a central nervous system involvement in urticarial vasculitis or an association between MS and HUV, and examine the challenges in their management. CONCLUSIONS In the presence of concurrent immune-mediated diseases, the diagnosis of MS can be challenging. This clinical presentation posed significant difficulties in disease management, influencing therapeutic options and their effectiveness/adverse effects profile. The best approach in MS patients with concurrent autoimmune diseases remains to be established and more reports are needed to help clarify this subject.
Collapse
|
42
|
Hachim MY, Elemam NM, Maghazachi AA. The Beneficial and Debilitating Effects of Environmental and Microbial Toxins, Drugs, Organic Solvents and Heavy Metals on the Onset and Progression of Multiple Sclerosis. Toxins (Basel) 2019; 11:E147. [PMID: 30841532 PMCID: PMC6468554 DOI: 10.3390/toxins11030147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system is common amongst young adults, leading to major personal and socioeconomic burdens. However, it is still considered complex and challenging to understand and treat, in spite of the efforts made to explain its etiopathology. Despite the discovery of many genetic and environmental factors that might be related to its etiology, no clear answer was found about the causes of the illness and neither about the detailed mechanism of these environmental triggers that make individuals susceptible to MS. In this review, we will attempt to explore the major contributors to MS autoimmunity including genetic, epigenetic and ecological factors with a particular focus on toxins, chemicals or drugs that may trigger, modify or prevent MS disease.
Collapse
Affiliation(s)
- Mahmood Y Hachim
- Department of Clinical Sciences, College of Medicine, and the Immuno-Oncology group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
| | - Noha M Elemam
- Department of Clinical Sciences, College of Medicine, and the Immuno-Oncology group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, and the Immuno-Oncology group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
| |
Collapse
|
43
|
Kihara Y. Systematic Understanding of Bioactive Lipids in Neuro-Immune Interactions: Lessons from an Animal Model of Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:133-148. [PMID: 31562628 DOI: 10.1007/978-3-030-21735-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bioactive lipids, or lipid mediators, are utilized for intercellular communications. They are rapidly produced in response to various stimuli and exported to extracellular spaces followed by binding to cell surface G protein-coupled receptors (GPCRs) or nuclear receptors. Many drugs targeting lipid signaling such as non-steroidal anti-inflammatory drugs (NSAIDs), prostaglandins, and antagonists for lipid GPCRs are in use. For example, the sphingolipid analog, fingolimod (also known as FTY720), was the first oral disease-modifying therapy (DMT) for relapsing-remitting multiple sclerosis (MS), whose mechanisms of action (MOA) includes sequestration of pathogenic lymphocytes into secondary lymphoid organs, as well as astrocytic modulation, via down-regulation of the sphingosine 1-phosphate (S1P) receptor, S1P1, by in vivo-phosphorylated fingolimod. Though the cause of MS is still under debate, MS is considered to be an autoimmune demyelinating and neurodegenerative disease. This review summarizes the involvement of bioactive lipids (prostaglandins, leukotrienes, platelet-activating factors, lysophosphatidic acid, and S1P) in MS and the animal model, experimental autoimmune encephalomyelitis (EAE). Genetic ablation, along with pharmacological inhibition, of lipid metabolic enzymes and lipid GPCRs revealed that each bioactive lipid has a unique role in regulating immune and neural functions, including helper T cell (TH1 and TH17) differentiation and proliferation, immune cell migration, astrocyte responses, endothelium function, and microglial phagocytosis. A systematic understanding of bioactive lipids in MS and EAE dredges up information about understudied lipid signaling pathways, which should be clarified in the near future to better understand MS pathology and to develop novel DMTs.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
44
|
Singh N, Saha L, Kumari P, Singh J, Bhatia A, Banerjee D, Chakrabarti A. Effect of dimethyl fumarate on neuroinflammation and apoptosis in pentylenetetrazol kindling model in rats. Brain Res Bull 2019; 144:233-245. [DOI: 10.1016/j.brainresbull.2018.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
|
45
|
Hosseini A, Masjedi A, Baradaran B, Hojjat‐Farsangi M, Ghalamfarsa G, Anvari E, Jadidi‐Niaragh F. Dimethyl fumarate: Regulatory effects on the immune system in the treatment of multiple sclerosis. J Cell Physiol 2018; 234:9943-9955. [DOI: 10.1002/jcp.27930] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Arezoo Hosseini
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Masjedi
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hojjat‐Farsangi
- Immune and Gene therapy Lab Department of Oncology‐Pathology Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute Stockholm Sweden
- Department of Immunology School of Medicine, Bushehr University of Medical Sciences Bushehr Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences Yasuj Iran
| | - Enayat Anvari
- Department of Physiology Faculty of Medicine, Ilam University of Medical Sciences Ilam Iran
| | - Farhad Jadidi‐Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
46
|
Hashimoto K. Essential Role of Keap1-Nrf2 Signaling in Mood Disorders: Overview and Future Perspective. Front Pharmacol 2018; 9:1182. [PMID: 30386243 PMCID: PMC6198170 DOI: 10.3389/fphar.2018.01182] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Depression is one of the most common mood disorders with a high rate of relapse. Accumulating evidence suggests that the transcription factor Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1)-Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) system plays a key role in inflammation which is involved in depression. Preclinical studies demonstrated that the protein expressions of Keap1 and Nrf2 in the prefrontal cortex (PFC), CA3 and dentate gyrus (DG) of hippocampus in mice with depression-like phenotype were lower than control mice. In the learned helplessness paradigm, the protein levels of Keap1 and Nrf2 in the PFC and DG of hippocampus from rats with depression-like phenotype were also lower than control and resilient rats. Furthermore, rodents with depression-like phenotype have higher levels of pro-inflammatory cytokines. Interestingly, Nrf2 knock-out (KO) mice exhibit depression-like phenotype, and higher serum levels of pro-inflammatory cytokines compared with wild-type mice. Furthermore, Nrf2 KO mice have lower expression of brain-derived neurotrophic factor (BDNF) in the PFC, and CA3 and DG of hippocampus compared to wild-type mice. 7,8-Dihydroxyflavone, a TrkB agonist, showed antidepressant effects in Nrf2 KO mice, by stimulating BDNF-TrkB in the PFC, CA3, and DG. Pretreatment with sulforaphane, a naturally occurring Nrf2 activator, prevented depression-like phenotype in mice after inflammation, or chronic social defeat stress. Interestingly, dietary intake of 0.1% glucoraphanin (a precursor of sulforaphane) containing food during juvenile and adolescent stages of mice could prevent depression-like phenotype in adulthood after chronic social defeat stress. Moreover, the protein expressions of Keap1 and Nrf2 in the parietal cortex from major depressive disorder and bipolar disorder were lower than controls. These findings suggest that Keap1-Nrf2 system plays a key role in the stress resilience which is involved in the pathophysiology of mood disorders. It is, therefore, possible that dietary intake of cruciferous vegetables including glucoraphanin (or SFN) may prevent or minimize relapse from remission, induced by stress and/or inflammation in depressed patients. In the review, the author would like to discuss the role of Keap1-Nrf2 system in mood disorders.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
47
|
Groves A, Kihara Y, Jonnalagadda D, Rivera R, Kennedy G, Mayford M, Chun J. A Functionally Defined In Vivo Astrocyte Population Identified by c-Fos Activation in a Mouse Model of Multiple Sclerosis Modulated by S1P Signaling: Immediate-Early Astrocytes ( ieAstrocytes). eNeuro 2018; 5:ENEURO.0239-18.2018. [PMID: 30255127 PMCID: PMC6153337 DOI: 10.1523/eneuro.0239-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/15/2018] [Accepted: 08/25/2018] [Indexed: 12/31/2022] Open
Abstract
Astrocytes have prominent roles in central nervous system (CNS) function and disease, with subpopulations defined primarily by morphologies and molecular markers often determined in cell culture. Here, we identify an in vivo astrocyte subpopulation termed immediate-early astrocytes (ieAstrocytes) that is defined by functional c-Fos activation during CNS disease development. An unbiased screen for CNS cells showing c-Fos activation during experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis (MS), was developed by using inducible, TetTag c-Fos reporter mice that label activated cells with a temporally stable, nuclear green fluorescent protein (GFP). Four-dimensional (3D over time) c-Fos activation maps in the spinal cord were produced by combining tissue clearing (iDISCO) and confocal microscopy that identified onset and expansion of GFP+ cell populations during EAE. More than 95% of the GFP+ cells showed glial fibrillary acidic protein (GFAP) immunoreactivity-in contrast to absent or rare labeling of neurons, microglia, and infiltrating immune cells-which constituted ieAstrocytes that linearly increased in number with progression of EAE. ieAstrocyte formation was reduced by either astrocyte-specific genetic removal of sphingosine 1-phosphate receptor 1 (S1P1) or pharmacological inhibition by fingolimod (FTY720), an FDA-approved MS medicine that can functionally antagonize S1P1. ieAstrocytes thus represent a functionally defined subset of disease-linked astrocytes that are the first and predominant CNS cell population activated during EAE, and that track with disease severity in vivo. Their reduction by a disease-modifying agent supports their therapeutic relevance to MS and potentially other neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Aran Groves
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | | | - Richard Rivera
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Grace Kennedy
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Mark Mayford
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| |
Collapse
|
48
|
Fowler JH, McQueen J, Holland PR, Manso Y, Marangoni M, Scott F, Chisholm E, Scannevin RH, Hardingham GE, Horsburgh K. Dimethyl fumarate improves white matter function following severe hypoperfusion: Involvement of microglia/macrophages and inflammatory mediators. J Cereb Blood Flow Metab 2018; 38:1354-1370. [PMID: 28606007 PMCID: PMC6077928 DOI: 10.1177/0271678x17713105] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain's white matter is highly vulnerable to reductions in cerebral blood flow via mechanisms that may involve elevated microgliosis and pro-inflammatory pathways. In the present study, the effects of severe cerebral hypoperfusion were investigated on white matter function and inflammation. Male C57Bl/6J mice underwent bilateral common carotid artery stenosis and white matter function was assessed at seven days with electrophysiology in response to evoked compound action potentials (CAPs) in the corpus callosum. The peak latency of CAPs and axonal refractoriness was increased following hypoperfusion, indicating a marked functional impairment in white matter, which was paralleled by axonal and myelin pathology and increased density and numbers of microglia/macrophages. The functional impairment in peak latency was significantly correlated with increased microglia/macrophages. Dimethyl fumarate (DMF; 100 mg/kg), a drug with anti-inflammatory properties, was found to reduce peak latency but not axonal refractoriness. DMF had no effect on hypoperfusion-induced axonal and myelin pathology. The density of microglia/macrophages was significantly increased in vehicle-treated hypoperfused mice, whereas DMF-treated hypoperfused mice had similar levels to that of sham-treated mice. The study suggests that increased microglia/macrophages following cerebral hypoperfusion contributes to the functional impairment in white matter that may be amenable to modulation by DMF.
Collapse
Affiliation(s)
- Jill H Fowler
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Jamie McQueen
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK.,2 Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Philip R Holland
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK.,3 Current Address: Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Yasmina Manso
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK.,4 Current Address: Developmental Neurobiology and Regeneration Lab, Parc Científic de Barcelona, Spain
| | - Martina Marangoni
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK.,5 Current Address: Department of Health Sciences, University of Florence, Florence, Italy
| | - Fiona Scott
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Emma Chisholm
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | | | - Giles E Hardingham
- 2 Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.,7 The UK Dementia Research Institute at The University of Edinburgh
| | - Karen Horsburgh
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK.,8 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
49
|
Howell C, Smith JR, Shute JK. Targeting matrix metalloproteinase-13 in bronchial epithelial repair. Clin Exp Allergy 2018; 48:1214-1221. [PMID: 29924890 DOI: 10.1111/cea.13215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Viral infection of the bronchial epithelium disrupts the barrier properties of the epithelium in healthy individuals and those with lung disease. Repair of the bronchial epithelium is dependent of the formation of a provisional fibrin matrix and migration of epithelial cells to cover denuded areas, followed by proliferation and differentiation. OBJECTIVE The objective was to test the hypothesis that poly I:C, a model of viral infection, limits epithelial repair through the stimulated release of matrix metalloproteinase-13 (MMP-13). METHODS Confluent layers of cultured normal human primary bronchial epithelial cells (NHBE) and SV-40 virus-transformed 16HBE14o- bronchial epithelial cells were mechanically wounded, and video microscopy used to measure the rate of wound closure over 2 hours, in the absence and presence of poly I:C (1-20 μg/mL). MMP-13, tissue factor and endothelin release were measured by ELISA. The effect of inhibitors of MMP-13 activity and expression and a nonspecific endothelin receptor antagonist, bosentan, on the rate of epithelial repair was investigated. RESULTS Poly I:C limited the rate of epithelial repair, and NHBE were significantly more sensitive to poly I:C effects than 16HBE14o- cells. NHBE, but not 16HBE14o-, released MMP-13 in response to poly I:C. Inhibitors of MMP-13 activity (WAY 170523) and expression (dimethyl fumarate) significantly enhanced the rate of repair. Bosentan enhanced the rate of bronchial epithelial repair by a mechanism that was independent of MMP-13. CONCLUSIONS AND CLINICAL RELEVANCE Bronchial epithelial repair is limited by endothelin and by MMP-13, a protease that degrades coagulation factors, such as fibrinogen, and matrix proteins essential for epithelial repair. Further studies with primary cells from patients are needed to confirm whether repurposing bosentan and inhibitors of MMP-13 expression or activity, for inhalation may be a useful therapeutic strategy in diseases where repeated cycles of epithelial injury and repair occur, such as asthma and COPD.
Collapse
Affiliation(s)
- Christopher Howell
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Janis K Shute
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
50
|
Wijdeven RH, van Luijn MM, Wierenga-Wolf AF, Akkermans JJ, van den Elsen PJ, Hintzen RQ, Neefjes J. Chemical and genetic control of IFNγ-induced MHCII expression. EMBO Rep 2018; 19:embr.201745553. [PMID: 30021835 DOI: 10.15252/embr.201745553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/05/2018] [Accepted: 06/24/2018] [Indexed: 01/05/2023] Open
Abstract
The cytokine interferon-γ (IFNγ) can induce expression of MHC class II (MHCII) on many different cell types, leading to antigen presentation to CD4+ T cells and immune activation. This has also been linked to anti-tumour immunity and graft-versus-host disease. The extent of MHCII upregulation by IFNγ is cell type-dependent and under extensive control of epigenetic regulators and signalling pathways. Here, we identify novel genetic and chemical factors that control this form of MHCII expression. Loss of the oxidative stress sensor Keap1, autophagy adaptor p62/SQSTM1, ubiquitin E3-ligase Cullin-3 and chromatin remodeller BPTF impair IFNγ-mediated MHCII expression. A similar phenotype is observed for arsenite, an oxidative stressor. Effects of the latter can be reversed by the inhibition of HDAC1/2, linking oxidative stress conditions to epigenetic control of MHCII expression. Furthermore, dimethyl fumarate, an antioxidant used for the treatment of several autoimmune diseases, impairs the IFNγ response by manipulating transcriptional control of MHCII We describe novel pathways and drugs related to oxidative conditions in cells impacting on IFNγ-mediated MHCII expression, which provide a molecular basis for the understanding of MHCII-associated diseases.
Collapse
Affiliation(s)
- Ruud H Wijdeven
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jimmy J Akkermans
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| | | | - Rogier Q Hintzen
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| |
Collapse
|