1
|
Saravanan J, Nair A, Krishna SS, Viswanad V. Nanomaterials in biology and medicine: a new perspective on its toxicity and applications. Drug Chem Toxicol 2024; 47:767-784. [PMID: 38682270 DOI: 10.1080/01480545.2024.2340002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Nanotechnology offers excellent prospects for application in biology and medicine. It is used for detecting biological molecules, imaging, and as therapeutic agents. Due to nano-size (1-100 nm) and high surface-to-volume ratio, nanomaterials possess highly specific and distinct characteristics in the biological environment. Recently, the use of nanomaterials as sensors, theranostic, and drug delivery agents has become popular. The safety of these materials is being questioned because of their biological toxicity, such as inflammatory responses, cardiotoxicity, cytotoxicity, inhalation problems, etc., which can have a negative impact on the environment. This review paper focuses primarily on the toxicological effects of nanomaterials along with the mechanisms involved in cell interactions and the generation of reactive oxygen species by nanoparticles, which is the fundamental source of nanotoxicity. We also emphasize the greener synthesis of nanomaterials in biomedicine, as it is non-hazardous, feasible, and economical. The review articles shed light on the complexities of nanotoxicology in biosystems and the environment.
Collapse
Affiliation(s)
- Janani Saravanan
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sivadas Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
2
|
Maharjan A, Gautam R, Lee G, Kim D, Lee D, Acharya M, Kim H, Heo Y, Kim C. Assessment of skin sensitization potential of zinc oxide, aluminum oxide, manganese oxide, and copper oxide nanoparticles through the local lymph node assay: 5-bromo-deoxyuridine flow cytometry method. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024:1-11. [PMID: 38796781 DOI: 10.1080/15287394.2024.2357466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The advent of nanotechnology has significantly spurred the utilization of nanoparticles (NPs) across diverse sectors encompassing industry, agriculture, engineering, cosmetics, and medicine. Metallic oxides including zinc oxide (ZnO), copper oxide (CuO), manganese oxide (Mn2O3), and aluminum oxide (Al2O3), in their NP forms, have become prevalent in cosmetics and various dermal products. Despite the expanding consideration of these compounds for dermal applications, their potential for initiating skin sensitization (SS) has not been comprehensively examined. An in vivo assay, local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method (LLNA: BrdU-FCM) recognized as an alternative testing method for screening SS potential was used to address these issues. Following the OECD TG 442B guidelines, NPs suspensions smaller than 50 nm size were prepared for ZnO and Al2O3 at concentrations of 10, 25, and 50%, and Mn2O3 and CuO at concentrations of 5, 10, and 25%, and applied to the dorsum of each ear of female BALB/c mice on a daily basis for 3 consecutive days. Regarding the prediction of test substance to skin sensitizer if sensitization index (SI)≥2.7, all 4 NPs were classified as non-sensitizing. The SI values were below 2.06, 1.33, 1.42, and 0.99 for ZnO, Al2O3, Mn2O3, and CuO, respectively, at all test concentrations. Although data presented were negative with respect to adverse SS potential for these 4 NPs, further confirmatory tests addressing other key events associated with SS adverse outcome pathway need to be carried out to arrive at an acceptable conclusion on the skin safety for both cosmetic and dermal applications.
Collapse
Affiliation(s)
- Anju Maharjan
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - Ravi Gautam
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - GiYong Lee
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| | - DongYoon Kim
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| | - DaEun Lee
- Department of Occupational Health, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - Manju Acharya
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Heo
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
- Department of Occupational Health, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - ChangYul Kim
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| |
Collapse
|
3
|
Ratan C, Arian AM, Rajendran R, Jayakumar R, Masson M, Mangalathillam S. Nano-based formulations of curcumin: elucidating the potential benefits and future prospects in skin cancer. Biomed Mater 2023; 18:052008. [PMID: 37582394 DOI: 10.1088/1748-605x/acf0af] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Skin cancer refers to any malignant lesions that occur in the skin and are observed predominantly in populations of European descent. Conventional treatment modalities such as excision biopsy, chemotherapy, radiotherapy, immunotherapy, electrodesiccation, and photodynamic therapy (PDT) induce several unintended side effects which affect a patient's quality of life and physical well-being. Therefore, spice-derived nutraceuticals like curcumin, which are well tolerated, less expensive, and relatively safe, have been considered a promising agent for skin cancer treatment. Curcumin, a chemical constituent extracted from the Indian spice, turmeric, and its analogues has been used in various mammalian cancers including skin cancer. Curcumin has anti-neoplastic activity by triggering the process of apoptosis and preventing the multiplication and infiltration of the cancer cells by inhibiting some signaling pathways and thus subsequently preventing the process of carcinogenesis. Curcumin is also a photosensitizer and has been used in PDT. The major limitations associated with curcumin are poor bioavailability, instability, limited permeation into the skin, and lack of solubility in water. This will constrain the use of curcumin in clinical settings. Hence, developing a proper formulation that can ideally release curcumin to its targeted site is important. So, several nanoformulations based on curcumin have been established such as nanogels, nanoemulsions, nanofibers, nanopatterned films, nanoliposomes and nanoniosomes, nanodisks, and cyclodextrins. The present review mainly focuses on curcumin and its analogues as therapeutic agents for treating different types of skin cancers. The significance of using various nanoformulations as well non-nanoformulations loaded with curcumin as an effective treatment modality for skin cancer is also emphasized.
Collapse
Affiliation(s)
- Chameli Ratan
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Arya Mangalath Arian
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Rajalakshmi Rajendran
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Mar Masson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavík, Iceland
| | - Sabitha Mangalathillam
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| |
Collapse
|
4
|
Rai RS, P GJ, Bajpai V, Khan MI, Elboughdiri N, Shanableh A, Luque R. An eco-friendly approach on green synthesis, bio-engineering applications, and future outlook of ZnO nanomaterial: A critical review. ENVIRONMENTAL RESEARCH 2023; 221:114807. [PMID: 36455633 DOI: 10.1016/j.envres.2022.114807] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Synthesizing ZnO nanostructures ranging from 1 nm to 4 nm confines the electron cloud and exhibits a quantum effect generally called as quantum confinement effect attracting many researchers in the field of electronics and optics. ZnO nanostructures are used in medical applications to formulate antioxidant, antibacterial, antifungal, anti-inflammatory, wound healing, and anti-diabetic medications. This work is a comprehensive study of green synthesis of ZnO nanomaterials using different biological sources and highlights different processes able to produce nanostructures including nanowires, nanorods, nanotubes and other nano shapes of ZnO nanostructures. Different properties of ZnO nanostructures and their targeted bioengineering applications are also described. The strategies and challenges of the eco-friendly approach to enhance the application span of ZnO nanomaterials are also summarized, with future prospects for greener design of ZnO nanomaterials are also suggested.
Collapse
Affiliation(s)
- Ravi Shankar Rai
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India.
| | - Girish J P
- Department of Mechanical Engineering with Specialization in Design and Manufacturing, Indian Institute of Information Technology Design and Manufacturing, Kurnool, A.P, India.
| | - Vivek Bajpai
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Muhammad Imran Khan
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il, 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes, 6029, Tunisia.
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
5
|
Ma Y, Lin W, Ruan Y, Lu H, Fan S, Chen D, Huang Y, Zhang T, Pi J, Xu JF. Advances of Cobalt Nanomaterials as Anti-Infection Agents, Drug Carriers, and Immunomodulators for Potential Infectious Disease Treatment. Pharmaceutics 2022; 14:pharmaceutics14112351. [PMID: 36365168 PMCID: PMC9696703 DOI: 10.3390/pharmaceutics14112351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Infectious diseases remain the most serious public health issue, which requires the development of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted increasing attention worldwide due to its wide application in different areas, including medicine. Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely developed for their attractive biomedical applications. With advantages such as low costs in preparation, hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials have been proven to show promising potential in anticancer and anti-infection treatment. In this review, we summarize the characters of cobalt nanomaterials, followed by the advances in their biological functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.
Collapse
Affiliation(s)
- Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
6
|
Choi JK, Park JY, Lee S, Choi YA, Kwon S, Shin MJ, Yun HS, Jang YH, Kang J, Kim N, Khang D, Kim SH. Greater Plasma Protein Adsorption on Mesoporous Silica Nanoparticles Aggravates Atopic Dermatitis. Int J Nanomedicine 2022; 17:4599-4617. [PMID: 36199478 PMCID: PMC9528962 DOI: 10.2147/ijn.s383324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The protein corona surrounding nanoparticles has attracted considerable attention as it induces subsequent inflammatory responses. Although mesoporous silica nanoparticles (MSN) are commonly used in medicines, cosmetics, and packaging, the inflammatory effects of the MSN protein corona on the cutaneous system have not been investigated till date. Methods We examined the greater plasma protein adsorption on MSN leads to serious inflammatory reactions in Dermatophagoides farinae extract (DFE)-induced mouse atopic dermatitis (AD)-like skin inflammation because of increased uptake by keratinocytes. Results We compare the AD lesions induced by MSN and colloidal (non-porous) silica nanoparticles (CSN), which exhibit different pore architectures but similar dimensions and surface chemistry. MSN-corona treatment of severe skin inflammation in a DFE-induced in vivo AD model greatly increases mouse ear epidermal thickness and infiltration of immune cells compared with the CSN-corona treatment. Moreover, MSN-corona significantly increase AD-specific immunoglobulins, serum histamine, and Th1/Th2/Th17 cytokines in the ear and lymph nodes. MSN-corona induce more severe cutaneous inflammation than CSN by significantly decreasing claudin-1 expression. Conclusion This study demonstrates the novel impact of the MSN protein corona in inducing inflammatory responses through claudin-1 downregulation and suggests useful clinical guidelines for MSN application in cosmetics and drug delivery systems.
Collapse
Affiliation(s)
- Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Jun-Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Young-Ae Choi
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Song Kwon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
| | - Min Jun Shin
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Hui-Suk Yun
- Powder & Ceramics Division, Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jinjoo Kang
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Namkyung Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
- Correspondence: Dongwoo Khang, Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea, Tel +82 32 899 6515, Email
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Sang-Hyun Kim, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea, Tel +82 53 420 4838, Email
| |
Collapse
|
7
|
Qian L, He D, Cao X, Huang J, Li J. Robust conductive polyester fabric with enhanced multi-layer silver deposition for textile electrodes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Lee DH, Choi SY, Jung KK, Yang JY, Jeong JY, Oh JH, Kim SH, Lee JH. The Research of Toxicity and Sensitization Potential of PEGylated Silver and Gold Nanomaterials. TOXICS 2021; 9:355. [PMID: 34941789 PMCID: PMC8705520 DOI: 10.3390/toxics9120355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 02/02/2023]
Abstract
Polyethylene glycol (PEG) is a polymer used for surface modification of important substances in the modern pharmaceutical industry and biopharmaceutical fields. Despite the many benefits of PEGylation, there is also the possibility that the application and exposure of the substance may cause adverse effects in the body, such as an immune response. Therefore, we aimed to evaluate the sensitization responses that could be induced through the intercomparison of nanomaterials of the PEG-coated group with the original group. We selected gold/silver nanomaterials (NMs) for original group and PEGylated silver/gold NMs in this study. First, we measured the physicochemical properties of the four NMs, such as size and zeta potential under various conditions. Additionally, we performed the test of the NM's sensitization potential using the KeratinoSens™ assay for in vitro test method and the LLNA: 5-bromo-2-deoxyuridine (BrdU)-FCM for in vivo test method. The results showed that PEGylated-NMs did not lead to skin sensitization according to OECD TG 442 (alternative test for skin sensitization). In addition, gold nanomaterial showed that cytotoxicity of PEGylated-AuNMs was lower than AuNMs. These results suggest the possibility that PEG coating does not induce an immune response in the skin tissue and can lower the cytotoxicity of nanomaterials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sung-Hyun Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Korea; (D.-H.L.); (S.-Y.C.); (K.-K.J.); (J.-Y.Y.); (J.-y.J.); (J.-H.O.)
| | - Jin-Hee Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Korea; (D.-H.L.); (S.-Y.C.); (K.-K.J.); (J.-Y.Y.); (J.-y.J.); (J.-H.O.)
| |
Collapse
|
9
|
Ourani-Pourdashti S, Azadi A. Pollens in therapeutic/diagnostic systems and immune system targeting. J Control Release 2021; 340:308-317. [PMID: 34763004 DOI: 10.1016/j.jconrel.2021.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022]
Abstract
Pollen is an excellent natural substance that plays an essential role in the reproduction of plants. In this review, we explain the structure, compositions, and characteristics of pollens. We consider pollen as a multifunctional tool that can be used in therapeutic/diagnostic systems. This microcapsule can be used in the forms of the hollow microcapsule, microgel, and composite, and also can be a tool for the synthesis of micro/nanostructures in various medical applications and used for the production of genetically modified plants that affect human health. In addition, we investigate the capability of this multifunctional tool in the immune system targeting that acts as an immunomodulator. In all applications and capabilities, we explain the potential of using nanostructures as parts of these systems and as auxiliary tools for promoting the applications of pollen. It is expected that soon, with the help of pollen-based therapeutic/diagnostic systems with the ability to immune system targeting, we will achieve effective and targeted therapeutic systems for the treatment of inflammatory and autoimmune diseases. In this paper, we suggest some ideas that may be a new step for future researches.
Collapse
Affiliation(s)
- Shima Ourani-Pourdashti
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Azadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Mayorga C, Perez‐Inestrosa E, Rojo J, Ferrer M, Montañez MI. Role of nanostructures in allergy: Diagnostics, treatments and safety. Allergy 2021; 76:3292-3306. [PMID: 33559903 DOI: 10.1111/all.14764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 01/08/2023]
Abstract
Nanotechnology is science, engineering and technology conducted at the nanoscale, which is about 1-100 nm. It has led to the development of nanomaterials, which behave very differently from materials with larger scales and can have a wide range of applications in biomedicine. The physical and chemical properties of materials of such small compounds depend mainly on the size, shape, composition and functionalization of the system. Nanoparticles, carbon nanotubes, liposomes, polymers, dendrimers and nanogels, among others, can be nanoengineeried for controlling all parameters, including their functionalization with ligands, which provide the desired interaction with the immunological system, that is dendritic cell receptors to activate and/or modulate the response, as well as specific IgE, or effector cell receptors. However, undesired issues related to toxicity and hypersensitivity responses can also happen and would need evaluation. There are wide panels of accessible structures, and controlling their physico-chemical properties would permit obtaining safer and more efficient compounds for clinical applications goals, either in diagnosis or treatment. The application of dendrimeric antigens, nanoallergens and nanoparticles in allergy diagnosis is very promising since it can improve sensitivity by increasing specific IgE binding, mimicking carrier proteins or enhancing signal detection. Additionally, in the case of immunotherapy, glycodendrimers, liposomes, polymers and nanoparticles have shown interest, behaving as platforms of allergenic structures, adjuvants or protectors of allergen from degradation or having a depot capacity. Taken together, the application of nanotechnology to allergy shows promising facts facing important goals related to the improvement of diagnosis as well as specific immunotherapy.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Málaga Spain
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| | - Ezequiel Perez‐Inestrosa
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
- Departamento de Química Orgánica, and the Biomimetic Dendrimers and Photonic Laboratory Instituto de Investigación Biomédica de Málaga‐IBIMAUniversidad de Málaga Málaga Spain
| | - Javier Rojo
- Glycosystems Laboratory Instituto de Investigaciones Químicas (IIQ)CSIC—Universidad de Sevilla Sevilla Spain
| | - Marta Ferrer
- Department of Allergy and Clinical Immunology Clínica Universidad de NavarraInstituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona Spain
| | - Maria Isabel Montañez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| |
Collapse
|
11
|
The Antibiofilm Nanosystems for Improved Infection Inhibition of Microbes in Skin. Molecules 2021; 26:molecules26216392. [PMID: 34770799 PMCID: PMC8587837 DOI: 10.3390/molecules26216392] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Biofilm formation is an important virulence factor for the opportunistic microorganisms that elicit skin infections. The recalcitrant feature of biofilms and their antibiotic tolerance impose a great challenge on the use of conventional therapies. Most antibacterial agents have difficulty penetrating the matrix produced by a biofilm. One novel approach to address these concerns is to prevent or inhibit the formation of biofilms using nanoparticles. The advantages of using nanosystems for antibiofilm applications include high drug loading efficiency, sustained or prolonged drug release, increased drug stability, improved bioavailability, close contact with bacteria, and enhanced accumulation or targeting to biomasses. Topically applied nanoparticles can act as a strategy for enhancing antibiotic delivery into the skin. Various types of nanoparticles, including metal oxide nanoparticles, polymeric nanoparticles, liposomes, and lipid-based nanoparticles, have been employed for topical delivery to treat biofilm infections on the skin. Moreover, nanoparticles can be designed to combine with external stimuli to produce magnetic, photothermal, or photodynamic effects to ablate the biofilm matrix. This study focuses on advanced antibiofilm approaches based on nanomedicine for treating skin infections. We provide in-depth descriptions on how the nanoparticles could effectively eliminate biofilms and any pathogens inside them. We then describe cases of using nanoparticles for antibiofilm treatment of the skin. Most of the studies included in this review were supported by in vivo animal infection models. This article offers an overview of the benefits of nanosystems for treating biofilms grown on the skin.
Collapse
|
12
|
Feray A, Guillet E, Szely N, Hullo M, Legrand FX, Brun E, Rabilloud T, Pallardy M, Biola-Vidamment A. Synthetic amorphous silica nanoparticles promote human dendritic cell maturation and CD4 + T-lymphocyte activation. Toxicol Sci 2021; 185:105-116. [PMID: 34633463 DOI: 10.1093/toxsci/kfab120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Innate immune cells such as dendritic cells (DCs) sense and engulf nanomaterials potentially leading to an adverse immune response. Indeed, as described for combustion-derived particles, nanomaterials could be sensed as danger signals, enabling DCs to undergo a maturation process, migrate to regional lymph nodes and activate naive T-lymphocytes. Synthetic amorphous silica nanoparticles (SAS-NPs) are widely used as food additives, cosmetics, and construction materials. This work aimed to evaluate in vitro the effects of manufactured SAS-NPs, produced by thermal or wet routes, on human DCs functions and T-cell activation. Human monocyte-derived DCs (moDCs) were exposed for 16 hours to three endotoxin-free test materials: fumed silica NPs from Sigma-Aldrich (#S5505) or the JRC Nanomaterial Repository (NM-202) and colloidal Ludox®TMA NPs. Cell viability, phenotypical changes, cytokines production, internalization, and allogeneic CD4+ T-cells proliferation were evaluated. Our results showed that all SAS-NPs significantly upregulated the surface expression of CD86 and CD83 activation markers. Secretions of pro-inflammatory cytokines (CXCL-8 and CXCL-12) were significantly enhanced in a dose-dependent manner in the moDCs culture supernatants by all SAS-NPs tested. In an allogeneic co-culture, fumed silica-activated moDCs significantly increased T-lymphocyte proliferation at all T-cell:DC ratios compared to unloaded moDCs. Moreover, analysis of co-culture supernatants regarding the production of T-cell-derived cytokines showed a significant increase of IL-9 and IL-17A and F, as well as an upregulation of IL-5, consistent with the pro-inflammatory phenotype of treated-moDCs. Taken together, these results suggest that SAS-NPs could induce functional moDCs maturation and play a role in the immunization process against environmental antigens.
Collapse
Affiliation(s)
- Alexia Feray
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - Eléonore Guillet
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - Natacha Szely
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - Marie Hullo
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - François-Xavier Legrand
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296, Châtenay-Malabry, France
| | - Emilie Brun
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Thierry Rabilloud
- UMR CNRS 5249, Laboratoire de Chimie et Biologie des Métaux, CEA-Grenoble, 17 avenue des Martyrs, 38 054 Grenoble Cedex 09, France
| | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - Armelle Biola-Vidamment
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| |
Collapse
|
13
|
Kim SH, Lee DH, Choi S, Yang JY, Jung K, Jeong J, Oh JH, Lee JH. Skin Sensitization Potential and Cellular ROS-Induced Cytotoxicity of Silica Nanoparticles. NANOMATERIALS 2021; 11:nano11082140. [PMID: 34443968 PMCID: PMC8399877 DOI: 10.3390/nano11082140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022]
Abstract
Nowadays, various industries using nanomaterials are growing rapidly, and in particular, as the commercialization and use of nanomaterials increase in the cosmetic field, the possibility of exposure of nanomaterials to the skin of product producers and consumers is increasing. Due to the unique properties of nanomaterials with a very small size, they can act as hapten and induce immune responses and skin sensitization, so accurate identification of toxicity is required. Therefore, we selected silica nanomaterials used in various fields such as cosmetics and biomaterials and evaluated the skin sensitization potential step-by-step according to in-vitro and in-vivo alternative test methods. KeratinoSensTM cells of modified keratinocyte and THP-1 cells mimicking dendritic-cells were treated with silica nanoparticles, and their potential for skin sensitization and cytotoxicity were evaluated, respectively. We also confirmed the sensitizing ability of silica nanoparticles in the auricle-lymph nodes of BALB/C mice by in-vivo analysis. As a result, silica nanoparticles showed high protein binding and reactive oxygen species (ROS) mediated cytotoxicity, but no significant observation of skin sensitization indicators was observed. Although more studies are needed to elucidate the mechanism of skin sensitization by nanomaterials, the results of this study showed that silica nanoparticles did not induce skin sensitization.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Correspondence: (S.-H.K.); (J.H.L.); Tel.: +82-43-719-5110 (S.-H.K.); +82-43-719-5106 (J.H.L.); Fax.: +82-43-719-5100 (S.-H.K. & J.H.L.)
| | | | | | | | | | | | | | - Jin Hee Lee
- Correspondence: (S.-H.K.); (J.H.L.); Tel.: +82-43-719-5110 (S.-H.K.); +82-43-719-5106 (J.H.L.); Fax.: +82-43-719-5100 (S.-H.K. & J.H.L.)
| |
Collapse
|
14
|
Gautam R, Yang S, Maharjan A, Jo J, Acharya M, Heo Y, Kim C. Prediction of Skin Sensitization Potential of Silver and Zinc Oxide Nanoparticles Through the Human Cell Line Activation Test. FRONTIERS IN TOXICOLOGY 2021; 3:649666. [PMID: 35295130 PMCID: PMC8915822 DOI: 10.3389/ftox.2021.649666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
The development of nanotechnology has propagated the use of nanoparticles (NPs) in various fields including industry, agriculture, engineering, cosmetics, or medicine. The use of nanoparticles in cosmetics and dermal-based products is increasing owing to their higher surface area and unique physiochemical properties. Silver (Ag) NPs' excellent broad-spectrum antibacterial property and zinc oxide (ZnO) NPs' ability to confer better ultraviolet (UV) protection has led to their maximal use in cosmetics and dermal products. While the consideration for use of nanoparticles is increasing, concerns have been raised regarding their potential negative impacts. Although used in various dermal products, Ag and ZnO NPs' skin sensitization (SS) potential has not been well-investigated using in vitro alternative test methods. The human Cell Line Activation Test (h-CLAT) that evaluates the ability of chemicals to upregulate the expression of CD86 and CD54 in THP-1 cell line was used to assess the skin sensitizing potential of these NPs. The h-CLAT assay was conducted following OECD TG 442E. NPs inducing relative fluorescence intensity of CD86 ≥ 150% and/or CD54 ≥ 200% in at least two out of three independent runs were predicted to be positive. Thus, Ag (20, 50, and 80 nm) NPs and ZnO NPs were all predicted to be positive in terms of SS possibility using the h-CLAT prediction model. Although further confirmatory tests addressing other key events (KEs) of SS adverse outcome pathway (AOP) should be carried out, this study gave an insight into the need for cautious use of Ag and ZnO NPs based skincare or dermal products owing to their probable skin sensitizing potency.
Collapse
Affiliation(s)
- Ravi Gautam
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - SuJeong Yang
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Anju Maharjan
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - JiHun Jo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Manju Acharya
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Yong Heo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
- Department of Toxicity Assessment, The Graduate School of Medical and Health Industry, Daegu Catholic University, Gyeongsan, South Korea
| | - ChangYul Kim
- Department of Toxicity Assessment, The Graduate School of Medical and Health Industry, Daegu Catholic University, Gyeongsan, South Korea
| |
Collapse
|
15
|
Hoffmann SS, Wennervaldt M, Alinaghi F, Simonsen AB, Johansen JD. Aluminium contact allergy without vaccination granulomas: A systematic review and meta-analysis. Contact Dermatitis 2021; 85:129-135. [PMID: 33797096 DOI: 10.1111/cod.13852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Aluminium contact allergy is mainly seen as granulomas following immunization with aluminium-adsorbed vaccines and contact allergy following epicutaneous exposure may be overlooked. To investigate the prevalence of aluminium allergy confirmed by patch testing, with no association with vaccination granulomas, and explore whether epicutaneous exposure to aluminium can contribute to allergic contact dermatitis. Two authors independently searched PubMed and MEDLINE (OVID) for case studies on contact allergy to aluminium proven by patch testing. Age-stratified meta-analyses to calculate the pooled prevalence were performed. Twenty-five studies describing a total of 73 cases were included in the review. Seven studies were suitable for meta-analyses. The prevalence of aluminium contact allergy was 5.61% (95% confidence interval [CI] 0.12%-11.08%) for children and 0.36% (95% CI 0.04%-0.67%) for adults. The studies described a variety of epicutaneous exposures, where metallic aluminium, topical medicaments, and deodorants were the main sources. Aluminium sensitization without a known exposure source was described in 10 of the 25 articles. The prevalence of aluminium contact allergy in the general public may be higher than expected and not solely related to vaccination granulomas. However, the clinical relevance is rare if not related to granulomas.
Collapse
Affiliation(s)
- Stine Skovbo Hoffmann
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Michael Wennervaldt
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Farzad Alinaghi
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Anne Birgitte Simonsen
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jeanne Duus Johansen
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| |
Collapse
|
16
|
Kim SH, Hong SH, Lee JH, Lee DH, Jung K, Yang JY, Shin HS, Lee J, Jeong J, Oh JH. Skin Sensitization Evaluation of Carbon-Based Graphene Nanoplatelets. TOXICS 2021; 9:toxics9030062. [PMID: 33803047 PMCID: PMC8002990 DOI: 10.3390/toxics9030062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/03/2022]
Abstract
Graphene nanoplatelets (GNPs) are one of the major types of carbon based nanomaterials that have different industrial and biomedical applications. There is a risk of exposure to GNP material in individuals involved in their large-scale production and in individuals who use products containing GNPs. Determining the exact toxicity of GNP nanomaterials is a very important agenda. This research aimed to evaluate the skin sensitization potentials induced by GNPs using two types of alternative to animal testing. We analyzed the physicochemical characteristics of the test material by selecting a graphene nanomaterial with a nano-size on one side. Thereafter, we evaluated the skin sensitization effect using an in vitro and an in vivo alternative test method, respectively. As a result, we found that GNPs do not induce skin sensitization. In addition, it was observed that the administration of GNPs did not induce cytotoxicity and skin toxicity. This is the first report of skin sensitization as a result of GNPs obtained using alternative test methods. These results suggest that GNP materials do not cause skin sensitization, and these assays may be useful in evaluating the skin sensitization of some nanomaterials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jae-Ho Oh
- Correspondence: ; Tel.: +82-43-719-5102
| |
Collapse
|
17
|
Jindal A, Sarkar S, Alam A. Nanomaterials-Mediated Immunomodulation for Cancer Therapeutics. Front Chem 2021; 9:629635. [PMID: 33708759 PMCID: PMC7940769 DOI: 10.3389/fchem.2021.629635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy holds great promise in overcoming the limitations of conventional regimens for cancer therapeutics. There is growing interest among researchers and clinicians to develop novel immune-strategies for cancer diagnosis and treatment with better specificity and lesser adversity. Immunomodulation-based cancer therapies are rapidly emerging as an alternative approach that employs the host's own defense mechanisms to recognize and selectively eliminate cancerous cells. Recent advances in nanotechnology have pioneered a revolution in the field of cancer therapy. Several nanomaterials (NMs) have been utilized to surmount the challenges of conventional anti-cancer treatments like cytotoxic chemotherapy, radiation, and surgery. NMs offer a plethora of exceptional features such as a large surface area to volume ratio, effective loading, and controlled release of active drugs, tunable dimensions, and high stability. Moreover, they also possess the inherent property of interacting with living cells and altering the immune responses. However, the interaction between NMs and the immune system can give rise to unanticipated adverse reactions such as inflammation, necrosis, and hypersensitivity. Therefore, to ensure a successful and safe clinical application of immunomodulatory nanomaterials, it is imperative to acquire in-depth knowledge and a clear understanding of the complex nature of the interactions between NMs and the immune system. This review is aimed at providing an overview of the recent developments, achievements, and challenges in the application of immunomodulatory nanomaterials (iNMs) for cancer therapeutics with a focus on elucidating the mechanisms involved in the interplay between NMs and the host's immune system.
Collapse
Affiliation(s)
- Ajita Jindal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sounik Sarkar
- Flowcytometry Facility, Modern Biology Department, University of Calcutta, Kolkata, India
| | - Aftab Alam
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Clare Hall, University of Cambridge, Cambridge, United Kingdom
- Charles River Laboratories, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
18
|
Kim SH, Lee JH, Jung K, Yang JY, Shin HS, Lee JP, Jeong J, Oh JH, Lee JK. Copper and Cobalt Ions Released from Metal Oxide Nanoparticles Trigger Skin Sensitization. Front Pharmacol 2021; 12:627781. [PMID: 33679407 PMCID: PMC7933575 DOI: 10.3389/fphar.2021.627781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Human skins are exposed to nanomaterials in everyday life from various sources such as nanomaterial-containing cosmetics, air pollutions, and industrial nanomaterials. Nanomaterials comprising metal haptens raises concerns about the skin sensitization to nanomaterials. In this study, we evaluated the skin sensitization of nanomaterials comparing metal haptens in vivo and in vitro. We selected five metal oxide NPs, containing copper oxide, cobalt monoxide, cobalt oxide, nickel oxide, or titanium oxide, and two types of metal chlorides (CoCl2 and CuCl2), to compare the skin sensitization abilities between NPs and the constituent metals. The materials were applied to KeratinoSensTM cells for imitated skin-environment setting, and luciferase induction and cytotoxicity were evaluated at 48 h post-incubation. In addition, the response of metal oxide NPs was confirmed in lymph node of BALB/C mice via an in vivo method. The results showed that CuO and CoO NPs induce a similar pattern of positive luciferase induction and cytotoxicity compared to the respective metal chlorides; Co3O4, NiO, and TiO2 induced no such response. Collectively, the results implied fast-dissolving metal oxide (CuO and CoO) NPs release their metal ion, inducing skin sensitization. However, further investigations are required to elucidate the mechanism underlying NP-induced skin sensitization. Based on ion chelation data, metal ion release was confirmed as the major “factor” for skin sensitization.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jin Hee Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Kikyung Jung
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jun-Young Yang
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Hyo-Sook Shin
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jeong Pyo Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jayoung Jeong
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jae-Ho Oh
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jong Kwon Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| |
Collapse
|
19
|
Rajabi-Abhari A, Kim JN, Lee J, Tabassian R, Mahato M, Youn HJ, Lee H, Oh IK. Diatom Bio-Silica and Cellulose Nanofibril for Bio-Triboelectric Nanogenerators and Self-Powered Breath Monitoring Masks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:219-232. [PMID: 33375776 DOI: 10.1021/acsami.0c18227] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The application of biodegradable and biocompatible materials to triboelectric nanogenerators (TENGs) for harvesting energy from motions of the human body has been attracting significant research interest. Herein, we report diatom bio-silica as a biomaterial additive to enhance the output performance of cellulose nanofibril (CNF)-based TENGs. Diatom frustules (DFs), which are tribopositive bio-silica having hierarchically porous three-dimensional structures and high surface area, have hydrogen bonds with CNFs, resulting in enhanced electron-donating capability and a more roughened surface of the DF-CNF composite film. Hence, DFs were applied to form a tribopositive composite film with CNFs. The DF-CNF biocomposite film is mechanically strong, electron-rich, low-cost, and frictionally rough. The DF-CNF TENG showed an output voltage of 388 V and time-averaged power of 85.5 mW/m2 in the contact-separation mode with an efficient contact area of 4.9 cm2, and the generated power was sufficient for instantaneous illumination of 102 light-emitting diodes. In addition, a cytotoxicity study and biocompatibility tests on rabbit skin suggested that the DF-CNF composite was biologically safe. Moreover, a practical application of the DF-CNF TENG was examined with a self-powered smart mask for human breathing monitoring. This study not only suggests high output performance of biomaterial-based TENGs but also presents the diverse advantages of the DFs in human body-related applications such as self-powered health monitoring masks, skin-attachable power generators, and tactile feedback systems.
Collapse
Affiliation(s)
- Araz Rajabi-Abhari
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong-Nam Kim
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeehee Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Rassoul Tabassian
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hye Jung Youn
- Program in Environmental Materials Science, Department of Forest Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Il-Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Lee DH, Kim SH, Lee JH, Yang JY, Seok JH, Jung K, Lee JK. Flow cytometric evaluation of the potential of metal oxide nanoparticles for skin sensitization using 5-Bromo-2-deoxyuridine. Toxicol Res 2021; 37:369-377. [PMID: 34295800 DOI: 10.1007/s43188-020-00073-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/07/2020] [Accepted: 11/04/2020] [Indexed: 11/29/2022] Open
Abstract
Although skin sensitization potential of various chemicals has been extensively studied, there are only a few reports on nanoparticles induced skin sensitization. Aiming to fill this lacuna, in this study we evaluated the potential of metal oxide nanoparticles (NPs) to induce skin sensitization with flow cytometry. Seven different metal oxide NPs, including copper oxide, cobalt oxide, nickel oxide, titanium oxide, cerium oxide, iron oxide, and zinc oxide were applied to Balb/c mice. After selecting the proper vehicle, the NPs were applied, and the skin sensitization potential were assessed using 5-bromo-2-deoxyuridine with flow cytometry. Physiochemical properties such as hydrodynamic size, polydispersity, and zeta potential were measured for the NPs prior to the tests. All the seven metal oxide NPs studied showed negative responses for skin sensitization potential. These results suggest that the OECD TG 442B using 5-bromo-2-deoxyuridine with flow cytometry can be applied to evaluate the potential of NPs for skin sensitization.
Collapse
Affiliation(s)
- Dong Han Lee
- Division of Toxicological Research, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do 28159 Korea
| | - Sung-Hyun Kim
- Division of Toxicological Research, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do 28159 Korea
| | - Jin Hee Lee
- Division of Toxicological Research, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do 28159 Korea
| | - Jun-Young Yang
- Division of Toxicological Research, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do 28159 Korea
| | - Ji-Hyun Seok
- Division of Toxicological Research, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do 28159 Korea
| | - Kikyung Jung
- Division of Toxicological Research, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do 28159 Korea
| | - Jong Kwon Lee
- Division of Toxicological Research, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do 28159 Korea
| |
Collapse
|
21
|
Kim SH, Lee D, Lee J, Yang JY, Seok J, Jung K, Lee J. Evaluation of the skin sensitization potential of metal oxide nanoparticles using the ARE-Nrf2 Luciferase KeratinoSens TM assay. Toxicol Res 2021; 37:277-284. [PMID: 33868983 DOI: 10.1007/s43188-020-00071-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have reported the potential of chemicals for inducing skin sensitization; however, few studies have examined skin sensitization induced by nanomaterials. This study aimed to evaluate skin sensitization induced by metal oxide nanoparticles (NPs) using the ARE-Nrf2 Luciferase KeratinoSens™ assay. Seven different metal oxide NPs, including copper oxide, cobalt oxide, nickel oxide, titanium oxide, cerium oxide, iron oxide, and zinc oxide, were assessed on KeratinoSens™ cells. We selected an appropriate vehicle among three vehicles (DMSO, DW, and culture medium) by assessing the hydrodynamic size at vehicle selection process. Seven metal oxide NPs were analyzed, and their physicochemical properties, including hydrodynamic size, polydispersity, and zeta potential, were determined in the selected vehicle. Thereafter, we assessed the sensitization potential of the NPs using the ARE-Nrf2 Luciferase KeratinoSens™ assay. Copper oxide NPs induced a positive response, whereas cobalt oxide, nickel oxide, titanium oxide, cerium oxide, iron oxide, and zinc oxide NPs induced no response. These results suggest that the ARE-Nrf2 Luciferase KeratinoSens™ assay may be useful for evaluating the potential for skin sensitization induced by metal oxide NPs.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Korea
| | - DongHan Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Korea
| | - JinHee Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Korea
| | - Jun-Young Yang
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Korea
| | - JiHyun Seok
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Korea
| | - Kikyung Jung
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Korea
| | - JongKwon Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Korea
| |
Collapse
|
22
|
Kim SH, Lee DH, Lee JH, Yang JY, Shin HS, Lee J, Jung K, Jeong J, Oh JH, Lee JK. Evaluation of the Skin Sensitization Potential of Carbon Nanotubes Using Alternative In Vitro and In Vivo Assays. TOXICS 2020; 8:E122. [PMID: 33339241 PMCID: PMC7767201 DOI: 10.3390/toxics8040122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/10/2023]
Abstract
Carbon nanotubes (CNTs) are one of the major types of nanomaterials that have various industrial and biomedical applications. However, there is a risk of accidental exposure to CNTs in individuals involved in their large-scale production and in individuals who use products containing CNTs. This study aimed to evaluate the skin sensitization induced by CNTs using two alternative tests. We selected single-wall carbon nanotubes and multi-walled carbon nanotubes for this study. First, the physiochemical properties of the CNTs were measured, including the morphology, size, and zeta potential, under various conditions. Thereafter, we assessed the sensitization potential of the CNTs using the ARE-Nrf2 Luciferase KeratinoSens™ assay, an in vitro alternative test method. In addition, the CNTs were evaluated for their skin sensitization potential using the LLNA: BrdU-FCM in vivo alternative test method. In this study, we report for the first time the sensitization results of CNTs using the KeratinoSens™ and LLNA: BrdU-FCM test methods in this study. This study found that both CNTs do not induce skin sensitization. These results suggest that the KeratinoSens™ and LLNA: BrdU-FCM assay may be useful as alternative assays for evaluating the potential of some nanomaterials that can induce skin sensitization.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Chungcheongbuk-do, Korea; (D.H.L.); (J.H.L.); (J.-Y.Y.); (H.-S.S.); (J.L.); (K.J.); (J.J.); (J.-H.O.)
| | | | | | | | | | | | | | | | | | - Jong Kwon Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Chungcheongbuk-do, Korea; (D.H.L.); (J.H.L.); (J.-Y.Y.); (H.-S.S.); (J.L.); (K.J.); (J.J.); (J.-H.O.)
| |
Collapse
|
23
|
Bezerra SF, Dos Santos Rodrigues B, da Silva ACG, de Ávila RI, Brito HRG, Cintra ER, Veloso DFMC, Lima EM, Valadares MC. Application of the adverse outcome pathway framework for investigating skin sensitization potential of nanomaterials using new approach methods. Contact Dermatitis 2020; 84:67-74. [PMID: 32683706 DOI: 10.1111/cod.13669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Currently, considerable efforts to standardize methods for accurate assessment of properties and safety aspects of nanomaterials are being made. However, immunomodulation effects upon skin exposure to nanomaterial have not been explored. OBJECTIVES To investigate the immunotoxicity of single-wall carbon nanotubes, titanium dioxide, and fullerene using the current mechanistic understanding of skin sensitization by applying the concept of adverse outcome pathway (AOP). METHODS Investigation of the ability of nanomaterials to interact with skin proteins using the micro-direct peptide reactivity assay; the expression of CD86 cell surface marker using the U937 cell activation test (OECD No. 442E/2018); and the effects of nanomaterials on modulating inflammatory response through inflammatory cytokine release by U937 cells. RESULTS The nanomaterials easily internalized into keratinocytes cells, interacted with skin proteins, and triggered activation of U937 cells by increasing CD86 expression and modulating inflammatory cytokine production. Consequently, these nanomaterials were classified as skin sensitizers in vitro. CONCLUSIONS Our study suggests the potential immunotoxicity of nanomaterials and highlights the importance of studying the immunotoxicity and skin sensitization potential of nanomaterials to anticipate possible human health risks using standardized mechanistic nonanimal methods with high predictive accuracy. Therefore, it contributes toward the applicability of existing OECD (Organisation for Economic Co-operation and Development) testing guidelines for accurate assessment of nanomaterial skin sensitization potential.
Collapse
Affiliation(s)
- Soraia F Bezerra
- Laboratory of Education and Research in in vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruna Dos Santos Rodrigues
- Laboratory of Education and Research in in vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Artur C G da Silva
- Laboratory of Education and Research in in vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Renato I de Ávila
- Laboratory of Education and Research in in vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Hallison R G Brito
- Laboratory of Education and Research in in vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Emílio R Cintra
- Laboratory of Pharmaceutical Technology-Farmatec, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Danillo F M C Veloso
- Laboratory of Pharmaceutical Technology-Farmatec, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Eliana M Lima
- Laboratory of Pharmaceutical Technology-Farmatec, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Marize C Valadares
- Laboratory of Education and Research in in vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
24
|
Tao H, Nagano K, Tasaki I, Zhang TQ, Ishizaka T, Gao JQ, Harada K, Hirata K, Tsujino H, Higashisaka K, Tsutsumi Y. Development and Evaluation of a System for the Semi-Quantitative Determination of the Physical Properties of Skin After Exposure to Silver Nanoparticles. NANOSCALE RESEARCH LETTERS 2020; 15:187. [PMID: 32990829 PMCID: PMC7524913 DOI: 10.1186/s11671-020-03421-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/22/2020] [Indexed: 05/21/2023]
Abstract
In order to ensure the safe usage of silver nanoparticles (nAgs) in cosmetics, it is necessary to reveal the physical properties of nAgs inside the skin, as these properties may change during the process of percutaneous absorption. In this study, we aimed to establish an analytical system based on single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) to determine the physical properties of nAgs in the skin. First, we optimized a pretreatment method for solubilizing the skin samples and then showed that most of the nAgs were recovered by sodium hydroxide treatment while remaining in particle form. For separating the skin into the epidermis and dermis, we screened several conditions of microwave irradiation. The sp-ICP-MS analysis indicated that the application of 200 W for 30 s was optimal, as this condition ensured complete separation of skin layers without changing the physical properties of the majority of nAgs. Finally, we evaluated the in vivo application by analyzing the quantity as well as the physical properties of Ag in the epidermis, dermis, and peripheral blood of mice after exposing the skin to nAgs or Ag+. Subsequent sp-ICP-MS analysis indicated that nAgs could be absorbed and distributed into the deeper layers in the ionized form, whereas Ag+ was absorbed and distributed without a change in physical properties. This study indicates that in order to obtain a comprehensive understanding of the response of skin following exposure to nAgs, it is essential to consider the distribution and particle size of not only nAgs but also Ag+ released from nAgs into the skin.
Collapse
Affiliation(s)
- Hong Tao
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Kazuya Nagano
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Ikkei Tasaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Tian-qi Zhang
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Takuya Ishizaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 PR China
| | - Kazuo Harada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Kazumasa Hirata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Kazuma Higashisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
25
|
Roach KA, Anderson SE, Stefaniak AB, Shane HL, Boyce GR, Roberts JR. Evaluation of the skin-sensitizing potential of gold nanoparticles and the impact of established dermal sensitivity on the pulmonary immune response to various forms of gold. Nanotoxicology 2020; 14:1096-1117. [PMID: 32909489 DOI: 10.1080/17435390.2020.1808107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gold nanoparticles (AuNP) are largely biocompatible; however, many studies have demonstrated their potential to modulate various immune cell functions. The potential allergenicity of AuNP remains unclear despite the recognition of gold as a common contact allergen. In these studies, AuNP (29 nm) dermal sensitization potential was assessed via Local Lymph Node Assay (LLNA). Soluble gold (III) chloride (AuCl3) caused lymph node (LN) expansion (SI 10.9), whereas bulk particles (Au, 942 nm) and AuNP did not. Next, the pulmonary immune effects of AuNP (10, 30, 90 µg) were assessed 1, 4, and 8 days post-aspiration. All markers of lung injury and inflammation remained unaltered, but a dose-responsive increase in LN size was observed. Finally, mice were dermally-sensitized to AuCl3 then aspirated once, twice, or three times with Au or AuNP in doses normalized for mass or surface area (SA) to assess the impact of existing contact sensitivity to gold on lung immune responses. Sensitized animals exhibited enhanced responsivity to the metal, wherein subsequent immune alterations were largely conserved with respect to dose SA. The greatest increase in bronchoalveolar lavage (BAL) lymphocyte number was observed in the high dose group - simultaneous to preferential expansion of BAL/LN CD8+ T-cells. Comparatively, the lower SA-based doses of Au/AuNP caused more modest elevations in BAL lymphocyte influx (predominantly CD4+ phenotype), exposure-dependent increases in serum IgE, and selective expansion/activation of LN CD4+ T-cells and B-cells. Overall, these findings suggest that AuNP are unlikely to cause sensitization; however, established contact sensitivity to gold may increase immune responsivity following pulmonary AuNP exposure.
Collapse
Affiliation(s)
- K A Roach
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - S E Anderson
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - A B Stefaniak
- Respiratory Health Division (RHD), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - H L Shane
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - G R Boyce
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - J R Roberts
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
26
|
Ramos Campos EV, Proença PLDF, Doretto-Silva L, Andrade-Oliveira V, Fraceto LF, de Araujo DR. Trends in nanoformulations for atopic dermatitis treatment. Expert Opin Drug Deliv 2020; 17:1615-1630. [PMID: 32816566 DOI: 10.1080/17425247.2020.1813107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Immunological skin dysfunctions trigger the synthesis and release of inflammatory cytokines, which induce recurrent skin inflammation associated with chronic itching, inefficient barrier behavior, and reduced skin hydration. These features characterize a multifactorial chronic inflammatory disease atopic dermatitis (AD). AD therapy includes anti-inflammatory drugs and immunosuppressors as well as non-pharmacological alternatives such as emollients, moisturizers, and lipids (ceramides, phospholipids) for modulating the skin hydration and the barrier repair. However, these treatments are inconvenient with low drug skin penetration and insufficient maintenance on the application site. AREAS COVERED Nanotechnology-based therapies can be a great strategy to overcome these limitations. Considering the particular skin morphological organization, SC lipid matrix composition, and immunological functions/features related to nanocarriers, this review focuses on recent developments of nanoparticulate systems (polymeric, lipid-based, inorganic) as parent or hybrid systems including their chemical composition, physico-chemical and biopharmaceutical properties, and differential characteristics that evaluate them as new effective drug-delivery systems for AD treatment. EXPERT OPINION Despite the several innovative formulations, research in nanotechnology-based carriers should address specific aspects such as the use of moisturizers associated to pharmacological therapies, toxicity studies, scale-up production processes and the nanocarrier influence on immunological response. These approaches will help researchers choose the most appropriate nanocarrier system and widen nanomedicine applications and commercialization.
Collapse
Affiliation(s)
| | - Patrícia Luiza De Freitas Proença
- Department of Environmental Engineering, São Paulo State University - UNESP, Institute of Science and Technology , Sorocaba, SP, Brazil
| | - Lorena Doretto-Silva
- Human and Natural Sciences Center, Federal University of ABC , Santo André, SP, Brazil
| | | | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, São Paulo State University - UNESP, Institute of Science and Technology , Sorocaba, SP, Brazil
| | | |
Collapse
|
27
|
Al-Qatatsheh A, Morsi Y, Zavabeti A, Zolfagharian A, Salim N, Z. Kouzani A, Mosadegh B, Gharaie S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4484. [PMID: 32796604 PMCID: PMC7474433 DOI: 10.3390/s20164484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Advancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance. Here, we present an extensive review and critical analysis of various materials applied in the design and fabrication of wearable sensors. In our unique transdisciplinary approach, we studied the fundamentals of blood pressure and examined its measuring modalities while focusing on their clinical use and sensing principles to identify material functionalities. Then, we carefully reviewed various categories of functional materials utilized in sensor building blocks allowing for comparative analysis of the performance of a wide range of materials throughout the sensor operational-life cycle. Not only this provides essential data to enhance the materials' properties and optimize their performance, but also, it highlights new perspectives and provides suggestions to develop the next generation pressure sensors for clinical use.
Collapse
Affiliation(s)
- Ahmed Al-Qatatsheh
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Yosry Morsi
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia;
| | - Ali Zolfagharian
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Nisa Salim
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Abbas Z. Kouzani
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Saleh Gharaie
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| |
Collapse
|
28
|
Lipid Nanoparticle Acts as a Potential Adjuvant for Influenza Split Vaccine without Inducing Inflammatory Responses. Vaccines (Basel) 2020; 8:vaccines8030433. [PMID: 32756368 PMCID: PMC7565178 DOI: 10.3390/vaccines8030433] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Vaccination is a critical and reliable strategy for controlling the spread of influenza viruses in populations. Conventional seasonal split vaccines (SVs) for influenza evoke weaker immune responses than other types of vaccines, such as inactivated whole-virion vaccines, although SVs are highly safe compared to other types. Here, we assessed the potential of the lipid nanoparticle (LNP) we developed as an adjuvant for conventional influenza SV as an antigen in mice. The LNP did not induce the production of cytokines such as interleukin-6 (IL-6) and IL-12 p40 by dendritic cells or the expression of co-stimulatory molecules on these cells in vitro. In contrast, an SV adjuvanted with LNP improved SV-specific IgG1 and IgG2 responses and the Th1 response compared to the SV alone in mice. In addition, SV adjuvanted with an LNP gave superior protection against the influenza virus challenge over the SV alone and was as effective as SV adjuvanted with aluminum salts in mice. The LNP did not provoke inflammatory responses such as inflammatory cytokine production and inflammatory immune cell infiltration in mice, whereas aluminum salts induced inflammatory responses. These results suggest the potential of the LNP as an adjuvant without inflammatory responses for influenza SVs. Our strategy should be useful for developing influenza vaccines with enhanced efficacy and safety.
Collapse
|
29
|
Hu C, Hou J, Zhu Y, Lin D. Multigenerational exposure to TiO 2 nanoparticles in soil stimulates stress resistance and longevity of survived C. elegans via activating insulin/IGF-like signaling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114376. [PMID: 32203849 DOI: 10.1016/j.envpol.2020.114376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
With increasing release of nanoparticles (NPs) into the environment, soil organisms likely suffer from high dose and long duration of NPs contamination, while the effect of NPs across multiple generations in soil is rarely studied. Herein, we investigated how multigenerational exposure to different crystal forms (anatase, rutile, and their mixture) of TiO2 NPs (nTiO2) affected the survival, behavior, physiological and biochemical traits, and lifespan of nematodes (C. elegans) in a paddy soil. The soil property changed very slightly after being spiked with nTiO2, and the toxicities of three nTiO2 forms were largely comparable. The nTiO2 exposure adversely influenced the survival and locomotion of nematodes, and increased intracellular reactive oxygen species (ROS) generation. Interestingly, the toxic effect gradually attenuated and the lifespan of survived nematodes increased from the P0 to F3 generation, which was ascribed to the survivor selection and stimulatory effect. The lethal effect and the increased oxidative stress may continuously screen out offspring possessing stronger anti-stress capabilities. Moreover, key genes (daf-2, age-1, and skn-1) in the insulin/IGF-like signaling (IIS) pathway actively responded to the nTiO2 exposure, which further optimized the selective expression of downstream genes, increased the antioxidant enzyme activities and antioxidant contents, and thereby increased the stress resistance and longevity of survived nematodes across successive generations. Our findings highlight the crucial role of bio-responses in the progressively decreased toxicity of nTiO2, and add new knowledge on the long-term impact of soil nTiO2 contamination.
Collapse
Affiliation(s)
- Chao Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Jie Hou
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Ya Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Johnson L, Duschl A, Himly M. Nanotechnology-Based Vaccines for Allergen-Specific Immunotherapy: Potentials and Challenges of Conventional and Novel Adjuvants under Research. Vaccines (Basel) 2020; 8:vaccines8020237. [PMID: 32443671 PMCID: PMC7349961 DOI: 10.3390/vaccines8020237] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of allergic diseases demands efficient therapeutic strategies for their mitigation. Allergen-specific immunotherapy (AIT) is the only causal rather than symptomatic treatment method available for allergy. Currently, AIT is being administered using immune response modifiers or adjuvants. Adjuvants aid in the induction of a vigorous and long-lasting immune response, thereby improving the efficiency of AIT. The successful development of a novel adjuvant requires a thorough understanding of the conventional and novel adjuvants under development. Thus, this review discusses the potentials and challenges of these adjuvants and their mechanism of action. Vaccine development based on nanoparticles is a promising strategy for AIT, due to their inherent physicochemical properties, along with their ease of production and ability to stimulate innate immunity. Although nanoparticles have provided promising results as an adjuvant for AIT in in vivo studies, a deeper insight into the interaction of nanoparticle-allergen complexes with the immune system is necessary. This review focuses on the methods of harnessing the adjuvant effect of nanoparticles by detailing the molecular mechanisms underlying the immune response, which includes allergen uptake, processing, presentation, and induction of T cell differentiation.
Collapse
|
31
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
32
|
Abo‐zeid Y, Williams GR. The potential anti‐infective applications of metal oxide nanoparticles: A systematic review. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1592. [DOI: 10.1002/wnan.1592] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yasmin Abo‐zeid
- School of Pharmacy Helwan University Cairo Egypt
- UCL School of Pharmacy University College London London UK
| | | |
Collapse
|
33
|
Sharma S, Sharma RK, Gaur K, Cátala Torres JF, Loza-Rosas SA, Torres A, Saxena M, Julin M, Tinoco AD. Fueling a Hot Debate on the Application of TiO 2 Nanoparticles in Sunscreen. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2317. [PMID: 31330764 PMCID: PMC6678326 DOI: 10.3390/ma12142317] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
Titanium is one of the most abundant elements in the earth's crust and while there are many examples of its bioactive properties and use by living organisms, there are few studies that have probed its biochemical reactivity in physiological environments. In the cosmetic industry, TiO2 nanoparticles are widely used. They are often incorporated in sunscreens as inorganic physical sun blockers, taking advantage of their semiconducting property, which facilitates absorbing ultraviolet (UV) radiation. Sunscreens are formulated to protect human skin from the redox activity of the TiO2 nanoparticles (NPs) and are mass-marketed as safe for people and the environment. By closely examining the biological use of TiO2 and the influence of biomolecules on its stability and solubility, we reassess the reactivity of the material in the presence and absence of UV energy. We also consider the alarming impact that TiO2 NP seepage into bodies of water can cause to the environment and aquatic life, and the effect that it can have on human skin and health, in general, especially if it penetrates into the human body and the bloodstream.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Environmental Sciences, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Rohit K Sharma
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - José F Cátala Torres
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Sergio A Loza-Rosas
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Anamaris Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Manoj Saxena
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Mara Julin
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Arthur D Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA.
| |
Collapse
|
34
|
Xu X, Shang Y, Tian L, Weng W, Tu J. Fate of the inhaled smoke particles from fire scenes in the nasal airway of a realistic firefighter: A simulation study. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:273-285. [PMID: 30668285 DOI: 10.1080/15459624.2019.1572900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the inhalation, transport and deposition of smoke particles during fire missions are important to evaluating the health risks for firefighters. In this study, measurements from Underwriters Laboratories' large-scale fire experiments on smoke particle size distribution and concentration in three residential fire scenes were incorporated into models to investigate the fate of inhaled toxic ultrafine particulates in a realistic firefighter nasal cavity model. Deposition equations were developed, and the actual particle dosimetry (in mass, number and surface area) was evaluated. A strong monotonic growth of nasal airway dosages of simulated smoke particles was identified for airflow rates and fire duration across all simulated residential fire scene conditions. Even though the "number" dosage of arsenic in the limited ventilation living room fire was similar to the "number" dosage of chromium in the living room, particle mass and surface area dosages simulated in the limited living room were 90-200 fold higher than that in the ventilated living room. These were also confirmed when comparing the dosimetry in the living room and the kitchen. This phenomenon implied that particles with larger size were the dominant factors in mass and surface area dosages. Firefighters should not remove the self-contained breathing apparatus (SCBA) during fire suppression and overhaul operations, especially in smoldering fires with limited ventilation.
Collapse
Affiliation(s)
- Xiaoyu Xu
- a Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University , Beijing , China
- b School of Engineering - Mechanical and Automotive , RMIT University , Bundoora , Victoria , Australia
- c School of Mechanical and Manufacturing Engineering , University of New South Wales , Sydney , New South Wales , Australia
| | - Yidan Shang
- b School of Engineering - Mechanical and Automotive , RMIT University , Bundoora , Victoria , Australia
| | - Lin Tian
- b School of Engineering - Mechanical and Automotive , RMIT University , Bundoora , Victoria , Australia
| | - Wenguo Weng
- a Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University , Beijing , China
| | - Jiyuan Tu
- b School of Engineering - Mechanical and Automotive , RMIT University , Bundoora , Victoria , Australia
- c School of Mechanical and Manufacturing Engineering , University of New South Wales , Sydney , New South Wales , Australia
- d Key Laboratory of Ministry of Education for Advanced Reactor Engineering and Safety , Institute of Nuclear and New Energy Technology, Tsinghua University , Beijing , China
| |
Collapse
|
35
|
Wang M, Lai X, Shao L, Li L. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int J Nanomedicine 2018; 13:4445-4459. [PMID: 30122919 PMCID: PMC6078075 DOI: 10.2147/ijn.s170745] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nanotechnology is an interdisciplinary science that has developed rapidly in recent years. Metallic nanoparticles (NPs) are increasingly utilized in dermatology and cosmetology, because of their unique properties. However, skin exposure to NPs raises concerns regarding their transdermal toxicity. The tight junctions of epithelial cells form the skin barrier, which protects the host against external substances. Recent studies have found that NPs can pass through the skin barrier into deeper layers, indicating that skin exposure is a means for NPs to enter the body. The distribution and interaction of NPs with skin cells may cause toxic side effects. In this review, possible penetration pathways and related toxicity mechanisms are discussed. The limitations of current experimental methods on the penetration and toxic effects of metallic NPs are also described. This review contributes to a better understanding of the risks of topically applied metallic NPs and provides a foundation for future studies.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,
| | - Xuan Lai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,
| |
Collapse
|
36
|
Takahashi H, Misato K, Aoshi T, Yamamoto Y, Kubota Y, Wu X, Kuroda E, Ishii KJ, Yamamoto H, Yoshioka Y. Carbonate Apatite Nanoparticles Act as Potent Vaccine Adjuvant Delivery Vehicles by Enhancing Cytokine Production Induced by Encapsulated Cytosine-Phosphate-Guanine Oligodeoxynucleotides. Front Immunol 2018; 9:783. [PMID: 29720976 PMCID: PMC5916113 DOI: 10.3389/fimmu.2018.00783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/28/2018] [Indexed: 01/23/2023] Open
Abstract
Vaccine adjuvants that can induce not only antigen-specific antibody responses but also Th1-type immune responses and CD8+ cytotoxic T lymphocyte responses are needed for the development of vaccines against infectious diseases and cancer. Of many available adjuvants, oligodeoxynucleotides (ODNs) with unmethylated cytosine-phosphate-guanine (CpG) motifs are the most promising for inducing the necessary immune responses, and these adjuvants are currently under clinical trials in humans. However, the development of novel delivery vehicles that enhance the adjuvant effects of CpG ODNs, subsequently increasing the production of cytokines such as type-I interferons (IFNs), is highly desirable. In this study, we demonstrate the potential of pH-responsive biodegradable carbonate apatite (CA) nanoparticles as CpG ODN delivery vehicles that can enhance the production of type-I IFNs (such as IFN-α) relative to that induced by CpG ODNs and can augment the adjuvant effects of CpG ODNs in vivo. In contrast to CpG ODNs, CA nanoparticles containing CpG ODNs (designated CA-CpG) induced significant IFN-α production by mouse dendritic cells and human peripheral blood mononuclear cells in vitro; and production of interleukin-12, and IFN-γ was higher in CA-CpG-treated groups than in CpG ODNs groups. In addition, treatment with CA-CpG resulted in higher cytokine production in draining lymph nodes than did treatment with CpG ODNs in vivo. Furthermore, vaccination with CA-CpG plus an antigen, such as ovalbumin or influenza virus hemagglutinin, resulted in higher antigen-specific antibody responses and CD8+ cytotoxic T lymphocyte responses in vivo, in an interleukin-12- and type-I IFN-dependent manner, than did vaccination with the antigen plus CpG ODNs; in addition, the efficacy of the vaccine against influenza virus was higher with CA-CpG as the adjuvant than with CpG ODNs as the adjuvant. These data show the potential of CA nanoparticles to serve as CpG ODN delivery vehicles that increase the production of cytokines, especially IFN-α, induced by CpG ODNs and thus augment the efficacy of CpG ODNs as adjuvants. We expect that the strategy reported herein will facilitate the design and development of novel adjuvant delivery vehicles for vaccines.
Collapse
Affiliation(s)
- Hideki Takahashi
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kazuki Misato
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Taiki Aoshi
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Vaccine Dynamics Project, BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| | - Yasuyuki Yamamoto
- Vaccine Creation Project, BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| | - Yui Kubota
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Xin Wu
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Etsushi Kuroda
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hirofumi Yamamoto
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasuo Yoshioka
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Vaccine Creation Project, BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan.,Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|