1
|
Zhang S, Wang H. Targeting the lung tumour stroma: harnessing nanoparticles for effective therapeutic interventions. J Drug Target 2024:1-27. [PMID: 39356091 DOI: 10.1080/1061186x.2024.2410462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Lung cancer remains an influential global health concern, necessitating the development of innovative therapeutic strategies. The tumour stroma, which is known as tumour microenvironment (TME) has a central impact on tumour expansion and treatment resistance. The stroma of lung tumours consists of numerous cells and molecules that shape an environment for tumour expansion. This environment not only protects tumoral cells against immune system attacks but also enables tumour stroma to attenuate the action of antitumor drugs. This stroma consists of stromal cells like cancer-associated fibroblasts (CAFs), suppressive immune cells, and cytotoxic immune cells. Additionally, the presence of stem cells, endothelial cells and pericytes can facilitate tumour volume expansion. Nanoparticles are hopeful tools for targeted drug delivery because of their extraordinary properties and their capacity to devastate biological obstacles. This review article provides a comprehensive overview of contemporary advancements in targeting the lung tumour stroma using nanoparticles. Various nanoparticle-based approaches, including passive and active targeting, and stimuli-responsive systems, highlighting their potential to improve drug delivery efficiency. Additionally, the role of nanotechnology in modulating the tumour stroma by targeting key components such as immune cells, extracellular matrix (ECM), hypoxia, and suppressive elements in the lung tumour stroma.
Collapse
Affiliation(s)
- Shushu Zhang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Hui Wang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Guo W, Tan J, Wang L, Egelston CA, Simons DL, Ochoa A, Lim MH, Wang L, Solomon S, Waisman J, Wei CH, Hoffmann C, Song J, Schmolze D, Lee PP. Tumor draining lymph nodes connected to cold triple-negative breast cancers are characterized by Th2-associated microenvironment. Nat Commun 2024; 15:8592. [PMID: 39366933 PMCID: PMC11452381 DOI: 10.1038/s41467-024-52577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Tumor draining lymph nodes (TDLN) represent a key component of the tumor-immunity cycle. There are few studies describing how TDLNs impact lymphocyte infiltration into tumors. Here we directly compare tumor-free TDLNs draining "cold" and "hot" human triple negative breast cancers (TDLNCold and TDLNHot). Using machine-learning-based self-correlation analysis of immune gene expression, we find unbalanced intranodal regulations within TDLNCold. Two gene pairs (TBX21/GATA3-CXCR1) with opposite correlations suggest preferential priming of T helper 2 (Th2) cells by mature dendritic cells (DC) within TDLNCold. This is validated by multiplex immunofluorescent staining, identifying more mature-DC-Th2 spatial clusters within TDLNCold versus TDLNHot. Associated with this Th2 priming preference, more IL4 producing mast cells (MC) are found within sinus regions of TDLNCold. Downstream, Th2-associated fibrotic TME is found in paired cold tumors with increased Th2/T-helper-1-cell (Th1) ratio, upregulated fibrosis growth factors, and stromal enrichment of cancer associated fibroblasts. These findings are further confirmed in a validation cohort and public genomic data. Our results reveal a potential role of IL4+ MCs within TDLNs, associated with Th2 polarization and reduced immune infiltration into tumors.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Lei Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- International Cancer Center, Shenzhen University Medical School, 518060, Shenzhen, Guangdong, China
| | - Colt A Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Diana L Simons
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron Ochoa
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Min Hui Lim
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Genomics Core, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Lu Wang
- Mork Family Department of Chemical Engineering & Material Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shawn Solomon
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - James Waisman
- Department of Medical Oncology, City of Hope, Duarte, CA, 91010, USA
| | - Christina H Wei
- Department of Pathology, City of Hope, Duarte, CA, 91010, USA
- Pathology Laboratory Administration, Los Angeles General Medical Center, Los Angeles, CA, 90033, USA
| | - Caroline Hoffmann
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Owkin, Inc., New York, NY, 10003, USA
| | - Joo Song
- Department of Pathology, City of Hope, Duarte, CA, 91010, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope, Duarte, CA, 91010, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
3
|
Bongiorno R, Lecchi M, Botti L, Bosco O, Ratti C, Fontanella E, Mercurio N, Pratesi P, Chiodoni C, Verderio P, Colombo MP, Lecis D. Mast cell heparanase promotes breast cancer stem-like features via MUC1/estrogen receptor axis. Cell Death Dis 2024; 15:709. [PMID: 39349458 PMCID: PMC11442964 DOI: 10.1038/s41419-024-07092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Breast cancer is the most frequent type of tumor in women and is characterized by variable outcomes due to its heterogeneity and the presence of many cancer cell-autonomous and -non-autonomous factors. A major determinant of breast cancer aggressiveness is represented by immune infiltration, which can support tumor development. In our work, we studied the role of mast cells in breast cancer and identified a novel activity in promoting the tumor-initiating properties of cancer cells. Mast cells are known to affect breast cancer prognosis, but show different effects according to the diverse subtypes. Starting from the observation that co-injection of mast cells with limiting concentrations of cancer cells increased their in vivo engraftment rate, we characterized the molecular mechanisms by which mast cells promote the tumor stem-like features. We provide evidence that mast cell heparanase plays a pivotal role since both its activity and the stimulation of mast cells with heparan sulfate, the product of heparanase activity, are crucial for this process. Moreover, the pharmacological inhibition of heparanase prevents the function of mast cells. Our data show that soluble factors released by mast cells favor the expression of estrogen receptor in a MUC1-dependent manner. The MUC1/estrogen receptor axis is eventually essential for cancer stem-like features, specifically in HER2-negative cells, and promotes the capability of cancer cells to form mammospheres and express stem-related genes, also reducing their sensitivity to tamoxifen administration. Altogether our findings describe a novel mechanism by which mast cells could increase the aggressiveness of breast cancer uncovering a molecular mechanism displaying differences based on the specific breast cancer subtype.
Collapse
Affiliation(s)
- Roberta Bongiorno
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Mara Lecchi
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Oriana Bosco
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Chiara Ratti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Enrico Fontanella
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Nicolò Mercurio
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Pietro Pratesi
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy.
| |
Collapse
|
4
|
Vecchiotti D, Clementi L, Cornacchia E, Di Vito Nolfi M, Verzella D, Capece D, Zazzeroni F, Angelucci A. Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis. Cancers (Basel) 2024; 16:3215. [PMID: 39335188 PMCID: PMC11430343 DOI: 10.3390/cancers16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Emanuele Cornacchia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
5
|
Zhang W, Lee A, Tiwari AK, Yang MQ. Characterizing the Tumor Microenvironment and Its Prognostic Impact in Breast Cancer. Cells 2024; 13:1518. [PMID: 39329702 PMCID: PMC11429566 DOI: 10.3390/cells13181518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer development and therapeutic response. Immunotherapy is increasingly recognized as a critical component of cancer treatment. While immunotherapies have shown efficacy in various cancers, including breast cancer, patient responses vary widely. Some patients receive significant benefits, while others experience minimal or no improvement. This disparity underscores the complexity and diversity of the immune system. In this study, we investigated the immune landscape and cell-cell communication within the TME of breast cancer through integrated analysis of bulk and single-cell RNA sequencing data. We established profiles of tumor immune infiltration that span across a broad spectrum of adaptive and innate immune cells. Our clustering analysis of immune infiltration identified three distinct patient groups: high T cell abundance, moderate infiltration, and low infiltration. Patients with low immune infiltration exhibited the poorest survival rates, while those in the moderate infiltration group showed better outcomes than those with high T cell abundance. Moreover, the high cell abundance group was associated with a greater tumor burden and higher rates of TP53 mutations, whereas the moderate infiltration group was characterized by a lower tumor burden and elevated PIK3CA mutations. Analysis of an independent single-cell RNA-seq breast cancer dataset confirmed the presence of similar infiltration patterns. Further investigation into ligand-receptor interactions within the TME unveiled significant variations in cell-cell communication patterns among these groups. Notably, we found that the signaling pathways SPP1 and EGF were exclusively active in the low immune infiltration group, suggesting their involvement in immune suppression. This work comprehensively characterizes the composition and dynamic interplay in the breast cancer TME. Our findings reveal associations between the extent of immune infiltration and clinical outcomes, providing valuable prognostic information for patient stratification. The unique mutations and signaling pathways associated with different patient groups offer insights into the mechanisms underlying diverse tumor immune infiltration and the formation of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Wenjuan Zhang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| | - Alex Lee
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| |
Collapse
|
6
|
Zheng X, Sun R, Wei T. Immune microenvironment in papillary thyroid carcinoma: roles of immune cells and checkpoints in disease progression and therapeutic implications. Front Immunol 2024; 15:1438235. [PMID: 39290709 PMCID: PMC11405226 DOI: 10.3389/fimmu.2024.1438235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of primary thyroid cancer. Despite the low malignancy and relatively good prognosis, some PTC cases are highly aggressive and even develop refractory cancer in the thyroid. Growing evidence suggested that microenvironment in tumor affected PTC biological behavior due to different immune states. Different interconnected components in the immune system influence and participate in tumor invasion, and are closely related to PTC metastasis. Immune cells and molecules are widely distributed in PTC tissues. Their quantity and proportion vary with the host's immune status, which suggests that immunotherapy may be a very promising therapeutic modality for PTC. In this paper, we review the role of immune cells and immune checkpoints in PTC immune microenvironment based on the characteristics of the PTC tumor microenvironment.
Collapse
Affiliation(s)
- Xun Zheng
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruonan Sun
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Zhao F, Hong J, Zhou G, Huang T, Lin Z, Zhang Y, Liang L, Tang H. Elucidating the role of tumor-associated ALOX5+ mast cells with transformative function in cervical cancer progression via single-cell RNA sequencing. Front Immunol 2024; 15:1434450. [PMID: 39224598 PMCID: PMC11366577 DOI: 10.3389/fimmu.2024.1434450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background Cervical cancer (CC) is the fourth most common malignancy among women globally and serves as the main cause of cancer-related deaths among women in developing countries. The early symptoms of CC are often not apparent, with diagnoses typically made at advanced stages, which lead to poor clinical prognoses. In recent years, numerous studies have shown that there is a close relationship between mast cells (MCs) and tumor development. However, research on the role MCs played in CC is still very limited at that time. Thus, the study conducted a single-cell multi-omics analysis on human CC cells, aiming to explore the mechanisms by which MCs interact with the tumor microenvironment in CC. The goal was to provide a scientific basis for the prevention, diagnosis, and treatment of CC, with the hope of improving patients' prognoses and quality of life. Method The present study acquired single-cell RNA sequencing data from ten CC tumor samples in the ArrayExpress database. Slingshot and AUCcell were utilized to infer and assess the differentiation trajectory and cell plasticity of MCs subpopulations. Differential expression analysis of MCs subpopulations in CC was performed, employing Gene Ontology, gene set enrichment analysis, and gene set variation analysis. CellChat software package was applied to predict cell communication between MCs subpopulations and CC cells. Cellular functional experiments validated the functionality of TNFRSF12A in HeLa and Caski cell lines. Additionally, a risk scoring model was constructed to evaluate the differences in clinical features, prognosis, immune infiltration, immune checkpoint, and functional enrichment across various risk scores. Copy number variation levels were computed using inference of copy number variations. Result The obtained 93,524 high-quality cells were classified into ten cell types, including T_NK cells, endothelial cells, fibroblasts, smooth muscle cells, epithelial cells, B cells, plasma cells, MCs, neutrophils, and myeloid cells. Furthermore, a total of 1,392 MCs were subdivided into seven subpopulations: C0 CTSG+ MCs, C1 CALR+ MCs, C2 ALOX5+ MCs, C3 ANXA2+ MCs, C4 MGP+ MCs, C5 IL32+ MCs, and C6 ADGRL4+ MCs. Notably, the C2 subpopulation showed close associations with tumor-related MCs, with Slingshot results indicating that C2 subpopulation resided at the intermediate-to-late stage of differentiation, potentially representing a crucial transition point in the benign-to-malignant transformation of CC. CNVscore and bulk analysis results further confirmed the transforming state of the C2 subpopulation. CellChat analysis revealed TNFRSF12A as a key receptor involved in the actions of C2 ALOX5+ MCs. Moreover, in vitro experiments indicated that downregulating the TNFRSF12A gene may partially inhibit the development of CC. Additionally, a prognosis model and immune infiltration analysis based on the marker genes of the C2 subpopulation provided valuable guidance for patient prognosis and clinical intervention strategies. Conclusions We first identified the transformative tumor-associated MCs subpopulation C2 ALOX5+ MCs within CC, which was at a critical stage of tumor differentiation and impacted the progression of CC. In vitro experiments confirmed the inhibitory effect of knocking down the TNFRSF12A gene on the development of CC. The prognostic model constructed based on the C2 ALOX5+MCs subset demonstrated excellent predictive value. These findings offer a fresh perspective for clinical decision-making in CC.
Collapse
Affiliation(s)
- Fu Zhao
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junjie Hong
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Guangyao Zhou
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianjiao Huang
- The First School of Clinical Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yining Zhang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, China
| | - Leilei Liang
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Huarong Tang
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
8
|
Trocchia M, Ventrici A, Modestino L, Cristinziano L, Ferrara AL, Palestra F, Loffredo S, Capone M, Madonna G, Romanelli M, Ascierto PA, Galdiero MR. Innate Immune Cells in Melanoma: Implications for Immunotherapy. Int J Mol Sci 2024; 25:8523. [PMID: 39126091 PMCID: PMC11313504 DOI: 10.3390/ijms25158523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The innate immune system, composed of neutrophils, basophils, eosinophils, myeloid-derived suppressor cells (MDSCs), macrophages, dendritic cells (DCs), mast cells (MCs), and innate lymphoid cells (ILCs), is the first line of defense. Growing evidence demonstrates the crucial role of innate immunity in tumor initiation and progression. Several studies support the idea that innate immunity, through the release of pro- and/or anti-inflammatory cytokines and tumor growth factors, plays a significant role in the pathogenesis, progression, and prognosis of cutaneous malignant melanoma (MM). Cutaneous melanoma is the most common skin cancer, with an incidence that rapidly increased in recent decades. Melanoma is a highly immunogenic tumor, due to its high mutational burden. The metastatic form retains a high mortality. The advent of immunotherapy revolutionized the therapeutic approach to this tumor and significantly ameliorated the patients' clinical outcome. In this review, we will recapitulate the multiple roles of innate immune cells in melanoma and the related implications for immunotherapy.
Collapse
Affiliation(s)
- Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Luca Modestino
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
| | - Leonardo Cristinziano
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Francesco Palestra
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Marilena Romanelli
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| |
Collapse
|
9
|
Aryaie M, Moazed V, Haghdoost AA, Saljughi S, Hamedi A, Jaafari Z, Sadeghi R, Mirshekarpour H, Samareh-Fekri M, Naghibzadeh-Tahami A. The Association between Allergy and Cancer: A Case-Control Study. Asian Pac J Cancer Prev 2024; 25:2787-2795. [PMID: 39205576 PMCID: PMC11495459 DOI: 10.31557/apjcp.2024.25.8.2787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Allergies may either have a protective or a promoting effect on cancers. This study seeks to explore the relationship between various types of allergies and three specific cancer types: lung, breast, and colorectal cancer, thereby adding fresh insights to the existing scientific. METHODS Among the 556 patients, there were 115 cases of colorectal cancer, 305 cases of breast cancer, and 136 cases of lung cancer. The ratio of the case group to the control group was 1:1. We assessed the association between various variables, such as family history of allergy, allergies since the age of 10, pet allergies, seasonal flu, night and activity-related coughing, food allergies, itching or urticaria, childhood respiratory infections, and common colds, with the aforementioned cancers. The data were also analyzed using conditional logistic regression. RESULTS The results showed a protective association between itching or urticaria due to environmental factors and colorectal cancer (adjusted odds ratio [AOR]: 0.4, 95% CI: 0.17-0.94), as well as lung cancer (AOR: 0.26, 95% CI: 0.09-0.75). Additionally, a borderline association was observed between itching or urticaria and breast cancer (AOR: 0.54, 95% CI: 0.28-1.03). Allergy to pets also exhibited an inverse borderline association with breast cancer (AOR: 0.44, 95% CI: 0.18-1.05) and lung cancer (AOR: 0.25, 95% CI: 0.06-1.14). Furthermore, night coughing and allergies since the age of 10 were found to increase the odds of developing breast cancer (AOR: 2.38, 95% CI: 1.44-3.92; AOR: 5.10, 95% CI: 2.56-10.56, respectively) and lung cancer (AOR: 2.40, 95% CI: 1.29-4.46; AOR: 8.71, 95% CI: 3.29-23.03, respectively). CONCLUSION allergies and cancer have a site-specific assciation . To confirm these findings and understand the reasons behind these associations, more investigation is required.
Collapse
Affiliation(s)
- Mohammad Aryaie
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK.
| | - Vahid Moazed
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali-Akbar Haghdoost
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sima Saljughi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Andishe Hamedi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Jaafari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Sadeghi
- Sirjan School of Medical Sciences, Sirjan, Iran.
| | - Hossein Mirshekarpour
- Nuclear Medicine Department of Shafa Hospital, Kerman University of medical Sciences and Health Services, Kerman, Iran.
| | - Mitra Samareh-Fekri
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran.
| | - Ahmad Naghibzadeh-Tahami
- Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Tzorakoleftheraki SE, Koletsa T. The Complex Role of Mast Cells in Head and Neck Squamous Cell Carcinoma: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1173. [PMID: 39064602 PMCID: PMC11279237 DOI: 10.3390/medicina60071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous malignancy influenced by various genetic and environmental factors. Mast cells (MCs), typically associated with allergic responses, have recently emerged as key regulators of the HNSCC tumor microenvironment (TME). This systematic review explores the role of MCs in HNSCC pathogenesis and their potential as prognostic markers and therapeutic targets. Materials and Methods: A systematic search was conducted in the PubMed, Scopus and ClinicalTrials.gov databases until 31 December 2023, using "Mast cells" AND "Head and neck squamous cell carcinoma" as search terms. Studies in English which reported on MCs and HNSCC were included. Screening, data extraction and analysis followed PRISMA guidelines. No new experiments were conducted. Results: Out of 201 articles, 52 studies met the inclusion criteria, 43 of which were published between 2020 and 2023. A total of 28821 HNSCC and 9570 non-cancerous tissue samples had been examined. MC density and activation varied among normal tissues and HNSCC. Genetic alterations associated with MCs were identified, with specific gene expressions correlating with prognosis. Prognostic gene signatures associated with MC density were established. Conclusions: MCs have arisen as multifaceted TME modulators, impacting various aspects of HNSCC development and progression. Possible site-specific or HPV-related differences in MC density and activation should be further elucidated. Despite conflicting findings on their prognostic role, MCs represent promising targets for novel therapeutic strategies, necessitating further research and clinical validation for personalized HNSCC treatment.
Collapse
Affiliation(s)
| | - Triantafyllia Koletsa
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
11
|
Khan Y, Rehani S, Sharma M. To evaluate the role of mast cells on angiogenesis in various grades of oral squamous cell carcinoma: A histochemical study. J Oral Maxillofac Pathol 2024; 28:403-408. [PMID: 39670125 PMCID: PMC11633918 DOI: 10.4103/jomfp.jomfp_17_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 12/14/2024] Open
Abstract
Background Oral cancer is the sixth most common cancer, and 90% of them are oral squamous cell carcinomas (OSCC). As most OSCC are asymptomatic and are only detected at an advanced stage, the 5-year survival rate is only 50%. Thus, using novel prognosticators can minimise mortality and morbidity associated with OSCC. This study aims to evaluate the relationship between mast cells and angiogenesis in different grades of OSCC to analyse their role in its progression. Material and Methods A total of 45 cases were included, comprising 10 well-differentiated SCCs (WDOSCC), 10 moderately differentiated SCCs (MDOSCC), and 10 poorly differentiated SCCs (PDOSCC). Additionally, five normal buccal mucosae (NBM) samples served as negative controls for OSCC. Five cases of neurofibroma and pyogenic granuloma were used as positive controls for mast cells and angiogenesis, respectively. Results The mean MCD in WDOSCC, MDOSCC, and PDOSCC were 3.2620 ± 2.65177, 3.0310 ± 1.38276, and 4.1580 ± 2.49482, respectively. The MVD in WDOSCC, MDOSCC, and PDOSCC were 10.2850 ± 4.35032, 9.9240 ± 2.72533, and 7.1520 ± 2.26966, respectively. Discussion MCD was the highest in PDOSCC, followed by WDOSCC and MDOSCC. These results indicate a redundant role of mast cells in OSCC, or they might jumpstart malignancy but are retarded with OSCC progression. The MVD decreased with higher grades, in contrast to the prevalent literature. The correlation analysis between MVD and MCD revealed no significant correlation between them. Conclusion We found a non-significant role of mast cells in tumour biology and a decrease in vascularity with advancing grades. These results indicate a lower need for mast cell activation to augment vascularisation. A study with a larger sample size is needed to confirm our results.
Collapse
Affiliation(s)
- Yusra Khan
- Department of Oral Pathology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Shweta Rehani
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad, Haryana, India
| | - Mohit Sharma
- Department of Oral Pathology, SGT Dental College Hospital and Research Institute, Gurugram, Haryana, India
| |
Collapse
|
12
|
Panagi M, Mpekris F, Voutouri C, Hadjigeorgiou AG, Symeonidou C, Porfyriou E, Michael C, Stylianou A, Martin JD, Cabral H, Constantinidou A, Stylianopoulos T. Stabilizing Tumor-Resident Mast Cells Restores T-Cell Infiltration and Sensitizes Sarcomas to PD-L1 Inhibition. Clin Cancer Res 2024; 30:2582-2597. [PMID: 38578281 PMCID: PMC11145177 DOI: 10.1158/1078-0432.ccr-24-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/10/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE To explore the cellular cross-talk of tumor-resident mast cells (MC) in controlling the activity of cancer-associated fibroblasts (CAF) to overcome tumor microenvironment (TME) abnormalities, enhancing the efficacy of immune-checkpoint inhibitors in sarcoma. EXPERIMENTAL DESIGN We used a coculture system followed by further validation in mouse models of fibrosarcoma and osteosarcoma with or without administration of the MC stabilizer and antihistamine ketotifen. To evaluate the contribution of ketotifen in sensitizing tumors to therapy, we performed combination studies with doxorubicin chemotherapy and anti-PD-L1 (B7-H1, clone 10F.9G2) treatment. We investigated the ability of ketotifen to modulate the TME in human sarcomas in the context of a repurposed phase II clinical trial. RESULTS Inhibition of MC activation with ketotifen successfully suppressed CAF proliferation and stiffness of the extracellular matrix accompanied by an increase in vessel perfusion in fibrosarcoma and osteosarcoma as indicated by ultrasound shear wave elastography imaging. The improved tissue oxygenation increased the efficacy of chemoimmunotherapy, supported by enhanced T-cell infiltration and acquisition of tumor antigen-specific memory. Importantly, the effect of ketotifen in reducing tumor stiffness was further validated in sarcoma patients, highlighting its translational potential. CONCLUSIONS Our study suggests the targeting of MCs with clinically administered drugs, such as antihistamines, as a promising approach to overcome resistance to immunotherapy in sarcomas.
Collapse
Affiliation(s)
- Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Andreas G. Hadjigeorgiou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | | | | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
- Basic and Translational Cancer Research Center, School of Sciences, European University of Cyprus, Nicosia, Cyprus
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Anastasia Constantinidou
- Bank of Cyprus Oncology Centre, Nicosia, Cyprus
- Cyprus Cancer Research Institute, Nicosia, Cyprus
- Medical School, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
13
|
Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res 2024; 120:681-698. [PMID: 38630620 PMCID: PMC11135650 DOI: 10.1093/cvr/cvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| |
Collapse
|
14
|
Putro E, Carnevale A, Marangio C, Fulci V, Paolini R, Molfetta R. New Insight into Intestinal Mast Cells Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:5594. [PMID: 38891782 PMCID: PMC11171657 DOI: 10.3390/ijms25115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells distributed in all tissues and strategically located close to blood and lymphatic vessels and nerves. Thanks to the expression of a wide array of receptors, MCs act as tissue sentinels, able to detect the presence of bacteria and parasites and to respond to different environmental stimuli. MCs originate from bone marrow (BM) progenitors that enter the circulation and mature in peripheral organs under the influence of microenvironment factors, thus differentiating into heterogeneous tissue-specific subsets. Even though MC activation has been traditionally linked to IgE-mediated allergic reactions, a role for these cells in other pathological conditions including tumor progression has recently emerged. However, several aspects of MC biology remain to be clarified. The advent of single-cell RNA sequencing platforms has provided the opportunity to understand MCs' origin and differentiation as well as their phenotype and functions within different tissues, including the gut. This review recapitulates how single-cell transcriptomic studies provided insight into MC development as well as into the functional role of intestinal MC subsets in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Rossella Paolini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (A.C.); (C.M.); (V.F.); (R.M.)
| | | |
Collapse
|
15
|
Duque-Wilckens N, Maradiaga N, Szu-Ying Y, Joseph D, Srinavasan V, Thelen K, Sotomayor F, Durga K, Nestler E, Moeser AJ, Robison AJ. Activity-dependent FosB gene expression negatively regulates mast cell functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592755. [PMID: 38766119 PMCID: PMC11100602 DOI: 10.1101/2024.05.06.592755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mast cells are innate immune cells that play a crucial role in numerous physiological processes across tissues by releasing pre-stored and newly synthesized mediators in response to stimuli, an activity largely driven by changes in gene expression. Given their widespread influence, dysfunction in mast cells can contribute to a variety of pathologies including allergies, long COVID, and autoimmune and neuroinflammatory disorders. Despite this, the specific transcriptional mechanisms that control mast cell mediator release remain poorly understood, significantly hindering the development of effective therapeutic strategies. We found that the two proteins encoded by the transcription factor FosB, FOSB and the highly stable variant ΔFOSB, are robustly expressed upon stimulation in both murine and human mast cell progenitors. Motivated by these findings, we generated a novel mouse model with targeted ablation of FosB gene expression specifically in mast cells (MC FosB- ) by crossing a mast cell-specific Cre reporter line (Mcpt5-Cre) with a Cre-dependent floxed FosB mouse lines. We found that mast cell progenitors derived from MC FosB- mice, compared to wild types (WT), exhibit baseline increased histamine content and vesicle numbers. Additionally, they show enhanced calcium mobilization, degranulation, and histamine release following allergy-related IgE-mediated stimulation, along with heightened IL-6 release in response to infection-like LPS stimulation. In vivo experiments with IgE- mediated and LPS challenges revealed that MC FosB- mice experience greater drops in body temperature, heightened activation of tissue-resident mast cells, and increased release of pro-inflammatory mediators compared to their WT counterparts. These findings suggest that FosB products play a crucial regulatory role in moderating stimulus-induced mast cell activation in response to both IgE and LPS stimuli. Lastly, by integrating CUT&RUN and RNAseq data, we identified several genes targeted by ΔFOSB that could mediate these observed effects, including Mir155hg, CLCF1, DUSP4, and Trib1. Together, this study provides the first evidence that FOSB/ΔFOSB modulate mast cell functions and provides a new possible target for therapeutic interventions aimed at ameliorating mast cell-related diseases.
Collapse
|
16
|
Chen J, Wang Z, Zhu Q, Ren S, Xu Y, Wang G, Zhou L. Comprehensive analysis and experimental verification of the mechanism of action of T cell-mediated tumor-killing related genes in Colon adenocarcinoma. Transl Oncol 2024; 43:101918. [PMID: 38412662 PMCID: PMC10907202 DOI: 10.1016/j.tranon.2024.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract. A new prognostic scoring model for colon adenocarcinoma (COAD) is developed in this study based on the genes involved in tumor cell-mediated killing of T cells (GSTTKs), accurately stratifying COAD patients, thus improving the current status of personalized treatment. METHOD The GEO and TCGA databases served as the sources of the data for the COAD cohort. This study identified GSTTKs-related genes in COAD through single-factor Cox analysis. These genes were used to categorize COAD patients into several subtypes via unsupervised clustering analysis. The biological pathways and tumor microenvironments of different subgroups were compared. We performed intersection analysis between different subtypes to obtain intersection genes. Single-factor Cox regression analysis and Lasso-Cox analysis were conducted to establish clinical prognostic models. Two methods are used to assess the accuracy of model predictions: ROC and Kaplan-Meier analysis. Next, the prediction model was further validated in the validation cohort. Differential immune cell infiltration between various risk categories was identified via single sample gene set enrichment analysis (ssGSEA). The COAD model's gene expression was validated via single-cell data analysis and experiments. RESULT We established two distinct GSTTKs-related subtypes. Biological processes and immune cell tumor invasion differed significantly between various subtypes. Clinical prognostic models were created using five GSTTKs-related genes. The model's risk score independently served as a prognostic factor. COAD patients were classified as low- or high-risk depending on their risk scores. Patients in the low-risk category recorded a greater chance of surviving. The outcomes from the validation cohort match those from the training set. Risk scores and several tumor-infiltrating immune cells were strongly correlated, according to ssGSEA. Single-cell data illustrated that the model's genes were linked to several immune cells. The experimental results demonstrated a significant increase in the expression of HOXC6 in colon cancer tissue. CONCLUSION Our research findings established a new gene signature for COAD. This gene signature helps to accurately stratify the risk of COAD patients and improve the current status of individualized care.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China
| | - Zhengfang Wang
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China
| | - Qin Zhu
- Department of Trauma Hand Surgery, Dalian Third People's Hospital, Dalian 116000, China
| | - Shiqi Ren
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yanhua Xu
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China
| | - Guangzhou Wang
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China.
| | - Lin Zhou
- Department of Medical Laboratory, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
17
|
Yang Z, Chen H, Yin S, Mo H, Chai F, Luo P, Li Y, Ma L, Yi Z, Sun Y, Chen Y, Wu J, Wang W, Yin T, Zhu J, Shi C, Zhang F. PGR-KITLG signaling drives a tumor-mast cell regulatory feedback to modulate apoptosis of breast cancer cells. Cancer Lett 2024; 589:216795. [PMID: 38556106 DOI: 10.1016/j.canlet.2024.216795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
The immune microenvironment constructed by tumor-infiltrating immune cells and the molecular phenotype defined by hormone receptors (HRs) have been implicated as decisive factors in the regulation of breast cancer (BC) progression. Here, we found that the infiltration of mast cells (MCs) informed impaired prognoses in HR(+) BC but predicted improved prognoses in HR(-) BC. However, molecular features of MCs in different BC remain unclear. We next discovered that HR(-) BC cells were prone to apoptosis under the stimulation of MCs, whereas HR(+) BC cells exerted anti-apoptotic effects. Mechanistically, in HR(+) BC, the KIT ligand (KITLG), a major mast cell growth factor in recruiting and activating MCs, could be transcriptionally upregulated by the progesterone receptor (PGR), and elevate the production of MC-derived granulin (GRN). GRN attenuates TNFα-induced apoptosis in BC cells by competitively binding to TNFR1. Furthermore, disruption of PGR-KITLG signaling by knocking down PGR or using the specific KITLG-cKIT inhibitor iSCK03 potently enhanced the sensitivity of HR(+) BC cells to MC-induced apoptosis and exerted anti-tumor activity. Collectively, these results demonstrate that PGR-KITLG signaling in BC cells preferentially induces GRN expression in MCs to exert anti-apoptotic effects, with potential value in developing precision medicine approaches for diagnosis and treatment.
Collapse
Affiliation(s)
- Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China; Graduate School of Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Supeng Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Hongbiao Mo
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Fan Chai
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yao Li
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziying Yi
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Yizeng Sun
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weihua Wang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Tingjie Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Junping Zhu
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Fan Zhang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China; Graduate School of Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
18
|
Kannen V, Grant DM, Matthews J. The mast cell-T lymphocyte axis impacts cancer: Friend or foe? Cancer Lett 2024; 588:216805. [PMID: 38462035 DOI: 10.1016/j.canlet.2024.216805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Crosstalk between mast cells (MCs) and T lymphocytes (TLs) releases specific signals that create an environment conducive to tumor development. Conversely, they can protect against cancer by targeting tumor cells for destruction. Although their role in immunity and cancer is complex, their potential in anticancer strategies is often underestimated. When peripheral MCs are activated, they can affect cancer development. Tumor-infiltrating TLs may malfunction and contribute to aggressive cancer and poor prognoses. One promising approach for cancer patients is TL-based immunotherapies. Recent reports suggest that MCs modulate TL activity in solid tumors and may be a potential therapeutic layer in multitargeting anticancer strategies. Pharmacologically modulating MC activity can enhance the anticancer cytotoxic TL response in tumors. By identifying tumor-specific targets, it has been possible to genetically alter patients' cells into fully humanized anticancer cellular therapies for autologous transplantation, including the engineering of TLs and MCs to target and kill cancer cells. Hence, recent scientific evidence provides a broader understanding of MC-TL activity in cancer.
Collapse
Affiliation(s)
- Vinicius Kannen
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Denis M Grant
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Hosohama L, Tifrea DF, Nee K, Park SY, Wu J, Habowski AN, Van C, Seldin MM, Edwards RA, Waterman ML. Colorectal Cancer Stem Cell Subtypes Orchestrate Distinct Tumor Microenvironments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591144. [PMID: 38712298 PMCID: PMC11071458 DOI: 10.1101/2024.04.25.591144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Several classification systems have been developed to define tumor subtypes in colorectal cancer (CRC). One system proposes that tumor heterogeneity derives in part from distinct cancer stem cell populations that co-exist as admixtures of varying proportions. However, the lack of single cell resolution has prohibited a definitive identification of these types of stem cells and therefore any understanding of how each influence tumor phenotypes. Here were report the isolation and characterization of two cancer stem cell subtypes from the SW480 CRC cell line. We find these cancer stem cells are oncogenic versions of the normal Crypt Base Columnar (CBC) and Regenerative Stem Cell (RSC) populations from intestinal crypts and that their gene signatures are consistent with the "Admixture" and other CRC classification systems. Using publicly available single cell RNA sequencing (scRNAseq) data from CRC patients, we determine that RSC and CBC cancer stem cells are commonly co-present in human CRC. To characterize influences on the tumor microenvironment, we develop subtype-specific xenograft models and we define their tumor microenvironments at high resolution via scRNAseq. RSCs create differentiated, inflammatory, slow growing tumors. CBCs create proliferative, undifferentiated, invasive tumors. With this enhanced resolution, we unify current CRC patient classification schema with TME phenotypes and organization.
Collapse
Affiliation(s)
- Linzi Hosohama
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California
| | - Delia F. Tifrea
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
| | - Kevin Nee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
| | - Sung Yun Park
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California
| | - Jie Wu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
| | - Amber N. Habowski
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California
| | - Cassandra Van
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
| | - Marcus M. Seldin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
- Cancer Research Institute, University of California, Irvine, California
| | - Robert A. Edwards
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
- Cancer Research Institute, University of California, Irvine, California
| | - Marian L. Waterman
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
- Cancer Research Institute, University of California, Irvine, California
| |
Collapse
|
20
|
Shen C, Zheng B, Chen Z, Zhang W, Chen X, Xu S, Ji J, Fang X, Shi C. Identification of prognostic models for glycosylation-related subtypes and tumor microenvironment infiltration characteristics in clear cell renal cell cancer. Heliyon 2024; 10:e27710. [PMID: 38515689 PMCID: PMC10955297 DOI: 10.1016/j.heliyon.2024.e27710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Background One of the most fatal forms of cancer of the urinary system, renal cell carcinoma (RCC), significantly negatively impacts human health. Recent research reveals that abnormal glycosylation contributes to the growth and spread of tumors. However, there is no information on the function of genes related to glycosylation in RCC. Methods In this study, we created a technique that can be used to guide the choice of immunotherapy and chemotherapy regimens for RCC patients while predicting their survival prognosis. The Cancer Genome Atlas (TCGA) provided us with patient information, while the GeneCards database allowed us to collect genes involved in glycosylation. GSE29609 was used as external validation to assess the accuracy of prognostic models. The "ConsensusClusterPlus" program created molecular subtypes based on genes relevant to glycosylation discovered using differential expression analysis and univariate Cox analysis. We examined immune cell infiltration as measured by estimate, CIBERSORT, TIMER, and ssGSEA algorithms, Tumor Immune Dysfunction and Exclusion (TIDE) and exclusion of tumour stemness indices (TSIs) based on glycosylation-related molecular subtypes and risk profiles. Stratification, somatic mutation, nomogram creation, and chemotherapy response prediction were carried out based on risk factors. Results We built and verified 16 gene signatures associated with the prognosis of ccRCC patients, which are independent prognostic variables, and identified glycosylation-related genes by bioinformatics research. Cluster 2 is associated with lower human leukocyte antigen expression, worse overall survival, higher immunological checkpoints, and higher immune escape scores. In addition, cluster 2 had significantly better angiogenic activity, mesenchymal EMT, and stem ability scores. Higher immune checkpoint genes and human leukocyte antigens are associated with lower overall survival and a higher risk score. Higher estimated and immune scores, lesser tumor purity, lower mesenchymal EMT, and higher stem scores were all characteristics of the high-risk group. High amounts of tumor-infiltrating lymphocytes, a high mutation load, and a high copy number alteration frequency were present in the high-risk group.Discussion.According to our research, the 16-gene prognostic signature may be helpful in predicting prognosis and developing individualized treatments for patients with renal clear cell carcinoma, which may result in new personalized management options for these patients.
Collapse
Affiliation(s)
- Cheng Shen
- Department of Urology, Affiliated Hospital 2 of Nantong University, China
- Medical Research Center, Affiliated Hospital 2 of Nantong University, China
| | - Bing Zheng
- Department of Urology, Affiliated Hospital 2 of Nantong University, China
| | - Zhan Chen
- Department of Urology, Affiliated Hospital 2 of Nantong University, China
- Medical Research Center, Affiliated Hospital 2 of Nantong University, China
| | - Wei Zhang
- Department of Urology, Affiliated Hospital 2 of Nantong University, China
| | - Xinfeng Chen
- Department of Urology, Affiliated Hospital 2 of Nantong University, China
| | - Siyang Xu
- Clinical Medicine Specialty, Xinglin College of Nantong University, China
| | - Jianfeng Ji
- Department of Burn and plastic surgery, Affiliated Hospital 2 of Nantong University, China
| | - Xingxing Fang
- Nephrology Department, Affiliated Hospital 2 of Nantong University, China
| | - Chunmei Shi
- Department of Urology, Affiliated Hospital 2 of Nantong University, China
| |
Collapse
|
21
|
Li Z, Li J, Wu Z, Zhu Y, Zhuo T, Nong J, Qian J, Peng H, Dai L, Wang Y, Chen M, Zeng X. Upregulation of POC1A in lung adenocarcinoma promotes tumour progression and predicts poor prognosis. J Cell Mol Med 2024; 28:e18135. [PMID: 38429900 PMCID: PMC10907829 DOI: 10.1111/jcmm.18135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Zi‐Hao Li
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jia‐Yi Li
- Geriatrics Department of Endocrinology and MetabolismThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Zuo‐Tao Wu
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Yong‐Jie Zhu
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Ting Zhuo
- Department of Respiratory MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Ju‐Sen Nong
- Department of Pediatric SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jing Qian
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Hua‐Jian Peng
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Lei Dai
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Yong‐Yong Wang
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Ming‐Wu Chen
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Xiao‐Chun Zeng
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| |
Collapse
|
22
|
Tai SB, Lee ECY, Lim BY, Kannan B, Lee JY, Guo Z, Ko TK, Ng CCY, Teh BT, Chan JY. Tumor-Infiltrating Mast Cells in Angiosarcoma Correlate With Immuno-Oncology Pathways and Adverse Clinical Outcomes. J Transl Med 2024; 104:100323. [PMID: 38218317 DOI: 10.1016/j.labinv.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024] Open
Abstract
Recent studies have described several molecular subtypes and deregulation of immuno-oncologic signaling pathways in angiosarcoma. Interestingly, mast cells were enriched in subsets of angiosarcoma, although their significance remains unknown. In this study, we aim to verify this observation using immunohistochemistry (H scores) and NanoString transcriptomic profiling and explore the association between mast cells with clinical and biological features. In the study cohort (N = 60), H scores showed a significant moderate correlation with NanoString mast cell scores (r = 0.525; P < .001). Both H score and NanoString mast cell scores showed a significant positive correlation (P < .05) with head and neck location, nonepithelioid morphology, and lower tumor grade. Mast cell enrichment significantly correlated with higher NanoString regulatory T-cell scores (H score, r = 0.32; P = .01; NanoString mast cell score, r = 0.27; P = .04). NanoString mast cell scores positively correlated with signaling pathways relating to antigen presentation (r = 0.264; P = .0414) and negatively correlated with apoptosis (r = -0.366; P = .0040), DNA damage repair (r = -0.348; P = .0064), and cell proliferation (r = -0.542; P < .001). Interestingly, in the metastatic setting, patients with mast cell-enriched angiosarcoma showed poorer progression-free survival (median, 0.2 vs 0.4 years; hazard ratio = 3.05; P = .0489) along with a trend toward worse overall survival (median, 0.2 vs 0.6 years; hazard ratio, 2.86; P = .0574) compared with patients with mast cell-poor angiosarcoma. In conclusion, we demonstrated the presence of mast cells in human angiosarcoma and provided initial evidence of their potential clinical and biological significance. Future research will be required to elucidate their specific roles and mechanisms, which may uncover novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sarah Beishan Tai
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore; Cancer Discovery Hub, National Cancer Centre Singapore, Singapore.
| | | | - Boon Yee Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Bavani Kannan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Zexi Guo
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | | | - Bin Tean Teh
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
23
|
Ligan C, Ma XH, Zhao SL, Zhao W. The regulatory role and mechanism of mast cells in tumor microenvironment. Am J Cancer Res 2024; 14:1-15. [PMID: 38323271 PMCID: PMC10839313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
Mast cells (MCs) have emerged as pivotal contributors to both the defensive immune response and immunomodulation. They also exhibit regulatory functions in modulating pathological processes across various allergic diseases. The impact of MC presence within tumor tissues has garnered considerable attention, yielding conflicting findings. While some studies propose that MCs within tumor tissues promote tumor initiation and progression, others advocate an opposing perspective. Notably, evidence emphasizes the dual role of MCs in cancer, both as promoters and suppressors, is crucial for optimizing cancer treatment strategies. These conflicting viewpoints have generated substantial controversy, underscoring the need for a comprehensive understanding of MC's role in tumor immune responses.
Collapse
Affiliation(s)
- Caryl Ligan
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Xin-Hua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Shu-Li Zhao
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
24
|
Komatsuda H, Kono M, Wakisaka R, Sato R, Inoue T, Kumai T, Takahara M. Harnessing Immunity to Treat Advanced Thyroid Cancer. Vaccines (Basel) 2023; 12:45. [PMID: 38250858 PMCID: PMC10820966 DOI: 10.3390/vaccines12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
The incidence of thyroid cancer (TC) has increased over the past 30 years. Although differentiated thyroid cancer (DTC) has a good prognosis in most patients undergoing total thyroidectomy followed by radioiodine therapy (RAI), 5-10% of patients develop metastasis. Anaplastic thyroid cancer (ATC) has a low survival rate and few effective treatments have been available to date. Recently, tyrosine kinase inhibitors (TKIs) have been successfully applied to RAI-resistant or non-responsive TC to suppress the disease. However, TC eventually develops resistance to TKIs. Immunotherapy is a promising treatment for TC, the majority of which is considered an immune-hot malignancy. Immune suppression by TC cells and immune-suppressing cells, including tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, is complex and dynamic. Negative immune checkpoints, cytokines, vascular endothelial growth factors (VEGF), and indoleamine 2,3-dioxygenase 1 (IDO1) suppress antitumor T cells. Basic and translational advances in immune checkpoint inhibitors (ICIs), molecule-targeted therapy, tumor-specific immunotherapy, and their combinations have enabled us to overcome immune suppression and activate antitumor immune cells. This review summarizes current findings regarding the immune microenvironment, immunosuppression, immunological targets, and immunotherapy for TC and highlights the potential efficacy of immunotherapy.
Collapse
Affiliation(s)
- Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Takahiro Inoue
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
| |
Collapse
|
25
|
Shemesh R, Laufer-Geva S, Gorzalczany Y, Anoze A, Sagi-Eisenberg R, Peled N, Roisman LC. The interaction of mast cells with membranes from lung cancer cells induces the release of extracellular vesicles with a unique miRNA signature. Sci Rep 2023; 13:21544. [PMID: 38057448 PMCID: PMC10700580 DOI: 10.1038/s41598-023-48435-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Mast cells (MCs) are immune cells that play roles in both normal and abnormal processes. They have been linked to tumor progression in several types of cancer, including non-small cell lung cancer (NSCLC). However, the exact role of MCs in NSCLC is still unclear. Some studies have shown that the presence of a large number of MCs is associated with poor prognosis, while others have suggested that MCs have protective effects. To better understand the role of MCs in NSCLC, we aimed to identify the initial mechanisms underlying the communication between MCs and lung cancer cells. Here, we recapitulated cell-to-cell contact by exposing MCs to membranes derived from lung cancer cells and confirming their activation, as evidenced by increased phosphorylation of the ERK and AKT kinases. Profiling of the microRNAs that were selectively enriched in the extracellular vesicles (EVs) released by the lung cancer-activated MCs revealed that they contained significantly increased amounts of miR-100-5p and miR-125b, two protumorigenic miRNAs. We explored the pathways regulated by these miRNAs via enrichment analysis using the KEGG database, demonstrating that these two miRNAs regulate p53 signaling, cancer pathways, and pathways associated with apoptosis and the cell cycle.
Collapse
Affiliation(s)
- Rachel Shemesh
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Smadar Laufer-Geva
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Yaara Gorzalczany
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alaa Anoze
- The Helmsley Cancer Center, Shaare Zedek Medical Center, Shmu'el Bait St 12, Jerusalem, Israel
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Peled
- The Helmsley Cancer Center, Shaare Zedek Medical Center, Shmu'el Bait St 12, Jerusalem, Israel.
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Laila C Roisman
- The Helmsley Cancer Center, Shaare Zedek Medical Center, Shmu'el Bait St 12, Jerusalem, Israel.
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
26
|
Guo X, Sun M, Yang P, Meng X, Liu R. Role of mast cells activation in the tumor immune microenvironment and immunotherapy of cancers. Eur J Pharmacol 2023; 960:176103. [PMID: 37852570 DOI: 10.1016/j.ejphar.2023.176103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
The mast cell is an important cellular component that plays a crucial role in the crosstalk between innate and adaptive immune responses within the tumor microenvironment (TME). Recently, numerous studies have indicated that mast cells related to tumors play a dual role in regulating cancers, with conflicting results seemingly determined by the degranulation medium. As such, mast cells are an ignored but very promising potential target for cancer immunotherapy based on their immunomodulatory function. In this review, we present a comprehensive overview of the roles and mechanisms of mast cells in diverse cancer types. Firstly, we evaluated the infiltration density and location of mast cells on tumor progression. Secondly, mast cells are activated by the TME and subsequently release a range of inflammatory mediators, cytokines, chemokines, and lipid products that modulate their pro-or anti-tumor functions. Thirdly, activated mast cells engage in intercellular communication with other immune or stromal cells to modulate the immune status or promote tumor development. Finally, we deliberated on the clinical significance of targeting mast cells as a therapeutic approach to restrict tumor initiation and progression. Overall, our review aims to provide insights for future research on the role of mast cells in tumors and their potential as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Xiangnan University, Chenzhou, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Peiyan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
27
|
Xie Z, Niu L, Zheng G, Du K, Dai S, Li R, Dan H, Duan L, Wu H, Ren G, Dou X, Feng F, Zhang J, Zheng J. Single-cell analysis unveils activation of mast cells in colorectal cancer microenvironment. Cell Biosci 2023; 13:217. [PMID: 38031173 PMCID: PMC10687892 DOI: 10.1186/s13578-023-01144-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
The role of mast cells (MCs) in colorectal cancer (CRC) remains unclear, and a comprehensive single-cell study on CRC MCs has not been conducted. This study used a multi-omics approach, integrating single-cell sequencing, spatial transcriptomics, and bulk tissue sequencing data to investigate the heterogeneity and impact of MCs in CRC. Five MC signature genes (TPSAB1, TPSB2, CPA3, HPGDS, and MS4A2) were identified, and their average expression was used as a marker of MCs. The MC density was found to be lower in CRC compared to normal tissue, but MCs in CRC demonstrated distinct activation features. Activated MCs were defined by high expression of receptors and MC mediators, while resting MCs had low expression. Most genes, including the five MC signature genes, were expressed at higher levels in activated MCs. The MC signature was linked to a better prognosis in both CRC and pan-cancer patient cohorts. Elevated KITLG expression was observed in fibroblasts and endothelial cells in CRC samples compared to normal tissue, and co-localization of MCs with these cell types was revealed by spatial transcriptome analysis. In conclusion, this study finds decreased MC density in CRC compared to normal tissue, but highlights a shift in MC phenotype from CMA1high resting cells to activated TPSAB1high, CPA3high, and KIThigh cells. The elevated KITLG expression in the tumor microenvironment's fibroblasts and endothelial cells may activate MCs through the KITLG-KIT axis, potentially suppressing tumor progression.
Collapse
Affiliation(s)
- Zhenyu Xie
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Liaoran Niu
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Gaozan Zheng
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Kunli Du
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Songchen Dai
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110016, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110016, China
| | - Ruikai Li
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hanjun Dan
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Lili Duan
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hongze Wu
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Guangming Ren
- Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xinyu Dou
- Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Fan Feng
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Jianyong Zheng
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
28
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
29
|
Fernandes R, Costa C, Fernandes R, Barros AN. Inflammation in Prostate Cancer: Exploring the Promising Role of Phenolic Compounds as an Innovative Therapeutic Approach. Biomedicines 2023; 11:3140. [PMID: 38137361 PMCID: PMC10740737 DOI: 10.3390/biomedicines11123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) remains a significant global health concern, being a major cause of cancer morbidity and mortality worldwide. Furthermore, profound understanding of the disease is needed. Prostate inflammation caused by external or genetic factors is a central player in prostate carcinogenesis. However, the mechanisms underlying inflammation-driven PCa remain poorly understood. This review dissects the diagnosis methods for PCa and the pathophysiological mechanisms underlying the disease, clarifying the dynamic interplay between inflammation and leukocytes in promoting tumour development and spread. It provides updates on recent advances in elucidating and treating prostate carcinogenesis, and opens new insights for the use of bioactive compounds in PCa. Polyphenols, with their noteworthy antioxidant and anti-inflammatory properties, along with their synergistic potential when combined with conventional treatments, offer promising prospects for innovative therapeutic strategies. Evidence from the use of polyphenols and polyphenol-based nanoparticles in PCa revealed their positive effects in controlling tumour growth, proliferation, and metastasis. By consolidating the diverse features of PCa research, this review aims to contribute to increased understanding of the disease and stimulate further research into the role of polyphenols and polyphenol-based nanoparticles in its management.
Collapse
Affiliation(s)
- Raquel Fernandes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Cátia Costa
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rúben Fernandes
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, 4249-004 Porto, Portugal;
- CECLIN, Centro de Estudos Clínicos, Hospital Fernando Pessoa, 4420-096 Gondomar, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Novo Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| |
Collapse
|
30
|
Li ZH, Li JY, Zhu YJ, Dai L, Wu ZT, Nong JS, Zhuo T, Li FL, He LY, Liang HH, Zang FL, Wang YY, Chen MW, Huang WJ, Cao JB. Analysis of Nucleoporin 107 Overexpression and Its Association with Prognosis and Immune Infiltration in Lung Adenocarcinoma by Bioinformatics Methods. Int J Gen Med 2023; 16:5449-5465. [PMID: 38021066 PMCID: PMC10676695 DOI: 10.2147/ijgm.s441185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) has high morbidity and mortality. Current studies indicate nucleoporin 107 (NUP107) is involved in the construction of nuclear pore complex, and NUP107 overexpression contributes to the growth and development in most types of cancers, but its effect in LUAD has not been elucidated. Methods Differences in NUP107 expression were investigated using the Cancer Genome Atlas (TCGA) and multiple Gene Expression Omnibus (GEO) data sets. Enrichment analysis were implemented to probe the NUP107 function. The association of NUP107 with the degree of immune cell infiltration was investigated by the TIMER database, single-sample gene set enrichment analysis (ssGSEA), and ESTIMATE. The association of NUP107 expression with tumor mutation burden (TMB), TP53, and immune checkpoint was analyzed. Single-cell RNA sequencing data were used to detect NUP107 expression in different cell clusters. Finally, we performed real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) to prove the difference of NUP107 expression. Results NUP107 was overexpressed in LUAD and mainly expressed in cancer stem cell (CSC). Overexpression of NUP107 in LUAD suggested a poorer prognosis. Functional enrichment analysis pointed out that NUP107 was mainly linked to the regulation of cell cycle. Both immune cell infiltration and TMB were found to be in connection with NUP107. Cases in the group with high NUP107 expression had poorer immune infiltration, but had higher expression of immune checkpoints, TMB, and proportion of TP53 mutations. Conclusion NUP107 is a sensitive diagnostic and prognostic factor for LUAD and may be involved in tumor progression through its effects on cell cycle and immune infiltration.
Collapse
Affiliation(s)
- Zi-Hao Li
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Jia-Yi Li
- Department of Nephrology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Yong-Jie Zhu
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Lei Dai
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zuo-Tao Wu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Ju-Sen Nong
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Ting Zhuo
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Fu-Li Li
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Ling-Yun He
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Hong-Hua Liang
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Feng-Ling Zang
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Yong-Yong Wang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Ming-Wu Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Wei-Jia Huang
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Jian-Bin Cao
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| |
Collapse
|
31
|
Marcella S, Petraroli A, Canè L, Ferrara AL, Poto R, Parente R, Palestra F, Cristinziano L, Modestino L, Galdiero MR, Monti M, Marone G, Triggiani M, Varricchi G, Loffredo S. Thymic stromal lymphopoietin (TSLP) is a substrate for tryptase in patients with mastocytosis. Eur J Intern Med 2023; 117:111-118. [PMID: 37500310 DOI: 10.1016/j.ejim.2023.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Mastocytosis is a heterogeneous disease associated to uncontrolled proliferation and increased density of mast cells in different organs. This clonal disorder is related to gain-of-function pathogenic variants of the c-kit gene that encodes for KIT (CD117) expressed on mast cell membrane. Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, which plays a key role in allergic disorders and several cancers. TSLP is a survival and activating factor for human mast cells through the engagement of the TSLP receptor. Activated human mast cells release several preformed mediators, including tryptase. Increased mast cell-derived tryptase is a diagnostic biomarker of mastocytosis. In this study, we found that in these patients serum concentrations of TSLP were lower than healthy donors. There was an inverse correlation between TSLP and tryptase concentrations in mastocytosis. Incubation of human recombinant TSLP with sera from patients with mastocytosis, containing increasing concentrations of tryptase, concentration-dependently decreased TSLP immunoreactivity. Similarly, recombinant β-tryptase reduced the immunoreactivity of recombinant TSLP, inducing the formation of a cleavage product of approximately 10 kDa. Collectively, these results indicate that TSLP is a substrate for human mast cell tryptase and highlight a novel loop involving these mediators in mastocytosis.
Collapse
Affiliation(s)
| | - Angelica Petraroli
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; CEINGE Advanced Biotechnologies, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano (SA) 84084, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano (SA) 84084, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy.
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy.
| |
Collapse
|
32
|
Payá-Milans M, Peña-Chilet M, Loucera C, Esteban-Medina M, Dopazo J. Functional Profiling of Soft Tissue Sarcoma Using Mechanistic Models. Int J Mol Sci 2023; 24:14732. [PMID: 37834179 PMCID: PMC10572617 DOI: 10.3390/ijms241914732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Soft tissue sarcoma is an umbrella term for a group of rare cancers that are difficult to treat. In addition to surgery, neoadjuvant chemotherapy has shown the potential to downstage tumors and prevent micrometastases. However, finding effective therapeutic targets remains a research challenge. Here, a previously developed computational approach called mechanistic models of signaling pathways has been employed to unravel the impact of observed changes at the gene expression level on the ultimate functional behavior of cells. In the context of such a mechanistic model, RNA-Seq counts sourced from the Recount3 resource, from The Cancer Genome Atlas (TCGA) Sarcoma project, and non-diseased sarcomagenic tissues from the Genotype-Tissue Expression (GTEx) project were utilized to investigate signal transduction activity through signaling pathways. This approach provides a precise view of the relationship between sarcoma patient survival and the signaling landscape in tumors and their environment. Despite the distinct regulatory alterations observed in each sarcoma subtype, this study identified 13 signaling circuits, or elementary sub-pathways triggering specific cell functions, present across all subtypes, belonging to eight signaling pathways, which served as predictors for patient survival. Additionally, nine signaling circuits from five signaling pathways that highlighted the modifications tumor samples underwent in comparison to normal tissues were found. These results describe the protective role of the immune system, suggesting an anti-tumorigenic effect in the tumor microenvironment, in the process of tumor cell detachment and migration, or the dysregulation of ion homeostasis. Also, the analysis of signaling circuit intermediary proteins suggests multiple strategies for therapy.
Collapse
Affiliation(s)
- Miriam Payá-Milans
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Joaquín Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
- FPS/ELIXIR-ES, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| |
Collapse
|
33
|
Molfetta R, Lecce M, Milito ND, Putro E, Pietropaolo G, Marangio C, Scarno G, Moretti M, De Smaele E, Santini T, Bernardini G, Sciumè G, Santoni A, Paolini R. SCF and IL-33 regulate mouse mast cell phenotypic and functional plasticity supporting a pro-inflammatory microenvironment. Cell Death Dis 2023; 14:616. [PMID: 37730723 PMCID: PMC10511458 DOI: 10.1038/s41419-023-06139-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Mast cells (MCs) are multifaceted innate immune cells often present in the tumor microenvironment (TME). Several recent findings support their contribution to the transition from chronic inflammation to cancer. However, MC-derived mediators can either favor tumor progression, inducing the spread of the tumor, or exert anti-tumorigenic functions, limiting tumor growth. This apparent controversial role likely depends on the plastic nature of MCs that under different microenvironmental stimuli can rapidly change their phenotype and functions. Thus, the exact effect of unique MC subset(s) during tumor progression is far from being understood. Using a murine model of colitis-associated colorectal cancer, we initially characterized the MC population within the TME and in non-lesional colonic areas, by multicolor flow cytometry and confocal microscopy. Our results demonstrated that tumor-associated MCs harbor a main connective tissue phenotype and release high amounts of Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α. This MC phenotype correlates with the presence of high levels of Stem Cell Factor (SCF) and IL-33 inside the tumor. Thus, we investigated the effect of SCF and IL-33 on primary MC cultures and underscored their ability to shape MC phenotype eliciting the production of pro-inflammatory cytokines. Our findings support the conclusion that during colonic transformation a sustained stimulation by SCF and IL-33 promotes the accumulation of a prevalent connective tissue-like MC subset that through the secretion of IL-6 and TNF-α maintains a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| | - Mario Lecce
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- Leibniz Institute for Immunotherapy-Division of functional immune cell modulation, Franz-Josef-Strausse, D-93053, Regensburg, Germany
| | - Nadia D Milito
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Erisa Putro
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Caterina Marangio
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Gianluca Scarno
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy
- IRCCS Neuromed, Pozzilli, 86077, Isernia, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
34
|
Zhong S, Borlak J. Sex disparities in non-small cell lung cancer: mechanistic insights from a cRaf transgenic disease model. EBioMedicine 2023; 95:104763. [PMID: 37625265 PMCID: PMC10470261 DOI: 10.1016/j.ebiom.2023.104763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Women are at greater risk of developing non-small cell lung cancer (NSCLC), yet the underlying causes remain unclear. METHODS We performed whole genome scans in lung tumours of cRaf transgenic mice and identified miRNA, transcription factor and hormone receptor dependent gene regulations. We confirmed hormone receptors by immunohistochemistry and constructed regulatory gene networks by considering experimentally validated miRNA-gene and transcription factor-miRNA/gene targets. Bioinformatics, genomic foot-printing and gene enrichment analysis established sex-specific circuits of lung tumour growth. Translational research involved a large cohort of NSCLC patients. We evaluated commonalities in sex-specific NSCLC gene regulations between mice and humans and determined their prognostic value in Kaplan-Meier survival statistics and COX proportional hazard regression analysis. FINDINGS Overexpression of the cRaf kinase elicited an extraordinary 8-fold increase in tumour growth among females, and nearly 70% of the 112 differentially expressed genes (DEGs) were female specific. We identified oncogenes, oncomirs, tumour suppressors, cell cycle regulators and MAPK/EGFR signalling molecules, which prompted sex-based differences in NSCLC, and we deciphered a regulatory gene-network, which protected males from accelerated tumour growth. Strikingly, 41% of DEGs are targets of hormone receptors, and the majority (85%) are oestrogen receptor (ER) dependent. We confirmed the role of ER in a large cohort of NSCLC patients and validated 40% of DEGs induced by cRaf in clinical tumour samples. INTERPRETATION We report the molecular wiring that prompted sex disparities in tumour growth. This allowed us to propose the development of molecular targeted therapies by jointly blocking ER, CDK1 and arginase 2 in NSCLC. FUNDING We gratefully acknowledge the financial support of the Lower Saxony Ministry of Culture and Sciences and Volkswagen Foundation, Germany to JB (25A.5-7251-99-3/00) and of the Chinese Scholarship Council to SZ (202008080022). This publication is funded by the Deutsche Forschungsgemeinschaft (DFG) as part of the "Open Access Publikationskosten" program.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| |
Collapse
|
35
|
Wen J, Yi L, Wan L, Dong X. Prognostic value of GLCE and infiltrating immune cells in Ewing sarcoma. Heliyon 2023; 9:e19357. [PMID: 37662777 PMCID: PMC10474439 DOI: 10.1016/j.heliyon.2023.e19357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background The prognostic value of D-glucuronyl C5-epimerase (GLCE) and mast cell infiltration in Ewing sarcoma (ES) has not been well specified and highlighted, which may facilitate survival prediction and treatment. Methods Several qualified datasets were downloaded from the GEO website. Common differentially expressed genes between normal subjects and ES patients in GSE17679, GSE45544, and GSE68776 were identified and screened by multiple algorithms to find hub genes with prognostic value. The prognostic value of 64 infiltrating cells was also explored. A prognostic model was established and then validated with GSE63155 and GSE63156. Finally, functional analysis was performed. Results GLCE and mast cell infiltration were screened as two indicators for a prognostic model. The Kaplan‒Meier analysis showed that patients in the low GLCE expression, mast cell infiltration and risk score groups had poorer outcomes than patients in the high GLCE expression, mast cell infiltration and risk score groups, both in the training and validation sets. Scatter plots and heatmaps also indicated the same results. The concordance indices and calibration analyses indicated a high prediction accuracy of the model in the training and validation sets. The time-dependent receiver operating characteristic analyses suggested high sensitivity and specificity of the model, with area under the curve values between 0.76 and 0.98. The decision curve analyses suggested a significantly higher net benefit by the model than the treat-all and treat-none strategies. Functional analyses suggested that glycosaminoglycan biosynthesis-heparan sulfate/heparin, the cell cycle and microRNAs in cancer were upregulated in ES patients. Conclusions GLCE and mast cell infiltration are potential prognostic indicators in ES. GLCE may affect the proliferation, angiogenesis and metastasis of ES by affecting the biosynthesis of heparan sulfate and heparin.
Collapse
Affiliation(s)
- Jian Wen
- Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Lijun Yi
- Central Laboratory, Jiangxi Provincial Children's Hospital, Yangming Rd, Nanchang, Jiangxi, 330006, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, Hunan, 410008, China
| | - Xieping Dong
- Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
36
|
Yang C, Cao F, He Y. An Immune-Related Gene Signature for Predicting Survival and Immunotherapy Efficacy in Esophageal Adenocarcinoma. Med Sci Monit 2023; 29:e940157. [PMID: 37632137 PMCID: PMC10467311 DOI: 10.12659/msm.940157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/30/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) therapy has attracted wide attention in the treatment of malignant tumors. This study was designed to build a prognostic model based on immune-related genes for esophageal adenocarcinoma (EAC). MATERIAL AND METHODS The expression of immune-related differentially-expressed genes (IRDEGs) between EAC and normal samples from The Cancer Genome Atlas database was analyzed. Univariate and multivariate Cox regressions were used to identify the prognostic IRDEGs and construct an immune-related gene signature (IRGS) to predict the overall survival (OS) of EAC patients. Then, the molecular mechanisms and immune characteristics were comprehensively analyzed. RESULTS A total of 111 IRDEGs were obtained from the weighted gene co-expression network analysis. Univariate Cox regression analysis showed that 12 IRDEGs (P<0.05 for all) were linked with OS in the EAC patients. Four genes were used to construct the IRGS based on the multivariate Cox regression analysis. Patients in the high-risk group showed worse OS than those in the low-risk group (P<0.001). A high-risk score was related to DNA replication relevant pathways, an increase in mutation rate, and an increase in activated mast cell infiltration. Patients with high-risk scores had lower tumor immune dysfunction and exclusion scores (P<0.001). CONCLUSIONS IRDEGs may be involved in the progression of EAC. The high-risk group is more suitable for immunotherapy, which may provide a reference value for the treatment of clinical EAC patients. Therefore, it is possible to identify the patients who are better suited for ICI therapy.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Feng Cao
- Anhui Medical University, Hefei, Anhui, PR China
| | - Yan He
- Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
37
|
Gu L, Hu G, Hu J, Wen F. Construction and comprehensive analysis of a novel prognostic signature associated with immunogenic cell death molecular subtypes in patients with bladder cancer. Heliyon 2023; 9:e18848. [PMID: 37593621 PMCID: PMC10428052 DOI: 10.1016/j.heliyon.2023.e18848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Background Immunogenic cell death (ICD) triggers adaptive immune responses that aid in anticancer therapy. However, the significance of ICD-associated genes (ICDAGs) in clinical applications and their potential impact on the tumor microenvironment (TME) remains unclear. Methods The TCGA cohort was divided into different ICD clusters using the method of Consensus clustering. We assessed the clinical results and TME features of various ICD clusters. GSVA quantified the activation of hallmark gene sets. To establish an ICD molecular subtypes-related prognostic model (ICDRPM), we performed LASSO Cox regression analysis on the differentially expressed genes (DEGs) among ICD subtypes. We evaluated the assessment of risk groups by analyzing the proportion of immune cells, the TME, differences in genomic mutation, the efficacy of immunotherapy, and drug sensitivity. To enhance the clinical effectiveness of the ICDRPM, a nomograph was developed. Results Two distinct molecular subtypes were identified, and changes in ICDRGs were associated with clinical outcomes and TME characteristics of patients. A total of 1162 differentially expressed genes (DEGs) were obtained from two ICD clusters, and an ICDRPS was then developed to predict overall survival (OS). During both internal and external validation, patients classified as high-risk exhibited significantly poorer overall survival compared to those classified as low-risk. Additionally, the ICDRPS (ICD_score) was identified as an independent prognostic indicator for patients with BC, demonstrating excellent predictive performance. Afterward, we constructed a dependable nomogram to improve the practicality of the ICD_score. Furthermore, low-risk individuals showed stronger immunocyte infiltration, higher immune checkpoint expression, and higher IPS-PD-1 combined IPS-CTLA4 scores, indicating a greater response to immune checkpoint inhibitors (ICIs). Moreover, individuals categorized as having low or high risk exhibited contrasting sensitivity to anticancer medications. Conclusions The model constructed for genes related to ICD provided meaningful clinical implications for immunotherapy, and facilitated individualized treatment for BC patients.
Collapse
Affiliation(s)
- Lei Gu
- Department of Pathology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, People's Republic of China
| | - Gang Hu
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, People's Republic of China
| | - Juan Hu
- Department of Gynecology, Huangshi Traditional Chinese Medicine Hospital, People's Republic of China
| | - Fei Wen
- Department of Pathology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, People's Republic of China
| |
Collapse
|
38
|
Wu Z, Zhuo T, Li Z, Zhu Y, Wu J, Liang G, Dai L, Wang Y, Tan X, Chen M. High SGO2 predicted poor prognosis and high therapeutic value of lung adenocarcinoma and promoted cell proliferation, migration, invasion, and epithelial-to-mesenchymal transformation. J Cancer 2023; 14:2301-2314. [PMID: 37576392 PMCID: PMC10414046 DOI: 10.7150/jca.86285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Shugoshin 2 (SGO2), a component of the cell division cohesion complex, is involved in both mitotic and meiotic processes. Despite being overexpressed in various malignant tumors and is associated with poor prognosis, its exact role in lung adenocarcinoma (LUAD) and its biological effects on lung cancer cells are not well understood. Methods: The transcriptomics data and clinical information for LUAD were obtained from TCGA and GEO, and DEGs associated with prognostic risk factors were screened using Cox regression analysis and chi-square testing. Identify these gene functions using correlation heatmaps, protein interaction networks (PPIs), and KEGG enrichment assays. The expression of SGO2 in tissues was verified by PCR and IHC, and the prognostic value of SGO2 in LUAD was evaluated by survival analysis. In addition, the effects of SGO2 knockdown on lung cancer cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) were studied in vitro. After that, the TIMER database and single-sample GSEA (ssGSEA) analysis were used to investigate the correlation between SGO2 and immune infiltration. Finally, the tumor mutational burden (TMB) of different SGO2 clusters and the efficacy of the two clusters in multiple treatments were evaluated. Results: High-risk genes associated with poor prognosis in LUAD are involved in cell cycle regulation and proliferation. Among these genes, SGO2 exhibited high expression in LUAD and corresponded with the TNM stage. Furthermore, the knockdown of SGO2 led to a decrease in the proliferation, migration, invasion, and EMT processes of lung cancer cells. Notably, high SGO2 expression may have poorer anti-tumor immunity and may therefore be more suitable for immunotherapy to re-establish immune function, while its high expression with a higher TMB could enable LUAD to benefit from multiple therapies. Conclusion: Our findings suggest that SGO2 may be a promising prognostic biomarker for LUAD, particularly in regulating the cell cycle and benefiting from multiple therapies.
Collapse
Affiliation(s)
- Zuotao Wu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ting Zhuo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zihao Li
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongjie Zhu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiejing Wu
- Department of Ophthalmology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Guanbiao Liang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lei Dai
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongyong Wang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Tan
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Mingwu Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
39
|
Liu X, Li X, Wei H, Liu Y, Li N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front Immunol 2023; 14:1209056. [PMID: 37497234 PMCID: PMC10366593 DOI: 10.3389/fimmu.2023.1209056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
The characteristics of the tumour cells, as well as how tumour cells interact with their surroundings, affect the prognosis of cancer patients. The resident cells in the tumour microenvironment are mast cells (MCs), which are known for their functions in allergic responses, but their functions in the cancer milieu have been hotly contested. Several studies have revealed a link between MCs and the development of tumours. Mast cell proliferation in colorectal cancer (CRC) is correlated with angiogenesis, the number of lymph nodes to which the malignancy has spread, and patient prognosis. By releasing angiogenic factors (VEGF-A, CXCL 8, MMP-9, etc.) and lymphangiogenic factors (VEGF-C, VEGF-D, etc.) stored in granules, mast cells play a significant role in the development of CRC. On the other hand, MCs can actively encourage tumour development via pathways including the c-kit/SCF-dependent signaling cascade and histamine production. The impact of MC-derived mediators on tumour growth, the prognostic importance of MCs in patients with various stages of colorectal cancer, and crosstalk between MCs and CRC cells in the tumour microenvironment are discussed in this article. We acknowledge the need for a deeper comprehension of the function of MCs in CRC and the possibility that targeting MCs might be a useful therapeutic approach in the future.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyu Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ningxu Li
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
40
|
Langhammer M, Schöpf J, Jaquet T, Horn K, Angel M, Spohr C, Christen D, Uhl FM, Maié T, Jacobi H, Feyerabend TB, Huber J, Panning M, Sitaru C, Costa I, Zeiser R, Aumann K, Becker H, Braunschweig T, Koschmieder S, Shoumariyeh K, Huber M, Schemionek-Reinders M, Brummer T, Halbach S. Mast cell deficiency prevents BCR::ABL1 induced splenomegaly and cytokine elevation in a CML mouse model. Leukemia 2023; 37:1474-1484. [PMID: 37161070 PMCID: PMC10317838 DOI: 10.1038/s41375-023-01916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
The persistence of leukemic stem cells (LSCs) represents a problem in the therapy of chronic myeloid leukemia (CML). Hence, it is of utmost importance to explore the underlying mechanisms to develop new therapeutic approaches to cure CML. Using the genetically engineered ScltTA/TRE-BCR::ABL1 mouse model for chronic phase CML, we previously demonstrated that the loss of the docking protein GAB2 counteracts the infiltration of mast cells (MCs) in the bone marrow (BM) of BCR::ABL1 positive mice. Here, we show for the first time that BCR::ABL1 drives the cytokine independent expansion of BM derived MCs and sensitizes them for FcεRI triggered degranulation. Importantly, we demonstrate that genetic mast cell deficiency conferred by the Cpa3Cre allele prevents BCR::ABL1 induced splenomegaly and impairs the production of pro-inflammatory cytokines. Furthermore, we show in CML patients that splenomegaly is associated with high BM MC counts and that upregulation of pro-inflammatory cytokines in patient serum samples correlates with tryptase levels. Finally, MC-associated transcripts were elevated in human CML BM samples. Thus, our study identifies MCs as essential contributors to disease progression and suggests considering them as an additional target in CML therapy. Mast cells play a key role in the pro-inflammatory tumor microenvironment of the bone marrow. Shown is a cartoon summarizing our results from the mouse model. BCR::ABL1 transformed MCs, as part of the malignant clone, are essential for the elevation of pro-inflammatory cytokines, known to be important in disease initiation and progression.
Collapse
Affiliation(s)
- Melanie Langhammer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Schöpf
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Timo Jaquet
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Katharina Horn
- Institute of Biochemistry and Molecular Immunology, RWTH Aachen University, Aachen, Germany
| | - Moritz Angel
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Corinna Spohr
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Christen
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Franziska Maria Uhl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tiago Maié
- Institute for Computational Genomics, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Henrike Jacobi
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Thorsten B Feyerabend
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Huber
- Department of Pathology, Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cassian Sitaru
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ivan Costa
- Institute for Computational Genomics, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konrad Aumann
- Department of Pathology, Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Becker
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Till Braunschweig
- Department of Pathology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, RWTH Aachen University, Aachen, Germany
| | - Mirle Schemionek-Reinders
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
41
|
Sulsenti R, Jachetti E. Frenemies in the Microenvironment: Harnessing Mast Cells for Cancer Immunotherapy. Pharmaceutics 2023; 15:1692. [PMID: 37376140 DOI: 10.3390/pharmaceutics15061692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor development, progression, and resistance to therapies are influenced by the interactions between tumor cells and the surrounding microenvironment, comprising fibroblasts, immune cells, and extracellular matrix proteins. In this context, mast cells (MCs) have recently emerged as important players. Yet, their role is still controversial, as MCs can exert pro- or anti-tumor functions in different tumor types depending on their location within or around the tumor mass and their interaction with other components of the tumor microenvironment. In this review, we describe the main aspects of MC biology and the different contribution of MCs in promoting or inhibiting cancer growth. We then discuss possible therapeutic strategies aimed at targeting MCs for cancer immunotherapy, which include: (1) targeting c-Kit signaling; (2) stabilizing MC degranulation; (3) triggering activating/inhibiting receptors; (4) modulating MC recruitment; (5) harnessing MC mediators; (6) adoptive transferring of MCs. Such strategies should aim to either restrain or sustain MC activity according to specific contexts. Further investigation would allow us to better dissect the multifaceted roles of MCs in cancer and tailor novel approaches for an "MC-guided" personalized medicine to be used in combination with conventional anti-cancer therapies.
Collapse
Affiliation(s)
- Roberta Sulsenti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
42
|
Berlin F, Mogren S, Ly C, Ramu S, Hvidtfeldt M, Uller L, Porsbjerg C, Andersson CK. Mast Cell Tryptase Promotes Airway Remodeling by Inducing Anti-Apoptotic and Cell Growth Properties in Human Alveolar and Bronchial Epithelial Cells. Cells 2023; 12:1439. [PMID: 37408273 DOI: 10.3390/cells12101439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
Bronchial and alveolar remodeling and impaired epithelial function are characteristics of chronic respiratory diseases. In these patients, an increased number of mast cells (MCs) positive for serine proteases, tryptase and chymase, infiltrate the epithelium and alveolar parenchyma. However, little is known regarding the implication of intraepithelial MCs on the local environment, such as epithelial cell function and properties. In this study, we investigated whether MC tryptase is involved in bronchial and alveolar remodeling and the mechanisms of regulation during inflammation. Using novel holographic live cell imaging, we found that MC tryptase enhanced human bronchial and alveolar epithelial cell growth and shortened the cell division intervals. The elevated cell growth induced by tryptase remained in a pro-inflammatory state. Tryptase also increased the expression of the anti-apoptotic protein BIRC3, as well as growth factor release in epithelial cells. Thus, our data imply that the intraepithelial and alveolar MC release of tryptase may play a critical role in disturbing bronchial epithelial and alveolar homeostasis by altering cell growth-death regulation.
Collapse
Affiliation(s)
- Frida Berlin
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Sofia Mogren
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Camilla Ly
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Sangeetha Ramu
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Morten Hvidtfeldt
- Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg, 2400 Copenhagen, Denmark
| | - Lena Uller
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg, 2400 Copenhagen, Denmark
| | - Cecilia K Andersson
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| |
Collapse
|
43
|
Zhang P, Liu J, Pei S, Wu D, Xie J, Liu J, Li J. Mast cell marker gene signature: prognosis and immunotherapy response prediction in lung adenocarcinoma through integrated scRNA-seq and bulk RNA-seq. Front Immunol 2023; 14:1189520. [PMID: 37256127 PMCID: PMC10225553 DOI: 10.3389/fimmu.2023.1189520] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Background Mast cells, comprising a crucial component of the tumor immune milieu, modulate neoplastic progression by secreting an array of pro- and antitumorigenic factors. Numerous extant studies have produced conflicting conclusions regarding the impact of mast cells on the prognosis of patients afflicted with lung adenocarcinoma (LUAD). Methods Employing single-cell RNA sequencing (scRNA-seq) analysis, mast cell-specific marker genes in LUAD were ascertained. Subsequently, a mast cell-related genes (MRGs) signature was devised to stratify LUAD patients into high- and low-risk cohorts based on the median risk value. Further investigations were conducted to assess the influence of distinct risk categories on the tumor microenvironment. The prognostic import and capacity to prognosticate immunotherapy benefits of the MRGs signature were corroborated using four external cohorts. Ultimately, the functional roles of SYAP1 were validated through in vitro experimentation. Results After scRNA-seq and bulk RNA-seq data analysis, we established a prognostic signature consisting of nine MRGs. This profile effectively distinguished favorable survival outcomes in both the training and validation cohorts. In addition, we identified the low-risk group as a population more effective for immunotherapy. In cellular experiments, we found that silencing SYAP1 significantly reduced the proliferation, invasion and migratory capacity of LUAD cells while increasing apoptosis. Conclusion Our MRGs signature offers valuable insights into the involvement of mast cells in determining the prognosis of LUAD and may prove instrumental as a navigational aid for immunotherapy selection, as well as a predictor of immunotherapy response in LUAD patients.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianlan Liu
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Wu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiaheng Xie
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Hu L, Franco L, Parikh J, Zayat V. Mastocytic Enterocolitis: An Overlooked Diagnosis for Unexplained Chronic Diarrhea in a Patient With Colon Polyps and a Family History of Colon Cancer. Cureus 2023; 15:e37219. [PMID: 37168163 PMCID: PMC10166299 DOI: 10.7759/cureus.37219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Chronic intractable diarrhea is a common presenting complaint that is often clinically worked up for a wide variety of diseases including inflammatory bowel disease, celiac disease, and hyperthyroidism. When lab results come back normal, patients are often diagnosed with irritable bowel disease-diarrheal subtype, overlooking the potential diagnosis of mastocytic enterocolitis. Mastocytic enterocolitis is an uncommon diagnosis where patients can benefit from mast cell stabilizers that directly target the underlying pathology. Given the broad differential diagnosis of nonspecific diarrhea presentation, a histopathological examination is warranted for definitive diagnosis. We hope to raise awareness of this potentially treatable disease that can be effectively managed with antihistamines. We describe the case of a 63-year-old male patient with a family history significant for colon cancer who presented with intractable diarrhea and was ultimately diagnosed with mastocytic enterocolitis by histopathology. His symptoms were relieved by antihistamine treatment.
Collapse
Affiliation(s)
- Leeann Hu
- Medical School, University of Central Florida College of Medicine, Orlando, USA
| | - Liliana Franco
- Internal Medicine, University of Central Florida/HCA Healthcare Graduate Medical Education (GME), Orlando, USA
| | - Jignesh Parikh
- Pathology, Orlando Veterans Affairs Medical Center, Orlando, USA
| | - Vania Zayat
- Pathology, Orlando Veterans Affairs Medical Center, Orlando, USA
- Pathology, University of Central Florida College of Medicine, Orlando, USA
| |
Collapse
|
45
|
Martínez-Aguilar LM, Ibarra-Sánchez A, Guerrero-Morán DJ, Macías-Silva M, Muñoz-Bello JO, Padilla A, Lizano M, González-Espinosa C. Lysophosphatidylinositol Promotes Chemotaxis and Cytokine Synthesis in Mast Cells with Differential Participation of GPR55 and CB2 Receptors. Int J Mol Sci 2023; 24:ijms24076316. [PMID: 37047288 PMCID: PMC10094727 DOI: 10.3390/ijms24076316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Mast cells (MCs) are the main participants in the control of immune reactions associated with inflammation, allergies, defense against pathogens, and tumor growth. Bioactive lipids are lipophilic compounds able to modulate MC activation. Here, we explored some of the effects of the bioactive lipid lysophosphatidylinositol (LPI) on MCs. Utilizing murine bone marrow-derived mast cells (BMMCs), we found that LPI did not cause degranulation, but slightly increased FcεRI-dependent β-hexosaminidase release. However, LPI induced strong chemotaxis together with changes in LIM kinase (LIMK) and cofilin phosphorylation. LPI also promoted modifications to actin cytoskeleton dynamics that were detected by an increase in cell size and interruptions in the continuity of the cortical actin ring. The chemotaxis and cortical actin ring changes were dependent on GPR55 receptor activation, since the specific agonist O1602 mimicked the effects of LPI and the selective antagonist ML193 prevented them. The LPI and O1602-dependent stimulation of BMMC also led to VEGF, TNF, IL-1α, and IL-1β mRNA accumulation, but, in contrast with chemotaxis-related processes, the effects on cytokine transcription were dependent on GPR55 and cannabinoid (CB) 2 receptors, since they were sensitive to ML193 and to the specific CB2 receptor antagonist AM630. Remarkably, GPR55-dependent BMMC chemotaxis was observed towards conditioned media from distinct mouse and human cancer cells. Our data suggest that LPI induces the chemotaxis of MCs and leads to cytokine production in MC in vitro with the differential participation of GPR55 and CB2 receptors. These effects could play a significant role in the recruitment of MCs to tumors and the production of MC-derived pro-angiogenic factors in the tumor microenvironment.
Collapse
Affiliation(s)
- Lizbeth Magnolia Martínez-Aguilar
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Daniel José Guerrero-Morán
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Jesús Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.O.M.-B.); (M.L.)
| | - Alejandro Padilla
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universtiaria, Mexico City 04510, Mexico;
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.O.M.-B.); (M.L.)
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
- Centro de Investigación sobre Envejecimiento (CIE), Cinvestav, Unidad Sede Sur. Calzada de los Tenorios No. 235 Col. Granjas Coapa, Tlalpan, Mexico City 14400, Mexico
- Correspondence: ; Tel.: +52-5554-832800
| |
Collapse
|
46
|
Huang J, Hu B, Yang Y, Liu H, Fan X, Zhou J, Chen L. Integrated analyzes identify CCT3 as a modulator to shape immunosuppressive tumor microenvironment in lung adenocarcinoma. BMC Cancer 2023; 23:241. [PMID: 36918801 PMCID: PMC10012614 DOI: 10.1186/s12885-023-10677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Chaperonin-containing tailless complex polypeptide 1 (TCP1) subunit 3 (CCT3) has tumor-promoting effects in lung adenocarcinoma (LUAD). This study aims to investigate the molecular mechanisms of CCT3 in LUAD oncogenesis. METHODS The UALCAN databases, Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA) data were used to analyze CCT3 expression in LUAD. Both the Wilcoxon rank-sum test and the regression model were used to investigate the connection between clinicopathologic characteristics of LUAD patients and CCT3 expression. The prognostic value of CCT3 was determined by Cox regression models, the Kaplan-Meier method and Nomogram prediction. Next, we identified the most related genes with CCT3 via GeneMANIA and String databases, and the association between CCT3 and infiltrated immune cells using single-sample Gene Set Enrichment Analysis (ssGSEA). CCT3-related pathway enrichment analysis was investigated by GSEA. Finally, CCT3 roles in cell proliferation and apoptosis of LUAD A549 cells was verified by siRNA (small interfering RNA) mediated CCT3 knockdown. RESULTS CCT3 was upregulated in LUAD both in mRNA and protein levels. CCT3 overexpression was associated with clinicopathological characteristics including sex, smoking, T- and N-categories, pathological staging, and a poor prognosis of LUAD patients. GeneMANIA and String databases found a set of CCT3-related genes that are connected to the assembly and stability of proteins involved in proteostasis of cytoskeletal filaments, DNA repair and protein methylation. Furthermore, CCT3 was found to be positively correlated with the infiltrating Th2 cells (r = 0.442, p < 0.01) while negatively correlated with mast cells (r = -0.49, p < 0.01) and immature dendritic cells (iDCs, r = -0.401, p < 0.001) according to ssGSEA analyzes. The pathway analysis based on GSEA method showed that the cell cycle pathway, the protein export pathway, the proteasome pathway and the ribosome pathway are enriched in CCT3 high group, whereas the JAK/STAT pathway, B cell receptor pathway, T cell receptor pathway and toll like receptor pathway were enriched in CCT3 low group. Finally, CCT3 knockdown substantially inhibited proliferation while promoted apoptosis of A549 cells. CONCLUSION Integrated analyzes identify CCT3 as a modulator to shape immunosuppressive tumor microenvironment in LUAD and therefore, a prognostic factor for LUAD.
Collapse
Affiliation(s)
- Junfeng Huang
- Department of Laboratory Medicine, Second Hospital of Anhui Medical University, Hefei, China
| | - Bingqi Hu
- Department of Laboratory Medicine, Second Hospital of Anhui Medical University, Hefei, China
| | - Ying Yang
- Department of Laboratory Medicine, Second Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Liu
- Department of Laboratory Medicine, Second Hospital of Anhui Medical University, Hefei, China
| | - Xingyu Fan
- Department of Laboratory Medicine, Second Hospital of Anhui Medical University, Hefei, China
| | - Jing Zhou
- Department of Laboratory Medicine, Second Hospital of Anhui Medical University, Hefei, China
| | - Liwen Chen
- Department of Laboratory Medicine, Second Hospital of Anhui Medical University, Hefei, China. .,Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
47
|
Krishnan SN, Thanasupawat T, Arreza L, Wong GW, Sfanos K, Trock B, Arock M, Shah GG, Glogowska A, Ghavami S, Hombach-Klonisch S, Klonisch T. Human C1q Tumor Necrosis Factor 8 (CTRP8) defines a novel tryptase+ mast cell subpopulation in the prostate cancer microenvironment. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166681. [PMID: 36921737 DOI: 10.1016/j.bbadis.2023.166681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
The adipokine C1q Tumor Necrosis Factor 8 (CTRP8) is the least known member of the 15 CTRP proteins and a ligand of the relaxin receptor RXFP1. We previously demonstrated the ability of the CTRP8-RXFP1 interaction to promote motility, matrix invasion, and drug resistance. The lack of specific tools to detect CTRP8 protein severely limits our knowledge on CTRP8 biological functions in normal and tumor tissues. Here, we have generated and characterized the first specific antiserum to human CTRP8 which identified CTRP8 as a novel marker of tryptase+ mast cells (MCT) in normal human tissues and in the prostate cancer (PC) microenvironment. Using human PC tissue microarrays composed of neoplastic and corresponding tumor-adjacent prostate tissues, we have identified a significantly higher number of CTRP8+ MCT in the peritumor versus intratumor compartment of PC tissues of Gleason scores 6 and 7. Higher numbers of CTRP8+ MCT correlated with the clinical parameter of biochemical recurrence. We showed that the human MC line ROSAKIT WT expressed RXFP1 transcripts and responded to CTRP8 treatment with a small but significant increase in cell proliferation. Like the cognate RXFP1 ligand RLN-2 and the small molecule RXFP1 agonist ML-290, CTRP8 reduced degranulation of ROSAKIT WT MC stimulated by the Ca2+-ionophore A14187. In conclusion, this is the first report to identify the RXFP1 agonist CTRP8 as a novel marker of MCT and autocrine/paracrine oncogenic factor within the PC microenvironment.
Collapse
Affiliation(s)
- Sai Nivedita Krishnan
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Thatchawan Thanasupawat
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Leanne Arreza
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - G William Wong
- Dept. of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Sfanos
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bruce Trock
- Dept. of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Arock
- Laboratoire d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Paris, France
| | - G Girish Shah
- Dept. of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, CHU de Quebec-Laval, Quebec, Canada
| | - Aleksandra Glogowska
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Saeid Ghavami
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| | - Thomas Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Dept. of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada.
| |
Collapse
|
48
|
Arpinati L, Scherz-Shouval R. From gatekeepers to providers: regulation of immune functions by cancer-associated fibroblasts. Trends Cancer 2023; 9:421-443. [PMID: 36870916 DOI: 10.1016/j.trecan.2023.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are major protumorigenic components of the tumor microenvironment in solid cancers. CAFs are heterogeneous, consisting of multiple subsets that display diverse functions. Recently, CAFs have emerged as major promoters of immune evasion. CAFs favor T cell exclusion and exhaustion, promote recruitment of myeloid-derived suppressor cells, and induce protumoral phenotypic shifts in macrophages and neutrophils. With the growing appreciation of CAF heterogeneity came the understanding that different CAF subpopulations may be driving distinct immune-regulatory effects, interacting with different cell types, and perhaps even driving opposing effects on malignancy. In this review we discuss the current understanding of CAF-immune interactions, their effect on tumor progression and therapeutic response, and the possibility of exploiting CAF-immune interactions as potential targets for cancer therapy.
Collapse
Affiliation(s)
- Ludovica Arpinati
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
49
|
Hussein EM, Muhammad MAA, Hussein AM, Elzagawy SM, Zaki WM, Temsah AG, Badr MS, Alabbassy MM. Levels of Genetic Variants Among Symptomatic Blastocystis Subtypes and their Relationship to Mucosal Immune Surveillance in the Precancerous Colons of Experimentally Infected Rats. Acta Parasitol 2023; 68:70-83. [PMID: 36380160 PMCID: PMC10011339 DOI: 10.1007/s11686-022-00628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE The relationship between the genetic diversity of Blastocystis and immune surveillance in precancerous colons with blastocystosis is still under investigation. This study aimed to identify the genetic Blastocystis variants among 54 symptomatic human isolates and their relationship to mucosal immune surveillance in the precancerous polyps of experimentally infected rats. METHODS Polymerase chain reaction and high-resolution melting (PCR/HRM) curves discriminated human symptomatic Blastocystis isolates into subtypes (STs)/intrasubtypes, which were orally administered to rats to induce experimental infection. Then, the mucosal immune responses of the infected colons were evaluated in relation to polyp formation through immunostaining to identify mucus MUC2 and determine mucosal immune cell (goblet, lymphocyte and mast) counts, secretory IgA levels and parasitic intestinal invasion. RESULTS ST1, ST3, and ST4 were found in 18.5% (10/54), 54.7% (29/54), and 27.8% (15/54) of the samples, respectively. Then, the HRM curve discriminated ST3 into the wild, mutant, and heterozygous [17/54 (31.5%), 5/54 (9.3%), and 7/54 (12.9%)] intrasubtypes. ST1 and ST4 had no genetic variations. Precancerous polyps were detected in the colons of 40.5% of the infected rats. ST1 constituted 14.7% of these cases, while the wild, mutant, and heterozygous intrasubtypes of ST3 showed polyps in 12.9%, 5.5%, and 5.5% of cases, respectively. Only 1.9% of the polyps were related to ST4. MUC2 showed weak immunostaining in 44.5% of the infected colons, and 38.9% were polyp inducers. Low goblet cell numbers and high interepithelial lymphocyte counts were significantly associated with polyp formation, particularly with ST1 and wild ST3. Among the polyp inducers, high numbers of mast cells were detected in wild ST3 and ST4, while a low number was found with heterozygous ST3. The level of secretory IgA was low in polyp-inducing STs. Most of the results were statistically significant. CONCLUSION Immunosurveillance showed a potential relationship between ST1 and the ST3 intrasubtypes and precancerous polyps. This relationship may provide insight into the prevention and/or development of new immunotherapeutic strategies to combat colorectal cancer.
Collapse
Affiliation(s)
- Eman M Hussein
- Medical Parasitology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Muhammad A A Muhammad
- Pathology Department, Faculty of Medicine, Suez Canal, University, Ismailia, 41522, Egypt
| | - Abdalla M Hussein
- Bio-Physics Department, Faculty of Science, Al-Azhar University, Cairo, 11652, Egypt
| | - Sherine M Elzagawy
- Medical Parasitology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Wafaa M Zaki
- Medical Parasitology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ashraf G Temsah
- Medical Parasitology Department, Faculty of Medicine, Damietta Branch, AL Azhar University, Damietta, Egypt
| | - Mohamed S Badr
- Medical Genetic Centre, Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha M Alabbassy
- Medical Parasitology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
50
|
Huang Q, Peng X, Li Q, Zhu J, Xue J, Jiang H. Construction and comprehensive analysis of a novel prognostic signature associated with pyroptosis molecular subtypes in patients with pancreatic adenocarcinoma. Front Immunol 2023; 14:1111494. [PMID: 36817451 PMCID: PMC9935619 DOI: 10.3389/fimmu.2023.1111494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Treatment of cancer with pyroptosis is an emerging strategy. Molecular subtypes based on pyroptosis-related genes(PRGs) seem to be considered more conducive to individualized therapy. It is meaningful to construct a pyroptosis molecular subtypes-related prognostic signature (PMSRPS) to predict the overall survival (OS) of patients with pancreatic adenocarcinoma(PAAD) and guide treatment. Methods Based on the transcriptome data of 23 PRGs, consensus clustering was applied to divide the TCGA and GSE102238 combined cohort into three PRGclusters. Prognosis-related differentially expressed genes(DEGs) among PRGclusters were subjected to LASSO Cox regression analysis to determine a PMSRPS. External cohort and in vitro experiments were conducted to verify this PMSRPS. The CIBERSORT algorithm, the ESTIMATE algorithm and the Immunophenoscore (IPS) were used to analyze the infiltrating abundance of immune cells, the tumor microenvironment (TME), and the response to immunotherapy, respectively. Wilcoxon analysis was used to compare tumor mutational burden (TMB) and RNA stemness scores (RNAss) between groups. RT-qPCR and in vitro functional experiments were used for evaluating the expression and function of SFTA2. Results Based on three PRGclusters, 828 DEGs were obtained and a PMSRPS was subsequently constructed. In internal and external validation, patients in the high-risk group had significantly lower OS than those in the low-risk group and PMSRPS was confirmed to be an independent prognostic risk factor for patients with PAAD with good predictive performance. Immune cell infiltration abundance and TME scores indicate patients in the high-risk group have typical immunosuppressive microenvironment characteristics. Analysis of IPS suggests patients in the high-risk group responded better to novel immune checkpoint inhibitors (ICIs) than PD1/CTLA4. The high-risk group had higher TMB and RNAss. In addition, 10 potential small-molecule compounds were screened out. Finally, we found that the mRNA expression of SFTA2 gene with the highest risk coefficient in PMSRPS was significantly higher in PAAD than in paracancerous tissues, and knockdown of it significantly delayed the progression of PAAD. Conclusions PMSRPS can well predict the prognosis, TME and immunotherapy response of patients with PAAD, identify potential drugs, and provide treatment guidance based on individual needs.
Collapse
Affiliation(s)
- Qian Huang
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingqing Li
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ju Xue
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Hua Jiang
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Hua Jiang,
| |
Collapse
|