1
|
Walker JN, Gautam AKS, Matouschek A, Brodbelt JS. Structural Analysis of the 20S Proteasome Using Native Mass Spectrometry and Ultraviolet Photodissociation. J Proteome Res 2024; 23:5438-5448. [PMID: 39475212 DOI: 10.1021/acs.jproteome.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Owing to the role of the 20S proteasome in a wide spectrum of pathologies, including neurodegenerative disorders, proteasome-associated autoinflammatory syndromes (PRAAS), and cardiovascular diseases, understanding how its structure and composition contribute to dysfunction is crucial. As a 735 kDa protein assembly, the 20S proteasome facilitates normal cellular proteostasis by degrading oxidized and misfolded proteins. Declined proteasomal activity, which can be attributed to perturbations in the structural integrity of the 20S proteasome, is considered one of the main contributors to multiple proteasome-related diseases. Devising methods to characterize the structures of 20S proteasomes provides necessary insight for the development of drugs and inhibitors that restore proper proteasomal function. Here, native mass spectrometry was combined with multiple dissociation techniques, including ultraviolet photodissociation (UVPD), to identify the protein subunits comprising the 20S proteasome. UVPD, demonstrating an ability to uncover structural features of large (>300 kDa) macromolecular complexes, provided complementary information to conventional collision-based methods. Additionally, variable-temperature electrospray ionization was combined with UV photoactivation to study the influence of solution temperature on the stability of the 20S proteasome.
Collapse
Affiliation(s)
- Jada N Walker
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Guo W, Lozeau D, Tonnesen M, Schuval S, de Jesus A, Miller D, Alehashemi S, Kristal L. A case of mother and child with CANDLE syndrome: Diagnosis and subsequent treatment with baricitinib. Pediatr Dermatol 2024; 41:1162-1165. [PMID: 38881047 DOI: 10.1111/pde.15667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/11/2024] [Indexed: 06/18/2024]
Abstract
Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) or proteasome-associated autoinflammatory syndrome is a rare autoinflammatory disorder that typically presents in infancy with characteristic symptoms, including recurrent fever, panniculitis, and progressive lipodystrophy, among other findings. We present a case of mother and child with CANDLE syndrome. The child was eventually started on baricitinib with normalization of rash and systemic findings.
Collapse
Affiliation(s)
- William Guo
- Department of Dermatology, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Daniel Lozeau
- Department of Dermatology, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Marcia Tonnesen
- Department of Dermatology, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Susan Schuval
- Department of Pediatric Allergy & Immunology, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Adriana de Jesus
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Devin Miller
- Department of Dermatology, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Leonard Kristal
- Department of Dermatology, Stony Brook University Medical Center, Stony Brook, New York, USA
| |
Collapse
|
3
|
Yazdanpanah N, Rezaei N. The multidisciplinary approach to diagnosing inborn errors of immunity: a comprehensive review of discipline-based manifestations. Expert Rev Clin Immunol 2024; 20:1237-1259. [PMID: 38907993 DOI: 10.1080/1744666x.2024.2372335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Congenital immunodeficiency is named primary immunodeficiency (PID), and more recently inborn errors of immunity (IEI). There are more than 485 conditions classified as IEI, with a wide spectrum of clinical and laboratory manifestations. AREAS COVERED Regardless of the developing knowledge of IEI, many physicians do not think of IEI when approaching the patient's complaint, which leads to delayed diagnosis, misdiagnosis, serious infectious and noninfectious complications, permanent end-organ damage, and even death. Due to the various manifestations of IEI and the wide spectrum of associated conditions, patients refer to specialists in different disciplines of medicine and undergo - mainly symptomatic - treatments, and because IEI are not included in physicians' differential diagnosis, the main disease remains undiagnosed. EXPERT OPINION A multidisciplinary approach may be a proper solution. Manifestations and the importance of a multidisciplinary approach in the diagnosis of main groups of IEI are discussed in this article.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mendonça LO, Frémond ML. Interferonopathies: From concept to clinical practice. Best Pract Res Clin Rheumatol 2024; 38:101975. [PMID: 39122631 DOI: 10.1016/j.berh.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
The horror autoinflammaticus derived from aberrant type I interferon secretion determines a special group of autoinflammatory diseases named interferonopathies. Diverse mechanisms involved in nucleic acids sensing, metabolizing or the lack of interferon signaling retro-control are responsible for the phenotypes associated to Aicardi-Goutières Syndrome (AGS), Proteasome-Associated Autoinflammatory Diseases (PRAAS), STING-Associated Vasculopathy with Infancy Onset (SAVI) and certain forms of monogenic Systemic lupus erythematosus (SLE). This review approaches interferonopathies from the basic immunogenetic concept to diagnosis and treatment.
Collapse
Affiliation(s)
- Leonardo Oliveira Mendonça
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil; Discipline of Clinical Immunology and Allergy, Department of Internal Medicine, Universidade de Santo Amaro (UNISA), São Paulo, Brazil.
| | - Marie-Louise Frémond
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Laboratory of Neurogenetics and Neuroinflammation Imagine Institute, INSERM UMR1163, Paris, France
| |
Collapse
|
5
|
Napiórkowska-Baran K, Darwish S, Kaczor J, Treichel P, Szymczak B, Szota M, Koperska K, Bartuzi Z. Oral Diseases as a Manifestation of Inborn Errors of Immunity. J Clin Med 2024; 13:5079. [PMID: 39274292 PMCID: PMC11396297 DOI: 10.3390/jcm13175079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Oral findings such as inflammation, ulcerations, or lesions can indicate serious systemic diseases and should prompt suspicion of acquired chronic conditions or inborn errors of immunity (IEIs). Currently, there are approximately 500 disease entities classified as IEIs, with the list expanding annually. The awareness of the existence of such conditions is of paramount importance, as patients with these disorders frequently necessitate the utilization of enhanced diagnostic techniques. This is exemplified by patients with impaired antibody production, in whom conventional serological methods may prove to be undiagnostic. Patients with IEI may require distinct therapeutic approaches or antimicrobial prophylaxis throughout their lives. An accurate diagnosis and, more importantly, early identification of patients with immune deficiencies is crucial to ensure the quality and longevity of their lives. It is important to note that the failure to establish a proper diagnosis or to provide adequate treatment could also have legal implications for medical professionals. The article presents IEIs, which may manifest in the oral cavity, and their diagnosis alongside therapeutic procedures.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Justyna Kaczor
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Maciej Szota
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| |
Collapse
|
6
|
Rowczenio D, Aksentijevich I. Genetic Approaches to Study Rheumatic Diseases and Its Implications in Clinical Practice. Arthritis Rheumatol 2024; 76:1169-1181. [PMID: 38433603 DOI: 10.1002/art.42841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Patients with rare and complex rheumatic diseases (RDs) present with immense clinical variability inherent to all immunologic diseases. In addition to systemic and organ-specific inflammation, patients may display features of immunodeficiency or allergy, which may represent major diagnostic and therapeutic challenges. The person's genetic architecture has been a well-established risk factor for patients with RDs, albeit to variable degrees. Patients with early-onset diseases and/or positive family history (FH) have a strong genetic component, whereas patients with late-onset RDs demonstrate a more complex interplay of genetic and environmental risk factors. Overall, the genetic studies in patients with RDs have been instrumental to our understanding of innate and adaptive immunity in human health and disease. The elucidation of the molecular causes underlying rare diseases has played a major role in the identification of genes that are critical in the regulation of inflammatory responses. In addition, studies of patients with rare disorders may help determine the mechanisms of more complex autoimmune diseases by identifying variants with small effect sizes in the same genes. In contrast, studies of patients with common RDs are conducted in cohorts of patients with well-established phenotypes and ancestry-matched controls, and they aim to discover disease-related pathways that can inform the development of novel targeted therapies. Knowing the genetic cause of a disease has helped patients and families understand the disease progression and outcome. Here, we discuss the current understanding of genetic heritability and challenges in the diagnosis of RDs in patients and how this field may develop in the future.
Collapse
|
7
|
Nazzar Romero S, McCurdy D. Overview of Systemic Autoinflammatory Diseases. Adv Pediatr 2024; 71:213-228. [PMID: 38944485 DOI: 10.1016/j.yapd.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Systemic autoinflammatory diseases (SAID) are a growing family of disorders of the innate immune system. Over the years, there have been changes in the definition, classification and nomenclature of SAID as new syndromes and pathophysiologic mechanisms continue to be described. Recognizing the clinical manifestations of SAID is important for their early diagnosis and management. The field continues to advance with potential new therapies underway.
Collapse
Affiliation(s)
- Samira Nazzar Romero
- Division of Rheumatology, Nemours Children's Health, University of Central Florida College of Medicine.
| | - Deborah McCurdy
- Division of Allergy/Immunology/Rheumatology, Mattel Childrens' Hospital, UCLA, David Geffen School of Medicine
| |
Collapse
|
8
|
Zhang J, Tao P, Deuitch NT, Yu X, Askentijevich I, Zhou Q. Proteasome-Associated Syndromes: Updates on Genetics, Clinical Manifestations, Pathogenesis, and Treatment. J Clin Immunol 2024; 44:88. [PMID: 38578475 DOI: 10.1007/s10875-024-01692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
The ubiquitin-proteasome system (UPS) has a critical role in post-translational protein modification that is essential for the maintenance of all cellular functions, including immune responses. The proteasome complex is ubiquitously expressed and is responsible for degradation of short-lived structurally abnormal, misfolded and not-needed proteins that are targeted for degradation via ubiquitin conjugation. Over the last 14 years, an increasing number of human diseases have been linked to pathogenic variants in proteasome subunits and UPS regulators. Defects of the proteasome complex or its chaperons - which have a regulatory role in the assembly of the proteasome - disrupt protein clearance and cellular homeostasis, leading to immune dysregulation, severe inflammation, and neurodevelopmental disorders in humans. Proteasome-associated diseases have complex inheritance, including monogenic, digenic and oligogenic disorders and can be dominantly or recessively inherited. In this review, we summarize the current known genetic causes of proteasomal disease, and discuss the molecular pathogenesis of these conditions based on the function and cellular expression of mutated proteins in the proteasome complex.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Panfeng Tao
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Natalie T Deuitch
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaomin Yu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Ivona Askentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qing Zhou
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Moreno-Artero E, Torrelo A. Pediatric Neutrophilic Dermatoses. Dermatol Clin 2024; 42:267-283. [PMID: 38423686 DOI: 10.1016/j.det.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The term neutrophilic dermatosis encompasses a heterogeneous group of diseases, often associated with an underlying internal noninfectious disease, with an overlapping histopathologic background characterized by perivascular and diffuse neutrophilic infiltrates in one or more layers of the skin; extracutaneous neutrophilic infiltrates may be associated. Neutrophilic dermatoses are not frequent in children and, when they appear in this age group, represent a diagnostic and therapeutic challenge. Apart from the classic neutrophilic dermatoses such as pyoderma gangrenosum, Sweet syndrome, and Behçet disease, a neutrophilic dermatosis can be the presentation of rare genetic diseases of the innate immune system, such as autoinflammatory diseases.
Collapse
Affiliation(s)
- Ester Moreno-Artero
- Department of Dermatology, Hospital de Galdácano-Usansolo, Vizcaya, Bilbao 48007, Spain
| | - Antonio Torrelo
- Department of Dermatology, Hospital Infantil Universitario Niño Jesús, Menendez Pelayo 65, Madrid 28009, Spain.
| |
Collapse
|
10
|
Poli MC. Proteasome disorders and inborn errors of immunity. Immunol Rev 2024; 322:283-299. [PMID: 38071420 DOI: 10.1111/imr.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Inborn errors of immunity (IEI) or primary immune deficiencies (PIDD) are caused by variants in genes encoding for molecules that are relevant to the innate or adaptive immune response. To date, defects in more than 450 different genes have been identified as causes of IEI, causing a constellation of heterogeneous clinical manifestations ranging from increased susceptibility to infection, to autoimmunity or autoinflammation. IEI that are mainly characterized by autoinflammation are broadly classified according to the inflammatory pathway that they predominantly perturb. Among autoinflammatory IEI are those characterized by the transcriptional upregulation of type I interferon genes and are referred to as interferonopathies. Within the spectrum of interferonopathies, genetic defects that affect the proteasome have been described to cause autoinflammatory disease and represent a growing area of investigation. This review is focused on describing the clinical, genetic, and molecular aspects of IEI associated with mutations that affect the proteasome and how the study of these diseases has contributed to delineate therapeutic interventions.
Collapse
Affiliation(s)
- M Cecilia Poli
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Unit of Immunology and Rheumatology Hospital Roberto del Río, Santiago, Chile
| |
Collapse
|
11
|
Küry S, Stanton JE, van Woerden G, Hsieh TC, Rosenfelt C, Scott-Boyer MP, Most V, Wang T, Papendorf JJ, de Konink C, Deb W, Vignard V, Studencka-Turski M, Besnard T, Hajdukowicz AM, Thiel F, Möller S, Florenceau L, Cuinat S, Marsac S, Wentzensen I, Tuttle A, Forster C, Striesow J, Golnik R, Ortiz D, Jenkins L, Rosenfeld JA, Ziegler A, Houdayer C, Bonneau D, Torti E, Begtrup A, Monaghan KG, Mullegama SV, Volker-Touw CMLN, van Gassen KLI, Oegema R, de Pagter M, Steindl K, Rauch A, Ivanovski I, McDonald K, Boothe E, Dauber A, Baker J, Fabie NAV, Bernier RA, Turner TN, Srivastava S, Dies KA, Swanson L, Costin C, Jobling RK, Pappas J, Rabin R, Niyazov D, Tsai ACH, Kovak K, Beck DB, Malicdan M, Adams DR, Wolfe L, Ganetzky RD, Muraresku C, Babikyan D, Sedláček Z, Hančárová M, Timberlake AT, Al Saif H, Nestler B, King K, Hajianpour MJ, Costain G, Prendergast D, Li C, Geneviève D, Vitobello A, Sorlin A, Philippe C, Harel T, Toker O, Sabir A, Lim D, Hamilton M, Bryson L, Cleary E, Weber S, Hoffman TL, Cueto-González AM, Tizzano EF, Gómez-Andrés D, Codina-Solà M, Ververi A, Pavlidou E, Lambropoulos A, Garganis K, Rio M, Levy J, Jurgensmeyer S, McRae AM, Lessard MK, D'Agostino MD, De Bie I, Wegler M, Jamra RA, Kamphausen SB, Bothe V, Busch LM, Völker U, Hammer E, Wende K, Cogné B, Isidor B, Meiler J, Bosc-Rosati A, Marcoux J, Bousquet MP, Poschmann J, Laumonnier F, Hildebrand PW, Eichler EE, McWalter K, Krawitz PM, Droit A, Elgersma Y, Grabrucker AM, Bolduc FV, Bézieau S, Ebstein F, Krüger E. Unveiling the crucial neuronal role of the proteasomal ATPase subunit gene PSMC5 in neurodevelopmental proteasomopathies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.13.24301174. [PMID: 38293138 PMCID: PMC10827246 DOI: 10.1101/2024.01.13.24301174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Neurodevelopmental proteasomopathies represent a distinctive category of neurodevelopmental disorders (NDD) characterized by genetic variations within the 26S proteasome, a protein complex governing eukaryotic cellular protein homeostasis. In our comprehensive study, we identified 23 unique variants in PSMC5 , which encodes the AAA-ATPase proteasome subunit PSMC5/Rpt6, causing syndromic NDD in 38 unrelated individuals. Overexpression of PSMC5 variants altered human hippocampal neuron morphology, while PSMC5 knockdown led to impaired reversal learning in flies and loss of excitatory synapses in rat hippocampal neurons. PSMC5 loss-of-function resulted in abnormal protein aggregation, profoundly impacting innate immune signaling, mitophagy rates, and lipid metabolism in affected individuals. Importantly, targeting key components of the integrated stress response, such as PKR and GCN2 kinases, ameliorated immune dysregulations in cells from affected individuals. These findings significantly advance our understanding of the molecular mechanisms underlying neurodevelopmental proteasomopathies, provide links to research in neurodegenerative diseases, and open up potential therapeutic avenues.
Collapse
|
12
|
Borges T, Silva S. Panniculitis: A Cardinal Sign of Autoinflammation. Curr Rheumatol Rev 2024; 20:350-360. [PMID: 37921131 DOI: 10.2174/0115733971254702231020060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023]
Abstract
Panniculitis was first described in the nineteenth century and is characterized by inflammation of the subcutaneous fat. It may be categorized in septal or lobular subtypes, but other histopathological features (e.g., presence of vasculitis, nature of inflammatory infiltrates, characteristics of fat necrosis) are also important for diagnostic purposes. Clinically, panniculitis is characterized by the presence of subcutaneous nodules, and both ulcerative and nonulcerative clinical subtypes have been proposed. In this review, we aimed to describe the occurrence of panniculitis in autoinflammatory disorders (AIDs) and related diseases. Among monogenic AIDs, panniculitis is common in IFN-mediated disorders. Panniculitis is a distinctive feature in proteasome-associated autoinflammatory syndromes (PRAAS), including chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome and Nakajo-Nishimura syndrome. On the other hand, erythema nodosum corresponds to the most common clinical form of panniculitis and is common in polygenic AIDs, such as Behçet's syndrome, inflammatory bowel disease, and sarcoidosis. Cytophagic histiocytic panniculitis, lipoatrophic panniculitis of children, and otulipenia are rare disorders that may also present with inflammation of the subcutaneous fat. Therefore, panniculitis can identify a specific subgroup of patients with AIDs and may potentially be regarded as a cardinal sign of autoinflammation.
Collapse
Affiliation(s)
- Tiago Borges
- Trofa Saúde Gaia, Rua Fernão de Magalhães nº 2 Fr E, 4404-501 Vila Nova de Gaia, Portugal
| | - Sérgio Silva
- Trofa Saúde Gaia, Rua Fernão de Magalhães nº 2 Fr E, 4404-501 Vila Nova de Gaia, Portugal
| |
Collapse
|
13
|
Wang CS. Type I Interferonopathies: A Clinical Review. Rheum Dis Clin North Am 2023; 49:741-756. [PMID: 37821193 DOI: 10.1016/j.rdc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
This review will discuss when clinicians should consider evaluating for Type I interferonopathies, review clinical phenotypes and molecular defects of Type I interferonopathies, and discuss current treatments.
Collapse
Affiliation(s)
- Christine S Wang
- Department of Pediatric Rheumatology, C.S. Mott Children's Hospital, University of Michigan, 1500 East Medical Center Drive SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Similuk M, Kuijpers T. Nature and nurture: understanding phenotypic variation in inborn errors of immunity. Front Cell Infect Microbiol 2023; 13:1183142. [PMID: 37780853 PMCID: PMC10538643 DOI: 10.3389/fcimb.2023.1183142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
The overall disease burden of pediatric infection is high, with widely varying clinical outcomes including death. Among the most vulnerable children, those with inborn errors of immunity, reduced penetrance and variable expressivity are common but poorly understood. There are several genetic mechanisms that influence phenotypic variation in inborn errors of immunity, as well as a body of knowledge on environmental influences and specific pathogen triggers. Critically, recent advances are illuminating novel nuances for fundamental concepts on disease penetrance, as well as raising new areas of inquiry. The last few decades have seen the identification of almost 500 causes of inborn errors of immunity, as well as major advancements in our ability to characterize somatic events, the microbiome, and genotypes across large populations. The progress has not been linear, and yet, these developments have accumulated into an enhanced ability to diagnose and treat inborn errors of immunity, in some cases with precision therapy. Nonetheless, many questions remain regarding the genetic and environmental contributions to phenotypic variation both within and among families. The purpose of this review is to provide an updated summary of key concepts in genetic and environmental contributions to phenotypic variation within inborn errors of immunity, conceptualized as including dynamic, reciprocal interplay among factors unfolding across the key dimension of time. The associated findings, potential gaps, and implications for research are discussed in turn for each major influencing factor. The substantial challenge ahead will be to organize and integrate information in such a way that accommodates the heterogeneity within inborn errors of immunity to arrive at a more comprehensive and accurate understanding of how the immune system operates in health and disease. And, crucially, to translate this understanding into improved patient care for the millions at risk for serious infection and other immune-related morbidity.
Collapse
Affiliation(s)
- Morgan Similuk
- Centralized Sequencing Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Papendorf JJ, Ebstein F, Alehashemi S, Piotto DGP, Kozlova A, Terreri MT, Shcherbina A, Rastegar A, Rodrigues M, Pereira R, Park S, Lin B, Uss K, Möller S, da Silva Pina AF, Sztajnbok F, Torreggiani S, Niemela J, Stoddard J, Rosenzweig SD, Oler AJ, McNinch C, de Guzman MM, Fonseca A, Micheloni N, Fraga MM, Perazzio SF, Goldbach-Mansky R, de Jesus AA, Krüger E. Identification of eight novel proteasome variants in five unrelated cases of proteasome-associated autoinflammatory syndromes (PRAAS). Front Immunol 2023; 14:1190104. [PMID: 37600812 PMCID: PMC10436547 DOI: 10.3389/fimmu.2023.1190104] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/12/2023] [Indexed: 08/22/2023] Open
Abstract
Mutations in genes coding for proteasome subunits and/or proteasome assembly helpers typically cause recurring autoinflammation referred to as chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperatures (CANDLE) or proteasome-associated autoinflammatory syndrome (PRAAS). Patients with CANDLE/PRAAS present with mostly chronically elevated type I interferon scores that emerge as a consequence of increased proteotoxic stress by mechanisms that are not fully understood. Here, we report on five unrelated patients with CANDLE/PRAAS carrying novel inherited proteasome missense and/or nonsense variants. Four patients were compound heterozygous for novel pathogenic variants in the known CANDLE/PRAAS associated genes, PSMB8 and PSMB10, whereas one patient showed additive loss-of-function mutations in PSMB8. Variants in two previously not associated proteasome genes, PSMA5 and PSMC5, were found in a patient who also carried the PSMB8 founder mutation, p.T75M. All newly identified mutations substantially impact the steady-state expression of the affected proteasome subunits and/or their incorporation into mature 26S proteasomes. Our observations expand the spectrum of PRAAS-associated genetic variants and improve a molecular diagnosis and genetic counseling of patients with sterile autoinflammation.
Collapse
Affiliation(s)
- Jonas Johannes Papendorf
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Daniela Gerent Petry Piotto
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Anna Kozlova
- Department of Immunology, D.Rogachev National Medical and Research Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Maria Teresa Terreri
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Anna Shcherbina
- Department of Immunology, D.Rogachev National Medical and Research Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Andre Rastegar
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Marta Rodrigues
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Renan Pereira
- Department of Pediatrics, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, Brazil
| | - Sophia Park
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bin Lin
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kat Uss
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sophie Möller
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ana Flávia da Silva Pina
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Flavio Sztajnbok
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Sofia Torreggiani
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Colton McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Marietta M. de Guzman
- Section of Pediatric Rheumatology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Adriana Fonseca
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Nicole Micheloni
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Melissa Mariti Fraga
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Sandro Félix Perazzio
- Division of Rheumatology – Department of Medicine, Universidade Federal de São Paulo (Unifesp), Sao Paulo, Brazil
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Adriana A. de Jesus
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Wei Q, Sun L. Monogenic autoinflammatory disease-associated cardiac damage. Inflamm Res 2023; 72:1689-1693. [PMID: 37563333 DOI: 10.1007/s00011-023-01771-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/30/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
INTRODUCTION Autoinflammatory diseases (AIDs) constitute several disorders that are characterized by the presence of recurrent episodes of unprovoked inflammation due to dysregulated innate immune system in the absence of autoantibodies or infections. Most of them have a strong genetic background, with mutations in single genes involved in inflammation referred to monogenic AIDs. In this article, we will review the cardiac manifestations in various monogenic AIDs. AREAS COVERED Various cardiac manifestations can be seen in various monogenic AIDs, including pericarditis, valvular diseases, coronary diseases, cardiomyopathies, and pulmonary hypertension, especially in Familial Mediterranean fever (FMF). EXPERT COMMENTARY Monogenic AIDs can manifest a variety of cardiac lesions, the most common of which is pericardial effusion, which may be local pericardial inflammation secondary to systemic inflammatory responses. While, the pathogenesis and incidence are still unclear. More research is still needed to explore the relationship between monogenic AIDs and cardiac damage for better understanding these diseases.
Collapse
Affiliation(s)
- Qijiao Wei
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Li Sun
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Altom A, Khader SAE, Gad AG, Anadani R, Dang DP, Ansar F, Chaudhari J, Crespo-Quezada J, Huy NT. Chronic Atypical Neutrophilic Dermatosis With Lipodystrophy and Elevated Temperature Syndrome: A Systemic Review. Am J Dermatopathol 2023; 45:355-370. [PMID: 37191371 DOI: 10.1097/dad.0000000000002345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature syndrome is a rare, hereditary, autoinflammatory disease. However, there are few cases reported in the literature. Therefore, we conduct this systematic review to summarize current evidence. METHODS We conducted a systematic search in July 2021 using 11 different electronic databases. The included articles were screened according to our inclusion and exclusion criteria and assessed using an appropriate quality assessment tool. Then, the relevant data were extracted and summarized in tables accordingly. Each step of the previous one was done by 3 independent reviewers, and the conflicts were resolved by discussion and sometimes by counseling a senior member. RESULTS The final included studies were 18 articles with 34 cases (mean age = 8 years, male/female = 19/15). The most reported symptoms and signs were fever 97.1%, erythematous plaques 76.5%, arthralgia 67.6%, hepatomegaly 61.8%, violaceous hue 61.8%, lipodystrophy in extremities 53.1% in addition to low weight and height. Rare features were reported too. The laboratories were not specific, which may be explained by a systemic inflammatory response. Vasculitis was the dominant feature in the skin biopsy, whereas the calcification in the basal ganglia was a prominent sign in many cases. CONCLUSIONS Fever, skin lesions, and systemic inflammatory response were the prominent features of chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature syndrome. The clinical picture is the main guide in addition to the pathological findings. Mutation detection is the confirmatory test. Prednisolone is the most effective reported treatment for acute presentations in the literature.
Collapse
Affiliation(s)
- Ahmad Altom
- Department of Internal Medicine, Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
| | | | | | - Rami Anadani
- Faculty of Medicine, University of Aleppo, Aleppo, Syrian Arab Republic
| | - Dung Phuong Dang
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, VietNam
| | - Farrukh Ansar
- Northwest School of Medicine, Khyber Medical University, Peshawar, Pakistan
| | | | | | - Nguyen Tien Huy
- Associate professor at institute of Tropical Medicine, School of Global Humanities and Social Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
Koska MC, Karadağ AS, Durdu M. Annular neutrophilic dermatoses. Clin Dermatol 2023; 41:340-354. [PMID: 37423267 DOI: 10.1016/j.clindermatol.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Neutrophilic dermatoses (NDs) constitute a group of diseases characterized by sterile neutrophilic infiltrations. Many NDs usually present with infiltrated erythematous plaques, nodules, urticarial plaques, or pustules. Lesions may show variability, and atypical presentations may develop among NDs. Annular lesions have been reported in many NDs and may lead to diagnostic problems. Clinical features and histopathologic findings such as localization of the neutrophilic infiltrate, existence of other cell types, and absence of true vasculitis may be helpful to distinguish NDs. Some of these NDs are associated with infections, inflammatory diseases, and malignancies. In most NDs, systemic steroids and dapsone are very effective and usually first choices. Colchicine, antimicrobials such as doxycycline, tetracycline, and sulfapyridine, and other immunosuppressants such as cyclosporin, methotrexate, and mycophenolate mofetil have been used successfully in treating many NDs. Tumor necrosis factor α inhibitors have also been used successfully in treating many NDs. Janus kinase inhibitors are effective in CANDLE (chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature) syndrome, anakinra in neutrophilic urticarial dermatosis, and intravenous immunoglobulin in resistant pyoderma gangrenosum. We discuss the diagnosis and management of NDs that may present with annular lesions.
Collapse
Affiliation(s)
- Mahmut Can Koska
- Dermatology and Venereology Clinic, Artvin State Hospital, Artvin, Turkey.
| | - Ayşe Serap Karadağ
- Department of Dermatology, Istanbul Arel University Medical Faculty, Istanbul, Turkey
| | - Murat Durdu
- Department of Dermatology, Başkent University Faculty of Medicine, Adana Dr. Turgut Noyan Application and Research Center, Adana, Turkey
| |
Collapse
|
19
|
Dermatologic Manifestations of Noninflammasome-Mediated Autoinflammatory Diseases. JID INNOVATIONS 2023; 3:100176. [PMID: 36876221 PMCID: PMC9982332 DOI: 10.1016/j.xjidi.2022.100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Autoinflammatory diseases (AIDs) arise from disturbances that alter interactions of immune cells and tissues. They give rise to prominent (auto)inflammation in the absence of aberrant autoantibodies and/or autoreactive T cells. AIDs that are predominantly caused by changes in the inflammasome pathways, such as the NLRP3- or pyrin-associated inflammasome, have gained substantial attention over the last years. However, AIDs resulting primarily from other changes in the defense system of the innate immune system are less well-studied. These noninflammasome-mediated AIDs relate to, for example, disturbance in the TNF or IFN signaling pathways or aberrations in genes affecting the IL-1RA. The spectrum of clinical signs and symptoms of these conditions is vast. Thus, recognizing early cutaneous signs constitutes an important step in differential diagnoses for dermatologists and other physicians. This review provides an overview of the pathogenesis, clinical presentation, and available treatment options highlighting dermatologic aspects of noninflammasome-mediated AIDs.
Collapse
Key Words
- AID, autoinflammatory disease
- ANCA, antineutrophil cytoplasmic antibody
- AOSD, adult-onset Still disease
- BASDAI, Bath Ankylosing Spondylitis Activity Index
- CANDLE, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature
- CAPS, cryopyrin-associated periodic syndrome
- CRD, cysteine-rich domain
- DIRA, deficiency of IL-1RA
- DITRA, deficiency of IL-36RA
- ER, endoplasmic reticulum
- ESR, erythrocyte sedimentation rate
- FMF, familial Mediterranean fever
- M-CSF, macrophage colony-stimulating factor
- MAS, macrophage activation syndrome
- NET, neutrophil extracellular trap
- NOS, nitrous oxide
- NSAID, nonsteroidal anti-inflammatory drug
- NUD, neutrophilic urticarial dermatosis
- PFAPA, periodic fever, aphthous stomatitis, pharyngitis, and adenitis
- PKR, protein kinase R
- PRAAS, proteosome-associated autoinflammatory disease
- SAPHO, synovitis, acne, pustulosis, hyperostosis, osteitis syndrome
- SAVI, STING-associated vasculopathy with onset in infancy
- STAT, signal transducer and activator of transcription
- SchS, Schnitzler syndrome
- TNFR, TNF receptor
- TRAPS, TNF receptor‒associated autoinflammatory disease
- Th17, T helper 17
- VAS, Visual Analog Scale
- sTNFR, soluble TNF receptor
Collapse
|
20
|
Caldirola MS, Seminario AG, Luna PC, Curciarello R, Docena GH, Fernandez Escobar N, Drelichman G, Gattorno M, de Jesus AA, Goldbach-Mansky R, Gaillard MI, Bezrodnik L. Case report: De novo SAMD9L truncation causes neonatal-onset autoinflammatory syndrome which was successfully treated with hematopoietic stem cell transplantation. Front Pediatr 2023; 11:1108207. [PMID: 36969289 PMCID: PMC10036571 DOI: 10.3389/fped.2023.1108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023] Open
Abstract
During recent years, the identification of monogenic mutations that cause sterile inflammation has expanded the spectrum of autoinflammatory diseases, clinical disorders characterized by uncontrolled systemic and organ-specific inflammation that, in some cases, can mirror infectious conditions. Early studies support the concept of innate immune dysregulation with a predominance of myeloid effector cell dysregulation, particularly neutrophils and macrophages, in causing tissue inflammation. However, recent discoveries have shown a complex overlap of features of autoinflammation and/or immunodeficiency contributing to severe disease phenotypes. Here, we describe the first Argentine patient with a newly described frameshift mutation in SAMD9L c.2666delT/p.F889Sfs*2 presenting with a complex phenotypic overlap of CANDLE-like features and severe infection-induced cytopenia and immunodeficiency. The patient underwent a fully matched unrelated HSCT and has since been in inflammatory remission 5 years post-HSCT.
Collapse
Affiliation(s)
- María Soledad Caldirola
- Servicio de Inmunología, “Hospital de Niños “Dr. Ricardo Gutiérrez,”Buenos Aires, Argentina
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP-CONICET-GCBA), Buenos Aires, Argentina
- Correspondence: María Soledad Caldirola
| | - Analía Gisela Seminario
- Servicio de Inmunología, “Hospital de Niños “Dr. Ricardo Gutiérrez,”Buenos Aires, Argentina
- Centro de Inmunología Clínica Dra. Bezrodnik y equipo, Buenos Aires, Argentina
| | | | - Renata Curciarello
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)-CONICET-UNLP, Dto. de Cs Biológicas, Facultad de Ciencias Exactas, La Plata, Buenos Aires, Argentina
| | - Guillermo Horacio Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)-CONICET-UNLP, Dto. de Cs Biológicas, Facultad de Ciencias Exactas, La Plata, Buenos Aires, Argentina
| | | | | | - Marco Gattorno
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Adriana A. de Jesus
- Translational Autoinflammatory Diseases Section, NIAID/NIH, Bethesda, MD, United States
| | | | - María Isabel Gaillard
- Servicio de Inmunología, “Hospital de Niños “Dr. Ricardo Gutiérrez,”Buenos Aires, Argentina
- Sección Citometría-Laboratorio Stamboulian, Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Centro de Inmunología Clínica Dra. Bezrodnik y equipo, Buenos Aires, Argentina
| |
Collapse
|
21
|
Pinto MV, Neves JF. Precision medicine: The use of tailored therapy in primary immunodeficiencies. Front Immunol 2022; 13:1029560. [PMID: 36569887 PMCID: PMC9773086 DOI: 10.3389/fimmu.2022.1029560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PID) are rare, complex diseases that can be characterised by a spectrum of phenotypes, from increased susceptibility to infections to autoimmunity, allergy, auto-inflammatory diseases and predisposition to malignancy. With the introduction of genetic testing in these patients and wider use of next-Generation sequencing techniques, a higher number of pathogenic genetic variants and conditions have been identified, allowing the development of new, targeted treatments in PID. The concept of precision medicine, that aims to tailor the medical interventions to each patient, allows to perform more precise diagnosis and more importantly the use of treatments directed to a specific defect, with the objective to cure or achieve long-term remission, minimising the number and type of side effects. This approach takes particular importance in PID, considering the nature of causative defects, disease severity, short- and long-term complications of disease but also of the available treatments, with impact in life-expectancy and quality of life. In this review we revisit how this approach can or is already being implemented in PID and provide a summary of the most relevant treatments applied to specific diseases.
Collapse
Affiliation(s)
- Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- Centro de Investigação Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Quinta da Granja, Monte da Caparica, Caparica, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- CHRC, Comprehensive Health Research Centre, Nova Medical School, Lisbon, Portugal
| |
Collapse
|
22
|
Çetin G, Studencka-Turski M, Venz S, Schormann E, Junker H, Hammer E, Völker U, Ebstein F, Krüger E. Immunoproteasomes control activation of innate immune signaling and microglial function. Front Immunol 2022; 13:982786. [PMID: 36275769 PMCID: PMC9584546 DOI: 10.3389/fimmu.2022.982786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and play a major role in the regulation of brain homeostasis. To maintain their cellular protein homeostasis, microglia express standard proteasomes and immunoproteasomes (IP), a proteasome isoform that preserves protein homeostasis also in non-immune cells under challenging conditions. The impact of IP on microglia function in innate immunity of the CNS is however not well described. Here, we establish that IP impairment leads to proteotoxic stress and triggers the unfolded and integrated stress responses in mouse and human microglia models. Using proteomic analysis, we demonstrate that IP deficiency in microglia results in profound alterations of the ubiquitin-modified proteome among which proteins involved in the regulation of stress and immune responses. In line with this, molecular analysis revealed chronic activation of NF-κB signaling in IP-deficient microglia without further stimulus. In addition, we show that IP impairment alters microglial function based on markers for phagocytosis and motility. At the molecular level IP impairment activates interferon signaling promoted by the activation of the cytosolic stress response protein kinase R. The presented data highlight the importance of IP function for the proteostatic potential as well as for precision proteolysis to control stress and immune signaling in microglia function.
Collapse
Affiliation(s)
- Gonca Çetin
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Maja Studencka-Turski
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Simone Venz
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Eileen Schormann
- Institute of Biochemistry, Charité – University Medicine Berlin, Berlin, Germany
| | - Heike Junker
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
- *Correspondence: Elke Krüger,
| |
Collapse
|
23
|
The Clinical Chameleon of Autoinflammatory Diseases in Children. Cells 2022; 11:cells11142231. [PMID: 35883675 PMCID: PMC9318468 DOI: 10.3390/cells11142231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 01/27/2023] Open
Abstract
The very first line of defense in humans is innate immunity, serving as a critical strongpoint in the regulation of inflammation. Abnormalities of the innate immunity machinery make up a motley group of rare diseases, named ‘autoinflammatory’, which are caused by mutations in genes involved in different immune pathways. Self-limited inflammatory bouts involving skin, serosal membranes, joints, gut and other districts of the human body burst and recur with variable periodicity in most autoinflammatory diseases (ADs), often leading to secondary amyloidosis as a long-term complication. Dysregulated inflammasome activity, overproduction of interleukin (IL)-1 or other IL-1-related cytokines and delayed shutdown of inflammation are pivotal keys in the majority of ADs. The recent progress of cellular biology has clarified many molecular mechanisms behind monogenic ADs, such as familial Mediterranean fever, tumor necrosis factor receptor-associated periodic syndrome (or ‘autosomal dominant familial periodic fever’), cryopyrin-associated periodic syndrome, mevalonate kinase deficiency, hereditary pyogenic diseases, idiopathic granulomatous diseases and defects of the ubiquitin-proteasome pathway. A long-lasting history of recurrent fevers should require the ruling out of chronic infections and malignancies before considering ADs in children. Little is known about the potential origin of polygenic ADs, in which sterile cytokine-mediated inflammation results from the activation of the innate immunity network, without familial recurrency, such as periodic fever/aphthous stomatitis/pharyngitis/cervical adenopathy (PFAPA) syndrome. The puzzle of febrile attacks recurring over time with chameleonic multi-inflammatory symptoms in children demands the inspection of the mixture of clinical data, inflammation parameters in the different disease phases, assessment of therapeutic efficacy of a handful of drugs such as corticosteroids, colchicine or IL-1 antagonists, and genotype analysis to exclude or confirm a monogenic origin.
Collapse
|
24
|
Leon-Perez KM, Gamez-Gonzalez LB, Scheffler-Mendoza S, Mendez-Herrera A, Lima-Lopez A, Yamazaki-Nakashimada MA. Periorbital erythema and edema in multisystemic inflammatory syndrome in children, an important diagnostic clue. Int J Rheum Dis 2022; 25:960-961. [PMID: 35657021 DOI: 10.1111/1756-185x.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/18/2022] [Accepted: 05/08/2022] [Indexed: 11/26/2022]
Affiliation(s)
| | | | | | | | - Asling Lima-Lopez
- Clinical Immunology Department, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | |
Collapse
|
25
|
Cetin Gedik K, Lamot L, Romano M, Demirkaya E, Piskin D, Torreggiani S, Adang LA, Armangue T, Barchus K, Cordova DR, Crow YJ, Dale RC, Durrant KL, Eleftheriou D, Fazzi EM, Gattorno M, Gavazzi F, Hanson EP, Lee-Kirsch MA, Montealegre Sanchez GA, Neven B, Orcesi S, Ozen S, Poli MC, Schumacher E, Tonduti D, Uss K, Aletaha D, Feldman BM, Vanderver A, Brogan PA, Goldbach-Mansky R. The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology Points to Consider for Diagnosis and Management of Autoinflammatory Type I Interferonopathies: CANDLE/PRAAS, SAVI, and AGS. Arthritis Rheumatol 2022; 74:735-751. [PMID: 35315249 DOI: 10.1002/art.42087] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Autoinflammatory type I interferonopathies, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndrome (CANDLE/PRAAS), stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI), and Aicardi-Goutières syndrome (AGS) are rare and clinically complex immunodysregulatory diseases. With emerging knowledge of genetic causes and targeted treatments, a Task Force was charged with the development of "points to consider" to improve diagnosis, treatment, and long-term monitoring of patients with these rare diseases. METHODS Members of a Task Force consisting of rheumatologists, neurologists, an immunologist, geneticists, patient advocates, and an allied health care professional formulated research questions for a systematic literature review. Then, based on literature, Delphi questionnaires, and consensus methodology, "points to consider" to guide patient management were developed. RESULTS The Task Force devised consensus and evidence-based guidance of 4 overarching principles and 17 points to consider regarding the diagnosis, treatment, and long-term monitoring of patients with the autoinflammatory interferonopathies, CANDLE/PRAAS, SAVI, and AGS. CONCLUSION These points to consider represent state-of-the-art knowledge to guide diagnostic evaluation, treatment, and management of patients with CANDLE/PRAAS, SAVI, and AGS and aim to standardize and improve care, quality of life, and disease outcomes.
Collapse
Affiliation(s)
- Kader Cetin Gedik
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Lovro Lamot
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Micol Romano
- University of Western Ontario, London, Ontario, Canada
| | | | - David Piskin
- University of Western Ontario, London Health Sciences Center, and Lawson Health Research Institute, London, Ontario, Canada
| | - Sofia Torreggiani
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and UOC Pediatria a Media Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura A Adang
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Thais Armangue
- Sant Joan de Deu Children's Hospital and IDIBAPS-Hospital Clinic; University of Barcelona, Barcelona, Spain
| | - Kathe Barchus
- Autoinflammatory Alliance, San Francisco, California
| | - Devon R Cordova
- Aicardi-Goutieres Syndrome Americas Association, Manhattan Beach, California
| | - Yanick J Crow
- University of Edinburgh, Edinburgh, UK, and Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, University of Paris, Paris, France
| | - Russell C Dale
- University of Sydney, Sydney, New South Wales, Australia
| | - Karen L Durrant
- Autoinflammatory Alliance and Kaiser San Francisco Hospital, San Francisco, California
| | | | - Elisa M Fazzi
- ASST Civil Hospital and University of Brescia, Brescia, Italy
| | | | - Francesco Gavazzi
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, and University of Brescia, Brescia, Italy
| | - Eric P Hanson
- Riley Hospital for Children and Indiana University School of Medicine, Indianapolis
| | | | | | - Bénédicte Neven
- Necker Children's Hospital, AP-HP, Institut Imagine Institut des Maladies Genetiques, University of Paris, Paris, France
| | - Simona Orcesi
- IRCCS Mondino Foundation and University of Pavia, Pavia, Italy
| | - Seza Ozen
- Hacettepe University, Ankara, Turkey
| | | | | | | | - Katsiaryna Uss
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Brian M Feldman
- Hospital for Sick Children and University of Toronto Institute of Health Policy Management and Evaluation, Toronto, Ontario, Canada
| | - Adeline Vanderver
- Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia
| | | | | |
Collapse
|
26
|
Sasaki Y, Arimochi H, Otsuka K, Kondo H, Tsukumo SI, Yasutomo K. Blockade of the CXCR3/CXCL10 axis ameliorates inflammation caused by immunoproteasome dysfunction. JCI Insight 2022; 7:152681. [PMID: 35393946 PMCID: PMC9057626 DOI: 10.1172/jci.insight.152681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Immunoproteasomes regulate the degradation of ubiquitin-coupled proteins and generate peptides that are preferentially presented by MHC class I. Mutations in immunoproteasome subunits lead to immunoproteasome dysfunction, which causes proteasome-associated autoinflammatory syndromes (PRAAS) characterized by nodular erythema and partial lipodystrophy. It remains unclear, however, how immunoproteasome dysfunction leads to inflammatory symptoms. Here, we established mice harboring a mutation in Psmb8 (Psmb8-KI mice) and addressed this question. Psmb8-KI mice showed higher susceptibility to imiquimod-induced skin inflammation (IMS). Blockade of IL-6 or TNF-α partially suppressed IMS in both control and Psmb8-KI mice, but there was still more residual inflammation in the Psmb8-KI mice than in the control mice. DNA microarray analysis showed that treatment of J774 cells with proteasome inhibitors increased the expression of the Cxcl9 and Cxcl10 genes. Deficiency in Cxcr3, the gene encoding the receptor of CXCL9 and CXCL10, in control mice did not change IMS susceptibility, while deficiency in Cxcr3 in Psmb8-KI mice ameliorated IMS. Taken together, these findings demonstrate that this mutation in Psmb8 leads to hyperactivation of the CXCR3 pathway, which is responsible for the increased susceptibility of Psmb8-KI mice to IMS. These data suggest the CXCR3/CXCL10 axis as a new molecular target for treating PRAAS.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Immunology and Parasitology, Graduate School of Medicine
| | - Hideki Arimochi
- Department of Immunology and Parasitology, Graduate School of Medicine
| | - Kunihiro Otsuka
- Department of Immunology and Parasitology, Graduate School of Medicine.,Department of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, and
| | - Hiroyuki Kondo
- Department of Immunology and Parasitology, Graduate School of Medicine
| | - Shin-Ichi Tsukumo
- Department of Immunology and Parasitology, Graduate School of Medicine.,Department of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, and
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine.,Department of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, and.,The Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan
| |
Collapse
|
27
|
David C, Frémond ML. [When to consider type I interferonopathy in adulthood?]. Rev Med Interne 2022; 43:347-355. [PMID: 35177256 DOI: 10.1016/j.revmed.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/15/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Type I interferonopathies (IP1) are a heterogeneous group of Mendelian diseases characterized by overactivation of the type I interferon (IFN) pathway. They are caused by monogenic (rarely digenic) mutations of proteins involved in this key pathway of innate immunity. IP1 transmission can be dominant, recessive or X-linked and penetrance differs from one IP1 to another. The clinical spectrum is broad and mainly includes central nervous system involvement with calcifications of the basal ganglia, skin disorders such as cutaneous vasculitis that can be mutilating. Joint disorders including non-destructive deforming arthropathy, pulmonary involvement such as intra-alveolar haemorrhage or interstitial lung disease, and haematological symptoms with cytopenia and/or immune deficiency are also seen. The clinical manifestations vary from one IP1 to another and their spectrum is constantly expanding along with the description of new IP1s and patients. The inflammatory syndrome is generally mild and autoimmune stigmata are frequently found. Almost all patients display overexpression of the type I IFN pathway detected, for instance, by the evaluation of IFN-stimulated genes expression, referred as "interferon signature". The related morbidity and mortality are high. However, the beneficial effect on certain symptoms of targeted therapies inhibiting type I IFN, such as JAK inhibitors, has led to a promising improvement in the management of these patients.
Collapse
Affiliation(s)
- C David
- Université de Paris, Institut Imagine, laboratoire de neurogénétique et neuroinflammation, 24, boulevard du Montparnasse, 75015 Paris, France
| | - M-L Frémond
- Université de Paris, Institut Imagine, laboratoire de neurogénétique et neuroinflammation, 24, boulevard du Montparnasse, 75015 Paris, France; Unité d'immuno-hématologie et rhumatologie pédiatriques, centre de référence des maladies rhumatologiques et auto-immunes systémiques rares en pédiatrie (RAISE), hôpital Necker-Enfants-Malades, Centre - Université de Paris, AP-HP, 75015 Paris, France.
| |
Collapse
|
28
|
Guo X. Localized Proteasomal Degradation: From the Nucleus to Cell Periphery. Biomolecules 2022; 12:biom12020229. [PMID: 35204730 PMCID: PMC8961600 DOI: 10.3390/biom12020229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
The proteasome is responsible for selective degradation of most cellular proteins. Abundantly present in the cell, proteasomes not only diffuse in the cytoplasm and the nucleus but also associate with the chromatin, cytoskeleton, various membranes and membraneless organelles/condensates. How and why the proteasome gets to these specific subcellular compartments remains poorly understood, although increasing evidence supports the hypothesis that intracellular localization may have profound impacts on the activity, substrate accessibility and stability/integrity of the proteasome. In this short review, I summarize recent advances on the functions, regulations and targeting mechanisms of proteasomes, especially those localized to the nuclear condensates and membrane structures of the cell, and I discuss the biological significance thereof in mediating compartmentalized protein degradation.
Collapse
Affiliation(s)
- Xing Guo
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| |
Collapse
|
29
|
Cetin Gedik K, Lamot L, Romano M, Demirkaya E, Piskin D, Torreggiani S, Adang LA, Armangue T, Barchus K, Cordova DR, Crow YJ, Dale RC, Durrant KL, Eleftheriou D, Fazzi EM, Gattorno M, Gavazzi F, Hanson EP, Lee-Kirsch MA, Montealegre Sanchez GA, Neven B, Orcesi S, Ozen S, Poli MC, Schumacher E, Tonduti D, Uss K, Aletaha D, Feldman BM, Vanderver A, Brogan PA, Goldbach-Mansky R. The 2021 EULAR and ACR points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS, SAVI and AGS. Ann Rheum Dis 2022; 81:601-613. [PMID: 35086813 PMCID: PMC9036471 DOI: 10.1136/annrheumdis-2021-221814] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Autoinflammatory type I interferonopathies, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndrome (CANDLE/PRAAS), stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI) and Aicardi-Goutières syndrome (AGS) are rare and clinically complex immunodysregulatory diseases. With emerging knowledge of genetic causes and targeted treatments, a Task Force was charged with the development of 'points to consider' to improve diagnosis, treatment and long-term monitoring of patients with these rare diseases. METHODS Members of a Task Force consisting of rheumatologists, neurologists, an immunologist, geneticists, patient advocates and an allied healthcare professional formulated research questions for a systematic literature review. Then, based on literature, Delphi questionnaires and consensus methodology, 'points to consider' to guide patient management were developed. RESULTS The Task Force devised consensus and evidence-based guidance of 4 overarching principles and 17 points to consider regarding the diagnosis, treatment and long-term monitoring of patients with the autoinflammatory interferonopathies, CANDLE/PRAAS, SAVI and AGS. CONCLUSION These points to consider represent state-of-the-art knowledge to guide diagnostic evaluation, treatment and management of patients with CANDLE/PRAAS, SAVI and AGS and aim to standardise and improve care, quality of life and disease outcomes.
Collapse
Affiliation(s)
- Kader Cetin Gedik
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lovro Lamot
- Department of Pediatrics, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Micol Romano
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Erkan Demirkaya
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - David Piskin
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada
| | - Sofia Torreggiani
- 1Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,UOC Pediatria a Media Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Lombardia, Italy
| | - Laura A Adang
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thais Armangue
- Pediatric Neuroimmunology Unit, Neurology Service, Sant Joan de Deu Children's Hospital, and IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Kathe Barchus
- Autoinflammatory Alliance, San Francisco, California, USA
| | - Devon R Cordova
- Aicardi-Goutieres Syndrome Americas Association, Manhattan Beach, California, USA
| | - Yanick J Crow
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburg, Edinburg, UK.,Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, Île-de-France, France
| | - Russell C Dale
- Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Karen L Durrant
- Autoinflammatory Alliance, San Francisco, California, USA.,Kaiser San Francisco Hospital, San Francisco, California, USA
| | - Despina Eleftheriou
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elisa M Fazzi
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Sciences ASST Civil Hospital, University of Brescia, Brescia, Italy
| | - Marco Gattorno
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Gavazzi
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eric P Hanson
- Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gina A Montealegre Sanchez
- Intramural Clinical Management and Operations Branch (ICMOB), Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bénédicte Neven
- Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Institut Imagine Institut des Maladies Genetiques, Paris, Île-de-France, France
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Lombardia, Italy
| | - Seza Ozen
- Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - M Cecilia Poli
- Department of Pediatrics, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | - Davide Tonduti
- Child Neurology Unit, COALA (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milano, Italy
| | - Katsiaryna Uss
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Aletaha
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Brian M Feldman
- Division of Rheumatology, Hospital for Sick Children, Toronto, Ontario, Canada.,30Department of Pediatrics, Faculty of Medicine, University of Toronto Institute of Health Policy Management and Evaluation, Toronto, Ontario, Canada
| | - Adeline Vanderver
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul A Brogan
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Ghirardo S, Mazzolai M, Di Marco A, Petreschi F, Ullmann N, Ciofi Degli Atti ML, Cutrera R. Biological Treatments and Target Therapies for Pediatric Respiratory Medicine: Not Only Asthma. Front Pediatr 2022; 10:837667. [PMID: 35242725 PMCID: PMC8885732 DOI: 10.3389/fped.2022.837667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
We present a description of pediatric pneumology biological medications and other target therapies. The article aims at introducing the importance of a molecular approach to improve treatments. The first item treated was T2-High asthma and its current biological treatment and prescribing indications to propose a flow-chart to guide the clinical choice. Molecular rationales of such treatments are used to introduce a more general description of the biological and molecular approach to target therapies application. We introduce a general interpretation approach to neutrophilic asthma using the molecular plausibility one in order to propose possible future treatments mainly targeting interleukin-1 (IL-1), IL-17, IL-12, and IL-23. Indeed, cytokines can be excellent targets for several biological treatments. Downregulation of specific cytokines can be crucial in treating autoinflammatory and rheumatological diseases with a pulmonary involvement. Such conditions, although rare, should be early recognized as they can involve significant improvement with a properly targeted therapy. We face these conditions in a cherry-picking fashion picturing SAVI (STING-associated vasculopathy with onset in infancy), CANDLE (chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature), and COPA (coat proteins alpha syndrome) syndrome pulmonary involvement. Such examples are functional to introduce molecular-based approach for patients with rare conditions. Molecular plausibility can be highly valuable in treating patients with not-approved but possibly highly effective therapies. Due to the rarity of these conditions, we stress the concept of basket trials using the example of cytokinin-directed immunosuppressive treatment. Lastly, we provide an example of augmentative therapy using the alpha1 antitrypsin deficiency as a model. In summary, the article presents a collection of the most recent achievements and some possible future developments of target therapies for pediatric pulmonary conditions.
Collapse
Affiliation(s)
- Sergio Ghirardo
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.,Clinical, Management and Technology Innovation Research Unit, Medical Direction, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Michele Mazzolai
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| | - Antonio Di Marco
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesca Petreschi
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nicola Ullmann
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Marta Lucia Ciofi Degli Atti
- Clinical, Management and Technology Innovation Research Unit, Medical Direction, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Renato Cutrera
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
31
|
Sarika GM, Shreberk-Hassidim R, Maly A, Molho-Pessach V. Acrofacial necrotic ulcers in an infant: An undiagnosed presentation. Front Pediatr 2022; 10:1069242. [PMID: 36619501 PMCID: PMC9815528 DOI: 10.3389/fped.2022.1069242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Acral necrotic ulcers in infancy are rare but have been described in type I interferonopathies. Herein, we present a case of an 8-year-old child who presented at the age of one month with severe ulceronecrotic lesions on the face and limbs with exacerbations following exposure to cold weather. Despite extensive investigation the case remains undiagnosed to this day. We hypothesize that this case represents a novel and yet unknown autoinflammatory disease.
Collapse
Affiliation(s)
| | | | - Alexander Maly
- Department of Pathology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
32
|
Valdes AZ. Immunological tolerance and autoimmunity. TRANSLATIONAL AUTOIMMUNITY 2022:325-345. [DOI: 10.1016/b978-0-12-822564-6.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Remy A, Borocco C, Sarrabay G, Boursier G, Fraitag S, Catteau B, Reumaux H, Koné-Paut I. When extended genetics rescues diagnosis: a patient with CANDLE-like phenotype and de novo mutation in the SAMD9L gene. Ann Rheum Dis 2021; 81:447-448. [PMID: 34848396 DOI: 10.1136/annrheumdis-2021-221486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/13/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Amandine Remy
- Pediatric Emergency, Infectious Diseases and Rheumatology Department, CHU Lille, University of Lille, Lille, France
| | - Charlotte Borocco
- Pediatric Rheumatology Department, Reference Centre for Autoinflammatory Diseases and Amyloidosis (CEREMAIA), Bicêtre hospital, AP-HP, university of Paris Saclay, Le Kremlin-Bicêtre, France.,University of Paris Saclay, Paris, France
| | - Guillaume Sarrabay
- Laboratory of Rare and Autoinflammatory Genetic Diseases and Reference Centre for Autoinflammatory Diseases and Amyloidosis (CEREMAIA), CHU Montpellier, University of Montpellier, Montpellier, France
| | - Guilaine Boursier
- Laboratory of Rare and Autoinflammatory Genetic Diseases and Reference Centre for Autoinflammatory Diseases and Amyloidosis (CEREMAIA), CHU Montpellier, University of Montpellier, Montpellier, France
| | - Sylvie Fraitag
- Pathology Department Paris, France, CHU Necker-Enfants Malades, AP-HP, Paris, France
| | - Benoit Catteau
- Dermatology Department, CHU Lille, University of Lille, Lille, France
| | - Héloise Reumaux
- Pediatric Emergency, Infectious Diseases and Rheumatology Department, CHU Lille, University of Lille, Lille, France
| | - Isabelle Koné-Paut
- Pediatric Rheumatology Department, Reference Centre for Autoinflammatory Diseases and Amyloidosis (CEREMAIA), Bicêtre hospital, AP-HP, university of Paris Saclay, Le Kremlin-Bicêtre, France.,University of Paris Saclay, Paris, France
| |
Collapse
|
34
|
Systemic Autoinflammatory Diseases: A Growing Family of Disorders of Overlapping Immune Dysfunction. Rheum Dis Clin North Am 2021; 48:371-395. [PMID: 34798958 DOI: 10.1016/j.rdc.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Systemic autoinflammatory diseases (SAIDs) are characterized by unprovoked exaggerated inflammation on a continuum from benign recurrent oral ulceration to life-threatening strokes or amyloidosis, with renal failure as a potential sequela. The ability to discriminate these diagnoses rests on the genetic and mechanistic defect of each disorder, considering potential overlapping autoinflammation, autoimmunity, and immune deficiency. A comprehensive and strategic genetic investigation influences management as well as the consequential expected prognoses in these subsets of rare diseases. The ever-expanding therapeutic armamentarium reflects international collaborations, which will hasten genetic discovery and consensus-driven treatment.
Collapse
|
35
|
Kaplan MJ. Mitochondrial dysfunction in the erythroid compartment. Nat Immunol 2021; 22:1354-1355. [PMID: 34671144 DOI: 10.1038/s41590-021-01050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Haberecht-Müller S, Krüger E, Fielitz J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021; 11:biom11091327. [PMID: 34572540 PMCID: PMC8468834 DOI: 10.3390/biom11091327] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Collapse
Affiliation(s)
- Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (E.K.); (J.F.)
| | - Jens Fielitz
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (E.K.); (J.F.)
| |
Collapse
|
37
|
Verhoeven D, Schonenberg-Meinema D, Ebstein F, Papendorf JJ, Baars PA, van Leeuwen EMM, Jansen MH, Lankester AC, van der Burg M, Florquin S, Maas SM, van Koningsbruggen S, Krüger E, van den Berg JM, Kuijpers TW. Hematopoietic stem cell transplantation in a patient with proteasome-associated autoinflammatory syndrome (PRAAS). J Allergy Clin Immunol 2021; 149:1120-1127.e8. [PMID: 34416217 DOI: 10.1016/j.jaci.2021.07.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND Proteasome-associated autoinflammatory syndromes (PRAASs) form a family of recently described rare autosomal recessive disorders of disturbed proteasome assembly and proteolytic activity caused by mutations in genes coding for proteasome subunits. The treatment options for these proteasome disorders consist of lifelong immunosuppressive drugs or Janus kinase inhibitors, which may have partial efficacy and noticeable side effects. Because proteasomes are ubiquitously expressed, it is unknown whether hematopoietic stem cell transplantation (HSCT) may be a sufficient treatment option. OBJECTIVE Our aim was to report the case of a young boy with a treatment-resistant cutaneous vasculitis that was initially suspected to be associated with a gene variant in SH2D1A. METHODS Whole-exome sequencing was performed to identify the genetic defect. Molecular and functional analyses were performed to assess the impact of variants on proteasomal function. The immune characterization led to the decision to perform HSCT on our patient and conduct follow-up over the 7-year period after the transplant. Because loss of myeloid chimerism after the first HSCT was associated with relapse of autoinflammation, a second HSCT was performed. RESULTS After the successful second HSCT, the patient developed mild symptoms of lipodystrophy, which raised the suspicion of a PRAAS. Genetic analysis revealed 2 novel heterozygous variants in PSMB4 (encoding proteasomal subunit β7). Retrospective analysis of patient cells stored before the first HSCT and patient cells obtained after the second HSCT demonstrated that HSCT successfully rescued proteasome function, restored protein homeostasis, and resolved the interferon-stimulated gene signature. Furthermore, successful HSCT alleviated the autoinflammatory manifestations in our patient. CONCLUSION Patients with treatment-resistant PRAAS can be cured by HSCT.
Collapse
Affiliation(s)
- Dorit Verhoeven
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dieneke Schonenberg-Meinema
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jonas J Papendorf
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Paul A Baars
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ester M M van Leeuwen
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Machiel H Jansen
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia M Maas
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Silvana van Koningsbruggen
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - J Merlijn van den Berg
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Ansar M, Ebstein F, Özkoç H, Paracha SA, Iwaszkiewicz J, Gesemann M, Zoete V, Ranza E, Santoni FA, Sarwar MT, Ahmed J, Krüger E, Bachmann-Gagescu R, Antonarakis SE. Biallelic variants in PSMB1 encoding the proteasome subunit β6 cause impairment of proteasome function, microcephaly, intellectual disability, developmental delay and short stature. Hum Mol Genet 2021; 29:1132-1143. [PMID: 32129449 DOI: 10.1093/hmg/ddaa032] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
The molecular cause of the majority of rare autosomal recessive disorders remains unknown. Consanguinity due to extensive homozygosity unravels many recessive phenotypes and facilitates the detection of novel gene-disease links. Here, we report two siblings with phenotypic signs, including intellectual disability (ID), developmental delay and microcephaly from a Pakistani consanguineous family in which we have identified homozygosity for p(Tyr103His) in the PSMB1 gene (Genbank NM_002793) that segregated with the disease phenotype. PSMB1 encodes a β-type proteasome subunit (i.e. β6). Modeling of the p(Tyr103His) variant indicates that this variant weakens the interactions between PSMB1/β6 and PSMA5/α5 proteasome subunits and thus destabilizes the 20S proteasome complex. Biochemical experiments in human SHSY5Y cells revealed that the p(Tyr103His) variant affects both the processing of PSMB1/β6 and its incorporation into proteasome, thus impairing proteasome activity. CRISPR/Cas9 mutagenesis or morpholino knock-down of the single psmb1 zebrafish orthologue resulted in microcephaly, microphthalmia and reduced brain size. Genetic evidence in the family and functional experiments in human cells and zebrafish indicates that PSMB1/β6 pathogenic variants are the cause of a recessive disease with ID, microcephaly and developmental delay due to abnormal proteasome assembly.
Collapse
Affiliation(s)
- Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald 17475, Germany
| | - Hayriye Özkoç
- Institute of Medical Genetics, University of Zurich, Schlieren 8952, Switzerland
| | - Sohail A Paracha
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Matthias Gesemann
- Department of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,Department of Fundamental Oncology, Ludwig Institute for Cancer Research, Lausanne University, Epalinges 1066, Switzerland
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva 1205, Switzerland
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland.,Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Muhammad T Sarwar
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - Jawad Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald 17475, Germany
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren 8952, Switzerland.,Department of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva 1205, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
39
|
Aksentijevich I, Schnappauf O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol 2021; 17:405-425. [PMID: 34035534 DOI: 10.1038/s41584-021-00614-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Monogenic autoinflammatory diseases are a group of rheumatologic disorders caused by dysregulation in the innate immune system. The molecular mechanisms of these disorders are linked to defects in inflammasome-mediated, NF-κB-mediated or interferon-mediated inflammatory signalling pathways, cytokine receptors, the actin cytoskeleton, proteasome complexes and various enzymes. As with other human disorders, disease-causing variants in a single gene can present with variable expressivity and incomplete penetrance. In some cases, pathogenic variants in the same gene can be inherited either in a recessive or dominant manner and can cause distinct and seemingly unrelated phenotypes, although they have a unifying biochemical mechanism. With an enhanced understanding of protein structure and functionality of protein domains, genotype-phenotype correlations are beginning to be unravelled. Many of the mutated proteins are primarily expressed in haematopoietic cells, and their malfunction leads to systemic inflammation. Disease presentation is also defined by a specific effect of the mutant protein in a particular cell type and, therefore, the resulting phenotype might be more deleterious in one tissue than in another. Many patients present with the expanded immunological disease continuum that includes autoinflammation, immunodeficiency, autoimmunity and atopy, which necessitate genetic testing.
Collapse
Affiliation(s)
- Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Oskar Schnappauf
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol 2021; 18:1122-1140. [PMID: 33795850 PMCID: PMC8015752 DOI: 10.1038/s41423-020-00626-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity (IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here, we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.
Collapse
Affiliation(s)
- Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany.
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany.
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Ignatius Ryan Adriawan
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Natalia Dubrowinskaja
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Reinhold Ernst Schmidt
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| |
Collapse
|
41
|
Bolko L, Jiang W, Tawara N, Landon‐Cardinal O, Anquetil C, Benveniste O, Allenbach Y. The role of interferons type I, II and III in myositis: A review. Brain Pathol 2021; 31:e12955. [PMID: 34043262 PMCID: PMC8412069 DOI: 10.1111/bpa.12955] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
The classification of idiopathic inflammatory myopathies (IIM) is based on clinical, serological and histological criteria. The identification of myositis-specific antibodies has helped to define more homogeneous groups of myositis into four dominant subsets: dermatomyositis (DM), antisynthetase syndrome (ASyS), sporadic inclusion body myositis (sIBM) and immune-mediated necrotising myopathy (IMNM). sIBM and IMNM patients present predominantly with muscle involvement, whereas DM and ASyS patients present additionally with other extramuscular features, such as skin, lung and joints manifestations. Moreover, the pathophysiological mechanisms are distinct between each myositis subsets. Recently, interferon (IFN) pathways have been identified as key players implicated in the pathophysiology of myositis. In DM, the key role of IFN, especially type I IFN, has been supported by the identification of an IFN signature in muscle, blood and skin of DM patients. In addition, DM-specific antibodies are targeting antigens involved in the IFN signalling pathways. The pathogenicity of type I IFN has been demonstrated by the identification of mutations in the IFN pathways leading to genetic diseases, the monogenic interferonopathies. This constitutive activation of IFN signalling pathways induces systemic manifestations such as interstitial lung disease, myositis and skin rashes. Since DM patients share similar features in the context of an acquired activation of the IFN signalling pathways, we may extend underlying concepts of monogenic diseases to acquired interferonopathy such as DM. Conversely, in ASyS, available data suggest a role of type II IFN in blood, muscle and lung. Indeed, transcriptomic analyses highlighted a type II IFN gene expression in ASyS muscle tissue. In sIBM, type II IFN appears to be an important cytokine involved in muscle inflammation mechanisms and potentially linked to myodegenerative features. For IMNM, currently published data are scarce, suggesting a minor implication of type II IFN. This review highlights the involvement of different IFN subtypes and their specific molecular mechanisms in each myositis subset.
Collapse
Affiliation(s)
- Loïs Bolko
- Division of RheumatologyHopital Maison BlancheReimsFrance
| | - Wei Jiang
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Nozomu Tawara
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Océane Landon‐Cardinal
- Division of RheumatologyCentre hospitalier de l'Université de Montréal (CHUM)CHUM Research CenterMontréalQCCanada
- Department of MedicineUniversité de MontréalMontréalQCCanada
| | - Céline Anquetil
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Yves Allenbach
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| |
Collapse
|
42
|
Gómez-Arias PJ, Gómez-García F, Hernández-Parada J, Montilla-López AM, Ruano J, Parra-Peralbo E. Efficacy and Safety of Janus Kinase Inhibitors in Type I Interferon-Mediated Monogenic Autoinflammatory Disorders: A Scoping Review. Dermatol Ther (Heidelb) 2021; 11:733-750. [PMID: 33856640 PMCID: PMC8163936 DOI: 10.1007/s13555-021-00517-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/03/2022] Open
Abstract
Importance Type I interferon (IFN)-mediated monogenic autoinflammatory disorders (interferonopathies) are childhood-onset rare multisystemic diseases with limited treatment options. The Janus kinase (JAK) inhibitors are promising potential therapeutic candidates for immune-mediated chronic inflammatory skin diseases. Objective To review the use of JAK inhibitors to improve decision-making when treating interferonopathies with cutaneous manifestations. Evidence Review The MEDLINE, EMBASE, CINAHL, Scopus, and Web of Science databases were searched for studies that used JAK protein inhibitors to treat IFN-related monogenic diseases with cutaneous manifestations in humans. The search results are reported using the scoping review approach. Findings Seventeen open-label studies assessing the efficacy of ruxolitinib, baricitinib, or tofacitinib reported variable responses in patients with chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) and related syndromes, stimulator of IFN genes [STING]-associated vasculopathy with onset in infancy (SAVI), familial chilblain lupus (FCh-L), gain-of-function mutations of STAT1 (GOF-STAT1), or Aicardi-Goutiéres syndrome. JAK inhibitors improved clinical and analytical parameters and decreased flare numbers, plasma inflammatory markers, and expression of IFN-stimulated genes. BK viremia and upper respiratory infections were the most frequent and severe adverse events. Significant heterogeneity in efficacy assessment methods and poor reporting of safety events were detected. Conclusions and Relevance Evidence of the use of JAK inhibitors in patients with interpheronopathies is scarce and of low methodological quality. Future clinical trials should use validated scales and report drug safety in a more accurate way. Supplementary Information The online version contains supplementary material available at 10.1007/s13555-021-00517-9.
Collapse
Affiliation(s)
- Pedro Jesús Gómez-Arias
- Inflammatory Immune-Mediated Chronic Skin Diseases' Laboratory, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital-University of Cordoba, Menendez Pidal Ave, 14004, Córdoba, Spain.,Department of Dermatology, Reina Sofia University Hospital, Menendez Pidal Ave, 14004, Córdoba, Spain
| | - Francisco Gómez-García
- Inflammatory Immune-Mediated Chronic Skin Diseases' Laboratory, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital-University of Cordoba, Menendez Pidal Ave, 14004, Córdoba, Spain.,Department of Dermatology, Reina Sofia University Hospital, Menendez Pidal Ave, 14004, Córdoba, Spain
| | - Jorge Hernández-Parada
- Department of Pharmacology, Reina Sofia University Hospital, Menendez Pidal Ave, 14004, Córdoba, Spain
| | - Ana María Montilla-López
- Inflammatory Immune-Mediated Chronic Skin Diseases' Laboratory, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital-University of Cordoba, Menendez Pidal Ave, 14004, Córdoba, Spain
| | - Juan Ruano
- Inflammatory Immune-Mediated Chronic Skin Diseases' Laboratory, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital-University of Cordoba, Menendez Pidal Ave, 14004, Córdoba, Spain. .,Department of Dermatology, Reina Sofia University Hospital, Menendez Pidal Ave, 14004, Córdoba, Spain.
| | - Esmeralda Parra-Peralbo
- Faculty of Biomedical Science and Health, European University, Calle Tajo, s/n, Villaviciosa de Odón, 28670, Madrid, Spain
| |
Collapse
|
43
|
Nigrovic PA, Lee PY, Hoffman HM. Monogenic autoinflammatory disorders: Conceptual overview, phenotype, and clinical approach. J Allergy Clin Immunol 2021; 146:925-937. [PMID: 33160483 DOI: 10.1016/j.jaci.2020.08.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Autoinflammatory diseases are conditions in which pathogenic inflammation arises primarily through antigen-independent hyperactivation of immune pathways. First recognized just over 2 decades ago, the autoinflammatory disease spectrum has expanded rapidly to include more than 40 distinct monogenic conditions. Related mechanisms contribute to common conditions such as gout and cardiovascular disease. Here, we review the basic concepts underlying the "autoinflammatory revolution" in the understanding of immune-mediated disease and introduce major categories of monogenic autoinflammatory disorders recognized to date, including inflammasomopathies and other IL-1-related conditions, interferonopathies, and disorders of nuclear factor kappa B and/or aberrant TNF activity. We highlight phenotypic presentation as a reflection of pathogenesis and outline a practical approach to the evaluation of patients with suspected autoinflammation.
Collapse
Affiliation(s)
- Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Boston, Mass; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Mass.
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Boston, Mass; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Hal M Hoffman
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital and University of California at San Diego, San Diego, Calif
| |
Collapse
|
44
|
Patel PN, Hunt R, Pettigrew ZJ, Shirley JB, Vogel TP, de Guzman MM. Successful treatment of chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome with tofacitinib. Pediatr Dermatol 2021; 38:528-529. [PMID: 33512037 DOI: 10.1111/pde.14517] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/11/2020] [Accepted: 12/20/2020] [Indexed: 11/26/2022]
Abstract
Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome is a rare autoinflammatory disorder. Cutaneous manifestations of CANDLE syndrome include characteristic recurring violaceous annular plaques comprised of an immature dermal mononuclear cell infiltrate. In CANDLE syndrome, deleterious genetic mutations inhibit proteasome-immunoproteasome function, resulting in cellular accumulation of ubiquitinated waste proteins that activate type I interferon signaling to drive inflammation. We describe a report of successful treatment of a 12-year-old girl with CANDLE syndrome with tofacitinib.
Collapse
Affiliation(s)
- Pooja N Patel
- Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Raegan Hunt
- Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Zachary J Pettigrew
- University of North Carolina School of Medicine, Chapel Hill, NC, USA.,North Carolina Children's Hospital, Chapel Hill, NC, USA
| | - Joel Brian Shirley
- University of Colorado School of Medicine, Aurora, CO, USA.,Children's Hospital of Colorado, Aurora, CO, USA
| | - Tiphanie P Vogel
- Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Marietta M de Guzman
- Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
45
|
Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. The Ubiquitin-Proteasome System in Immune Cells. Biomolecules 2021; 11:biom11010060. [PMID: 33466553 PMCID: PMC7824874 DOI: 10.3390/biom11010060] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is the major intracellular and non-lysosomal protein degradation system. Thanks to its unique capacity of eliminating old, damaged, misfolded, and/or regulatory proteins in a highly specific manner, the UPS is virtually involved in almost all aspects of eukaryotic life. The critical importance of the UPS is particularly visible in immune cells which undergo a rapid and profound functional remodelling upon pathogen recognition. Innate and/or adaptive immune activation is indeed characterized by a number of substantial changes impacting various cellular processes including protein homeostasis, signal transduction, cell proliferation, and antigen processing which are all tightly regulated by the UPS. In this review, we summarize and discuss recent progress in our understanding of the molecular mechanisms by which the UPS contributes to the generation of an adequate immune response. In this regard, we also discuss the consequences of UPS dysfunction and its role in the pathogenesis of recently described immune disorders including cancer and auto-inflammatory diseases.
Collapse
|
46
|
Cazzato S, Omenetti A, Ravaglia C, Poletti V. Lung involvement in monogenic interferonopathies. Eur Respir Rev 2020; 29:200001. [PMID: 33328278 PMCID: PMC9489100 DOI: 10.1183/16000617.0001-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Monogenic type I interferonopathies are inherited heterogeneous disorders characterised by early onset of systemic and organ specific inflammation, associated with constitutive activation of type I interferons (IFNs). In the last few years, several clinical reports identified the lung as one of the key target organs of IFN-mediated inflammation. The major pulmonary patterns described comprise children's interstitial lung diseases (including diffuse alveolar haemorrhages) and pulmonary arterial hypertension but diagnosis may be challenging. Respiratory symptoms may be either mild or absent at disease onset and variably associated with systemic or organ specific inflammation. In addition, associated extrapulmonary clinical features may precede lung function impairment by years, and patients may display severe/endstage lung involvement, although this may be clinically hidden during the long-term disease course. Conversely, a few cases of atypical severe lung involvement at onset have been reported without clinically manifested extrapulmonary signs. Hence, a multidisciplinary approach involving pulmonologists, paediatricians and rheumatologists should always be considered when a monogenic interferonopathy is suspected. Pulmonologists should also be aware of the main pattern of presentation to allow prompt diagnosis and a targeted therapeutic strategy. In this regard, promising therapeutic strategies rely on Janus kinase-1/2 (JAK-1/2) inhibitors blocking the type I IFN-mediated intracellular cascade.
Collapse
Affiliation(s)
- Salvatore Cazzato
- Pediatric Unit, Dept of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
- Joint first authors
| | - Alessia Omenetti
- Pediatric Unit, Dept of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
- Joint first authors
| | - Claudia Ravaglia
- Dept of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
| | - Venerino Poletti
- Dept of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
- Dept of Respiratory Diseases & Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
47
|
McCann LJ, Hedrich CM. Is it time to re-think juvenile-onset Rheumatic and Musculoskeletal Diseases? - First steps towards individualised treatments to meet agreed targets. Clin Immunol 2020; 223:108647. [PMID: 33310069 DOI: 10.1016/j.clim.2020.108647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liza J McCann
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, UK; Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Christian M Hedrich
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, UK; Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK.
| |
Collapse
|
48
|
Latour-Álvarez I, Torrelo A. Cutaneous clues to diagnose autoinflammatory diseases. GIORN ITAL DERMAT V 2020; 155:551-566. [PMID: 33070568 DOI: 10.23736/s0392-0488.20.06652-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic autoinflammatory diseases (AIDs) are a group of disorders characterized by recurrent episodes of systemic inflammation. Suspecting the diagnosis can be difficult and many of the clinical manifestations are common to different diseases. Although most of the cutaneous manifestations are non-specific, it is important to know them because sometimes they can lead to the diagnosis. The purpose of this review was to synthesize the main cutaneous lesions of autoinflammatory diseases to aid in their diagnosis.
Collapse
Affiliation(s)
| | - Antonio Torrelo
- Department of Dermatology, Niño Jesús University Hospital, Madrid, Spain -
| |
Collapse
|
49
|
Abstract
Idiopathic lipoatrophic panniculitis of children is a rare disease of childhood, characterized by repeated attacks of tender subcutaneous nodules followed by the development of permanent lipoatrophy, often seen on the arms and legs, in association with fever, malaise, and other less common clinical manifestations such as abdominal pain or arthralgia. The pathogenesis is unknown, and autoimmune origins, chromosomal alterations, and other causes have been proposed. The nosology of this condition is confusing in the literature, and the precise diagnosis still relies on a combination of clinicopathologic and laboratory assessments. Methotrexate may be recommended to minimize disease progression and morbidity.
Collapse
Affiliation(s)
| | - Antonio Torrelo
- Department of Dermatology, Hospital del Niño Jesus, Madrid, Spain.
| |
Collapse
|
50
|
Rigante D. Phenotype variability of autoinflammatory disorders in the pediatric patient: A pictorial overview. J Evid Based Med 2020; 13:227-245. [PMID: 32627322 DOI: 10.1111/jebm.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Disruption of innate immunity leading to systemic inflammation and multi-organ dysfunction is the basilar footprint of autoinflammatory disorders (AIDs), ranging from rare hereditary monogenic diseases to a large number of common chronic inflammatory conditions in which there is a simultaneous participation of multiple genetic components and environmental factors, sometimes combined with autoimmune phenomena and immunodeficiency. Whatever their molecular mechanism, hereditary AIDs are caused by mutations in regulatory molecules or sensors proteins leading to dysregulated production of proinflammatory cytokines or cytokine-inducing transcription factors, fever, elevation of acute phase reactants, and a portfolio of manifold inflammatory signs which might occur in a stereotyped manner, mostly with overactivity or misactivation of different inflammasomes. Symptoms might overlap in the pediatric patient, obscuring the final diagnosis of AIDs and delaying the most appropriate treatment. Actually, the fast-paced evolution of scientific knowledge has led to recognize or reclassify an overgrowing number of multifactorial diseases, which share the basic pathogenetic mechanisms with AIDs. The wide framework of classic hereditary periodic fevers, AIDs with prominent skin involvement, disorders of the ubiquitin-proteasome system, defects of actin cytoskeleton dynamics, and also idiopathic nonhereditary febrile syndromes occurring in children is herein presented. Interleukin-1 dependence of these diseases or involvement of other predominating molecules is also discussed.
Collapse
Affiliation(s)
- Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
- Periodic Fever and Rare Diseases Research Centre, Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|