1
|
Zhang X, Tao Y, Wu L, Shu J, He Y, Feng H. PA and PA-X: two key proteins from segment 3 of the influenza viruses. Front Cell Infect Microbiol 2025; 15:1560250. [PMID: 40160474 PMCID: PMC11949978 DOI: 10.3389/fcimb.2025.1560250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
In recent years, the influenza viruses have posed an increasingly severe threat to public health. It is essential to analyze the virulence and pathogenesis of influenza viruses to prevent and control them, as well as create antiviral drugs. Previous studies have revealed that influenza virus segment 3 codes for not only the PA protein but also a novel protein, PA-X. PA protein is one subunit of the polymerase of influenza viruses and plays a critical role in its life cycle. PA presented endonuclease activity, the transcription and replication of the viral genome, viral virulence, protein degradation, and host immune response by interacting with viral proteins, including PB2, PB1, and host factors, including ANP32A, CHD6, HAX1, hCLE, HDAC6, MCM complex. PA mutations were involved in the viral replication, pathogenicity, and transmission of influenza viruses in poultry, mammals, and humans. PA-X is an open reading frame generated by +1 ribosomal code shift at the N-terminal amino acids of segment 3 and possesses the shutoff activity of host gene expression, regulating the host immune response, viral virulence and transmission. Therefore, PA is one ideal target for the development of antiviral drugs against influenza viruses. Baloxavir marboxil (BXM) and Favipiravir are two very effective anti-influenza virus drugs targeting the PA endonuclease domain of influenza A viruses. In this review, we summarized the structures, viral replication, virulent determinants and transmission, host factors, innate immunity, and antiviral drugs involved in PA and PA-X. The information is of great value for underlying the mechanism of viral replication and developing novel effective strategies to prevent and control influenza infection and the pandemic.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yingying Tao
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Luo J, Lu Y, Dai E, Yin N, Wang T, Qian H, Jiang Q, Cao X, Wang C, Zeng Y. The PB1 protein of H9N2 influenza A virus inhibits antiviral innate immunity by targeting MAVS for TRIM25-mediated autophagic degradation. Poult Sci 2025; 104:104639. [PMID: 39647358 PMCID: PMC11666973 DOI: 10.1016/j.psj.2024.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
The proteins encoded by Influenza A virus (IAV) evade the innate immune system through diverse strategies to facilitate their replication. However, the regulatory mechanisms remain not fully understood. In this study, we identified that the H9N2 PB1 protein suppressed the activities of the IFN-β, ISRE, and NF-κB promoters. Furthermore, H9N2 PB1 inhibited the phosphorylation of IRF3, IκBα, and TBK1 and the secretion of IFN-β. The results demonstrated H9N2 PB1 as a negative regulator of the RIG-I signaling pathway. Subsequent investigations revealed a specific interaction between H9N2 PB1 and MAVS, which disturbed the stability of MAVS. Notably, we discovered that H9N2 PB1 exploited the function of TRIM25, leading to the autophagic degradation of MAVS through K48-linked polyubiquitination. In conclusion, we uncovered a negative regulatory axis consisting of H9N2 PB1-TRIM25-MAVS-IFN-I. These findings provide valuable insights into the molecular interactions involved in the regulation of the host's innate immune antiviral response by IAV.
Collapse
Affiliation(s)
- Jiawei Luo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, PR China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, PR China
| | - Enqi Dai
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China
| | - Nianchun Yin
- Suining Municipal Agricultural and Rural Bureau of Sichuan Province, Suining, 629000, PR China
| | - Ting Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China
| | - Hongxi Qian
- TECHLEX Food Co. Ltd, Mianyang, 621000, PR China
| | - Qingrong Jiang
- Sichuan Sundaily Farm Ecological Food Co. Ltd, Mianyang, 621000, PR China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, PR China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, PR China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, PR China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, PR China.
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, PR China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, PR China.
| |
Collapse
|
3
|
Elshina E, Pitre E, Mendes M, Schweibenz B, Fan RLY, French H, Park JW, Wang W, Poon LLM, Marcotrigiano J, Russell AB, Te Velthuis AJW. Influenza A virus transcription generates capped cRNAs that activate RIG-I. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623191. [PMID: 39605425 PMCID: PMC11601390 DOI: 10.1101/2024.11.12.623191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
During influenza A virus (IAV) infection, host pathogen receptor retinoic acid-inducible gene I (RIG-I) detects the partially complementary, 5'-triphosphorylated ends of the viral genome segments and non-canonical replication products. However, it has also been suggested that innate immune responses may be triggered by viral transcription. In this study, we investigated whether an immunostimulatory RNA is produced during IAV transcription. We show that the IAV RNA polymerase can read though the polyadenylation signal during transcription termination, generating a capped complementary RNA (ccRNA), which contains the 5' cap of an IAV mRNA and the 3' terminus of a cRNA instead of a poly(A) tail. ccRNAs are detectable in vitro and in both ribonucleoprotein reconstitution assays and IAV infections. Mutations that disrupt polyadenylation enhance ccRNA synthesis and increase RIG-I-dependent innate immune activation. Notably, while ccRNA itself is not immunostimulatory, it forms a RIG-I agonist by hybridizing with a complementary negative-sense viral RNA. These findings thus identify a novel non-canonical IAV RNA species and suggest an alternative mechanism for RIG-I activation during IAV infection.
Collapse
|
4
|
Chen N, Jin J, Zhang B, Meng Q, Lu Y, Liang B, Deng L, Qiao B, Zheng L. Viral strategies to antagonize the host antiviral innate immunity: an indispensable research direction for emerging virus-host interactions. Emerg Microbes Infect 2024; 13:2341144. [PMID: 38847579 PMCID: PMC11188965 DOI: 10.1080/22221751.2024.2341144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The public's health is gravely at risk due to the current global outbreak of emerging viruses, specifically SARS-CoV-2 and MPXV. Recent studies have shown that SARS-CoV-2 mutants (such as Omicron) exhibit a higher capability to antagonize the host innate immunity, increasing their human adaptability and transmissibility. Furthermore, current studies on the strategies for MPXV to antagonize the host innate immunity are still in the initial stages. These multiple threats from emerging viruses make it urgent to study emerging virus-host interactions, especially the viral antagonism of host antiviral innate immunity. Given this, we selected several representative viruses that significantly threatened human public health and interpreted the multiple strategies for these viruses to antagonize the host antiviral innate immunity, hoping to provide ideas for molecular mechanism research that emerging viruses antagonize the host antiviral innate immunity and accelerate the research progress. The IAV, SARS-CoV-2, SARS-CoV, MERS-CoV, EBOV, DENV, ZIKV, and HIV are some of the typical viruses. Studies have shown that viruses could antagonize the host antiviral innate immunity by directly or indirectly blocking antiviral innate immune signaling pathways. Proviral host factors, host restriction factors, and ncRNAs (microRNAs, lncRNAs, circRNAs, and vtRNAs) are essential in indirectly blocking antiviral innate immune signaling pathways. Furthermore, via controlling apoptosis, ER stress, stress granule formation, and metabolic pathways, viruses may antagonize it. These regulatory mechanisms include transcriptional regulation, post-translational regulation, preventing complex formation, impeding nuclear translocation, cleavage, degradation, and epigenetic regulation.
Collapse
Affiliation(s)
- Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jiayu Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Baoge Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Qi Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yuanlu Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Bing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Lulu Deng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Bingchen Qiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Lucheng Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
5
|
Huang Y, Urban C, Hubel P, Stukalov A, Pichlmair A. Protein turnover regulation is critical for influenza A virus infection. Cell Syst 2024; 15:911-929.e8. [PMID: 39368468 DOI: 10.1016/j.cels.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
The abundance of a protein is defined by its continuous synthesis and degradation, a process known as protein turnover. Here, we systematically profiled the turnover of proteins in influenza A virus (IAV)-infected cells using a pulse-chase stable isotope labeling by amino acids in cell culture (SILAC)-based approach combined with downstream statistical modeling. We identified 1,798 virus-affected proteins with turnover changes (tVAPs) out of 7,739 detected proteins (data available at pulsechase.innatelab.org). In particular, the affected proteins were involved in RNA transcription, splicing and nuclear transport, protein translation and stability, and energy metabolism. Many tVAPs appeared to be known IAV-interacting proteins that regulate virus propagation, such as KPNA6, PPP6C, and POLR2A. Notably, our analysis identified additional IAV host and restriction factors, such as the splicing factor GPKOW, that exhibit significant turnover rate changes while their total abundance is minimally affected. Overall, we show that protein turnover is a critical factor both for virus replication and antiviral defense.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christian Urban
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Philipp Hubel
- Core Facility Hohenheim, Universität Hohenheim, Stuttgart, Germany
| | - Alexey Stukalov
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany; Institute of Virology, Helmholtz Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site, Munich, Germany.
| |
Collapse
|
6
|
An W, Lakhina S, Leong J, Rawat K, Husain M. Host Innate Antiviral Response to Influenza A Virus Infection: From Viral Sensing to Antagonism and Escape. Pathogens 2024; 13:561. [PMID: 39057788 PMCID: PMC11280125 DOI: 10.3390/pathogens13070561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza virus possesses an RNA genome of single-stranded, negative-sensed, and segmented configuration. Influenza virus causes an acute respiratory disease, commonly known as the "flu" in humans. In some individuals, flu can lead to pneumonia and acute respiratory distress syndrome. Influenza A virus (IAV) is the most significant because it causes recurring seasonal epidemics, occasional pandemics, and zoonotic outbreaks in human populations, globally. The host innate immune response to IAV infection plays a critical role in sensing, preventing, and clearing the infection as well as in flu disease pathology. Host cells sense IAV infection through multiple receptors and mechanisms, which culminate in the induction of a concerted innate antiviral response and the creation of an antiviral state, which inhibits and clears the infection from host cells. However, IAV antagonizes and escapes many steps of the innate antiviral response by different mechanisms. Herein, we review those host and viral mechanisms. This review covers most aspects of the host innate immune response, i.e., (1) the sensing of incoming virus particles, (2) the activation of downstream innate antiviral signaling pathways, (3) the expression of interferon-stimulated genes, (4) and viral antagonism and escape.
Collapse
Affiliation(s)
| | | | | | | | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.A.); (S.L.); (J.L.); (K.R.)
| |
Collapse
|
7
|
Wu CC, Tam EH, Shih YY, Lin YR, Hsueh PC, Shen HY, Woung CH, Wang LT, Tsai JC, Lin SJ, Chang CR, Ke PY, Kuo RL. Exploration of influenza A virus PA protein-associated cellular proteins discloses its impact on mitochondrial function. Virus Res 2024; 345:199387. [PMID: 38719025 PMCID: PMC11109008 DOI: 10.1016/j.virusres.2024.199387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Influenza A virus can infect respiratory tracts and may cause severe illness in humans. Proteins encoded by influenza A virus can interact with cellular factors and dysregulate host biological processes to support viral replication and cause pathogenicity. The influenza viral PA protein is not only a subunit of influenza viral polymerase but also a virulence factor involved in pathogenicity during infection. To explore the role of the influenza virus PA protein in regulating host biological processes, we performed immunoprecipitation and LC‒MS/MS to globally identify cellular factors that interact with the PA proteins of the influenza A H1N1, 2009 pandemic H1N1, and H3N2 viruses. The results demonstrated that proteins located in the mitochondrion, proteasome, and nucleus are associated with the PA protein. We further discovered that the PA protein is partly located in mitochondria by immunofluorescence and mitochondrial fractionation and that overexpression of the PA protein reduces mitochondrial respiration. In addition, our results revealed the interaction between PA and the mitochondrial matrix protein PYCR2 and the antiviral role of PYCR2 during influenza A virus replication. Moreover, we found that the PA protein could also trigger autophagy and disrupt mitochondrial homeostasis. Overall, our research revealed the impacts of the influenza A virus PA protein on mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ee-Hong Tam
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Yin Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ru Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Chun Hsueh
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiang-Yi Shen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chian-Huey Woung
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Ting Wang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Chen Tsai
- Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Syh-Jae Lin
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chuang-Rung Chang
- Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Yuan Ke
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Rei-Lin Kuo
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Su G, Chen Y, Li X, Shao JW. Virus versus host: influenza A virus circumvents the immune responses. Front Microbiol 2024; 15:1394510. [PMID: 38817972 PMCID: PMC11137263 DOI: 10.3389/fmicb.2024.1394510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Influenza A virus (IAV) is a highly contagious pathogen causing dreadful losses to humans and animals around the globe. As is known, immune escape is a strategy that benefits the proliferation of IAVs by antagonizing, blocking, and suppressing immune surveillance. The HA protein binds to the sialic acid (SA) receptor to enter the cytoplasm and initiate viral infection. The conserved components of the viral genome produced during replication, known as the pathogen-associated molecular patterns (PAMPs), are thought to be critical factors for the activation of effective innate immunity by triggering dependent signaling pathways after recognition by pattern recognition receptors (PRRs), followed by a cascade of adaptive immunity. Viral infection-induced immune responses establish an antiviral state in the host to effectively inhibit virus replication and enhance viral clearance. However, IAV has evolved multiple mechanisms that allow it to synthesize and transport viral components by "playing games" with the host. At its heart, this review will describe how host and viral factors interact to facilitate the viral evasion of host immune responses.
Collapse
Affiliation(s)
- Guanming Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, China
| | - Yiqun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
9
|
Cao M, Jia Q, Li J, Zhao L, Zhu L, Zhang Y, Li S, Deng T. Naturally occurring PA E206K point mutation in 2009 H1N1 pandemic influenza viruses impairs viral replication at high temperatures. Virol Sin 2024; 39:71-80. [PMID: 37979619 PMCID: PMC10877435 DOI: 10.1016/j.virs.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
The emergence of influenza virus A pandemic H1N1 in April 2009 marked the first pandemic of the 21st century. In this study, we observed significant differences in the polymerase activities of two clinical 2009 H1N1 influenza A virus isolates from Chinese and Japanese patients. Sequence comparison of the three main protein subunits (PB2, PB1, and PA) of the viral RNA-dependent RNA polymerase complex and subsequent mutational analysis revealed that a single amino acid substitution (E206K) was responsible for the observed impaired replication phenotype. Further in vitro experiments showed that presence of PAE206K decreased the replication of influenza A/WSN/33 virus in mammalian cells and a reduction in the virus's pathogenicity in vivo. Mechanistic studies revealed that PAE206K is a temperature-sensitive mutant associated with the inability to transport PB1-PA complex to the nucleus at high temperature (39.5 °C). Hence, this naturally occurring variant in the PA protein represents an ideal candidate mutation for the development of live attenuated influenza vaccines.
Collapse
Affiliation(s)
- Mengmeng Cao
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qiannan Jia
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jinghua Li
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lili Zhao
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Li Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yufan Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Deng
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Zhao Z, Han S, Zhang Q, Wang Y, Yue K, Abbas S, He H. Impaired influenza A virus replication by the host restriction factor SAMHD1 which inhibited by PA-mediated dephosphorylation of the host transcription factor IRF3. Virol J 2024; 21:33. [PMID: 38287375 PMCID: PMC10826253 DOI: 10.1186/s12985-024-02295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Influenza A virus (IAV) can cause severe and life-threatening illness in humans and animals. Therefore, it is important to search for host antiviral proteins and elucidate their antiviral mechanisms for the development of potential treatments. As a part of human innate immunity, host restriction factors can inhibit the replication of viruses, among which SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) can restrict the replication of viruses, such as HIV and enterovirus EV71. Viruses also developed countermeasures in the arms race with their hosts. There are few reports about whether SAMHD1 has a restriction effect on IAV. METHODS To investigate the impact of IAV infection on SAMHD1 expression in A549 cells, we infected A549 cells with a varying multiplicity of infection (MOI) of IAV and collected cell samples at different time points for WB and RT-qPCR analysis to detect viral protein and SAMHD1 levels. The virus replication level in the cell culture supernatant was determined using TCID50 assay. Luciferase assay was used to reveal that H5N1 virus polymerase acidic protein (PA) affected the activity of the SAMHD1 promoter. To assess the antiviral capacity of SAMHD1, we generated a knockdown and overexpressed cell line for detecting H5N1 replication. RESULTS In this study, we observed that SAMHD1 can restrict the intracellular replication of H5N1 and that the H5N1 viral protein PA can downregulate the expression of SAMHD1 by affecting SAMHD1 transcriptional promoter activity. We also found that SAMHD1's ability to restrict H5N1 is related to phosphorylation at 592-tyrosine. CONCLUSIONS In conclusion, we found that SAMHD1 may affect the replication of IAVs as a host restriction factor and be countered by PA. Furthermore, SAMHD1 may be a potential target for developing antiviral drugs.
Collapse
Affiliation(s)
- Zhilei Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingxun Zhang
- Beijing Milu Ecological Research Center, Beijing, 100076, China
| | - Ye Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Kening Yue
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Salbia Abbas
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
11
|
Chio CC, Chan HW, Chen SH, Huang HI. Enterovirus D68 vRNA induces type III IFN production via MDA5. Virus Res 2024; 339:199284. [PMID: 38040125 PMCID: PMC10704515 DOI: 10.1016/j.virusres.2023.199284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Enterovirus D68 (EV-D68) primarily spreads through the respiratory tract and causes respiratory symptoms in children and acute flaccid myelitis (AFM). Type III interferons (IFNs) play a critical role in inhibiting viral growth in respiratory epithelial cells. However, the mechanism by which EV-D68 induces type III IFN production is not yet fully understood. In this study, we show that EV-D68 infection stimulates Calu-3 cells to secrete IFN-λ. The transfection of EV-D68 viral RNA (vRNA) stimulated IFN-λ via MDA5. Furthermore, our findings provide evidence that EV-D68 infection also induces MDA5-IRF3/IRF7-mediated IFN-λ. In addition, we discovered that EV-D68 infection downregulated MDA5 expression. Knockdown of MDA5 increased EV-D68 replication in Calu-3 cells. Finally, we demonstrated that the IFN-λ1 and IFN-λ2/3 proteins effectively inhibit EV-D68 infection in respiratory epithelial cells. In summary, our study shows that EV-D68 induces type III IFN production via the activated MDA5-IRF3/IRF7 pathway and that type III IFNs inhibit EV-D68 replication in Calu-3 cells.
Collapse
Affiliation(s)
- Chi-Chong Chio
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hio-Wai Chan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Shih-Hsiang Chen
- Division of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan; College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
12
|
Rashid F, Xie Z, Li M, Xie Z, Luo S, Xie L. Roles and functions of IAV proteins in host immune evasion. Front Immunol 2023; 14:1323560. [PMID: 38152399 PMCID: PMC10751371 DOI: 10.3389/fimmu.2023.1323560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
Influenza A viruses (IAVs) evade the immune system of the host by several regulatory mechanisms. Their genomes consist of eight single-stranded segments, including nonstructural proteins (NS), basic polymerase 1 (PB1), basic polymerase 2 (PB2), hemagglutinin (HA), acidic polymerase (PA), matrix (M), neuraminidase (NA), and nucleoprotein (NP). Some of these proteins are known to suppress host immune responses. In this review, we discuss the roles, functions and underlying strategies adopted by IAV proteins to escape the host immune system by targeting different proteins in the interferon (IFN) signaling pathway, such as tripartite motif containing 25 (TRIM25), inhibitor of nuclear factor κB kinase (IKK), mitochondrial antiviral signaling protein (MAVS), Janus kinase 1 (JAK1), type I interferon receptor (IFNAR1), interferon regulatory factor 3 (IRF3), IRF7, and nuclear factor-κB (NF-κB). To date, the IAV proteins NS1, NS2, PB1, PB1-F2, PB2, HA, and PA have been well studied in terms of their roles in evading the host immune system. However, the detailed mechanisms of NS3, PB1-N40, PA-N155, PA-N182, PA-X, M42, NA, and NP have not been well studied with respect to their roles in immune evasion. Moreover, we also highlight the future perspectives of research on IAV proteins.
Collapse
Affiliation(s)
- Farooq Rashid
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Meng Li
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhiqin Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
13
|
Guo Y, Bai X, Liu Z, Liang B, Zheng Y, Dankar S, Ping J. Exploring the alternative virulence determinants PB2 S155N and PA S49Y/D347G that promote mammalian adaptation of the H9N2 avian influenza virus in mice. Vet Res 2023; 54:97. [PMID: 37858267 PMCID: PMC10588254 DOI: 10.1186/s13567-023-01221-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/07/2023] [Indexed: 10/21/2023] Open
Abstract
The occurrence of human infections caused by avian H9N2 influenza viruses has raised concerns regarding the potential for human epidemics and pandemics. The molecular basis of viral adaptation to a new host needs to be further studied. Here, the bases of nucleotides 627 and 701 of PB2 were changed according to the uncoverable purine-to-pyrimidine transversion to block the development of PB2 627K and 701N mutations during serial passaging in mice. The purpose of this experiment was to identify key adaptive mutations in polymerase and NP genes that were obscured by the widely known host range determinants PB2 627K and 701N. Mouse-adapted H9N2 variants were obtained via twelve serial lung-to-lung passages. Sequence analysis showed that the mouse-adapted viruses acquired several mutations within the seven gene segments (PB2, PB1, PA, NP, HA, NA, and NS). One variant isolate with the highest polymerase activity possessed three substitutions, PB2 S155N, PA S49Y and D347G, which contributed to the highly virulent and mouse-adaptative phenotype. Further studies demonstrated that these three mutations resulted in increased polymerase activity, viral transcription and replication in mammalian cells, severe interstitial pneumonia, excessive inflammatory cellular infiltration and increased growth rates in mice. Our results suggest that the substitution of these three amino acid mutations may be an alternative strategy for H9N2 avian influenza viruses to adapt to mammalian hosts. The continued surveillance of zoonotic H9N2 influenza viruses should also include these mammalian adaptation markers as part of our pandemic preparedness efforts.
Collapse
Affiliation(s)
- Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuebing Bai
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyuan Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Liang
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqing Zheng
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ONK1V 8M5, Canada
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Bergeron HC, Hansen MR, Tripp RA. Interferons-Implications in the Immune Response to Respiratory Viruses. Microorganisms 2023; 11:2179. [PMID: 37764023 PMCID: PMC10535750 DOI: 10.3390/microorganisms11092179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Interferons (IFN) are an assemblage of signaling proteins made and released by various host cells in response to stimuli, including viruses. Respiratory syncytial virus (RSV), influenza virus, and SARS-CoV-2 are major causes of respiratory disease that induce or antagonize IFN responses depending on various factors. In this review, the role and function of type I, II, and III IFN responses to respiratory virus infections are considered. In addition, the role of the viral proteins in modifying anti-viral immunity is noted, as are the specific IFN responses that underly the correlates of immunity and protection from disease.
Collapse
Affiliation(s)
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30605, USA; (H.C.B.); (M.R.H.)
| |
Collapse
|
15
|
Hickerson BT, Adams SE, Barman S, Miller L, Lugovtsev VY, Webby RJ, Ince WL, Donnelly RP, Ilyushina NA. Pleiotropic Effects of Influenza H1, H3, and B Baloxavir-Resistant Substitutions on Replication, Sensitivity to Baloxavir, and Interferon Expression. Antimicrob Agents Chemother 2022; 66:e0000922. [PMID: 35262375 PMCID: PMC9017380 DOI: 10.1128/aac.00009-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Baloxavir is an anti-influenza endonuclease inhibitor that targets the polymerase acidic (PA) protein of influenza A and B viruses. Our knowledge regarding the pleiotropic effects of baloxavir resistance-associated substitutions is limited. We generated recombinant A/California/04/09 (H1N1)-, A/Hong Kong/218849/2006 (H3N2)-, and B/Victoria/504/2000-like viruses that contained PA substitutions identified in baloxavir clinical trials and surveillance that could potentially be associated with baloxavir resistance. We characterized their susceptibility to baloxavir, impact on polymerase activity, viral growth, and ability to induce interferon (IFN) and IFN-stimulated genes expression in vitro. Four PA substitutions, H1N1 I38L/T, E199D, and B G199R, significantly reduced the sensitivity of the recombinant viruses to baloxavir (14.1-fold). We confirmed our findings by using the luciferase-based ribonucleoprotein minigenome assay and by using virus yield reduction assay in Calu-3 and normal human bronchial epithelial (NHBE) cells. We observed that I38L and E199D resulted in decreased viral replication of the H1N1 wild-type virus (1.4-fold) but the H1N1 I38T and B G199R substitutions did not significantly alter replication capacity in Calu-3 cells. In addition, H1N1 variants with PA I38L/T and E199D induced significantly higher levels of IFNB1 gene expression compared to the wild-type virus (4.2-fold). In contrast, the B variant, G199R, triggered the lowest levels of IFN genes in Calu-3 cells (1.6-fold). Because baloxavir is a novel anti-influenza therapeutic agent, identifying and characterizing substitutions associated with reduced sensitivity to baloxavir, as well as the impact of these substitutions on viral fitness, is paramount to the strategic implementation of this novel countermeasure.
Collapse
Affiliation(s)
- Brady T. Hickerson
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Simone E. Adams
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Subrata Barman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Lance Miller
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Vladimir Y. Lugovtsev
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - William L. Ince
- Division of Antiviral Products, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Raymond P. Donnelly
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Natalia A. Ilyushina
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
16
|
Muñoz-Moreno R, Martínez-Romero C, García-Sastre A. Induction and Evasion of Type-I Interferon Responses during Influenza A Virus Infection. Cold Spring Harb Perspect Med 2021; 11:a038414. [PMID: 32661015 PMCID: PMC8485741 DOI: 10.1101/cshperspect.a038414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Influenza A viruses (IAVs) are contagious pathogens and one of the leading causes of respiratory tract infections in both humans and animals worldwide. Upon infection, the innate immune system provides the first line of defense to neutralize or limit the replication of invading pathogens, creating a fast and broad response that brings the cells into an alerted state through the secretion of cytokines and the induction of the interferon (IFN) pathway. At the same time, IAVs have developed a plethora of immune evasion mechanisms in order to avoid or circumvent the host antiviral response, promoting viral replication. Herein, we will review and summarize already known and recently described innate immune mechanisms that host cells use to fight IAV viral infections as well as the main strategies developed by IAVs to overcome such powerful defenses during this fascinating virus-host interplay.
Collapse
Affiliation(s)
- Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
17
|
Li S, Zhu Z, Yang F, Cao W, Yang J, Ma C, Zhao Z, Tian H, Liu X, Ma J, Xiao S, Zheng H. Porcine Epidemic Diarrhea Virus Membrane Protein Interacted with IRF7 to Inhibit Type I IFN Production during Viral Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:2909-2923. [PMID: 34127522 DOI: 10.4049/jimmunol.2001186] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic porcine enteropathogenic coronavirus causing severe enteritis and lethal watery diarrhea in piglets. PEDV infection suppresses the synthesis of type I IFN, and multiple viral proteins of PEDV have been shown to target the adaptors of innate immune pathways to inhibit type I IFN production. In this study, we identified PEDV membrane (M) protein as a new antagonist of type I IFN production in both human embryonic kidney HEK293T cells and porcine kidney PK-15 cells and determined the antagonistic mechanism used by M protein to target IFN regulatory factor 7 (IRF7), an important regulator of type I IFN production. IRF7 is phosphorylated and activated by TBK1 and IKKε in response to viral infection. We found that PEDV M protein interacted with the inhibitory domain of IRF7 and significantly suppressed TBK1/IKKε-induced IRF7 phosphorylation and dimerization of IRF7, leading to the decreased expression of type I IFN, although it did not affect the interaction between TBK1/IKKε and IRF7. As expected, overexpression of M protein significantly increased PEDV replication in porcine cells. The M proteins of both epidemic PEDV strains and vaccine strain showed similar antagonistic effect on type I IFN production, and the 1-55 region of M protein was essential for disruption of IRF7 function by interacting with IRF7. Taken together, our data identified a new, to our knowledge, IFN antagonist of PEDV, as well as a novel, to our knowledge, antagonistic mechanism evolved by PEDV to inhibit type I IFN production.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Jinping Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Caina Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Zhenxiang Zhao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Hong Tian
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Junwu Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| |
Collapse
|
18
|
Chu M, Zhou B, Tu H, Li M, Huang L, He Y, Liu L, Han S, Yin J, Peng B, He X, Liu W. The Upregulation of a Novel Long Noncoding RNA AK097647 Promotes Enterovirus 71 Replication and Decreases IFN-λ1 Secretion. Intervirology 2021; 64:147-155. [PMID: 33951637 DOI: 10.1159/000515903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/16/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) infects millions of children every year in China and has become a challenge to public health. However, there is no effective treatment for EV71 infection. Long noncoding RNAs (lncRNAs) have been found to play various roles in virus replication and infection. OBJECTIVE We aimed to explore the role of a novel long noncoding RNA AK097647 (lncRNA-AK097647) during EV71 infection. METHODS To assess the role of lncRNA-AK097647 during EV71 infection, siRNAs were used to silence lncRNA-K097647 expression. RT-qPCR assay and Western blotting were applied to measure the mRNA and protein levels of EV71 VP1 and the phosphorylation of NF-κB. ELISA was used to detect the level of IFN-λ1 expression. RESULTS The novel lncRNA-AK097647 was upregulated in human rhabdomyosarcoma cells and the blood of hand, foot, and mouth disease patients infected with EV71, as demonstrated by RT-qPCR. Interestingly, RNAi-mediated knockdown of lncRNA-AK097647 dramatically increased the level of IFN-λ1 expression, resulting in the suppression of EV71 replication. In contrast, overexpression of lncRNA-AK097647 decreased the level of IFN-λ1 expression and resulted in increased EV71 replication. In addition, we found that lncRNA-AK097647 could inhibit the phosphorylation of NF-κB. CONCLUSION These results suggest a novel mechanism by which EV71 evades the IFN-mediated host antiviral response by increasing lncRNA-AK097647 expression.
Collapse
Affiliation(s)
- Min Chu
- Shenzhen Institute of Wuhan University, Shenzhen, China.,Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bingfei Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Huilin Tu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Min Li
- The Department of Clinical Laboratory, Central Hospital of Huanggang, Huanggang, China
| | - Li Huang
- The Medical Research for Structural Biology of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan He
- The Medical Research for Structural Biology of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China
| | - Song Han
- Shenzhen Institute of Wuhan University, Shenzhen, China.,Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Shenzhen Institute of Wuhan University, Shenzhen, China.,Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Shenzhen Institute of Wuhan University, Shenzhen, China.,Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Moatasim Y, Kandeil A, Mostafa A, Kutkat O, Sayes ME, El Taweel AN, AlKhazindar M, AbdElSalam ET, El-Shesheny R, Kayali G, Ali MA. Impact of Individual Viral Gene Segments from Influenza A/H5N8 Virus on the Protective Efficacy of Inactivated Subtype-Specific Influenza Vaccine. Pathogens 2021; 10:pathogens10030368. [PMID: 33808583 PMCID: PMC8003407 DOI: 10.3390/pathogens10030368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Since its emergence in 2014, the highly pathogenic avian influenza H5N8 virus has continuously and rapidly spread worldwide in the poultry sector resulting in huge economic losses. A typical inactivated H5N8 vaccine is prepared using the six internal genes from A/PR8/1934 (H1N1) and the two major antigenic proteins (HA and NA) from the circulating H5N8 strain with the HA modified to a low pathogenic form (PR8HA/NA-H5N8). The contribution of the other internal proteins from H5N8, either individually or in combination, to the overall protective efficacy of PR8-based H5N8 vaccine has not been investigated. Using reverse genetics, a set of PR8-based vaccines expressing the individual proteins from an H5N8 strain were rescued and compared to the parent PR8 and low pathogenic H5N8 strains and the commonly used PR8HA/NA-H5N8. Except for the PR8-based vaccine strains expressing the HA of H5N8, none of the rescued combinations could efficiently elicit virus-neutralizing antibodies. Compared to PR8, the non-HA viral proteins provided some protection to infected chickens six days post infection. We assume that this late protection was related to cell-based immunity rather than antibody-mediated immunity. This may explain the slight advantage of using full low pathogenic H5N8 instead of PR8HA/NA-H5N8 to improve protection by both the innate and the humoral arms of the immune system.
Collapse
Affiliation(s)
- Yassmin Moatasim
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed N. El Taweel
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Maha AlKhazindar
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Elsayed T. AbdElSalam
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ghazi Kayali
- Human Link, Dubai, United Arab Emirates
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
- Correspondence: (G.K.); (M.A.A.)
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- Correspondence: (G.K.); (M.A.A.)
| |
Collapse
|
20
|
Zeng Y, Xu S, Wei Y, Zhang X, Wang Q, Jia Y, Wang W, Han L, Chen Z, Wang Z, Zhang B, Chen H, Lei CQ, Zhu Q. The PB1 protein of influenza A virus inhibits the innate immune response by targeting MAVS for NBR1-mediated selective autophagic degradation. PLoS Pathog 2021; 17:e1009300. [PMID: 33577621 PMCID: PMC7880438 DOI: 10.1371/journal.ppat.1009300] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
Influenza A virus (IAV) has evolved various strategies to counteract the innate immune response using different viral proteins. However, the mechanism is not fully elucidated. In this study, we identified the PB1 protein of H7N9 virus as a new negative regulator of virus- or poly(I:C)-stimulated IFN induction and specifically interacted with and destabilized MAVS. A subsequent study revealed that PB1 promoted E3 ligase RNF5 to catalyze K27-linked polyubiquitination of MAVS at Lys362 and Lys461. Moreover, we found that PB1 preferentially associated with a selective autophagic receptor neighbor of BRCA1 (NBR1) that recognizes ubiquitinated MAVS and delivers it to autophagosomes for degradation. The degradation cascade mediated by PB1 facilitates H7N9 virus infection by blocking the RIG-I-MAVS-mediated innate signaling pathway. Taken together, these data uncover a negative regulatory mechanism involving the PB1-RNF5-MAVS-NBR1 axis and provide insights into an evasion strategy employed by influenza virus that involves selective autophagy and innate signaling pathways. In 2013, H7N9 influenza viruses appeared in China and other countries resulting in 1, 567 human infections and 615 deaths. Understanding the cross-talk between virus and host is vital for the development of effective vaccines and therapeutics. Here, we identified the PB1 protein of H7N9 virus as a novel negative regulator that enhances the degradation of MAVS, an essential adaptor protein in the innate signaling pathway. Mechanistically, PB1 promoted the E3 ligase RNF5-mediated ubiquitination of MAVS and recruited the selective autophagic receptor NBR1 to associate with and deliver the ubiquitinated MAVS to the autophagosomes for degradation. Thus, the PB1-RNF5-MAVS-NBR1 axis inhibited innate immune antiviral response and facilitated virus replication by mediating MAVS degradation in an autophagosome-dependent manner. Our findings reveal a novel mechanism by which influenza virus negatively regulates the innate immune response.
Collapse
Affiliation(s)
- Yan Zeng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuai Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanli Wei
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuegang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qian Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wanbing Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Han
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaoshan Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bo Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cao-Qi Lei
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (C-QL); (QZ)
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail: (C-QL); (QZ)
| |
Collapse
|
21
|
The influenza virus RNA polymerase as an innate immune agonist and antagonist. Cell Mol Life Sci 2021; 78:7237-7256. [PMID: 34677644 PMCID: PMC8532088 DOI: 10.1007/s00018-021-03957-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Influenza A viruses cause a mild-to-severe respiratory disease that affects millions of people each year. One of the many determinants of disease outcome is the innate immune response to the viral infection. While antiviral responses are essential for viral clearance, excessive innate immune activation promotes lung damage and disease. The influenza A virus RNA polymerase is one of viral proteins that affect innate immune activation during infection, but the mechanisms behind this activity are not well understood. In this review, we discuss how the viral RNA polymerase can both activate and suppress innate immune responses by either producing immunostimulatory RNA species or directly targeting the components of the innate immune signalling pathway, respectively. Furthermore, we provide a comprehensive overview of the polymerase residues, and their mutations, associated with changes in innate immune activation, and discuss their putative effects on polymerase function based on recent advances in our understanding of the influenza A virus RNA polymerase structure.
Collapse
|
22
|
Tian J, Kang H, Huang J, Li Z, Pan Y, Li Y, Chen S, Zhang J, Yin H, Qu L. Feline calicivirus strain 2280 p30 antagonizes type I interferon-mediated antiviral innate immunity through directly degrading IFNAR1 mRNA. PLoS Pathog 2020; 16:e1008944. [PMID: 33075108 PMCID: PMC7571719 DOI: 10.1371/journal.ppat.1008944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Feline calicivirus (FCV) belongs to the Caliciviridae, which comprises small RNA viruses of both medical and veterinary importance. Once infection has occurred, FCV can persist in the cat population, but the molecular mechanism of how it escapes the innate immune response is still unknown. In this study, we found FCV strain 2280 to be relatively resistant to treatment with IFN-β. FCV 2280 infection inhibited IFN-induced activation of the ISRE (Interferon-stimulated response element) promoter and transcription of ISGs (Interferon-stimulated genes). The mechanistic analysis showed that the expression of IFNAR1, but not IFNAR2, was markedly reduced in FCV 2280-infected cells by inducing the degradation of IFNAR1 mRNA, which inhibited the phosphorylation of downstream adaptors. Further, overexpression of the FCV 2280 nonstructural protein p30, but not p30 of the attenuated strain F9, downregulated the expression of IFNAR1 mRNA. His-p30 fusion proteins were produced in Escherichia coli and purified, and an in vitro digestion assay was performed. The results showed that 2280 His-p30 could directly degrade IFNAR1 RNA but not IFNAR2 RNA. Moreover, the 5’UTR of IFNAR1 mRNA renders it directly susceptible to cleavage by 2280 p30. Next, we constructed two chimeric viruses: rFCV 2280-F9 p30 and rFCV F9-2280 p30. Compared to infection with the parental virus, rFCV 2280-F9 p30 infection displayed attenuated activities in reducing the level of IFNAR1 and inhibiting the phosphorylation of STAT1 and STAT2, whereas rFCV F9-2280 p30 displayed enhanced activities. Animal experiments showed that the virulence of rFCV 2280-F9 p30 infection was attenuated but that the virulence of rFCV F9-2280 p30 was increased compared to that of the parental viruses. Collectively, these data show that FCV 2280 p30 could directly and selectively degrade IFNAR1 mRNA, thus blocking the type I interferon-induced activation of the JAK-STAT signalling pathway, which may contribute to the pathogenesis of FCV infection. Vaccination against FCV has been available for many years and has effectively reduced the incidence of clinical disease. However, vaccines cannot prevent infection, and vaccinated cats can still become persistently infected by FCV, suggesting that FCV has evolved several strategies for counteracting various components of the innate and adaptive immune systems. Here, we show that FCV strain 2280 is resistant to the antiviral effect of IFN. The molecular mechanism by which this occurs is that FCV 2280 infection blocks the JAK-STAT pathway through promoting the degradation of IFNAR1 mRNA by FCV p30 protein. An in vitro degradation assay demonstrated that 2280 p30, but not p30 of the vaccine strain F9, could directly and selectively decay IFNAR1 RNA. The exchange of p30 between 2280 and F9 strains using a reverse genetic system also showed that 2280 p30 is a key factor that contributes to the resistance to IFN and enhances virulence. Our findings reveal a new mechanism evolved by FCV to circumvent the host antiviral response.
Collapse
Affiliation(s)
- Jin Tian
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail: (JT); (LQ)
| | - Hongtao Kang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jiapei Huang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Zhijie Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yudi Pan
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yin Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Si Chen
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jikai Zhang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Hang Yin
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Liandong Qu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail: (JT); (LQ)
| |
Collapse
|
23
|
Hu J, Zhang L, Liu X. Role of Post-translational Modifications in Influenza A Virus Life Cycle and Host Innate Immune Response. Front Microbiol 2020; 11:517461. [PMID: 33013775 PMCID: PMC7498822 DOI: 10.3389/fmicb.2020.517461] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/14/2020] [Indexed: 01/01/2023] Open
Abstract
Throughout various stages of its life cycle, influenza A virus relies heavily on host cellular machinery, including the post-translational modifications (PTMs) system. During infection, influenza virus interacts extensively with the cellular PTMs system to aid in its successful infection and dissemination. The complex interplay between viruses and the PTMs system induces global changes in PTMs of the host proteome as well as modifications of specific host or viral proteins. The most common PTMs include phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, NEDDylation, and glycosylation. Many PTMs directly support influenza virus infection, whereas others contribute to modulating antiviral responses. In this review, we describe current knowledge regarding the role of PTMs in different stages of the influenza virus replication cycle. We also discuss the concerted role of PTMs in antagonizing host antiviral responses, with an emphasis on their impact on viral pathogenicity and host range.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Li C, Wang T, Zhang Y, Wei F. Evasion mechanisms of the type I interferons responses by influenza A virus. Crit Rev Microbiol 2020; 46:420-432. [PMID: 32715811 DOI: 10.1080/1040841x.2020.1794791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The type I interferons (IFNs) represent the first line of host defense against influenza virus infection, and the precisely control of the type I IFNs responses is a central event of the immune defense against influenza viral infection. Influenza viruses are one of the leading causes of respiratory tract infections in human and are responsible for seasonal epidemics and occasional pandemics, leading to a serious threat to global human health due to their antigenic variation and interspecies transmission. Although the host cells have evolved sophisticated antiviral mechanisms based on sensing influenza viral products and triggering of signalling cascades resulting in secretion of the type I IFNs (IFN-α/β), influenza viruses have developed many strategies to counteract this mechanism and circumvent the type I IFNs responses, for example, by inducing host shut-off, or by regulating the polyubiquitination of viral and host proteins. This review will summarise the current knowledge of how the host cells recognise influenza viruses to induce the type I IFNs responses and the strategies that influenza viruses exploited to evade the type I IFNs signalling pathways, which will be helpful for the development of antivirals and vaccines.
Collapse
Affiliation(s)
- Chengye Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Tong Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
25
|
Yu J, Sun X, Goie JYG, Zhang Y. Regulation of Host Immune Responses against Influenza A Virus Infection by Mitogen-Activated Protein Kinases (MAPKs). Microorganisms 2020; 8:microorganisms8071067. [PMID: 32709018 PMCID: PMC7409222 DOI: 10.3390/microorganisms8071067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza is a major respiratory viral disease caused by infections from the influenza A virus (IAV) that persists across various seasonal outbreaks globally each year. Host immune response is a key factor determining disease severity of influenza infection, presenting an attractive target for the development of novel therapies for treatments. Among the multiple signal transduction pathways regulating the host immune activation and function in response to IAV infections, the mitogen-activated protein kinase (MAPK) pathways are important signalling axes, downstream of various pattern recognition receptors (PRRs), activated by IAVs that regulate various cellular processes in immune cells of both innate and adaptive immunity. Moreover, aberrant MAPK activation underpins overexuberant production of inflammatory mediators, promoting the development of the “cytokine storm”, a characteristic of severe respiratory viral diseases. Therefore, elucidation of the regulatory roles of MAPK in immune responses against IAVs is not only essential for understanding the pathogenesis of severe influenza, but also critical for developing MAPK-dependent therapies for treatment of respiratory viral diseases. In this review, we will summarise the current understanding of MAPK functions in both innate and adaptive immune response against IAVs and discuss their contributions towards the cytokine storm caused by highly pathogenic influenza viruses.
Collapse
Affiliation(s)
- Jiabo Yu
- Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; (J.Y.); (X.S.)
| | - Xiang Sun
- Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; (J.Y.); (X.S.)
| | - Jian Yi Gerald Goie
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Correspondence: ; Tel.: +65-65166407
| |
Collapse
|
26
|
Sun N, Jiang L, Ye M, Wang Y, Wang G, Wan X, Zhao Y, Wen X, Liang L, Ma S, Liu L, Bu Z, Chen H, Li C. TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2. Protein Cell 2020; 11:894-914. [PMID: 32562145 PMCID: PMC7719147 DOI: 10.1007/s13238-020-00734-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022] Open
Abstract
Tripartite motif (TRIM) family proteins are important effectors of innate immunity against viral infections. Here we identified TRIM35 as a regulator of TRAF3 activation. Deficiency in or inhibition of TRIM35 suppressed the production of type I interferon (IFN) in response to viral infection. Trim35-deficient mice were more susceptible to influenza A virus (IAV) infection than were wild-type mice. TRIM35 promoted the RIG-I-mediated signaling by catalyzing Lys63-linked polyubiquitination of TRAF3 and the subsequent formation of a signaling complex with VISA and TBK1. IAV PB2 polymerase countered the innate antiviral immune response by impeding the Lys63-linked polyubiquitination and activation of TRAF3. TRIM35 mediated Lys48-linked polyubiquitination and proteasomal degradation of IAV PB2, thereby antagonizing its suppression of TRAF3 activation. Our in vitro and in vivo findings thus reveal novel roles of TRIM35, through catalyzing Lys63- or Lys48-linked polyubiquitination, in RIG-I antiviral immunity and mechanism of defense against IAV infection.
Collapse
Affiliation(s)
- Nan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Miaomiao Ye
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yihan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guangwen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaopeng Wan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yuhui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xia Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Shujie Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
27
|
Zhang Y, Zong B, Wang X, Zhu Y, Hu L, Li P, Zhang A, Chen H, Liu M, Tan C. Fisetin Lowers Streptococcus suis serotype 2 Pathogenicity in Mice by Inhibiting the Hemolytic Activity of Suilysin. Front Microbiol 2018; 9:1723. [PMID: 30105012 PMCID: PMC6077255 DOI: 10.3389/fmicb.2018.01723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis serotype 2 is a serious zoonotic pathogen and has attracted worldwide attention since the first human case was reported in Denmark in 1968. Some virulence factors have been reported to be involved in the pathogenesis of the infection caused by Streptococcus suis serotype 2, and then novel strategies to identify some anti-virulence compounds which can effectively inhibit the pathogenic bacterial infection have recently been reported. Suilysin is an essential virulence factor for Streptococcus suis serotype 2 since it creates pores in the target cells membranes, which aids bacterial colonization. The important role of suilysin in the virulence of Streptococcus suis serotype 2 renders it an ideal target for designing novel anti-virulence therapeutics. We find that fisetin, as a natural flavonoid, is a potent antagonist against suilysin-mediated hemolysis. The aim of this study is to evaluate the effect of fisetin on the hemolytic activity of suilysin from Streptococcus suis serotype 2. Fisetin is found to significantly inhibit the hemolytic activity of suilysin. Within the range of effective concentrations, fisetin does not influence the growth of Streptococcus suis serotype 2 and the expression of suilysin protein. In vitro, fisetin effectively inhibits the death of macrophages (J774A.1 and RAW264.7) infected with Streptococcus suis serotype 2 by weakening intracellular bacterial multiplication. Animal model experiment shows that fisetin effectively improves the survival rate of animals infected with Streptococcus suis serotype 2. Our findings suggest that fisetin could be used as an antitoxin against suilysin and be developed into a promising therapeutic candidate for treating Streptococcus suis serotype 2 infection.
Collapse
Affiliation(s)
- Yanyan Zhang
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingbing Zong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongwei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Linlin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Pei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Manli Liu
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
28
|
Fujikura D, Miyazaki T. Programmed Cell Death in the Pathogenesis of Influenza. Int J Mol Sci 2018; 19:ijms19072065. [PMID: 30012970 PMCID: PMC6073994 DOI: 10.3390/ijms19072065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Influenza is a respiratory disease induced by infection by the influenza virus, which is a member of Orthomyxoviridae family. This infectious disease has serious impacts on public health systems and results in considerable mortality and economic costs throughout the world. Based on several experimental studies, massive host immune reaction is associated with the disease severity of influenza. Programmed cell death is typically induced during virus infection as a consequence of host immune reaction to limit virus spread by eliminating niches for virus propagation without causing inflammation. However, in some viral infectious diseases, such as influenza, in the process of immune reaction, aberrant induction of programmed cell death disturbs the maintenance of organ function. Current reports show that there are different types of programmed cell death that vary in terms of molecular mechanisms and/or associations with inflammation. In addition, these novel types of programmed cell death are associated with pathogenesis rather than suppressing virus propagation in the disease course. Here, we review our current understanding of mechanisms of programmed cell death in the pathogenesis of influenza.
Collapse
Affiliation(s)
- Daisuke Fujikura
- Center for Advanced Research and Education (CARE), Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan.
| | - Tadaaki Miyazaki
- Department of Probiotics Immunology, Institute for Genetic Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo 060-0815, Japan.
| |
Collapse
|
29
|
Lee CY, An SH, Kim I, Choi JG, Lee YJ, Kim JH, Kwon HJ. Novel mutations in avian PA in combination with an adaptive mutation in PR8 NP exacerbate the virulence of PR8-derived recombinant influenza A viruses in mice. Vet Microbiol 2018; 221:114-121. [PMID: 29981696 DOI: 10.1016/j.vetmic.2018.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
The polymerase complex of the low-pathogenic avian influenza virus [A/chicken/Korea/KBNP-0028/2000] (0028) has previously been characterized, and novel amino acid residues present in the polymerase acidic protein (PA) that likely contribute to pathogenicity toward mammals have been identified. In the present study, our aims were to generate A/Puerto Rico/8/34 (PR8)-derived recombinant viruses containing the 0028-PA gene with a single amino acid mutation and to test their pathogenicity and replication ability. We found that the recombinant viruses acquired additional single mutations in the nucleoprotein (NP). Because the additional mutations in NP did not affect viral pathogenicity, but rather attenuated viral replication and polymerase activity, the incompatibility of the avian PA gene within the PR8 backbone may have induced an adaptive mutation in NP. To minimize the differences due to NP mutations, we generated 0028-PA mutants with an E375G mutation, not affecting viral replication and pathogenicity, in the NP gene. The PR8-PA(0028)-E684G mutant showed significantly higher viral replication in mammalian cells as compared to PR8-PA(0028) and led to 100% mortality in mice, with significantly increased interferon β expression. Thus, the E684G mutation in the PA gene may play an important role in viral pathogenicity in mice by increasing viral replication and the host immune response.
Collapse
Affiliation(s)
- Chung-Young Lee
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
| | - Se-Hee An
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
| | - Ilhwan Kim
- Division of Antimicrobial Resistance, Center for Infectious Diseases, National Research Institute of Health, KCDC, Cheongju, Republic of Korea
| | - Jun-Gu Choi
- Avian Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Youn-Jeong Lee
- Avian Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Production Medicine, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea; Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Kangwon-do, Republic of Korea.
| |
Collapse
|