1
|
He F, Zhong JS, Chen CL, Tian P, Chen J, Fan XM. Sodium propionate ameliorates lipopolysaccharide-induced acute respiratory distress syndrome in rats via the PI3K/AKT/mTOR signaling pathway. 3 Biotech 2024; 14:286. [PMID: 39493290 PMCID: PMC11525366 DOI: 10.1007/s13205-024-04130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung disease characterized by significant hypoxemia, which impairs the oxygen supply necessary for optimal lung function. This study aimed to investigate the effects of sodium propionate (SP), the primary end product of intestinal flora fermentation of dietary fiber, on lipopolysaccharide (LPS)-induced ARDS in rats. The rats were treated with SP, after which the lung wet/dry ratio, arterial partial oxygen pressure (PaO2), levels of pro- and anti-inflammatory cytokines, tight junction proteins ZO-1 and Occludin, as well as LC3 and phosphorylated PI3K (p-PI3K)/p-AKT/p-mTOR protein levels, were measured. Additionally, histopathological analysis was conducted. The results indicated that SP effectively alleviated arterial hypoxemia in rats and mitigated the pathological damage to both intestinal and lung tissues caused by LPS. Notably, SP significantly reduced the levels of inflammatory factors TNF-α and IL-6 in the blood and bronchoalveolar lavage fluid (BALF) of ARDS rats, while increasing the concentration of the anti-inflammatory factor IL-10. Furthermore, SP inhibited the activation of the PI3K/AKT/mTOR signaling pathway and enhanced the LC3II/LC3I ratio in lung tissue. Therefore, SP may improve LPS-induced ARDS in rats by inhibiting the activation of the PI3K/AKT/mTOR signaling pathway, promoting autophagy, decreasing the production and release of inflammatory markers, and reducing alveolar epithelial damage.
Collapse
Affiliation(s)
- Fang He
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Department of Allergy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
| | - Jiang-Shan Zhong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Department of Allergy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
| | - Chun-Lan Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Department of Allergy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
| | - Peng Tian
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Department of Allergy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
| | - Jie Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Department of Allergy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
| | - Xian-Ming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Department of Allergy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
| |
Collapse
|
2
|
Song H, Chen F, Cao Y, Wang F, Wang L, Xiong L, Shen X. Innovative Applications of Pectin in Lipid Management: Mechanisms, Modifications, Synergies, Nanocarrier Systems, and Safety Considerations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20261-20272. [PMID: 39241169 DOI: 10.1021/acs.jafc.4c06586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Pectin, a natural polysaccharide predominantly sourced from the cell walls of terrestrial plants, is widely regarded for its gelling, thickening, and stabilizing properties, which have extensive applications in the food, pharmaceutical, and biotechnological industries. This review discusses the mechanistic pathways by which pectin mediates its lipid-lowering properties, such as pectin's antioxidant activity, the modulation of gut microbiota, its anti-inflammatory properties, its capacity to bind bile acids and cholesterol, and its impact on the expression of genes associated with lipid metabolism. To enhance its hypolipidemic properties, chemical, physical, and enzymatic modification techniques are explored. Additionally, the synergistic effects of pectin in combination with other bioactive compounds such as phytosterols and polyphenols, as well as its potential in nanocarrier-mediated delivery systems for lipid-lowering agents, are highlighted. The review also conducts a critical analysis of the safety and regulatory considerations associated with pectin use, emphasizing the necessity for comprehensive toxicological evaluations and adherence to regulatory standards. This paper underscores the growing potential of pectin not only as a dietary fiber but also as a multifaceted agent for ameliorating hyperlipidemia, catalyzing a shift toward more targeted and efficacious lipid-lowering strategies.
Collapse
Affiliation(s)
- Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fangmin Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yubo Cao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ling Xiong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
3
|
Li J, Yin W, Liang Y, Yang Z, Li L, Mai Z, Yu X, Lu Y, Zhang Z, Abula S, Wu Y, Wusiman A, Guo Q. Pomegranate flower polysaccharide improves mastitis in mice by regulating intestinal flora and restoring the blood-milk barrier. Front Pharmacol 2024; 15:1427355. [PMID: 39211783 PMCID: PMC11357933 DOI: 10.3389/fphar.2024.1427355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
This study explored the inhibitory effect of pomegranate flower polysaccharide (PFPS) on mastitis through in vitro and in vivo models. PFPS is a new type of polysaccharide isolated and extracted from pomegranate flowers. The result revealed that PFPS consists of GalA, Ara, and Gal, and the residues consist of 1,4-GalpA, 1,4-Galp, and 1,3,6-Galp, which contain HG-type and RG-I-type pectin structural domains. In vitro studies showed that PFPS could inhibit LPS-enhanced phagocytosis of RAW 264.7 cells and the release of IL-1β, IL-10, and TNF-α. In vivo, studies showed that PFPS improved xylene-induced mouse ear swelling and carrageenan-induced mouse paw edema by inhibiting inflammatory factors. In the mouse mastitis model, PFPS significantly improved LPS-induced inflammation and oxidative stress in mammary tissue. Intestinal flora sequencing results showed that PFPS could effectively regulate the intestinal flora of mice, reduce the relative abundance of pathogenic bacteria Oscillospira and AF12, and increase the probiotics Blautia, Parabacteroides, Allobaculum, and Clostridiaceae_Clostridium. Therefore, PFPS ultimately played a role in preventing mastitis by regulating the intestinal flora and further improving the blood-milk barrier. This study provides a scientific basis for PFPS as a potential candidate drug for the treatment of mastitis.
Collapse
Affiliation(s)
- Jianlong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Wen Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuan Liang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhaoran Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Liangliang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xingjian Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, United States
| | - Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhenping Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yi Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
4
|
Wang Y, Zhao Y, Tang X, Nan X, Jiang L, Wang H, Liu J, Yang L, Yao J, Xiong B. Nutrition, gastrointestinal microorganisms and metabolites in mastitis occurrence and control. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:220-231. [PMID: 38800734 PMCID: PMC11126769 DOI: 10.1016/j.aninu.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 05/29/2024]
Abstract
Mastitis affects almost all mammals including humans and dairy cows. In the dairy industry, bovine mastitis is a disease with a persistently high incidence, causing serious losses to the health of cows, the quality of dairy products, and the economy of dairy farms. Although local udder infection caused by the invasion of exogenous pathogens into the mammary gland was considered the main cause of mastitis, evidence has been established and continues to grow, showing that nutrition factors and gastrointestinal microbiome (GM) as well as their metabolites are also involved in the development of mammary inflammatory response. Suboptimal nutrition is recognized as a risk factor for increased susceptibility to mastitis in cattle, in particular the negative energy balance. The majority of data regarding nutrition and bovine mastitis involves micronutrients. In addition, the dysbiotic GM can directly trigger or aggravate mastitis through entero-mammary gland pathway. The decreased beneficial commensal bacteria, lowered bacterial diversity, and increased pathogens as well as proinflammatory metabolites are found in both the milk and gastrointestinal tract of mastitic dairy cows. This review discussed the relationship between the nutrition (energy and micronutrient levels) and mastitis, summarized the role of GM and metabolites in regulating mastitis. Meanwhile, several non-antibiotics strategies were provided for the prevention and alleviation of mastitis, including micronutrients, probiotics, short-chain fatty acids, high-fiber diet, inulin, and aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Hu X, He Z, Zhao C, He Y, Qiu M, Xiang K, Zhang N, Fu Y. Gut/rumen-mammary gland axis in mastitis: Gut/rumen microbiota-mediated "gastroenterogenic mastitis". J Adv Res 2024; 55:159-171. [PMID: 36822391 PMCID: PMC10770137 DOI: 10.1016/j.jare.2023.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Mastitis is an inflammatory response in the mammary gland that results in huge economic losses in the breeding industry. The aetiology of mastitis is complex, and the pathogenesis has not been fully elucidated. It is commonly believed that mastitis is induced by pathogen infection of the mammary gland and induces a local inflammatory response. However, in the clinic, mastitis is often comorbid or secondary to gastric disease, and local control effects targeting the mammary gland are limited. In addition, recent studies have found that the gut/rumen microbiota contributes to the development of mastitis and proposed the gut/rumen-mammary gland axis. Combined with studies indicating that gut/rumen microbiota disturbance can damage the gut mucosa barrier, gut/rumen bacteria and their metabolites can migrate to distal extraintestinal organs. It is believed that the occurrence of mastitis is related not only to the infection of the mammary gland by external pathogenic microorganisms but also to a gastroenterogennic pathogenic pathway. AIM OF REVIEW We propose the pathological concept of "gastroenterogennic mastitis" and believe that the gut/rumen-mammary gland axis-mediated pathway is the pathological mechanism of "gastroenterogennic mastitis". KEY SCIENTIFIC CONCEPTS OF REVIEW To clarify the concept of "gastroenterogennic mastitis" by summarizing reports on the effect of the gut/rumen microbiota on mastitis and the gut/rumen-mammary gland axis-mediated pathway to provide a research basis and direction for further understanding and solving the pathogenesis and difficulties encountered in the prevention of mastitis.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhaoqi He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
6
|
Sereti I, Verburgh ML, Gifford J, Lo A, Boyd A, Verheij E, Verhoeven A, Wit FWNM, Schim van der Loeff MF, Giera M, Kootstra NA, Reiss P, Vujkovic-Cvijin I. Impaired gut microbiota-mediated short-chain fatty acid production precedes morbidity and mortality in people with HIV. Cell Rep 2023; 42:113336. [PMID: 37918403 PMCID: PMC10872975 DOI: 10.1016/j.celrep.2023.113336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Antiretroviral therapy (ART) has dramatically lengthened lifespan among people with HIV (PWH), but this population experiences heightened rates of inflammation-related comorbidities. HIV-associated inflammation is linked with an altered microbiome; whether such alterations precede inflammation-related comorbidities or occur as their consequence remains unknown. We find that ART-treated PWH exhibit depletion of gut-resident bacteria that produce short-chain fatty acids (SCFAs)-crucial microbial metabolites with anti-inflammatory properties. Prior reports establish that fecal SCFA concentrations are not depleted in PWH. We find that gut-microbiota-mediated SCFA production capacity is better reflected in serum than in feces and that PWH exhibit reduced serum SCFA, which associates with inflammatory markers. Leveraging stool and serum samples collected prior to comorbidity onset, we find that HIV-specific microbiome alterations precede morbidity and mortality in ART-treated PWH. Among these microbiome alterations, reduced microbiome-mediated conversion of lactate to propionate precedes mortality in PWH. Thus, gut microbial fiber/lactate conversion to SCFAs may modulate HIV-associated comorbidity risk.
Collapse
Affiliation(s)
- Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, NIAID/NIH, Rockville, MD, USA; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Myrthe L Verburgh
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Jacob Gifford
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alice Lo
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anders Boyd
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; HIV Monitoring Foundation, Amsterdam, the Netherlands; Public Health Service of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands
| | - Eveline Verheij
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Aswin Verhoeven
- Leiden University Medical Center, Center for Proteomics & Metabolomics, Leiden, the Netherlands
| | - Ferdinand W N M Wit
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; HIV Monitoring Foundation, Amsterdam, the Netherlands
| | - Maarten F Schim van der Loeff
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Public Health Service of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics & Metabolomics, Leiden, the Netherlands
| | - Neeltje A Kootstra
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Experimental Immunology, Amsterdam, the Netherlands
| | - Peter Reiss
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands; Amsterdam University Medical Centers, University of Amsterdam, Department of Global Health, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Bao L, Sun H, Zhao Y, Feng L, Wu K, Shang S, Xu J, Shan R, Duan S, Qiu M, Zhang N, Hu X, Zhao C, Fu Y. Hexadecanamide alleviates Staphylococcus aureus-induced mastitis in mice by inhibiting inflammatory responses and restoring blood-milk barrier integrity. PLoS Pathog 2023; 19:e1011764. [PMID: 37948460 PMCID: PMC10664928 DOI: 10.1371/journal.ppat.1011764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
Subacute ruminal acidosis (SARA) has been demonstrated to promote the development of mastitis, one of the most serious diseases in dairy farming worldwide, but the underlying mechanism is unclear. Using untargeted metabolomics, we found hexadecanamide (HEX) was significantly reduced in rumen fluid and milk from cows with SARA-associated mastitis. Herein, we aimed to assess the protective role of HEX in Staphylococcus aureus (S. aureus)- and SARA-induced mastitis and the underlying mechanism. We showed that HEX ameliorated S. aureus-induced mastitis in mice, which was related to the suppression of mammary inflammatory responses and repair of the blood-milk barrier. In vitro, HEX depressed S. aureus-induced activation of the NF-κB pathway and improved barrier integrity in mouse mammary epithelial cells (MMECs). In detail, HEX activated PPARα, which upregulated SIRT1 and subsequently inhibited NF-κB activation and inflammatory responses. In addition, ruminal microbiota transplantation from SARA cows (S-RMT) caused mastitis and aggravated S. aureus-induced mastitis, while these changes were reversed by HEX. Our findings indicate that HEX effectively attenuates S. aureus- and SARA-induced mastitis by limiting inflammation and repairing barrier integrity, ultimately highlighting the important role of host or microbiota metabolism in the pathogenesis of mastitis and providing a potential strategy for mastitis prevention.
Collapse
Affiliation(s)
- Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Hao Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Shan Shang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ruping Shan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Shiyu Duan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
8
|
Wang Y, Xu Q, Meng M, Chang G, Ma N, Shen X. Butyrate Protects against γ-d-Glutamyl- meso-diaminopimelic Acid-Induced Inflammatory Response and Tight Junction Disruption through Histone Deacetylase 3 Inhibition in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14638-14648. [PMID: 37767922 DOI: 10.1021/acs.jafc.3c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The present study was conducted to evaluate the regulatory actions and underlying mechanisms of butyrate on the inflammatory response and tight junction (TJ) disruption in bovine mammary epithelial cells (BMECs). Results showed that butyrate declined histone deacetylase 3 (HDAC3) expression, blocked NF-κB activation, and thus suppressed inflammatory cytokine production in γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP)-triggered BMECs. Butyrate also depressed the protein abundance of myosin light chain kinase (MLCK), elevated the expression of TJ proteins, and restored the cellular distribution of TJ proteins and the barrier function of epithelial cells. HDAC3 overexpression abolished the protective effects of butyrate. In conclusion, butyrate alleviated the iE-DAP-induced inflammatory response and TJ injury by blocking NF-κB activation and decreasing inflammatory cytokine production and MLCK expression in a HDAC3-dependent manner. Our finding provides a mechanistic basis for further exploring the regulatory effects of butyrate on the mammary inflammatory response.
Collapse
Affiliation(s)
- Yan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianqian Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Gu Y, Hou M, Chu J, Wan L, Yang M, Shen J, Ji M. The cause and effect of gut microbiota in development of inflammatory disorders of the breast. Eur J Med Res 2023; 28:324. [PMID: 37679821 PMCID: PMC10483784 DOI: 10.1186/s40001-023-01281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Inflammatory disorders of the breast (IDB) damages the interests of women and children and hinders the progress of global health seriously. Several studies had offered clues between gut microbiota (GM) and inflammatory disorders of the breast (IDB). The gut-mammary gland axis also implied a possible contribution of the GM to IDB. However, the causality between them is still elusive. METHODS The data of two-sample Mendelian randomization (MR) study related to the composition of GM (n = 18,340) and IDB (n = 177,446) were accessed from openly available genome-wide association studies (GWAS) database. As the major analytical method, inverse variance weighted (IVW) was introduced and several sensitive analytical methods were conducted to verify results. RESULTS Inverse variance weighted revealed Eubacterium rectale group (OR = 1.87, 95% CI: 1.02-3.43, p = 4.20E-02), Olsenella (OR = 1.29, 95% CI: 1.02-1.64, p = 3.30E-02), Ruminiclostridium-6 (OR = 1.53, 95% CI: 1.08-2.14, p = 1.60E-02) had an anti-protective effect on IDB. Peptococcus (OR = 0.75, 95% CI: 0.60-0.94, p = 1.30E-02) had a protective effect on IDB. The results were credible through a series of test. CONCLUSIONS We revealed causality between IDB and GM taxa, exactly including Ruminiclostridium-6, Eubacterium rectale group, Olsenella and Peptococcus. These genera may become novel biomarkers and supply new viewpoint for probiotic treatment. However, these findings warrant further test owing to the insufficient evidences.
Collapse
Affiliation(s)
- Yibo Gu
- School of Nursing, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Muye Hou
- School of Nursing, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Jinyu Chu
- School of Nursing, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Li Wan
- Department of Obstetrics, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Muyi Yang
- Department of Obstetrics, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, People's Republic of China.
| | - Jiemiao Shen
- School of Nursing, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
10
|
Li K, Ran X, Zeng Y, Li S, Hu G, Wang X, Li Y, Yang Z, Liu J, Fu S. Maslinic acid alleviates LPS-induced mice mastitis by inhibiting inflammatory response, maintaining the integrity of the blood-milk barrier and regulating intestinal flora. Int Immunopharmacol 2023; 122:110551. [PMID: 37406397 DOI: 10.1016/j.intimp.2023.110551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Mastitis occurs frequently in breastfeeding women and not only affects the women's health but also hinders breastfeeding. Maslinic acid is a type of pentacyclic triterpenoid widely found in olives that has good anti-inflammatory activity. This study aims to discuss the protective function of maslinic acid against mastitis and its underlying mechanism. For this, mice models of mastitis were established using lipopolysaccharide (LPS). The results revealed that maslinic acid reduced the pathological lesions in the mammary gland. In addition, it reduced the generation of pro-inflammatory factors and enzymes (IL-6, IL-1β, TNF-α, iNOS, and COX2) in both mice mammary tissue and mammary epithelial cells. The high-throughput 16S rDNA sequencing of intestinal flora showed that in mice with mastitis, maslinic acid treatment altered β-diversity and regulated microbial structure by increasing the abundance of probiotics such as Enterobacteriaceae and downregulating harmful bacteria such as Streptococcaceae. In addition, maslinic acid protected the blood-milk barrier by maintaining tight-junction protein expression. Furthermore, maslinic acid downregulated mammary inflammation by inhibiting the activation of NLRP3 inflammasome, AKT/NF-κB, and MAPK signaling pathways. Thus, in a mice model of LPS-induced mastitis, maslinic acid can inhibit the inflammatory response, protect the blood-milk barrier, and regulate the constitution of intestinal flora.
Collapse
Affiliation(s)
- Kefei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xin Ran
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yiruo Zeng
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang 110164, China
| | - Guiqiu Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaoxuan Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ying Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhanqing Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
11
|
Kim H, Huy TXN, Nguyen TT, Reyes AWB, Min W, Lee HJ, Hur J, Kim S. The Modulatory Effect of Sodium Propionate Treatment in the Expression of Inflammatory Cytokines and Intracellular Growth of Brucella abortus 544 in Raw 264.7 Cells. J Microbiol Biotechnol 2023; 33:1006-1012. [PMID: 37280772 PMCID: PMC10468669 DOI: 10.4014/jmb.2303.03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
In this study, we investigated the effects of sodium propionate (SP) treatment on intracellular mechanism of murine macrophages and its contribution to host immunity during Brucella abortus 544 infection. The intracellular growth assay revealed that SP inhibited Brucella replication inside the macrophages. To determine intracellular signaling involved during SP treatment after Brucella infection, we analyzed the change of five different cytokines production relevant to SP such as TNF-α, IL-10, IFN-γ, IL-1β, and IL-6, and the results indicated that the boost with IL-10 was apparent throughout the culture period for 48 h as well as IL-1β which was apparent at 24 h post-infection and IFN-γ which was apparent at 24 h and 48 h in comparison to SP untreated groups. On the other way, SP-treated cells displayed suppressed production of TNF-α and IL-6 at all time points tested and 48 h post-infection, respectively. Furthermore, we conducted western blot to establish a cellular mechanism, and the result suggested that SP treatment attenuated p50 phosphorylation, part of the NF-κB pathway. These findings indicated that the inhibitory effect of SP against Brucella infection could be attributed through induction of cytokine production and interference on intracellular pathway, suggesting SP as a potential candidate for treating brucellosis.
Collapse
Affiliation(s)
- Heejin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City 72300, Vietnam
| | - Trang Thi Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Alisha Wehdnesday Bernardo Reyes
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin Hur
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
12
|
Zhao C, Yi F, Wei B, Tan P, Huang Y, Zeng F, Wang Y, Xu C, Wang J. Sodium Propionate Relieves LPS-Induced Inflammation by Suppressing the NF-ĸB and MAPK Signaling Pathways in Rumen Epithelial Cells of Holstein Cows. Toxins (Basel) 2023; 15:438. [PMID: 37505707 PMCID: PMC10467098 DOI: 10.3390/toxins15070438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Subacute ruminal acidosis (SARA) is a prevalent disease in intensive dairy farming, and the rumen environment of diseased cows acidifies, leading to the rupture of gram-negative bacteria to release lipopolysaccharide (LPS). LPS can cause rumentitis and other complications, such as liver abscess, mastitis and laminitis. Propionate, commonly used in the dairy industry as a feed additive, has anti-inflammatory effects, but its mechanism is unclear. This study aims to investigate whether sodium propionate (SP) reduces LPS-induced inflammation in rumen epithelial cells (RECs) and the underlying mechanism. RECs were stimulated with different time (0, 1, 3, 6, 9, 18 h) and different concentrations of LPS (0, 1, 5, 10 μg/mL) to establish an inflammation model. Then, RECs were treated with SP (15, 25, 35 mM) or 10 μM PDTC in advance and stimulated by LPS for the assessment. The results showed that LPS (6h and 10 μg/mL) could stimulate the phosphorylation of NF-κB p65, IκB, JNK, ERK and p38 MAPK through TLR4, and increase the release of TNF-α, IL-1β and IL-6. SP (35 mM) can reduce the expression of cytokines by effectively inhibiting the NF-κB and MAPK inflammatory pathways. This study confirmed that SP inhibited LPS-induced inflammatory responses through NF-κB and MAPK in RECs, providing potential therapeutic targets and drugs for the prevention and treatment of SARA.
Collapse
Affiliation(s)
- Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Fanxuan Yi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| | - Bo Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| | - Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| | - Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| |
Collapse
|
13
|
Sun P, Zhao X, Liu M, Wu H, Lv C, Zhou S, Ding Z, Huo L, Yang L, Liang A. Lactational exposure to Deoxynivalenol causes mammary gland injury via inducing inflammatory response and impairing blood-milk barrier integrity in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114773. [PMID: 37003064 DOI: 10.1016/j.ecoenv.2023.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Lactation is a unique physiological process to produce and secrete milk. Deoxynivalenol (DON) exposure during lactation has been demonstrated to affect adversely the growth development of offspring. However, the effects and potential mechanism of DON on maternal mammary glands remain largely unknown. In this study, we found the length and area of mammary glands were significantly reduced after DON exposure on lactation day (LD) 7 and LD 21. RNA-seq analysis results showed that the differentially expressed genes (DEGs) were significantly enriched in acute inflammatory response and HIF-1 signaling pathway, which led to an increase of myeloperoxidase activity and inflammatory cytokines. Furthermore, lactational DON exposure increased blood-milk barrier permeability by reducing the expression of ZO-1 and Occludin, promoted cell apoptosis by upregulating the expression of Bax and cleaved Caspase-3 and downregulating the expression of Bcl-2 and PCNA. Additionally, lactational DON exposure significantly decreased serum concentration of prolactin, estrogen, and progesterone. All these alterations eventually resulted in a decrease of β-casein expression on LD 7 and LD 21. In summary, our findings indicated that lactational exposure to DON caused lactation-related hormone disorder and mammary gland injury induced by inflammatory response and blood-milk barrier integrity impairment, ultimately resulting in lower production of β-casein.
Collapse
Affiliation(s)
- Peihao Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinzhe Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingxiao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hanxiao Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ce Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuo Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhiming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lijun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
14
|
Wang Y, Wang L, Meng M, Huo R, Ma N, Chang G, Shen X. High concentrate diet induced inflammatory response and tight junction disruption in the mammary gland of dairy cows. Microb Pathog 2023; 176:105996. [PMID: 36709006 DOI: 10.1016/j.micpath.2023.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
This study aimed to investigate the effect and mechanism of a high concentrate (HC) diet on the inflammatory response and cellular tight junctions (TJs) in the mammary gland of dairy cows. Twelve lactating Holstein dairy cows were randomly assigned into low concentrate (LC) and HC groups (n = 6), which were fed with LC diet and HC diet respectively for 3 weeks. The HC diet lead to subacute ruminant acidosis with a rumen pH < 5.6 more than 3 h daily. The HC diet triggered an inflammatory response with increased levels of inflammatory cytokines in the lacteal vein, upregulated expression of inflammation-related genes, elevated activity of myeloperoxidase, and inflammatory cells infiltration in the mammary gland. Furthermore, the HC diet induced the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways with enhanced phosphorylation ratios of NF-κB P65, inhibitor of NF-κB (IκB), P38 and extracellular signal-regulated kinase 1/2 (ERK1/2) as well as decreased ratios of DNA methylation and chromatin compaction of genes coding for proinflammatory cytokines, which contributed to the upregulation of proinflammatory cytokine expression. The HC diet also destroyed the integrity of TJ with discontinuous and decreased expression levels of zonula occludens-1, Occludin, Claudin-4 and increased expression level of Claudin-1 in the mammary epithelial cells compared with LC group. Conclusively, the HC diet induced the activation of NF-κB and MAPK signaling pathways and epigenetic modifications, promoted the transcription of proinflammatory cytokines, and finally caused inflammatory response and TJ disruption in the mammary gland of dairy cows.
Collapse
Affiliation(s)
- Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lairong Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Meijuan Meng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ran Huo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
15
|
Akhtar M, Naqvi SUAS, Liu Q, Pan H, Ma Z, Kong N, Chen Y, Shi D, Kulyar MFEA, Khan JA, Liu H. Short Chain Fatty Acids (SCFAs) Are the Potential Immunomodulatory Metabolites in Controlling Staphylococcus aureus-Mediated Mastitis. Nutrients 2022; 14:nu14183687. [PMID: 36145063 PMCID: PMC9503071 DOI: 10.3390/nu14183687] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Mastitis is an emerging health concern in animals. An increased incidence of mastitis in dairy cows has been reported in the last few years across the world. It is estimated that up to 20% of cows are suffering from mastitis, causing incompetency in the mucosal immunity and resulting in excessive global economic losses in the dairy industry. Staphylococcus aureus (S. aureus) has been reported as the most common bacterial pathogen of mastitis at clinical and sub-clinical levels. Antibiotics, including penicillin, macrolides, lincomycin, cephalosporins, tetracyclines, chloramphenicol, and methicillin, were used to cure S. aureus-induced mastitis. However, S. aureus is resistant to most antibiotics, and methicillin-resistant S. aureus (MRSA) especially has emerged as a critical health concern. MRSA impairs immune homeostasis leaving the host more susceptible to other infections. Thus, exploring an alternative to antibiotics has become an immediate requirement of the current decade. Short chain fatty acids (SCFAs) are the potent bioactive metabolites produced by host gut microbiota through fermentation and play a crucial role in host/pathogen interaction and could be applied as a potential therapeutic agent against mastitis. The purpose of this review is to summarize the potential mechanism by which SCFAs alleviate mastitis, providing the theoretical reference for the usage of SCFAs in preventing or curing mastitis.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyu Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Na Kong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Fakhar-e-Alam Kulyar
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jawaria Ali Khan
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
16
|
Sun H, Zhang J, Wang W, Shao R, Liang S, Xu W, Li M, Ai Q, Mai K, Wan M. The Effects of Sodium Propionate Supplementation in the Diet with High Soybean Meal on Growth Performance, Intestinal Health, and Immune Resistance to Bacterial Infection in Turbot ( Scophthalmus maximus L.). AQUACULTURE NUTRITION 2022; 2022:8952755. [PMID: 36860468 PMCID: PMC9973224 DOI: 10.1155/2022/8952755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/12/2022] [Indexed: 06/18/2023]
Abstract
Short-chain fatty acids (SCFAs) are the products of the microbial fermentation of dietary fiber in the intestine. Acetate, propionate, and butyrate are the most abundant SCFA metabolites and play an important role in maintaining host health. This study was aimed at investigating the effects of sodium propionate (NaP) supplementation in the diet with a high proportion of soybean meal (SBM) on the growth, inflammatory status, and anti-infectious ability in juvenile turbot. Four experimental diets were designed: (1) fish meal- (FM-) based diet (control group), (2) SBM protein replacing 45% FM protein in the diet (high SBM group), (3) 0.5% NaP supplementation in the high SBM diet (high SBM+0.5% NaP group), and (4) 1.0% NaP supplementation in the high SBM diet (high SBM+1.0% NaP group). The results confirmed that the fish fed the high SBM diet for 8 weeks showed the decreased growth performance, the typical enteritis symptoms, and the increased mortality responding to Edwardsiella tarda (E. tarda) infection. However, 0.5% NaP supplementation in the high SBM diet promoted the growth performance of turbot and restored the activities of digestive enzymes in the intestine. Moreover, dietary NaP ameliorated the intestinal morphology, enhanced the expression of intestinal tight junction proteins, improved the antioxidant capacity, and suppressed the inflammatory status in turbot. Finally, the expression of antibacterial components and the resistance to bacterial infection were increased in NaP-fed turbot, especially in high SBM+1.0% NaP group. In conclusion, the supplementation of NaP in high SBM diet promotes the growth and health in turbot and provides a theoretical basis for the development of NaP as a functional additive in fish feed.
Collapse
Affiliation(s)
- Huiyuan Sun
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Jinjin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Wentao Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Shufei Liang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Weiqi Xu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Mingzhu Li
- College of Agriculture, Ludong University, Yantai, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Sun WJ, Wu EY, Zhang GY, Xu BC, Chen XG, Hao KY, Wang Y, He LZ, Lv QZ. Total flavonoids of Abrus cantoniensis inhibit CD14/TLR4/NF-κB/MAPK pathway expression and improve gut microbiota disorders to reduce lipopolysaccharide-induced mastitis in mice. Front Microbiol 2022; 13:985529. [PMID: 36090098 PMCID: PMC9449526 DOI: 10.3389/fmicb.2022.985529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Established a model of lipopolysaccharide (LPS)-induced mastitis in mice, pathological sections and myeloperoxidase were used to detect the degree of tissue damage, enzyme-linked immunosorbent assay (ELISA) was performed to detect the expression of pro-inflammatory cytokines, meanwhile fluorescence quantitative PCR experiments were performed to detect the mRNA expression of CD14/TLR4/NF-κB/MAPK signalling pathway, and the faeces of mice were collected for 16S measurement of flora. The results showed that Abrus cantoniensis total flavonoids (ATF) could significantly reduce the damage of LPS on mammary tissue in mice and inhibit the secretion of inflammatory factors such as TNF-α, IL-1β and IL-6. At the mRNA level, ATF inhibited the expression of CD14/TLR4/NF-κB/MAPK pathway and enhanced the expression of tight junction proteins in the blood-milk barrier. In the results of the intestinal flora assay, ATF were found to be able to regulate the relative abundance of the dominant flora from the phylum level to the genus level, restoring LPS-induced gut microbial dysbiosis. In summary, ATF attenuated the inflammatory response of LPS on mouse mammary gland by inhibiting the expression of CD14/TLR4/NF-κB/MAPK pathway, enhancing the expression of tight junction proteins and restoring LPS-induced gut microbial dysbiosis. This suggests that ATF could be a potential herbal remedy for mastitis.
Collapse
Affiliation(s)
- Wen-Jing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, Guangxi, China
| | - En-Yun Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ge-Yin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bai-Chang Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiao-Gang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kai-Yuan Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ling-Zhi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qi-Zhuang Lv
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, Guangxi, China
- *Correspondence: Qi-Zhuang Lv,
| |
Collapse
|
18
|
Ali I, Raza A, Ahmad MA, Li L. Nutrient sensing mechanism of short-chain fatty acids in mastitis control. Microb Pathog 2022; 170:105692. [DOI: 10.1016/j.micpath.2022.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
|
19
|
Liu Y, Jiang Y, Yang Y, Wang H, Ye J, Liu D, Chen Y, Lian C, Wang R, Gao Y, Meng Y, Gao L, Liu Y. Houttuynia Essential Oil and its Self-Microemulsion Preparation Protect Against LPS-Induced Murine Mastitis by Restoring the Blood–Milk Barrier and Inhibiting Inflammation. Front Immunol 2022; 13:842189. [PMID: 35251039 PMCID: PMC8894196 DOI: 10.3389/fimmu.2022.842189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
Mastitis is a common inflammatory disease caused by bacterial infection to the mammary gland that impacts human and animal health and causes economic losses. Houttuynia essential oil (HEO), extracted from Houttuynia cordata Thunb, exhibits excellent antibacterial and anti-inflammatory properties. The aim of the study was to investigate the effects of HEO and a self-microemulsion preparation of HEO (SME-HEO) on inflammation and the blood–milk barrier (BMB) in lipopolysaccharide-induced murine mastitis. HEO and SME-HEO significantly downregulated pro-inflammatory factors TNF-α and IL-1β, upregulated anti-inflammatory factor IL-10, inhibited MPO expression, and alleviated histopathological injury in murine mammary gland tissues. Additionally, HEO and SME-HEO protected the integrity of the BMB by upregulating the expression of junction proteins ZO-1, claudin-1, claudin-3, and occludin. The anti-inflammatory effect of HEO against murine mastitis was mediated by blocking the MAPK signaling pathway and expression of iNOS. By inhibiting the release of inflammatory factors and protecting the integrity of the BMB, HEO may provide a novel treatment for mastitis.
Collapse
Affiliation(s)
- Yuanyuan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongdong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chunfang Lian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Renyun Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingying Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Yuling Liu,
| |
Collapse
|
20
|
Ran X, Liu J, Fu S, He F, Li K, Hu G, Guo W. Phytic Acid Maintains the Integrity of the Blood-Milk Barrier by Regulating Inflammatory Response and Intestinal Flora Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:381-391. [PMID: 34969251 DOI: 10.1021/acs.jafc.1c06270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The destruction of the blood-milk barrier (BMB) caused by the mammary inflammatory response (MIR) is one of the main reasons that hinders breastfeeding. To relieve the inflammatory response and maintain BMB, we found that phytic acid (PA) has good anti-inflammatory activity. Therefore, we focused on researching the influence and mechanism of PA on BMB and MIR. We constructed a mammary inflammatory response model using lipopolysaccharide (LPS) in vivo, and we used mammary epithelial cells (mMECs) to construct a cell inflammatory response model in vitro. The results showed that PA alleviated mammary tissue damage and reduced the production of inflammatory mediators (such as IL-1β and iNOS) in mammary tissue and mMECs. PA also maintained the integrity of the BMB in mice by increasing the expression of tight junction proteins. 16S rDNA high-throughput sequencing showed that PA significantly ameliorated the intestinal flora of model mice. Mechanism studies showed that PA exerted an anti-MIR effect by inhibiting the AKT/NF-κB signaling pathway. In summary, our study found that PA maintains the integrity of BMB by regulating the inflammatory response and intestinal flora structure.
Collapse
Affiliation(s)
- Xin Ran
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Fuding He
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Kefei Li
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
21
|
Yu J, Xia Y, Wang G, Xiong Z, Zhang H, Lai PFH, Song X, Ai L. Anti-osteoporotic potential of Lactobacillus plantarum AR237 and AR495 in ovariectomized mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
Li M, Wang Z, Qiu Y, Fu S, Xu Y, Han X, Phouthapane V, Miao J. Taurine protects blood-milk barrier integrity via limiting inflammatory response in Streptococcus uberis infections. Int Immunopharmacol 2021; 101:108371. [PMID: 34789427 DOI: 10.1016/j.intimp.2021.108371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022]
Abstract
Streptococcus uberis (S. uberis) is an important causative agent of mastitis, leading to significant economic losses to dairy industry. This research used a mouse mastitis model to investigate the protective effects of taurine on mammary inflammatory response and blood-milk barrier integrity in S. uberis challenge. The results showed that taurine attenuated S. uberis-induced mammary histopathological changes, especially neutrophil infiltration. The S. uberis-induced expression of pro-inflammatory mediators were decreased significantly by taurine. Further, we demonstrated that taurine limited the S. uberis-induced inflammatory responses via inhibiting the activation of NF-κB and MAPK signaling pathways. Inflammation usually disrupts the mammary barrier system. The recovery of claudin-3 and occludin expressions indicated that attenuation of inflammatory response by taurine can protect the integrity of blood-milk barrier in S. uberis infection. Taken together, our results reveal that the development of taurine as an effective prevention and control strategy for S. uberis-induced mastitis.
Collapse
Affiliation(s)
- Ming Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yawei Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Vanhnaseng Phouthapane
- Department of Livestock and Fisheries, Ministry of Agriculture and Forestry, Vientiane, Laos
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Chen Q, Wang S, Guo J, Xie Q, Evivie SE, Song Y, Li B, Huo G. The Protective Effects of Lactobacillus plantarum KLDS 1.0344 on LPS-Induced Mastitis In Vitro and In Vivo. Front Immunol 2021; 12:770822. [PMID: 34858427 PMCID: PMC8630701 DOI: 10.3389/fimmu.2021.770822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 12/02/2022] Open
Abstract
Cow mastitis, which significantly lowers milk quality, is mainly caused by pathogenic bacteria such as E. coli. Previous studies have suggested that lactic acid bacteria can have antagonistic effects on pathogenic bacteria that cause mastitis. In the current study, we evaluated the in vitro and in vivo alleviative effects of L. plantarum KLDS 1.0344 in mastitis treatment. In vitro antibacterial experiments were performed using bovine mammary epithelial cell (bMEC), followed by in vivo studies involving mastitis mouse models. In vitro results indicate that lactic acid was the primary substance inhibiting the E. coli pathogen. Meanwhile, treatment with L. plantarum KLDS 1.0344 can reduce cytokines' mRNA expression levels in the inflammatory response of bMEC induced by LPS. In vivo, the use of this strain reduced the secretion of inflammatory factors IL-6, IL-1β, and TNF-α, and decreased the activity of myeloperoxidase (MPO), and inhibited the secretion of p-p65 and p-IκBα. These results indicate that L. plantarum KLDS 1.0344 pretreatment can reduce the expression of inflammatory factors by inhibiting the activation of NF-κB signaling pathway, thus exerting prevent the occurrence of inflammation in vivo. Our findings show that L. plantarum KLDS 1.0344 has excellent properties as an alternative to antibiotics and can be developed into lactic acid bacteria preparation to prevent mastitis disease.
Collapse
Affiliation(s)
- Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Song Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Jiayao Guo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Company Ltd., Qiqihaer, China
| | - Smith Etareri Evivie
- Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Yue Song
- Food College, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
Chuang ST, Li KY, Tu PW, Ho ST, Hsu CC, Hsieh JC, Chen MJ. Investigating the Reciprocal Interrelationships among the Ruminal Microbiota, Metabolome, and Mastitis in Early Lactating Holstein Dairy Cows. Animals (Basel) 2021; 11:ani11113108. [PMID: 34827839 PMCID: PMC8614428 DOI: 10.3390/ani11113108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Dairy cow mastitis is an inflammatory disease often caused by bacterial infections. In the present study, we identified the ruminal microbial biomarkers and metabolites of mastitis in dairy cows. The investigation of the reciprocal interrelationships among the ruminal microbiota, metabolome, and mastitis revealed that short-chain fatty acid (SCFA)-producing microflora and the metabolites related to anti-inflammation and antibacterial activity were significantly higher in healthy cows than in those with mastitis. The identified potential species and metabolites might provide a novel perspective to assist in targeting the ruminal microbiota with preventive/therapeutic strategies against mastitis in the future. Abstract Mastitis in dairy cow significantly affects animal performance, ultimately reducing profitability. The reciprocal interrelationships among ruminal microbiota, metabolome, and mastitis combining early inflammatory factors (serum proinflammatory cytokines) in lactating dairy cows has not been explored, thus, this study evaluated these reciprocal interrelationships in early lactating Holstein dairy cows to identify potential microbial biomarkers and their relationship with ruminal metabolites. The ruminal fluid was sampled from 8 healthy and 8 mastitis cows for the microbiota and metabolite analyses. The critical ruminal microbial biomarkers and metabolites related to somatic cell counts (SCC) and serum proinflammatory cytokines were identified by the linear discriminant analysis effect size (LEfSe) algorithm and Spearman’s correlation analysis, respectively. The SCC level and proinflammatory cytokines positively correlated with Sharpea and negatively correlated with Ruminococcaceae UCG-014, Ruminococcus flavefaciens, and Treponema saccharophilum. Furthermore, the metabolites xanthurenic acid, and 1-(1H-benzo[d]imidazol-2-yl) ethan-1-ol positively correlated with microbial biomarkers of healthy cows, whereas, xanthine, pantothenic acid, and anacardic acid were negatively correlated with the microbial biomarkers of mastitis cows. In conclusion, Ruminococcus flavefaciens and Treponema saccharophilum are potential strains for improving the health of dairy cows. The current study provides a novel perspective to assist in targeting the ruminal microbiota with preventive/therapeutic strategies against inflammatory diseases in the future.
Collapse
Affiliation(s)
- Shih-Te Chuang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402204, Taiwan;
| | - Kuan-Yi Li
- Department of Animal Science and Technology, National Taiwan University, Taipei 106037, Taiwan; (K.-Y.L.); (P.-W.T.); (J.-C.H.)
| | - Po-Wen Tu
- Department of Animal Science and Technology, National Taiwan University, Taipei 106037, Taiwan; (K.-Y.L.); (P.-W.T.); (J.-C.H.)
| | - Shang-Tse Ho
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi 600355, Taiwan;
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 106319, Taiwan;
| | - Jui-Chun Hsieh
- Department of Animal Science and Technology, National Taiwan University, Taipei 106037, Taiwan; (K.-Y.L.); (P.-W.T.); (J.-C.H.)
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 106037, Taiwan; (K.-Y.L.); (P.-W.T.); (J.-C.H.)
- Correspondence: ; Tel.:+886-2-336-641-69
| |
Collapse
|
25
|
Wu Y, He T, Fu Y, Chen J. Corynoline protects lipopolysaccharide-induced mastitis through regulating AKT/GSK3β/Nrf2 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:2493-2499. [PMID: 34477289 DOI: 10.1002/tox.23362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
Inflammation has been known to be involved in the pathogenesis of mastitis. And anti-inflammatory agent is proposed to be a possible efficient therapeutic strategy for mastitis. Corynoline, a bioactive compound extracted from Corydalis bungeana Turcz., has been reported to have anti-inflammatory effect. However, whether corynoline has protective effect against mastitis remains unclear. The aim of this study was to evaluate the protective effect of corynoline on LPS-induced mastitis in mice. Inflammatory cytokine production was measured by ELISA. The proteins of signaling pathways were detected by western blot analysis. The results showed that treatment of corynoline at the doses of 15, 30, and 60 mg/kg significantly attenuated LPS-induced pathological damage of mammary tissues. Corynoline also ameliorated LPS-induced MPO activity, MDA content, and inflammatory cytokine TNF-α and IL-1β production in mammary tissues. LPS-induced NF-κB activation was inhibited by corynoline. Furthermore, our results showed corynoline significantly increased the expression of Nrf2 and the phosphorylation levels of AKT and GSK3β. In conclusion, our results indicated that corynoline protected against LPS-induced mastitis through regulating AKT/GSK3β/Nrf2 signaling pathway, which subsequently led to the inhibition of NF-κB and inflammatory response.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Breast Surgery, Clinical Research Center for Breast, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao He
- Department of Breast Surgery, Clinical Research Center for Breast, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jie Chen
- Department of Breast Surgery, Clinical Research Center for Breast, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Zhao C, Wu K, Bao L, Chen L, Feng L, Liu Z, Wang Y, Fu Y, Zhang N, Hu X. Kynurenic acid protects against mastitis in mice by ameliorating inflammatory responses and enhancing blood-milk barrier integrity. Mol Immunol 2021; 137:134-144. [PMID: 34247099 DOI: 10.1016/j.molimm.2021.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/06/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Mastitis is one of the most serious diseases in humans and animals, especially in the modern dairy industry. Seeking safe and effective mastitis prevention strategies is urgent since food safety and drug residues in milk remain an enormous concern, despite the contribution of antibiotics to control mastitis. Kynurenic acid (KYNA), derived from the kynurenine pathway of tryptophan metabolism, has been shown to exhibit anti-inflammatory and immunomodulatory effects in many diseases. Recently, it was reported that impaired KYNA levels were associated with mastitis. However, the physiological role of KYNA in mastitis has not yet been elucidated. Therefore, the aim of this study was to investigate the protective role of KYNA in pathogen-induced mastitis in mice, as well as the underlying mechanism of this effect. We first evaluated the effects of KYNA on LPS-induced mastitis in mice. Additionally, the underlying anti-inflammatory mechanism of KYNA was investigated in mammary epithelial cells (MMECs). Furthermore, we examined the effects of KYNA on S. aureus and E. coli induced mastitis in mice. Our results demonstrated that KYNA alleviated LPS-induced mastitis by reducing inflammatory responses and enhancing blood-milk barrier integrity. The fundamental mechanisms involved the inhibition of NF-κB and activation of Nrf2/Ho-1, which is probably mediated by G protein-coupled receptor 35 but not aryl hydrocarbon receptor. Notably, KYNA also protected against S. aureus and E. coli induced mastitis in mice. In conclusion, our results highlight the role of KYNA in mastitis and serve as a basis for using endogenous metabolite as a novel preventative or therapeutic strategy for disease intervention.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Luotong Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhuoyu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
27
|
Alberca GGF, Solis-Castro RL, Solis-Castro ME, Alberca RW. Coronavirus disease-2019 and the intestinal tract: An overview. World J Gastroenterol 2021; 27:1255-1266. [PMID: 33833480 PMCID: PMC8015300 DOI: 10.3748/wjg.v27.i13.1255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can progress to a severe respiratory and systemic disease named coronavirus disease-2019 (COVID-19). The most common symptoms are fever and respiratory discomfort. Nevertheless, gastrointestinal infections have been reported, with symptoms such as diarrhea, nausea, vomiting, abdominal pain, and lack of appetite. Importantly, SARS-CoV-2 can remain positive in fecal samples after nasopharyngeal clearance. After gastrointestinal SARS-CoV-2 infection and other viral gastrointestinal infections, some patients may develop alterations in the gastrointestinal microbiota. In addition, some COVID-19 patients may receive antibiotics, which may also disturb gastrointestinal homeostasis. In summary, the gastrointestinal system, gut microbiome, and gut-lung axis may represent an important role in the development, severity, and treatment of COVID-19. Therefore, in this review, we explore the current pieces of evidence of COVID-19 gastrointestinal manifestations, possible implications, and interventions.
Collapse
Affiliation(s)
- Gabriela Gama Freire Alberca
- Department of Microbiology, Institute of Biomedical Sciences-University of São Paulo, São Paulo 05508-000, Brazil
| | - Rosa Liliana Solis-Castro
- Departamento Académico de Biología Bioquímica, Facultad de Ciencias de la Salud, Universidad Nacional de Tumbes, Pampa Grande 24000, Tumbes, Peru
| | - Maria Edith Solis-Castro
- Departamento Académico de Medicina Humana, Facultad de Ciencias de la Salud, Universidad Nacional de Tumbes, Pampa Grande 24000, Tumbes, Peru
| | - Ricardo Wesley Alberca
- Laboratorio de Dermatologia e Imunodeficiencias (LIM-56), Departamento de Dermatologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| |
Collapse
|
28
|
Ren Y, Liang S, Zheng Y, Deng X, Lei L, Ai J, Li Y, Zhang T, Chen L, Mei Z, Cheng YC, He C. Investigation on the function tropism of Tiaoqin and Kuqin (different specification of Scutellaria baicalensis) by comparing their curative effect on different febrile disease model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113596. [PMID: 33221498 DOI: 10.1016/j.jep.2020.113596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis (S. baicalensis) is the root of S. baicalensis Georgi. In traditional Chinese medicine it is divided into Tiaoqin (TQ, 1-3 years old) and Kuqin (KQ, more than 3 years old). However, the differences in TQ and KQ efficacy and their exact mechanisms are still unclear. AIM OF THE STUDY This study aimed to clarify the difference in the efficacy of TQ and KQ in relation to different fever types (damp heat and hyperpyrexia) by using rat models, as well as to determine the primary molecular mechanism. MATERIALS AND METHODS This study compared the compositional content of TQ and KQ by UPLC-MS/MS. Then, rat models of hyperpyrexia (HP, LPS) and damp heat (DH, high-fat and high-sugar diet feeding + fumigation in artificial climate chamber + E. coli injection) were established and their clinical symptoms, blood biochemistry, histopathological sections, cell cytokines and protein expression were compared following treatment with TQ or KQ. Finally, the mechanisms underpinning the differences observed for TQ and KQ were determined by measuring the components of these treatments in different target organs. RESULTS This study identified 31 compounds in the water extracts of both TQ and KQ, which differed significantly in their relative content. TQ and KQ showed different functional tropism in HP and DH model rats. Baicalin, wogonoside, oroxin A, baicalein, wogonin and oroxylin A appeared to be the basic functional components responsible for the functional tropism hypothesis, while the remaining compounds appeared to be the efficacy-oriented components. In addition, the difference in pharmacodynamics between TQ and KQ may be related to their absorption in vivo, which was consistent with the hypothesis of functional tropism proposed in this work. CONCLUSION In this study we adopted TQ and KQ-different specifications of Scutellaria baicalensis with similar chemical components-as a case study to systematically reveal the functional tropism of Chinese herbal medicine (CHM). The results showed that TQ and KQ contain the basic functional components to enable the basic function of 'clearing heat', while the variation in compositional content may result in their different therapeutic effects. A greater understanding and utilisation of the functional tropism of CHM would enormously improve the accuracy and scientific basis for the application of CHM medication, as well as in promoting the multi-function mechanism of CHM and guiding new drug development of CHM.
Collapse
Affiliation(s)
- Yongshen Ren
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China; School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Shuai Liang
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Yao Zheng
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Xin Deng
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Lei Lei
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Jiao Ai
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Yanqiu Li
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Tianpei Zhang
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Linlin Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Yung-Chi Cheng
- School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Caijing He
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| |
Collapse
|
29
|
Wellnitz O, Bruckmaier RM. Invited review: The role of the blood-milk barrier and its manipulation for the efficacy of the mammary immune response and milk production. J Dairy Sci 2021; 104:6376-6388. [PMID: 33773785 DOI: 10.3168/jds.2020-20029] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
The intact blood-milk barrier (BMB) prevents an uncontrolled exchange of soluble and cellular components between blood and milk in the mammary gland. It enables the sustainability of the optimal milk composition for the nourishment of the offspring. Endothelial cells, connective tissue, the basal membrane, and mainly the epithelial cells provide the semipermeability of this barrier, allowing only a selective transfer of components necessary for milk production. The epithelial cells are closely connected to each other by different formations, in which the tight junctions are the most critical for separating the milk-containing compartments from the surrounding extracellular fluid and vasculature. During mastitis, the integrity of the BMB is reduced. This facilitates the transfer of immune cells and immune factors such as antibodies from blood into milk. Simultaneously, the transfer of soluble blood constituents without an obvious immune function into milk is promoted. Furthermore, a reduced BMB integrity causes a loss of milk constituents into the blood circulation. Different mechanisms are responsible for the barrier impairment including tight junction opening, but also cell degradation. To promote the cure of mastitis, the targeted manipulation of the BMB permeability may be a tool to optimize the immune function of the mammary gland. An intensified opening of the BMB supports the antibody transfer from blood into milk, which is supposed to increase the contribution of the specific immune system in the immune defense. On the contrary, a fast closure of the BMB during the recovery from mastitis can accelerate the normalization of milk composition and milk yield. Various agents have been experimentally shown to either open (e.g., pathogens and pathogen-associated molecular patterns, several nonsteroidal anti-inflammatory drugs, oxytocin, calcium chelators) or close (e.g., glucocorticoids, nonsteroidal anti-inflammatory drugs, natural anti-inflammatory drugs) the BMB.
Collapse
Affiliation(s)
- O Wellnitz
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
30
|
Chen D, Gao ZQ, Wang YY, Wan BB, Liu G, Chen JL, Wu YX, Zhou Q, Jiang SY, Yu RQ, Pang QF. Sodium Propionate Enhances Nrf2-Mediated Protective Defense Against Oxidative Stress and Inflammation in Lipopolysaccharide-Induced Neonatal Mice. J Inflamm Res 2021; 14:803-816. [PMID: 33732006 PMCID: PMC7957230 DOI: 10.2147/jir.s303105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
Background Alveolar arrest and the impaired angiogenesis caused by chronic inflammation and oxidative stress are two main factors in bronchopulmonary dysplasia (BPD). Short-chain fatty acids (SCFAs), especially propionate, possess anti-oxidant and anti-inflammatory effects. The present study was designed to examine the roles of sodium propionate (SP) on lipopolysaccharide (LPS)-challenged BPD and its potential mechanisms. Methods WT, Nrf2-/- mice and pulmonary microvascular endothelial cells (HPMECs) were used in this study. LPS was performed to mimic BPD model both in vivo and vitro. Lung histopathology, inflammation and oxidative stress-related mRNA expressions in lungs involved in BPD pathogenesis were investigated. In addition, cell viability and angiogenesis were also tested. Results The increased nuclear factor erythroid 2-related factor (Nrf2) and decreased Kelch-like ECH-associated protein-1 (Keap-1) expressions were observed after SP treatment in the LPS-induced neonatal mouse model of BPD. In LPS-induced wild-type but not Nrf2-/- neonatal mice, SP reduced pulmonary inflammation and oxidative stress and exhibited obvious pathological alterations of the alveoli. Moreover, in LPS-evoked HPMECs, SP accelerated Nrf2 nuclear translocation presented and exhibited cytoprotective and pro-angiogenesis effects. In addition, SP diminished the LPS-induced inflammatory response by blocking the activation of nuclear factor-kappa B pathway. Moreover, pretreatment with ML385, an Nrf2 specific inhibitor, offsets the beneficial effects of SP on inflammation, oxidative stress and angiogenesis in LPS-evoked HPMECs. Conclusion SP protects against LPS-induced lung alveolar simplification and abnormal angiogenesis in neonatal mice and HPMECs in an Nrf2-dependent manner.
Collapse
Affiliation(s)
- Dan Chen
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Zhi-Qi Gao
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Ying-Ying Wang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Bin-Bin Wan
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Gang Liu
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Jun-Liang Chen
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Ya-Xian Wu
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Qin Zhou
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Shan-Yu Jiang
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Ren-Qiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Qing-Feng Pang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| |
Collapse
|
31
|
Ali I, Yang M, Wang Y, Yang C, Shafiq M, Wang G, Li L. Sodium propionate protect the blood-milk barrier integrity, relieve lipopolysaccharide-induced inflammatory injury and cells apoptosis. Life Sci 2021; 270:119138. [PMID: 33524422 DOI: 10.1016/j.lfs.2021.119138] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
AIMS Sodium propionate (SP) has been reported to possess an anti-inflammatory and anti-apoptotic potential by inhibiting certain signaling pathways and helps in reducing the pathological damages of the mammary gland. However, the effects of sodium propionate on attenuating Lipopolysaccharide (LPS)-induced inflammatory condition and cell damage in bovine mammary epithelial cells (bMECs) are not comprehensively studied yet. Therefore, the aim of the current investigation was to evaluate the protective effects of sodium propionate on LPS-induced inflammatory conditions and to clarify the possible underlying molecular mechanism in bMECs. MAIN METHODS The effects of increasing doses of SP on LPS-induced inflammation, oxidative stress and apoptosis was studied in vitro. Furthermore, the underlying protective mechanisms of SP on LPS-stimulated bMECs was investigated under different experimental conditions. KEY FINDINGS The results reveled that increased inflammatory cytokines, chemokines and those of tight junction's mRNA expression was significantly attenuated dose-dependently by propionate. Biochemical analysis revealed that propionate pretreatment modulated the LPS-induced intercellular reactive oxygen species (ROS) accumulation, oxidative and antioxidant factors and apoptosis rate. Furthermore, we investigated that the LPS activated nuclear factor-kB (NF-kB), caspase/Bax apoptotic pathways and Histone deacetylases (HDAC) was significantly attenuated by propionate in bMECs. SIGNIFICANCE Our results suggest that sodium propionate is a potent agent for ameliorating LPS-mediated cellular disruption and limiting detrimental inflammatory responses, partly via maintaining blood milk barrier integrity, inhibiting HDAC activity and NF-kB signaling pathway.
Collapse
Affiliation(s)
- Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiru Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Caixia Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Shafiq
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
32
|
Zhang J, Zhang H, Liu M, Lan Y, Sun H, Mai K, Wan M. Short-Chain Fatty Acids Promote Intracellular Bactericidal Activity in Head Kidney Macrophages From Turbot ( Scophthalmus maximus L.) via Hypoxia Inducible Factor-1α. Front Immunol 2021; 11:615536. [PMID: 33424870 PMCID: PMC7785818 DOI: 10.3389/fimmu.2020.615536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are mainly produced by microbiota through the fermentation of carbohydrates in the intestine. Acetate, propionate, and butyrate are the most abundant SCFA metabolites and have been shown to be important in the maintenance of host health. In this study, head kidney macrophages (HKMs) were isolated and cultured from turbots. We found that the antibacterial activity of HKMs was increased after these cells were incubated with sodium butyrate, sodium propionate or sodium acetate. Interestingly, our results showed that all three SCFAs enhanced the expression of hypoxia inducible factor-1 α (HIF-1α) in HKMs, and further study confirmed that butyrate augmented the oxygen consumption of these cells. Moreover, HIF-1α inhibition diminished the butyrate-promoted intracellular bacterial killing activity of macrophages, and SCFAs also raised the gene expression and activity of lysozymes in HKMs via HIF-1α signaling. In addition, our results suggested that butyrate induced HIF-1α expression and the bactericidal activity of HKMs through histone deacetylase inhibition, while G protein-coupled receptors did not contribute to this effect. Finally, we demonstrated that butyrate induced a similar response in the murine macrophage cell line RAW264.7. In conclusion, our results demonstrated that SCFAs promoted HIF-1α expression via histone deacetylase inhibition, leading to the enhanced production of antibacterial effectors and increased bacterial killing of macrophages.
Collapse
Affiliation(s)
- Jinjin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Hui Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Miao Liu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Huiyuan Sun
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| |
Collapse
|
33
|
Jiang L, Wang J, Liu Z, Jiang A, Li S, Wu D, Zhang Y, Zhu X, Zhou E, Wei Z, Yang Z. Sodium Butyrate Alleviates Lipopolysaccharide-Induced Inflammatory Responses by Down-Regulation of NF-κB, NLRP3 Signaling Pathway, and Activating Histone Acetylation in Bovine Macrophages. Front Vet Sci 2020; 7:579674. [PMID: 33251265 PMCID: PMC7674777 DOI: 10.3389/fvets.2020.579674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/08/2020] [Indexed: 01/03/2023] Open
Abstract
Sodium butyrate is the sodium salt of butyric acid, which possesses many biological functions including immune system regulation, anti-oxidant and anti-inflammatory ability. The present study was designed to elucidate the anti-inflammatory effects and mechanisms of sodium butyrate on lipopolysaccharide (LPS)-stimulated bovine macrophages. The effect of sodium butyrate on the cell viability of bovine macrophages was assayed by using the CCK-8 kit. Quantitative real-time PCR (qRT-PCR) was used to detect the gene expression of interleukin-6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), and inducible Nitric Oxide Synthase (iNOS). NF-κB, NLRP3 signaling pathway, and histone deacetylase were detected by western blotting. The results showed that sodium butyrate had no significant effect on cell viability at 0-1 mM, and inhibited LPS-induced IL-6, IL-1β, COX-2, and iNOS expression. Moreover, sodium butyrate suppressed LPS (5 μg/ml)-stimulated the phosphorylation of IκB and p65, inhibited the deacetylation of histone H3K9, and has also been found to inhibit protein expression in NLRP3 inflammasomes. Thus, our finding suggested that sodium butyrate relieved LPS-induced inflammatory responses in bovine macrophage by inhibiting the canonical NF-κB, NLRP3 signaling pathway, and histone decetylation, which might be helpful to prevent cow mastitis.
Collapse
Affiliation(s)
- Liqiang Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Jingjing Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziyi Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Aimin Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuangqiu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Di Wu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xingyi Zhu
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| |
Collapse
|
34
|
Guo W, Liu J, Hou S, Hu G, Ma H, Gong Q, Kan X, Ran X, Cao Y, Wang J, Fu S. The inflammatory environment mediated by a high-fat diet inhibited the development of mammary glands and destroyed the tight junction in pregnant mice. Food Funct 2020; 11:8193-8201. [PMID: 32966466 DOI: 10.1039/d0fo00609b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Long-term intake of a high-fat diet seriously affects the health of pregnant women and leads to increased levels of inflammation in the mammary gland. Therefore, to further explore the effect of a high-fat diet on mammary gland development and the tight junction (TJ) during pregnancy, we placed mice into two groups: a high-fat diet group and a control group. We detected the expression of proteins related to fat synthesis in the mammary gland by western blotting. The results showed that a high-fat diet could lead to an increase in fat synthesis in the mammary gland. Then, the inflammatory levels and acinar cell morphology in the mammary gland were detected by ELISA and H&E staining. We also measured the levels of MAPK and NF-κB signal pathway-related proteins by western blotting. The results showed that a high-fat diet activated the MAPK and NF-κB signaling pathways and promoted the expression of inflammatory factors. Finally, the development of the mammary gland and the integrity of the TJ were determined by immunohistochemistry, immunofluorescence and western blotting. The results showed that a high-fat diet inhibited the development of the mammary gland and the expression of tight junction proteins (TJs). Our study showed that a high-fat diet could promote the expression of inflammatory factors by activating the MAPK and NF-κB signaling pathways and could reshape the microenvironment through extramammary inflammation. Finally, a high-fat diet inhibited the development of the mammary gland during pregnancy and destroyed the integrity of the TJ.
Collapse
Affiliation(s)
- Wenjin Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Juxiong Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shuang Hou
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Guiqiu Hu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - He Ma
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Qian Gong
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xingchi Kan
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xin Ran
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Yu Cao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shoupeng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
35
|
Hu X, Guo J, Zhao C, Jiang P, Maimai T, Yanyi L, Cao Y, Fu Y, Zhang N. The gut microbiota contributes to the development of Staphylococcus aureus-induced mastitis in mice. THE ISME JOURNAL 2020; 14:1897-1910. [PMID: 32341472 PMCID: PMC7305118 DOI: 10.1038/s41396-020-0651-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
Mastitis is one of the most prevalent diseases in dairy farming worldwide. The gut microbiota plays an important role in the regulation of systemic and local inflammatory diseases, such as mastitis. However, the regulatory mechanism of the gut microbiota on mastitis is still unclear. Thus, the aim of this study was to investigate the function and regulatory mechanisms of the gut microbiota in host defense against mastitis caused by Staphylococcus aureus (S. aureus) infection. Increased blood-milk barrier permeability, and S. aureus-induced mastitis severity were observed gut microbiota-dysbiosis mice compared with those in control mice. Moreover, feces microbiota transplantation (FMT) to microbbiota-dysbiosis mice reversed these effects. Furthermore, established disruption of commensal homeostasis results in significantly increased abundance of pathogenic Enterobacter bacteria, while the relative abundance of short-chain fatty acid (SCFAs)-producing bacterial phyla (Firmicutes and Bacteroidetes) was significantly reduced. However, FMT to gut microbiota-dysbiosis mice reversed these changes. In addition, dysbiosis reduced the levels of SCFAs, and administration of sodium propionate, sodium butyrate, and probiotics (butyrate-producing bacteria) reversed the changes in the blood-milk barrier and reduced the severity of mastitis induced by S. aureus. In conclusion, this new finding demonstrated that the gut microbiota acts as a protective factor in host defense against mastitis and that targeting the gut-mammary gland axis represents a promising therapeutic approach for mastitis treatment.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Jian Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Peng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - T Maimai
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Li Yanyi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China.
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China.
| |
Collapse
|
36
|
Vanillin protects lipopolysaccharide-induced acute lung injury by inhibiting ERK1/2, p38 and NF-κB pathway. Future Med Chem 2020; 11:2081-2094. [PMID: 31538519 DOI: 10.4155/fmc-2018-0432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Thus far, the anti-inflammatory effect of vanillin in acute lung injury (ALI) has not been studied. This study aimed to investigate the effect of vanillin in lipopolysaccharide (LPS)-induced ALI. Results & methodology: Our study detected the anti-inflammatory effects of vanillin by ELISA and western blot, respectively. Pretreatment of mice with vanillin significantly attenuated LPS-stimulated lung histopathological changes, myeloperoxidase activity and expression levels of proinflammatory cytokines by inhibiting the phosphorylation activities of ERK1/2, p38, AKT and NF-κB p65. In addition, vanillin inhibited LPS-induced TNF-α and IL-6 expression in RAW264.7 cells via ERK1/2, p38 and NF-κB signaling. Conclusion: Vanillin can inhibit macrophage activation and lung inflammation, which suggests new insights for clinical treatment of ALI.
Collapse
|
37
|
Chen D, Qiu YB, Gao ZQ, Wu YX, Wan BB, Liu G, Chen JL, Zhou Q, Yu RQ, Pang QF. Sodium Propionate Attenuates the Lipopolysaccharide-Induced Epithelial-Mesenchymal Transition via the PI3K/Akt/mTOR Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6554-6563. [PMID: 32452677 DOI: 10.1021/acs.jafc.0c01302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Short-chain fatty acids (SCFAs), especially propionate, originate from the fermentation of dietary fiber in the gut and play a key role in inhibiting pulmonary inflammation. Chronic inflammation may induce an epithelial-mesenchymal transition (EMT) in alveolar epithelial cells and result in fibrotic disorders. This study was designed to investigate the beneficial effect of sodium propionate (SP) on lipopolysaccharide (LPS)-induced EMT. In cultured BEAS-2B cells, the protein expression levels of E-cadherin, α-smooth muscle actin (SMA), and vimentin were 0.66 ± 0.20, 1.44 ± 0.23, and 1.32 ± 0.21 in the LPS group vs 1.11 ± 0.36 (P < 0.05), 1.04 ± 0.30 (P < 0.05), and 0.96 ± 0.13 (P < 0.01) in the LPS + SP group (mean ± standard deviation), respectively. Meanwhile, LPS-triggered inflammatory cytokines and extracellular proteins were also reduced by SP administration in BEAS-2B cells. Moreover, SP treatment attenuated inflammation, EMT, extracellular matrix (ECM) deposition, and even fibrosis in a mouse EMT model. In terms of mechanism, LPS-treated BEAS-2B cells exhibited a higher level of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) phosphorylation, which was interrupted by SP treatment. It is worth noting that the blockade of the PI3K/Akt/mTOR signaling cascade reduced the LPS-evoked EMT process in BEAS-2B cells. These results suggest that SP can block LPS-induced EMT via inhibition of the PI3K/Akt/mTOR signaling cascade, which provides a basis for possible clinical use of SP in airway and lung diseases.
Collapse
Affiliation(s)
- Dan Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yu-Bao Qiu
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhi-Qi Gao
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Ya-Xian Wu
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Bin-Bin Wan
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Gang Liu
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Jun-Liang Chen
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Qin Zhou
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Ren-Qiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Qing-Feng Pang
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| |
Collapse
|
38
|
Jiang A, Zhang Y, Zhang X, Wu D, Liu Z, Li S, Liu X, Han Z, Wang C, Wang J, Wei Z, Guo C, Yang Z. Morin alleviates LPS-induced mastitis by inhibiting the PI3K/AKT, MAPK, NF-κB and NLRP3 signaling pathway and protecting the integrity of blood-milk barrier. Int Immunopharmacol 2019; 78:105972. [PMID: 31711938 DOI: 10.1016/j.intimp.2019.105972] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Mastitis is a common veterinary clinical disease that restricts the development of dairy farming around the world. Morin, extracted from Mulberry Tree and other herbs, has been reported to possess the function of anti-bacteria, anti-oxidant, and anti-inflammatory. However, whether morin could protect lipopolysaccharide (LPS)-induced mouse mastitis in vivo has not well known. This study firstly aims to evaluate the effects of morin on LPS-induced mouse mastitis in vivo, and then try to illustrate the mechanism involved in the process. Before injected with LPS, mice were intraperitoneally pre-injected with different concentrations of morin, and mice of the control and LPS group were injected with the same amount of saline. Pathologic changes of mammary gland were determined by histopathological examination. Myeloperoxidase (MPO) activities of mammary gland were determined by the MPO kits. The mRNA expressions of inflammatory cytokines including TNF-α, IL-1β and IL-6, and those of chemokine factors CCL2 and CXCL2, and those of tight junctions occludin claudin-3 were examined by qRT-PCR analysis. The activities of IκB, p65, ERK, P38, AKT, PI3K, NLPR3, claudin-1, claudin-3 and occludin were determined by western blotting. The results showed that morin alleviated LPS-induced edema, destructed structures and infiltrated inflammatory cells of mammary gland. Morin administration significantly decreased LPS-induced TNF-α, IL-1β, IL-6, CCL2 and CXCL2 mRNA expressions. Furthermore, western blot analysis also showed that morin significantly reduced LPS-induced phosphorylation of p65, IκB, p38 and ERK, and enhanced LPS-induced phosphorylation of AKT and PI3K. It was also found that LPS-decreased claudin-3 and occludin expressions were also inhibited by morin treatment. In summary, above results suggest that morin indeed protect LPS-induced mouse mastitis in vivo, and the mechanism was through inhibiting the PI3K/AKT, MAPK, NF-κB and NLRP3 signaling pathways and protecting the integrity of blood-milk barrier by regulating the tight junction proteins expressions.
Collapse
Affiliation(s)
- Aimin Jiang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Yong Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Xu Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Di Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Ziyi Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Shuangqiu Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Xiao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Zhen Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Chaoqun Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Jingjing Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University Foshan 528225, Guangdong Province, PR China
| | - Changming Guo
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China; College of Life Sciences and Engineering, Foshan University Foshan 528225, Guangdong Province, PR China.
| |
Collapse
|
39
|
Caspani G, Kennedy S, Foster JA, Swann J. Gut microbial metabolites in depression: understanding the biochemical mechanisms. MICROBIAL CELL 2019; 6:454-481. [PMID: 31646148 PMCID: PMC6780009 DOI: 10.15698/mic2019.10.693] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gastrointestinal and central function are intrinsically connected by the gut microbiota, an ecosystem that has co-evolved with the host to expand its biotransformational capabilities and interact with host physiological processes by means of its metabolic products. Abnormalities in this microbiota-gut-brain axis have emerged as a key component in the pathophysiology of depression, leading to more research attempting to understand the neuroactive potential of the products of gut microbial metabolism. This review explores the potential for the gut microbiota to contribute to depression and focuses on the role that microbially-derived molecules – neurotransmitters, short-chain fatty acids, indoles, bile acids, choline metabolites, lactate and vitamins – play in the context of emotional behavior. The future of gut-brain axis research lies is moving away from association, towards the mechanisms underlying the relationship between the gut bacteria and depressive behavior. We propose that direct and indirect mechanisms exist through which gut microbial metabolites affect depressive behavior: these include (i) direct stimulation of central receptors, (ii) peripheral stimulation of neural, endocrine, and immune mediators, and (iii) epigenetic regulation of histone acetylation and DNA methylation. Elucidating these mechanisms is essential to expand our understanding of the etiology of depression, and to develop new strategies to harness the beneficial psychotropic effects of these molecules. Overall, the review highlights the potential for dietary interventions to represent such novel therapeutic strategies for major depressive disorder.
Collapse
Affiliation(s)
- Giorgia Caspani
- Computational Systems Medicine, Department of Surgery and Cancer, Imperial College London, UK
| | - Sidney Kennedy
- Centre for Mental Health and Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, CA.,Mental Health Services, St. Michael's Hospital, University of Toronto, Toronto, ON, CA.,Department of Psychiatry, University of Toronto, Toronto, ON, CA.,Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, CA
| | - Jane A Foster
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan Swann
- Computational Systems Medicine, Department of Surgery and Cancer, Imperial College London, UK
| |
Collapse
|
40
|
Targeting gut microbiota as a possible therapy for mastitis. Eur J Clin Microbiol Infect Dis 2019; 38:1409-1423. [PMID: 31079312 DOI: 10.1007/s10096-019-03549-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Mastitis, a disease that affects both dairy herds and humans, is recognized as the most common source of losses in the dairy industry. Antibiotics have been used for years as the primary treatment for mastitis. However, abuse of antibiotics has led to the emergence of resistant strains and the presence of drug residues and has increased the difficulty of curing this disease. In addition, antibiotics kill most of the microbes that are present in the digestive tract, leading to imbalances in the gut microbiome and destruction of the ecosystem that is normally present in the gut. Gut microbiota play an important role in the host's health and could be considered the "second brain" of the body. In recent years, the gut microbiota and their metabolites, including lipopolysaccharide (LPS) and short-chain fatty acids (SCFAs), have been shown to participate in the development of mastitis. LPS is the main component of the cell walls of gram-negative bacteria. Overproduction of rumen-derived LPS injures the rumen epithelium, resulting in the entry of LPS into the blood and damaged liver function; once in the blood, it circulates into the mammary gland, increasing blood-barrier permeability and leading to mammary gland inflammation. SCFAs, which are produced by gut microbiota as fermentation products, have a protective effect on mammary gland inflammatory responses and help maintain the function of the blood-milk barrier. Recently, increasing attention has been focused on the use of probiotics as a promising alternative for the treatment of mastitis. This review summarizes the effects of the gut microbiome and its metabolites on mastitis as well as the current of probiotics in mastitis. This work may provide a valuable theoretical foundation for the development of fresh ideas for the prevention and treatment of mastitis.
Collapse
|
41
|
Silva LG, Ferguson BS, Avila AS, Faciola AP. Sodium propionate and sodium butyrate effects on histone deacetylase (HDAC) activity, histone acetylation, and inflammatory gene expression in bovine mammary epithelial cells. J Anim Sci 2019; 96:5244-5252. [PMID: 30252114 DOI: 10.1093/jas/sky373] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase (HDAC) inhibition attenuates inflammation in rodents and short-chain fatty acids (SCFAs) are effective HDAC inhibitors. Therefore, the objective of this study was to evaluate the role of the SCFAs sodium propionate (SP) and sodium butyrate (SB) as HDAC-dependent regulators of inflammatory gene expression in bovine mammary epithelial cells (MAC-Ts). We postulated that SP and SB would decrease inflammation in MAC-Ts by inhibiting HDAC activity and increasing histone H3 acetylation and consequently decreasing inflammatory gene expression. For this study, MAC-Ts stimulated with lipopolysaccharide (LPS) were used as a model for bovine mammary epithelial cell inflammation. MAC-Ts were cultured in a basal medium. Cell lysates were incubated with SP or SB (0 to 5 mM) for 2 h prior to HDAC substrates incubation for an additional 2 h and HDACs activity was determined. Next, cells were pretreated with SP or SB (0 to 3.0 mM) for 2 h prior to LPS (1 µg/mL) stimulation for an additional 2 h and assessed for histone H3 acetylation. Then, cells were pretreated with SP or SB (1 mM) for 24 h prior to LPS (1 µg/mL) stimulation for an additional 2 h and RNA was isolated for inflammatory gene expression evaluation by PCR array and gene validation was performed using quantitative real-time PCR. One-way ANOVA followed by Tukey post hoc analysis was conducted and statistical significance set at P < 0.05. SP and SB concentration-dependently and selectively inhibited class I HDAC activity, which differed between SCFAs, where SB inhibited (P < 0.05) HDACs 2, 3, and 8, while SP inhibited (P < 0.05) HDACs 2 and 8. Histone H3 acetylation was concentration-dependently increased by SCFAs and likewise the differential regulation of HDAC activity, SCFAs effected differently histone H3 acetylation, where SB increased (P < 0.05) H3K9/14, H3K18 and H3K27 acetylation, while SP increased (P < 0.05) H3K9/14 and H3K18 acetylation. However, SCFAs did not decrease (P > 0.05) overall inflammatory gene expression. Under our experimental conditions, findings suggest that in MAC-Ts, SCFAs regulate epigenetic markers on nucleosomal DNA in addition to regulation of inflammatory gene events independent of HDAC activity. Nevertheless, examination of SCFAs and/or HDACs inhibitors in bovine mammary gland is worth being further investigated to delineate the potential impact of HDAC inhibition and histones hyperacetylation on mammary gland tissue inflammation.
Collapse
Affiliation(s)
- Lorrayny G Silva
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Bradley S Ferguson
- Department Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, NV
| | - Andre S Avila
- Department of Animal Sciences, University of Florida, Gainesville, FL.,Agricultural Science Center, Universidade Estadual do Oeste do Parana, Marechal Candido Rondon, PR, Brazil
| | - Antonio P Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL
| |
Collapse
|
42
|
Guo W, Liu B, Yin Y, Kan X, Gong Q, Li Y, Cao Y, Wang J, Xu D, Ma H, Fu S, Liu J. Licochalcone A Protects the Blood-Milk Barrier Integrity and Relieves the Inflammatory Response in LPS-Induced Mastitis. Front Immunol 2019; 10:287. [PMID: 30858849 PMCID: PMC6398509 DOI: 10.3389/fimmu.2019.00287] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/04/2019] [Indexed: 12/18/2022] Open
Abstract
Background/Aims: Mastitis is an acute clinical inflammatory response. The occurrence and development of mastitis seriously disturb women's physical and mental health. Licochalcone A, a phenolic compound in Glycyrrhiza uralensis, has anti-inflammatory properties. Here, we examined the effect of licochalcone A on blood-milk barrier and inflammatory response in LPS-induced mice mastitis. Methods:In vivo, we firstly established mice models of mastitis by canal injection of LPS to mammary gland, and then detected the effect of licochalcone A on pathological indexes, inflammatory responses and blood-milk barrier in this model. In vivo, Mouse mammary epithelial cells (mMECs) were treated with licochalcone A prior to the incubation of LPS, and then the inflammatory responses, tight junction which is the basic structure of blood-milk barrier were analyzed. Last, we elucidated the anti-inflammatory mechanism by examining the activation of mitogen-activated protein kinase (MAPK) and AKT/NF-κB signaling pathways in vivo and in vitro. Result: The in vivo results showed that licochalcone A significantly decreased the histopathological impairment and the inflammatory responses, and improved integrity of blood-milk barrier. The in vitro results demonstrated that licochalcone A inhibited LPS-induced inflammatory responses and increase the protein levels of ZO-1, occludin, and claudin3 in mMECs. The in vivo and in vitro mechanistic study found that the anti-inflammatory effect of licochalcone A in LPS-induced mice mastitis was mediated by MAPK and AKT/NF-κB signaling pathways. Conclusions and Implications: Our experiments collectively indicate that licochalcone A protected against LPS-induced mice mastitis via improving the blood–milk barrier integrity and inhibits the inflammatory response by MAPK and AKT/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Wenjin Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Bingrun Liu
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Yunhou Yin
- School of Communication, Guizhou Minzu University, Guiyang, China
| | - Xingchi Kan
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Qian Gong
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Yanwei Li
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Yu Cao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dianwen Xu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - He Ma
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Shoupeng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Juxiong Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|