1
|
Kumari R, Muni S, Kumar R, Kumar R, Kumar A, Kumar S, Kumari N. Comparison of Cytokines Profiles and Monocyte Response Among Tuberculosis Patients Versus Patients Coinfected With Intestinal Helminth and Tuberculosis. Cureus 2024; 16:e51726. [PMID: 38318585 PMCID: PMC10839430 DOI: 10.7759/cureus.51726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Background Tuberculosis (TB) and intestinal helminth infections often coexist, posing a significant health challenge. TB, caused by Mycobacterium tuberculosis, and helminths elicit distinct immune responses - Th1 for TB and Th2 for helminths. Co-infection introduces a complex immunological challenge, potentially compromising TB control. This study addresses the research gap by comparing cytokine profiles and monocyte responses in TB patients, helminth-infected individuals, and those with both. Insights gained may enhance diagnosis, treatment, and disease control strategies where TB and helminths prevail. Methods A cross-sectional observational study conducted at Indira Gandhi Institute of Medical Sciences, Patna, Bihar, aimed to compare cytokine profiles and monocyte responses in TB patients and those coinfected with TB and helminths. The study included 150 newly diagnosed active TB individuals aged 18 to 65 years. TB diagnosis was confirmed through clinical assessment, sputum microscopy, and GeneXpert (Cepheid, Sunnyvale, CA, USA) testing. Stool examination employed various methods, including the Kato-Katz technique and formalin-ether concentration. Blood samples were collected for hematological analysis, cytokine profiling, and monocyte isolation. Statistical analysis, using SPSS version 20.0 (IBM Corp., Armonk, NY, USA), included descriptive statistics, and t-test analyses. Results In our study of 150 participants, half (50.0%) showed positive helminth status. The sociodemographic analysis revealed no significant differences in age, gender, education, occupation, marital status, smoking, alcohol, BMI, diabetes, and hypertension between TB patients (n=75) and TB+Helminth patients (n=75), ensuring baseline matching. The prevalence of specific helminth infections in TB+Helminth patients included Ascaris lumbricoides (24.0%), Trichuris trichiura (18.7%), and others. Hematological parameters showed significant differences, with TB+Helminth patients exhibiting higher RBC count, hemoglobin, hematocrit, neutrophil count, and monocyte count; also eosinophil count was more raised in TB+Helminth patients (0.36 x 103/μL) when compared to TB patients (0.25 x 103/μL). Cytokine profiles and monocyte responses varied significantly between the groups, with TB patients having higher IL-4, IL-6, IFN-γ, TNF-α, and IL-1β levels, while TB+Helminth patients had elevated IL-10. Monocyte response time did not differ significantly. Conclusion The observed differences in hematological parameters and cytokine profiles emphasize the need for tailored approaches to diagnosis and treatment in co-infected individuals. These findings suggest that the management of TB patients should consider the potential influence of helminth co-infections.
Collapse
Affiliation(s)
- Ritu Kumari
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Sweta Muni
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Randhir Kumar
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Rakesh Kumar
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Abay Kumar
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Shailesh Kumar
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Namrata Kumari
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| |
Collapse
|
2
|
Gyu Choi H, Woong Kwon K, Jae Shin S. Importance of adjuvant selection in tuberculosis vaccine development: Exploring basic mechanisms and clinical implications. Vaccine X 2023; 15:100400. [PMID: 37965276 PMCID: PMC10641539 DOI: 10.1016/j.jvacx.2023.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
The global emergency of unexpected pathogens, exemplified by SARS-CoV-2, has emphasized the importance of vaccines in thwarting infection and curtailing the progression of severe disease. The scourge of tuberculosis (TB), emanating from the Mycobacterium tuberculosis (Mtb) complex, has inflicted a more profound toll in terms of mortality and morbidity than any other infectious agents prior to the SARS-CoV-2 pandemic. Despite the existence of Bacillus Calmette-Guérin (BCG), the only licensed vaccine developed a century ago, its efficacy against TB remains unsatisfactory, particularly in preventing pulmonary Mtb infections in adolescents and adults. However, collaborations between academic and industrial entities have led to a renewed impetus in the development of TB vaccines, with numerous candidates, particularly subunit vaccines with specialized adjuvants, exhibiting promising outcomes in recent clinical studies. Adjuvants are crucial in modulating optimal immunological responses, by endowing immune cells with sufficient antigen and immune signals. As exemplified by the COVID-19 vaccine landscape, the interplay between vaccine efficacy and adverse effects is of paramount importance, particularly for the elderly and individuals with underlying ailments such as diabetes and concurrent infections. In this regard, adjuvants hold the key to optimizing vaccine efficacy and safety. This review accentuates the pivotal roles of adjuvants and their underlying mechanisms in the development of TB vaccines. Furthermore, we expound on the prospects for the development of more efficacious adjuvants and their synergistic combinations for individuals in diverse states, such as aging, HIV co-infection, and diabetes, by examining the immunological alterations that arise with aging and comparing them with those observed in younger cohorts.
Collapse
Affiliation(s)
- Han Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| |
Collapse
|
3
|
Chin KL, Fonte L, Lim BH, Sarmiento ME, Acosta A. Immunomodulation resulting of helminth infection could be an opportunity for immunization against tuberculosis and mucosal pathogens. Front Immunol 2023; 14:1091352. [PMID: 37020538 PMCID: PMC10067736 DOI: 10.3389/fimmu.2023.1091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Affiliation(s)
- Kai Ling Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- *Correspondence: Kai Ling Chin, ; Luis Fonte, ; Armando Acosta,
| | - Luis Fonte
- Department of Parasitology, Institute of Tropical Medicine “Pedro Kourí”, Havana, Cuba
- *Correspondence: Kai Ling Chin, ; Luis Fonte, ; Armando Acosta,
| | - Boon Huat Lim
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- *Correspondence: Kai Ling Chin, ; Luis Fonte, ; Armando Acosta,
| |
Collapse
|
4
|
Schick J, Altunay M, Lacorcia M, Marschner N, Westermann S, Schluckebier J, Schubart C, Bodendorfer B, Christensen D, Alexander C, Wirtz S, Voehringer D, da Costa CP, Lang R. IL-4 and helminth infection downregulate MINCLE-dependent macrophage response to mycobacteria and Th17 adjuvanticity. eLife 2023; 12:72923. [PMID: 36753434 PMCID: PMC9908076 DOI: 10.7554/elife.72923] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The myeloid C-type lectin receptor (CLR) MINCLE senses the mycobacterial cell wall component trehalose-6,6'-dimycolate (TDM). Recently, we found that IL-4 downregulates MINCLE expression in macrophages. IL-4 is a hallmark cytokine in helminth infections, which appear to increase the risk for mycobacterial infection and active tuberculosis. Here, we investigated functional consequences of IL-4 and helminth infection on MINCLE-driven macrophage activation and Th1/Th17 adjuvanticity. IL-4 inhibited MINCLE and cytokine induction after macrophage infection with Mycobacterium bovis bacille Calmette-Guerin (BCG). Infection of mice with BCG upregulated MINCLE on myeloid cells, which was inhibited by IL-4 plasmid injection and by infection with the nematode Nippostrongylus brasiliensis in monocytes. To determine the impact of helminth infection on MINCLE-dependent immune responses, we vaccinated mice with a recombinant protein together with the MINCLE ligand trehalose-6,6-dibehenate (TDB) as adjuvant. Concurrent infection with N. brasiliensis or with Schistosoma mansoni promoted T cell-derived IL-4 production and suppressed Th1/Th17 differentiation in the spleen. In contrast, helminth infection did not reduce Th1/Th17 induction by TDB in draining peripheral lymph nodes, where IL-4 levels were unaltered. Upon use of the TLR4-dependent adjuvant G3D6A, N. brasiliensis infection impaired selectively the induction of splenic antigen-specific Th1 but not of Th17 cells. Inhibition of MINCLE-dependent Th1/Th17 responses in mice infected with N. brasiliensis was dependent on IL-4/IL-13. Thus, helminth infection attenuated the Th17 response to MINCLE-dependent immunization in an organ- and adjuvant-specific manner via the Th2 cytokines IL-4/IL-13. Taken together, our results demonstrate downregulation of MINCLE expression on monocytes and macrophages by IL-4 as a possible mechanism of thwarted Th17 vaccination responses by underlying helminth infection.
Collapse
Affiliation(s)
- Judith Schick
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Meltem Altunay
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Matthew Lacorcia
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Center for Global Health, Technische Universität MünchenMunichGermany,Center for Global Health, Technical University MunichMunichGermany
| | - Nathalie Marschner
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Stefanie Westermann
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Julia Schluckebier
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Center for Global Health, Technische Universität MünchenMunichGermany,Center for Global Health, Technical University MunichMunichGermany
| | - Christoph Schubart
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Barbara Bodendorfer
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Dennis Christensen
- Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum InstitutCopenhagenDenmark
| | - Christian Alexander
- Cellular Microbiology, Forschungszentrum Borstel, Leibniz Lung Center BorstelBorstelGermany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - David Voehringer
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Clarissa Prazeres da Costa
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Center for Global Health, Technische Universität MünchenMunichGermany,Center for Global Health, Technical University MunichMunichGermany
| | - Roland Lang
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| |
Collapse
|
5
|
A New Role for Old Friends: Effects of Helminth Infections on Vaccine Efficacy. Pathogens 2022; 11:pathogens11101163. [PMID: 36297220 PMCID: PMC9608950 DOI: 10.3390/pathogens11101163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Vaccines are one of the most successful medical inventions to enable the eradication or control of common and fatal diseases. Environmental exposure of hosts, including helminth infections, plays an important role in immune responses to vaccines. Given that helminth infections are among the most common infectious diseases in the world, evaluating vaccine efficiency in helminth-infected populations may provide critical information for selecting optimal vaccination programs. Here, we reviewed the effects of helminth infections on vaccination and its underlying immunological mechanisms, based on findings from human studies and animal models. Moreover, the potential influence of helminth infections on SARS-CoV-2 vaccine was also discussed. Based on these findings, there is an urgent need for anthelmintic treatments to eliminate helminth suppressive impacts on vaccination effectiveness during implementing mass vaccination in parasite endemic areas.
Collapse
|
6
|
Ianiro G, Iorio A, Porcari S, Masucci L, Sanguinetti M, Perno CF, Gasbarrini A, Putignani L, Cammarota G. How the gut parasitome affects human health. Therap Adv Gastroenterol 2022; 15:17562848221091524. [PMID: 35509426 PMCID: PMC9058362 DOI: 10.1177/17562848221091524] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
The human gut microbiome (GM) is a complex ecosystem that includes numerous prokaryotic and eukaryotic inhabitants. The composition of GM can influence an array of host physiological functions including immune development. Accumulating evidence suggest that several members of non-bacterial microbiota, including protozoa and helminths, that were earlier considered as pathogens, could have a commensal or beneficial relationship with the host. Here we examine the most recent data from omics studies on prokaryota-meiofauna-host interaction as well as the impact of gut parasitome on gut bacterial ecology and its role as 'immunological driver' in health and disease to glimpse new therapeutic perspectives.
Collapse
Affiliation(s)
| | - Andrea Iorio
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Serena Porcari
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| | - Luca Masucci
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Federico Perno
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, and Multimodal Laboratory Medicine Research Area, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Antonio Gasbarrini
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| |
Collapse
|
7
|
A multiple T cell epitope comprising DNA vaccine boosts the protective efficacy of Bacillus Calmette-Guérin (BCG) against Mycobacterium tuberculosis. BMC Infect Dis 2020; 20:677. [PMID: 32942991 PMCID: PMC7495405 DOI: 10.1186/s12879-020-05372-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background Approximately 80% - 90% of individuals infected with latent Mycobacterium tuberculosis (Mtb) remain protected throughout their life-span. The release of unique, latent-phase antigens are known to have a protective role in the immune response against Mtb. Although the BCG vaccine has been administered for nine decades to provide immunity against Mtb, the number of TB cases continues to rise, thereby raising doubts on BCG vaccine efficacy. The shortcomings of BCG have been associated with inadequate processing and presentation of its antigens, an inability to optimally activate T cells against Mtb, and generation of regulatory T cells. Furthermore, BCG vaccination lacks the ability to eliminate latent Mtb infection. With these facts in mind, we selected six immunodominant CD4 and CD8 T cell epitopes of Mtb expressed during latent, acute, and chronic stages of infection and engineered a multi-epitope-based DNA vaccine (C6). Result BALB/c mice vaccinated with the C6 construct along with a BCG vaccine exhibited an expansion of both CD4 and CD8 T cell memory populations and augmented IFN-γ and TNF-α cytokine release. Furthermore, enhancement of dendritic cell and macrophage activation was noted. Consequently, illustrating the elicitation of immunity that helps in the protection against Mtb infection; which was evident by a significant reduction in the Mtb burden in the lungs and spleen of C6 + BCG administered animals. Conclusion Overall, the results suggest that a C6 + BCG vaccination approach may serve as an effective vaccination strategy in future attempts to control TB.
Collapse
|
8
|
Gandhi K, Patel M. Collocating Novel Targets for Tuberculosis (TB) Drug Discovery. Curr Drug Discov Technol 2020; 18:307-316. [PMID: 31987022 DOI: 10.2174/1570163817666200121143036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/23/2019] [Accepted: 01/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis, being a resistive species is an incessant threat to the world population for the treatment of Tuberculosis (TB). An advanced genetic or a molecular level approach is mandatory for both diagnosis and therapy as the prevalence of multi drug-resistant (MDR) and extensively drug- resistant (XDR) TB. METHODS A literature review was conducted, focusing essentially on the development of biomarkers and targets to extrapolate the Tuberculosis Drug Discovery process. RESULTS AND DISCUSSION In this article, we have discussed several substantial targets and genetic mutations occurring in a diseased or treatment condition of TB patients. It includes expressions in Bhlhe40, natural resistance associated macrophage protein 1 (NRAMP1) and vitamin D receptor (VDR) with its mechanistic actions that have made a significant impact on TB. Moreover, recently identified compounds; imidazopyridine amine derivative (Q203), biphenyl amide derivative (DG70), azetidine, thioquinazole, tetrahydroindazole and 2- mercapto- quinazoline scaffolds for several targets such as adenosine triphosphate (ATP), amino acid and fatty acid have been briefed for their confirmed hits and therapeutic activity.
Collapse
Affiliation(s)
- Karan Gandhi
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Charusat campus, Changa, Gujarat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Charusat Campus, Changa, Gujarat, India
| |
Collapse
|
9
|
Rajamanickam A, Munisankar S, Dolla C, Menon PA, Nutman TB, Babu S. Helminth Coinfection Alters Monocyte Activation, Polarization, and Function in Latent Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2020; 204:1274-1286. [PMID: 31953351 DOI: 10.4049/jimmunol.1901127] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
Helminth infections are known to influence T and B cell responses in latent tuberculosis infection (LTBI). Whether helminth infections also modulate monocyte responses in helminth-LTBI coinfection has not been fully explored. To this end, we examined the activation, polarization, and function of human monocytes isolated from individuals with LTBI with (n = 25) or without (n = 25) coincident Strongyloides stercoralis infection (S. stercoralis-positive and S. stercoralis-negative respectively). Our data reveal that the presence of S. stercoralis infection is associated with lower frequencies of monocytes expressing CD54, CD80, CD86 at baseline (absence of stimulation) and in response to mycobacterial-Ag stimulation than monocytes from S. stercoralis-negative individuals. In contrast, S. stercoralis infection was associated with higher frequencies of M2-like monocytes, as determined by expression of CD206 and CD163. Monocytes from S. stercoralis-positive individuals had a reduced capacity to phagocytose or exhibit respiratory burst activity following mycobacterial-Ag or LPS stimulation and were less capable of expression of IL-1β, TNF-α, IL-6, and IL-12 at baseline and/or following Ag stimulation compared with those without S. stercoralis infection. In addition, definitive treatment of S. stercoralis infection resulted in a significant reversal of the altered monocyte function 6 mo after anthelmintic therapy. Finally, T cells from S. stercoralis-positive individuals exhibited significantly lower activation at baseline or following mycobacterial-Ag stimulation. Therefore, our data highlight the induction of dampened monocyte activation, enhanced M2 polarization, and impaired monocyte function in helminth-LTBI coinfection. Our data also reveal a different mechanism by which helminth infection modulates immune function in LTBI.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai 600031, India
| | - Saravanan Munisankar
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai 600031, India
| | - Chandrakumar Dolla
- National Institute for Research in Tuberculosis, Chennai 600031, India; and
| | - Pradeep A Menon
- National Institute for Research in Tuberculosis, Chennai 600031, India; and
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Subash Babu
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai 600031, India; .,Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
10
|
Rukmana A, Rasyid B, Sjatha F. Gluthathione S-transferase-resuscitation-promoting factor B recombinant protein of <em>Mycobacterium tuberculosis</em> induces the production of interferon-γ and interleukin-12 in mice splenocytes. MEDICAL JOURNAL OF INDONESIA 2019. [DOI: 10.13181/mji.v28i3.2444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND As the only TB vaccine available, Bacillus Calmette-Guérin shows variable efficacy in adults and does not provide protection against the resuscitation of latent TB infections. Resuscitation-promoting factor B (RpfB) is a protein produced by Mycobacterium tuberculosis during the resuscitation phase and is promising as a novel TB vaccine. This study was aimed to analyze the immunogenicity of the gluthathione S-transferase (GST)-RpfB recombinant protein on mice splenocytes in vitro. METHODS After induction with isopropyl β-D-1-thiogalactopyranoside, the protein was extracted by sonication followed by solubilization in 8 M urea buffer. Protein was then re-natured and purified with a GST chromatography column. The isolated protein was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot using anti-GST antibodies, and its concentration was determined using the Bradford method. Each group of splenocytes was treated with 25 μg/ ml of the recombinant protein (GST-RpfB), GST, and phytohemagglutinin. Antigen induction was repeated twice at 24 and 72 hours. The supernatant was collected at 96 hours and interferon gamma (IFNγ), interleukin (IL-12, IL-4, and IL-10) levels were measured with enzyme-linked immunosorbent assays. RESULTS GST-RpfB recombinant proteins were expressed in the form of inclusion bodies with a molecular weight of approximately 66 kDa. Based on the independent t-test, GST-RpfB stimulated IFNγ and IL-12 production but not IL-4 and IL-10. CONCLUSIONS The GST-RpfB protein has been immunogenically proven and is a potential candidate as a novel subunit TB vaccine.
Collapse
|
11
|
Rai PK, Chodisetti SB, Maurya SK, Nadeem S, Zeng W, Janmeja AK, Jackson DC, Agrewala JN. A lipidated bi-epitope vaccine comprising of MHC-I and MHC-II binder peptides elicits protective CD4 T cell and CD8 T cell immunity against Mycobacterium tuberculosis. J Transl Med 2018; 16:279. [PMID: 30305097 PMCID: PMC6180631 DOI: 10.1186/s12967-018-1653-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
Background The clinical trials conducted at Chingleput India suggest that BCG fails to protect against tuberculosis (TB) in TB-endemic population. Recent studies advocate that non-tuberculous mycobacteria and latent Mycobacterium tuberculosis (Mtb) infection interferes in the antigen processing and presentation of BCG in inducing protective immunity against Mtb. Thereby, indicating that any vaccine that require extensive antigen processing may not be efficacious in TB-endemic zones. Recently, we have demonstrated that the vaccine candidate L91, which is composed of lipidated promiscuous MHC-II binder epitope, derived from latency associated Acr1 antigen of Mtb is immunogenic in the murine and Guinea pig models of TB and conferred better protection than BCG against Mtb. Methods In this study, we have used a multi-stage based bi-epitope vaccine, namely L4.8, comprising of MHC-I and MHC-II binding peptides of active (TB10.4) and latent (Acr1) stages of Mtb antigens, respectively. These peptides were conjugated to the TLR-2 agonist Pam2Cys. Results L4.8 significantly elicited both CD8 T cells and CD4 T cells immunity, as evidenced by increase in the enduring polyfunctional CD8 T cells and CD4 T cells. L4.8 efficiently declined Mtb-burden and protected animals better than BCG and L91, even at the late stage of Mtb infection. Conclusions The BCG-L4.8 prime boost strategy imparts a better protection against TB than the BCG alone. This study emphatically denotes that L4.8 can be a promising future vaccine candidate for controlling active and latent TB. Electronic supplementary material The online version of this article (10.1186/s12967-018-1653-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pradeep K Rai
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sathi Babu Chodisetti
- CSIR-Institute of Microbial Technology, Chandigarh, India.,Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Sajid Nadeem
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Weiguang Zeng
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ashok K Janmeja
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India
| | - David C Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Javed N Agrewala
- CSIR-Institute of Microbial Technology, Chandigarh, India. .,Indian Institute of Technology, Rupnagar, 140001, India.
| |
Collapse
|
12
|
Antibodies and coinfection drive variation in nematode burdens in wild mice. Int J Parasitol 2018; 48:785-792. [DOI: 10.1016/j.ijpara.2018.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
|