1
|
Ma Y, Guo T, Ding J, Dong Z, Ren Y, Lu C, Zhao Y, Guo X, Cao G, Li B, Gao P. RNA-seq analysis of small intestine transcriptional changes induced by starvation stress in piglets. Anim Biotechnol 2024; 35:2295931. [PMID: 38147885 DOI: 10.1080/10495398.2023.2295931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Piglets may experience a variety of stress injuries, but the molecular regulatory mechanisms underlying these injuries are not well understood. In this study, we analysed the ileum of Large White (LW) and Mashen (MS) piglets at different times of starvation using chemical staining and transcriptome analysis. The intestinal barrier of piglets was damaged after starvation stress, but the intestinal antistress ability of MS piglets was stronger than LW piglets. A total of 8021 differentially expressed genes (DEGs) were identified in two breeds. Interestingly, the immune capacity (CHUK, TLR3) of MS piglets increased significantly after short-term starvation stress, while energy metabolism (NAGS, PLA2G12B, AGCG8) was predominant in LW piglets. After long-term starvation stress, the level of energy metabolism (PLIN5, PLA2G12B) was significantly increased in MS piglets. The expression of immune (HLA-DQB1, IGHG4, COL3A1, CD28, LAT) and disease (HSPA1B, MINPPI, ADH1C, GAL3ST1) related genes were significantly increased in two breeds of piglets. These results suggest that short-term stress mainly enhances immunity and energy metabolism in piglets, while long-term starvation produces greater stress on piglets, making it difficult for them to compensate for the damage to their bodies through self-regulation. This information can help improve the stress resistance of piglets through molecular breeding.
Collapse
Affiliation(s)
- Yijia Ma
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Tong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianqin Ding
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhiling Dong
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yifei Ren
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
2
|
Baltu D, Serin O, Aksu T, Hızarcıoğlu Gülşen H, Orhan D, Yıldız Y, Yücel Yılmaz D, Vurallı D, Bilginer Y, Gülhan B, Düzova A. Membranoproliferative glomerulonephritis in a patient with lysinuric protein intolerance: lesson for the clinical nephrologist. J Nephrol 2024:10.1007/s40620-024-02018-2. [PMID: 39017816 DOI: 10.1007/s40620-024-02018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Affiliation(s)
- Demet Baltu
- Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, 06100, Ankara, Turkey
| | - Oğuzhan Serin
- Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tekin Aksu
- Division of Pediatric Hematology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hayriye Hızarcıoğlu Gülşen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Diclehan Orhan
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yılmaz Yıldız
- Division of Pediatric Metabolism, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Didem Yücel Yılmaz
- Division of Pediatric Metabolism, Hacettepe University Institute of Child Health, Ankara, Turkey
| | - Doğuş Vurallı
- Division of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yelda Bilginer
- Division of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Bora Gülhan
- Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, 06100, Ankara, Turkey.
| | - Ali Düzova
- Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, 06100, Ankara, Turkey
| |
Collapse
|
3
|
Liang D, Huang H, Shen Y. Interstitial Lung Disease in a 14-Year-Old Boy. Chest 2024; 166:e5-e10. [PMID: 38986651 DOI: 10.1016/j.chest.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/28/2024] [Accepted: 02/13/2024] [Indexed: 07/12/2024] Open
Abstract
CASE PRESENTATION A 14-year-old Chinese boy presented with a 7-year history of exertional dyspnea and reduced exercise tolerance. His perinatal and family histories were unremarkable. He was short and underweight for his age since childhood but had normal intellectual development. At 3 years of age, he was admitted to the ICU for severe pneumonia and anemia, and he received blood transfusion. He developed exertional dyspnea and reduced exercise tolerance at 7 years of age and became reluctant to run or jump, with poor appetite, abdominal distension, and refusal of protein-rich foods. At 13 years of age, he experienced a coma during school military training, and he was hospitalized for hyperammonemia (blood ammonia levels between 98 and 148 μmol/L; normal range, 18-72 μmol/L). Brain MRI showed no abnormalities. He improved after symptomatic treatment and was discharged, without taking any oral medication afterwards. However, his dyspnea and exercise tolerance worsened gradually. This patient was referred to Children's Hospital affiliated with Zhengzhou University for further investigation and management.
Collapse
Affiliation(s)
- Dongge Liang
- Respiratory Department, Children's Hospital Affiliated to Zhengzhou University, Henan Children's hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Han Huang
- Respiratory Department, Children's Hospital Affiliated to Zhengzhou University, Henan Children's hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yuelin Shen
- Respiratory Department II, National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
4
|
Häberle J, Siri B, Dionisi-Vici C. Quo vadis ureagenesis disorders? A journey from 90 years ago into the future. J Inherit Metab Dis 2024. [PMID: 38837457 DOI: 10.1002/jimd.12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
The pathway of ammonia disposal in the mammalian organism has been described in 1932 as a metabolic cycle present in the liver in different compartments. In 1958, the first human disorder affecting this pathway was described as a genetic condition leading to cognitive impairment and constant abnormalities of amino acid metabolism. Since then, defects in all enzymes and transporters of the urea cycle have been described, referring to them as primary urea cycle disorders causing primary hyperammonemia. In addition, there is a still increasing list of conditions that impact on the function of the urea cycle by various mechanisms, hereby leading to secondary hyperammonemia. Despite great advances in understanding the molecular background and the biochemical specificities of both primary and secondary hyperammonemias, there remain many open questions: we do not fully understand the pathophysiology in many of the conditions; we do not always understand the highly variable clinical course of affected patients; we clearly appreciate the need for novel and improved diagnostic and therapeutic approaches. This study does look back to the beginning of the urea cycle (hi)story, briefly describes the journey through past decades, hereby illustrating advancements and knowledge gaps, and gives examples for the extremely broad perspective imminent to some of the defects of ureagenesis and allied conditions.
Collapse
Affiliation(s)
- Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Barbara Siri
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
5
|
Pang Y, Huo F, Liu X, Fan Y, Zhang Z, Wu J, Wang Q. Lysinuric protein intolerance with novel mutations in solute carrier family 7A member 7 in a Chinese family. Pediatr Investig 2024; 8:149-153. [PMID: 38910857 PMCID: PMC11193372 DOI: 10.1002/ped4.12427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/02/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Lysinuric protein intolerance (LPI) is a rare genetic disorder caused by mutations in the solute carrier family 7A member 7 (SLC7A7) gene. Case presentation We presented two siblings with LPI, carrying novel mutations of c.776delT (p.L259Rfs*18) and c.155G>T (p.G52V) in SLC7A7. The younger sibling, preferring protein-rich foods, showed severe symptoms, including alveolar proteinosis, macrophage activation syndrome, severe diarrhea, and disturbance of consciousness with involuntary movements. In contrast, the elder sibling only had mild symptoms, likely due to aversion to protein-rich food since toddler age. Conclusion LPI is a congenital genetic metabolic disease with multi-system involvement. Initiating appropriate protein-restricted diet therapy as soon as possible could help prevent the progression of LPI.
Collapse
Affiliation(s)
- Yilin Pang
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Feng Huo
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Xiao Liu
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Yimu Fan
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Zhezhe Zhang
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Jie Wu
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Quan Wang
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
6
|
Chen D, Zhang R, Huang X, Ji C, Xia W, Qi Y, Yang X, Lin L, Wang J, Cheng H, Tang W, Yu J, Hoon DSB, Zhang J, Gao X, Yao Y. MRI-derived radiomics assessing tumor-infiltrating macrophages enable prediction of immune-phenotype, immunotherapy response and survival in glioma. Biomark Res 2024; 12:14. [PMID: 38291499 PMCID: PMC10829320 DOI: 10.1186/s40364-024-00560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The tumor immune microenvironment can influence the prognosis and treatment response to immunotherapy. We aimed to develop a non-invasive radiomic signature in high-grade glioma (HGG) to predict the absolute density of tumor-associated macrophages (TAMs), the preponderant immune cells in the microenvironment of HGG. We also aimed to evaluate the association between the signature, and tumor immune phenotype as well as response to immunotherapy. METHODS In this retrospective setting, total of 379 patients with HGG from three independent cohorts were included to construct a radiomic model named Radiomics Immunological Biomarker (RIB) for predicting the absolute density of M2-like TAM using the mRMR feature ranking method and LASSO classifier. Among them, 145 patients from the TCGA microarray cohort were randomly allocated into a training set (N=101) and an internal validation set (N=44), while the immune-phenotype cohort (N=203) and the immunotherapy-treated cohort (N=31, patients from a prospective clinical trial treated with DC vaccine) recruited from Huashan Hospital were used as two external validation sets. The immunotherapy-treated cohort was also used to evaluate the relationship between RIB and immunotherapy response. Radiogenomic analysis was performed to find functional annotations using RNA sequencing data from TAM cells. RESULTS An 11-feature radiomic model for M2-like TAM was developed and validated in four datasets of HGG patients (area under the curve = 0.849, 0.719, 0.674, and 0.671) using MRI images of post contrast enhanced T1-weighted (T1CE). Patients with high RIB scores had a strong inflammatory response. Four hub-genes (SLC7A7, RNASE6, HLA-DRB1 and CD300A) expressed by TAM were identified to be closely related to the RIB, providing important evidence for biological interpretation. Only individuals with a high RIB score were shown to have survival benefits from DC vaccine [DC vaccine vs. Placebo: median progression-free survival (mPFS), 10.0 mos vs. 4.5 mos, HR=0.17, P=0.0056, 95%CI=0.041-0.68; median overall survival (mOS), 15.0 mos vs. 7.0 mos, HR=0.17, P =0.0076, 95%CI=0.04-0.68]. Multivariate analyses also confirmed that treatment by DC vaccine was an independent factor for improved survival in the high RIB score group. However, in the low RIB score group, DC vaccine was not associated with improved survival. Furthermore, a radiomic nomogram based on the RIB score and clinical factors could efficiently predict the 1-, 2-, and 3-year survival rates, as confirmed by ROC curve analysis (AUC for 1-, 2- and 3-year survival: 0.705, 0.729 and 0.684, respectively). CONCLUSIONS The radiomic model could allow for non-invasive assessment of the absolute density of TAM from MRI images in HGG patients. Of note, our RIB model is the first immunological radiomic model confirmed to have the ability to predict survival benefits from DC vaccine in gliomas, thereby providing a novel tool to inform treatment decisions and monitor patient treatment course by radiomics.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Rui Zhang
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Xiaoming Huang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Chunxia Ji
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wei Xia
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Ying Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Xinyu Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Lishuang Lin
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haixia Cheng
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Yu
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint Johns Cancer Institute, Providence Health Systems, Santa Monica, CA, USA
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| | - Xin Gao
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| |
Collapse
|
7
|
Canna SW. Autoinflammatory Contributors to Cytokine Storm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:385-397. [PMID: 39117828 DOI: 10.1007/978-3-031-59815-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cytokine Storm is a complex and heterogeneous state of life-threatening systemic inflammation and immunopathology. Autoinflammation is a mechanistic category of immune dysregulation wherein immunopathology originates due to poor regulation of innate immunity. The growing family of monogenic Systemic Autoinflammatory Diseases (SAIDs) has been a wellspring for pathogenic insights and proof-of-principle targeted therapeutic interventions. There is surprisingly little overlap between SAID and Cytokine Storm Syndromes, and there is a great deal to be inferred from those SAID that do, and do not, consistently lead to Cytokine Storm. This chapter will summarize how illustrations of the autoinflammatory paradigm have advanced the understanding of human inflammation, including the role of autoinflammation in familial HLH. Next, it will draw from monogenic SAID, both those with strong associations with cytokine storm and those without, to illustrate how the cytokine IL-18 links innate immune dysregulation and cytokine storm.
Collapse
Affiliation(s)
- Scott W Canna
- Perelman School of Medicine, University of Pennsylvania, Pediatric Rheumatology and Immune Dysregulation, The Childrens Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Barilli A, Recchia Luciani G, Visigalli R, Sala R, Soli M, Dall’Asta V, Rotoli BM. Cytokine-Induced iNOS in A549 Alveolar Epithelial Cells: A Potential Role in COVID-19 Lung Pathology. Biomedicines 2023; 11:2699. [PMID: 37893073 PMCID: PMC10603955 DOI: 10.3390/biomedicines11102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND In COVID-19, an uncontrolled inflammatory response might worsen lung damage, leading to acute respiratory distress syndrome (ARDS). Recent evidence points to the induction of inducible nitric oxide synthase (NOS2/iNOS) as a component of inflammatory response since NOS2 is upregulated in critical COVID-19 patients. Here, we explore the mechanisms underlying the modulation of iNOS expression in human alveolar cells. METHODS A549 WT and IRF1 KO cells were exposed to a conditioned medium of macrophages treated with SARS-CoV-2 spike S1. Additionally, the effect of IFNγ, IL-1β, IL-6, and TNFα, either alone or combined, was addressed. iNOS expression was assessed with RT-qPCR and Western blot. The effect of baricitinib and CAPE, inhibitors of JAK/STAT and NF-kB, respectively, was also investigated. RESULTS Treatment with a conditioned medium caused a marked induction of iNOS in A549 WT and a weak stimulation in IRF1 KO. IFNγ induced NOS2 and synergistically cooperated with IL-1β and TNFα. The inhibitory pattern of baricitinb and CAPE indicates that cytokines activate both IRF1 and NF-κB through the JAK/STAT1 pathway. CONCLUSIONS Cytokines secreted by S1-activated macrophages markedly induce iNOS, whose expression is suppressed by baricitinib. Our findings sustain the therapeutic efficacy of this drug in COVID-19 since, besides limiting the cytokine storm, it also prevents NOS2 induction.
Collapse
Affiliation(s)
- Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (A.B.)
| | - Giulia Recchia Luciani
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (A.B.)
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (A.B.)
| | - Roberto Sala
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (A.B.)
| | - Maurizio Soli
- Immunohematology and Transfusion Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (A.B.)
| | - Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (A.B.)
| |
Collapse
|
9
|
Rotoli BM, Visigalli R, Ferrari F, Ranieri M, Tamma G, Dall’Asta V, Barilli A. Desmopressin Stimulates Nitric Oxide Production in Human Lung Microvascular Endothelial Cells. Biomolecules 2022; 12:biom12030389. [PMID: 35327581 PMCID: PMC8945551 DOI: 10.3390/biom12030389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/10/2023] Open
Abstract
Desmopressin (dDAVP) is the best characterized analogue of vasopressin, the endocrine regulator of water balance endowed with potent vasoconstrictive effects. Despite the use of dDAVP in clinical practice, ranging from the treatment of nephrogenic diabetes insipidus to bleeding disorders, much remains to be understood about the impact of the drug on endothelial phenotype. The aim of this study was, thus, to evaluate the effects of desmopressin on the viability and function of human pulmonary microvascular endothelial cells (HLMVECs). The results obtained demonstrate that the vasopressor had no cytotoxic effect on the endothelium; similarly, no sign of endothelial activation was induced by dDAVP, indicated by the lack of effect on the expression of inflammatory cytokines and adhesion molecules. Conversely, the drug significantly stimulated the production of nitric oxide (NO) and the expression of the inducible isoform of nitric oxide synthase, NOS2/iNOS. Since the intracellular level of cAMP also increased, we can hypothesize that NO release is consequent to the activation of the vasopressin receptor 2 (V2R)/guanylate cyclase (Gs)/cAMP axis. Given the multifaceted role of NOS2-deriving NO for many physio-pathological conditions, the meanings of these findings in HLMVECs appears intriguing and deserves to be further addressed.
Collapse
Affiliation(s)
- Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (B.M.R.); (R.V.); (F.F.); (V.D.)
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (B.M.R.); (R.V.); (F.F.); (V.D.)
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (B.M.R.); (R.V.); (F.F.); (V.D.)
| | - Marianna Ranieri
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (G.T.)
| | - Grazia Tamma
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (G.T.)
| | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (B.M.R.); (R.V.); (F.F.); (V.D.)
| | - Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (B.M.R.); (R.V.); (F.F.); (V.D.)
- Correspondence:
| |
Collapse
|
10
|
Analysis of the long non-coding RNA and mRNA expression profiles associated with lidocaine-induced neurotoxicity in the spinal cord of a rat model. Neurotoxicology 2022; 90:88-101. [DOI: 10.1016/j.neuro.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
|
11
|
Sheng L, Luo Q, Chen L. Amino Acid Solute Carrier Transporters in Inflammation and Autoimmunity. Drug Metab Dispos 2022; 50:DMD-AR-2021-000705. [PMID: 35152203 DOI: 10.1124/dmd.121.000705] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 02/21/2024] Open
Abstract
The past decade exposed the importance of many homeostasis and metabolism related proteins in autoimmunity disease and inflammation. Solute carriers (SLCs) are a group of membrane channels that can transport amino acids, the building blocks of proteins, nutrients, and neurotransmitters. This review summarizes the role of SLCs amino acid transporters in inflammation and autoimmunity disease. In detail, the importance of Glutamate transporters SLC1A1, SLC1A2, and SLC1A3, mainly expressed in the brain where they help prevent glutamate excitotoxicity, is discussed in the context of central nervous system disorders such as multiple sclerosis. Similarly, the cationic amino acid transporter SLC7A1 (CAT1), which is an important arginine transporter for T cells, and SLC7A2 (CAT2), essential for innate immunity. SLC3 family proteins, which bind with light chains from the SLC7 family (SLC7A5, SLC7A7 and SLC7A11) to form heteromeric amino acid transporters, are also explored to describe their roles in T cells, NK cells, macrophages and tumor immunotherapies. Altogether, the link between SLC amino acid transporters with inflammation and autoimmunity may contribute to a better understanding of underlying mechanism of disease and provide novel potential therapeutic avenues. Significance Statement SIGNIFICANCE STATEMENT In this review, we summarize the link between SLC amino acid transporters and inflammation and immune responses, specially SLC1 family members and SLC7 members. Studying the link may contribute to a better understanding of related diseases and provide potential therapeutic targets and useful to the researchers who have interest in the involvement of amino acids in immunity.
Collapse
Affiliation(s)
| | - Qi Luo
- Tsinghua University, China
| | | |
Collapse
|
12
|
Palani S, Miner MWG, Virta J, Liljenbäck H, Eskola O, Örd T, Ravindran A, Kaikkonen MU, Knuuti J, Li XG, Saraste A, Roivainen A. Exploiting Glutamine Consumption in Atherosclerotic Lesions by Positron Emission Tomography Tracer (2S,4R)-4-18F-Fluoroglutamine. Front Immunol 2022; 13:821423. [PMID: 35145523 PMCID: PMC8822173 DOI: 10.3389/fimmu.2022.821423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
Increased glutamine metabolism by macrophages is associated with development of atherosclerotic lesions. Positron emission tomography/computed tomography (PET/CT) with a glutamine analog (2S,4R)-4-18F-fluoroglutamine (18F-FGln) allows quantification of glutamine consumption in vivo. Here, we investigated uptake of 18F-FGln by atherosclerotic lesions in mice and compared the results with those obtained using the glucose analog 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG). Uptake of 18F-FGln and 18F-FDG by healthy control mice (C57BL/6JRj) and atherosclerotic low-density lipoprotein receptor-deficient mice expressing only apolipoprotein B100 (LDLR−/−ApoB100/100) was investigated. The mice were injected intravenously with 18F-FGln or 18F-FDG for in vivo PET/CT imaging. After sacrifice at 70 minutes post-injection, tracer uptake was analyzed by gamma counting of excised tissues and by autoradiography of aorta cryosections, together with histological and immunohistochemical analyses. We found that myocardial uptake of 18F-FGln was low. PET/CT detected lesions in the aortic arch, with a target-to-background ratio (SUVmax, aortic arch/SUVmean, blood) of 1.95 ± 0.42 (mean ± standard deviation). Gamma counting revealed that aortic uptake of 18F-FGln by LDLR−/−ApoB100/100 mice (standardized uptake value [SUV], 0.35 ± 0.06) was significantly higher than that by healthy controls (0.20 ± 0.08, P = 0.03). More detailed analysis by autoradiography revealed that the plaque-to-healthy vessel wall ratio of 18F-FGln (2.90 ± 0.42) was significantly higher than that of 18F-FDG (1.93 ± 0.22, P = 0.004). Immunohistochemical staining confirmed that 18F-FGln uptake in plaques co-localized with glutamine transporter SLC7A7-positive macrophages. Collectively these data show that the 18F-FGln PET tracer detects inflamed atherosclerotic lesions. Thus, exploiting glutamine consumption using 18F-FGln PET may have translational relevance for studying atherosclerotic inflammation.
Collapse
Affiliation(s)
- Senthil Palani
- Turku PET Centre, University of Turku, Turku, Finland
- *Correspondence: Anne Roivainen, ; Senthil Palani,
| | | | - Jenni Virta
- Turku PET Centre, University of Turku, Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Olli Eskola
- Turku PET Centre, University of Turku, Turku, Finland
| | - Tiit Örd
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Aarthi Ravindran
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- *Correspondence: Anne Roivainen, ; Senthil Palani,
| |
Collapse
|
13
|
Barilli A, Visigalli R, Ferrari F, Di Lascia M, Riccardi B, Puccini P, Dall'Asta V, Rotoli BM. Organic cation transporters (OCTs/OCTNs) in human primary alveolar epithelial cells. Biochem Biophys Res Commun 2021; 576:27-32. [PMID: 34478916 DOI: 10.1016/j.bbrc.2021.08.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022]
Abstract
Alveolar epithelium, besides exerting a key role in gas exchange and surfactant production, plays important functions in host defense and inflammation. Pathological conditions associated to alveolar dysfunction include Acute Respiratory Distress Syndrome (ARDS), asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). The use of predictive in vitro models of human alveolar epithelium is nowadays required for the study of disease mechanisms, as well as of pharmacokinetic parameters of pulmonary drugs delivery. Here, we employed a novel 3D model of human alveoli, namely EpiAlveolar™, consisting of primary alveolar epithelial cells, pulmonary endothelial cells and fibroblasts, that reflects properly the in vivo-like conditions. In EpiAlveolar™ we performed a characterization of Organic Cation Transporters (OCTs and OCTNs) expression and activity and we found that OCTN2, OCT1 and OCT3 are expressed on the basolateral membrane; instead, ATB0,+ transporter for cationic and neutral amino acids, which shares with OCTN2 the affinity for carnitine as substrate, is readily detectable and functional at the apical side. We also show that these transporters differentially interact with anticholinergic drugs. Overall, our findings reveal close similarities of EpiAlveolar™ with the tracheal/bronchial epithelium (EpiAirway™ model) and entrust this alveolar tissue as a potential tool for the screening of biopharmaceuticals molecules.
Collapse
Affiliation(s)
- Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Maria Di Lascia
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Benedetta Riccardi
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Paola Puccini
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Valeria Dall'Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
| | - Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| |
Collapse
|
14
|
Endothelial Cell Activation by SARS-CoV-2 Spike S1 Protein: A Crosstalk between Endothelium and Innate Immune Cells. Biomedicines 2021; 9:biomedicines9091220. [PMID: 34572407 PMCID: PMC8470710 DOI: 10.3390/biomedicines9091220] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background. Emerging evidences suggest that in severe COVID-19, multi-organ failure is associated with a hyperinflammatory state (the so-called “cytokine storm”) in combination with the development of a prothrombotic state. The central role of endothelial dysfunction in the pathogenesis of the disease is to date accepted, but the precise mechanisms underlying the associated coagulopathy remain unclear. Whether the alterations in vascular homeostasis directly depend upon the SARS-CoV-2 infection of endothelial cells or, rather, occur secondarily to the activation of the inflammatory response is still a matter of debate. Here, we address the effect of the SARS-CoV-2 spike S1 protein on the activation of human lung microvascular endothelial cells (HLMVEC). In particular, the existence of an endothelium-macrophage crosstalk in the response to the spike protein has been explored. Methods and Results. The effect of the spike protein is addressed in human lung microvascular endothelial cells (HLMVEC), either directly or after incubation with a conditioned medium (CM) of human monocyte-derived macrophages (MDM) previously activated by the spike S1 protein (CM-MDM). Both MDM and HLMVEC are activated in response to the S1 protein, with an increased expression of pro-inflammatory mediators. However, when HLMVEC are exposed to CM-MDM, an enhanced cell activation occurs in terms of the expression of adhesion molecules, pro-coagulant markers, and chemokines. Under this experimental condition, ICAM-1 and VCAM-1, the chemokines CXCL8/IL-8, CCL2/MCP1, and CXCL10/IP-10 as well as the protein tissue factor (TF) are markedly induced. Instead, a decrease of thrombomodulin (THBD) is observed. Conclusion. Our data suggest that pro-inflammatory mediators released by spike-activated macrophages amplify the activation of endothelial cells, likely contributing to the impairment of vascular integrity and to the development of a pro-coagulative endothelium.
Collapse
|
15
|
Ren A, Yin W, Miller H, Westerberg LS, Candotti F, Park CS, Lee P, Gong Q, Chen Y, Liu C. Novel Discoveries in Immune Dysregulation in Inborn Errors of Immunity. Front Immunol 2021; 12:725587. [PMID: 34512655 PMCID: PMC8429820 DOI: 10.3389/fimmu.2021.725587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
With the expansion of our knowledge on inborn errors of immunity (IEI), it gradually becomes clear that immune dysregulation plays an important part. In some cases, autoimmunity, hyperinflammation and lymphoproliferation are far more serious than infections. Thus, immune dysregulation has become significant in disease monitoring and treatment. In recent years, the wide application of whole-exome sequencing/whole-genome sequencing has tremendously promoted the discovery and further studies of new IEI. The number of discovered IEI is growing rapidly, followed by numerous studies of their pathogenesis and therapy. In this review, we focus on novel discovered primary immune dysregulation diseases, including deficiency of SLC7A7, CD122, DEF6, FERMT1, TGFB1, RIPK1, CD137, TET2 and SOCS1. We discuss their genetic mutation, symptoms and current therapeutic methods, and point out the gaps in this field.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Liu X, Shang X, Li J, Zhang S. The Prognosis and Immune Checkpoint Blockade Efficacy Prediction of Tumor-Infiltrating Immune Cells in Lung Cancer. Front Cell Dev Biol 2021; 9:707143. [PMID: 34422829 PMCID: PMC8370893 DOI: 10.3389/fcell.2021.707143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/30/2021] [Indexed: 01/11/2023] Open
Abstract
Backgrounds The high morbidity and mortality of lung cancer are serious public health problems. The prognosis of lung cancer and whether to apply immune checkpoint blockade (ICB) are currently urgent problems to be solved. Methods Using R software, we performed Kaplan–Meier (K-M) analysis, Cox regression analysis, functional enrichment analysis, Spearman correlation analysis, and the single-sample gene set enrichment analysis. Results On the Tumor IMmune Estimation Resource (TIMER2.0) website, we calculated the abundance of tumor-infiltrating immune cells (TIICs) of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients. B cell and myeloid dendritic cell (DC1) were independent prognostic factors for LUAD and LUSC patients, respectively. Enrichment analysis confirmed that genes highly related to B cell or DC1 were closely related to the immune activation of lung cancer patients. In terms of adaptive immune resistance markers, CD8A, CD8B, immunomodulators (immunostimulants, major histocompatibility complex, receptors, and chemokines), immune-related pathways, tumor microenvironment score, and TIICs, high B cell/DC1 infiltration tissue was inflamed and immune-activated and might benefit more from the ICB. Genes most related to B cell [CD19, toll-like receptor 10 (TLR10), and Fc receptor-like A (FCRLA)] and DC1 (ITGB2, LAPTM5, and SLC7A7) partially clarified the roles of B cell/DC1 in predicting ICB efficacy. Among the 186 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, there were three and four KEGG pathways, which partially explained the molecular mechanisms by which B cell and DC1 simultaneously predicted the prognosis and efficacy of immunotherapy, respectively. Among five immune subtypes, the abundance of B cell/DC1 and expression of six hub genes were higher in immune C2, C3, and C6. Conclusion B cell and DC1 could predict the prognosis and ICB efficacy of LUAD and LUSC patients, respectively. The six hub genes and seven KEGG pathways might be novel immunotherapy targets. Immune C2, C3, and C6 subtypes of lung cancer patients might benefit more from ICB therapy.
Collapse
Affiliation(s)
- Xiangzheng Liu
- Department of Thoracic Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Xueqian Shang
- Department of Thoracic Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Jian Li
- Department of Thoracic Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Shijie Zhang
- Department of Thoracic Surgery, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
17
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
18
|
Dai W, Feng J, Hu X, Chen Y, Gu Q, Gong W, Feng T, Wu J. SLC7A7 is a prognostic biomarker correlated with immune infiltrates in non-small cell lung cancer. Cancer Cell Int 2021; 21:106. [PMID: 33632211 PMCID: PMC7905560 DOI: 10.1186/s12935-021-01781-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background SLC7A7 (solute carrier family 7, amino acid transporter light chain, y + L system, member 7) is a critical gene in the regulation of cationic amino acid transport. However, the relationships between SLC7A7 and prognosis and tumor-infiltrating lymphocytes in different cancers remain unclear. Methods SLC7A7 expression was analyzed using the Oncomine database and Tumor Immune Estimation Resource (TIMER) site. The enrichment of the GO (Gene Oncology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways was conducted by DAVID. We evaluated the influence of SLC7A7 on clinical prognosis using the PrognoScan database. The functional state of SLC7A7 in various types of cancers was analyzed by CancerSEA. The relationships between SLC7A7 and cancer immune infiltrates was investigated by TIMER. Furthermore, correlations between SLC7A7 expression and gene marker sets of immune infiltrates were analyzed by TIMER and Gene Expression Profiling Interactive Analysis (GEPIA). The expression of SLC7A7 was verified by GEO database and immunohistochemistry. Results A lung cancer cohort study (GSE31210) showed that high SLC7A7 expression was associated with poor overall survival (OS) and relapse-free survival (RFS). In addition, SLC7A7 had a significant impact on the prognosis of diverse cancers. SLC7A7 expression was positively correlated with infiltrating levels of CD4 + and CD8 + T cells, macrophages, neutrophils and dendritic cells (DCs) in non-small cell lung cancer (NSCLC). SLC7A7 expression was also strongly correlated with various immune marker sets in NSCLC. Conclusions These results indicated a role for SLC7A7 in infiltration of CD8 + T cells, CD4 + T cells, tumor-associated macrophages (TAMs), neutrophils and DCs in multiple cancers, and regulation of T cell exhaustion and Tregs in NSCLC. These findings suggest that SLC7A7 could be served as a biomarker for prognosis and immune infiltration in NSCLC.
Collapse
Affiliation(s)
- Wumin Dai
- Research center, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Jianguo Feng
- Research center, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiao Hu
- Department of Abdominal Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yongyi Chen
- Clinical Laboratory, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qing Gu
- Department of Abdominal Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Wangang Gong
- Research center, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Tingting Feng
- Department of Thoracic Oncology Radiotherapy, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jie Wu
- Clinical Laboratory, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| |
Collapse
|
19
|
Stroup BM, Marom R, Li X, Hsu CW, Chang CY, Truong LD, Dawson B, Grafe I, Chen Y, Jiang MM, Lanza D, Green JR, Sun Q, Barrish JP, Ani S, Christiansen AE, Seavitt JR, Dickinson ME, Kheradmand F, Heaney JD, Lee B, Burrage LC. A global Slc7a7 knockout mouse model demonstrates characteristic phenotypes of human lysinuric protein intolerance. Hum Mol Genet 2020; 29:2171-2184. [PMID: 32504080 PMCID: PMC7399531 DOI: 10.1093/hmg/ddaa107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Lysinuric protein intolerance (LPI) is an inborn error of cationic amino acid (arginine, lysine, ornithine) transport caused by biallelic pathogenic variants in SLC7A7, which encodes the light subunit of the y+LAT1 transporter. Treatments for the complications of LPI, including growth failure, renal disease, pulmonary alveolar proteinosis, autoimmune disorders and osteoporosis, are limited. Given the early lethality of the only published global Slc7a7 knockout mouse model, a viable animal model to investigate global SLC7A7 deficiency is needed. Hence, we generated two mouse models with global Slc7a7 deficiency (Slc7a7em1Lbu/em1Lbu; Slc7a7Lbu/Lbu and Slc7a7em1(IMPC)Bay/em1(IMPC)Bay; Slc7a7Bay/Bay) using CRISPR/Cas9 technology by introducing a deletion of exons 3 and 4. Perinatal lethality was observed in Slc7a7Lbu/Lbu and Slc7a7Bay/Bay mice on the C57BL/6 and C57BL/6NJ inbred genetic backgrounds, respectively. We noted improved survival of Slc7a7Lbu/Lbu mice on the 129 Sv/Ev × C57BL/6 F2 background, but postnatal growth failure occurred. Consistent with human LPI, these Slc7a7Lbu/Lbu mice exhibited reduced plasma and increased urinary concentrations of the cationic amino acids. Histopathological assessment revealed loss of brush border and lipid vacuolation in the renal cortex of Slc7a7Lbu/Lbu mice, which combined with aminoaciduria suggests proximal tubular dysfunction. Micro-computed tomography of L4 vertebrae and skeletal radiographs showed delayed skeletal development and suggested decreased mineralization in Slc7a7Lbu/Lbu mice, respectively. In addition to delayed skeletal development and delayed development in the kidneys, the lungs and liver were observed based on histopathological assessment. Overall, our Slc7a7Lbu/Lbu mouse model on the F2 mixed background recapitulates multiple human LPI phenotypes and may be useful for future studies of LPI pathology.
Collapse
Affiliation(s)
- Bridget M Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cheng-Yen Chang
- Department of Medicine-Pulmonary, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luan D Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Center for Healthy Aging, University Clinic, Dresden D-01307, Germany
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennie Rose Green
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - J P Barrish
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Safa Ani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Department of Medicine-Pulmonary, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
20
|
Alqarajeh F, Omorodion J, Bosfield K, Shur N, Ferreira CR. Lysinuric protein intolerance: Pearls to detect this otherwise easily missed diagnosis. ACTA ACUST UNITED AC 2020; 5:81-86. [PMID: 33134088 PMCID: PMC7590902 DOI: 10.3233/trd-190035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND: Lysinuric protein intolerance (LPI) is a rare autosomal recessive disorder characterized by deficient membrane transport of cationic amino acids. It is caused by pathogenic variants in SLC7A7, resulting in impairment of intestinal import and renal proximal tubule loss of the affected amino acids. LPI typically presents with gastrointestinal symptoms, such as vomiting, diarrhea, and failure to thrive. CASE REPORT: A 4-year-old African-American boy presented with multiple respiratory tract infections, weight loss in the setting of chronic diarrhea and worsening abdominal distention, and multiple episodes of rectal prolapse. Development was unaffected. Laboratory examination demonstrated mild anemia, hypokalemia and hypoalbuminemia, transaminitis, and normal ammonia. Initial urine amino acid analysis did not show major elevations of lysine and ornithine, often lower than expected in the setting of malnutrition. Upon initiation of total parenteral nutrition (TPN), his urine amino acids showed a characteristic profile of dibasic aminoaciduria. CONCLUSIONS: Failure to thrive, chronic diarrhea, and hepatomegaly should raise suspicion for LPI. Urine amino acids can be normal in this condition in the setting of malnutrition, a common complication of the disease. Additionally, it has been previously shown that the plasma arginine and ornithine concentration is higher in LPI subjects.
Collapse
Affiliation(s)
- Firas Alqarajeh
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Jacklyn Omorodion
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kerri Bosfield
- Rare Disease Institute, Children's National Health System, Washington, DC, USA
| | - Natasha Shur
- Rare Disease Institute, Children's National Health System, Washington, DC, USA
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Bush SJ, McCulloch MEB, Lisowski ZM, Muriuki C, Clark EL, Young R, Pridans C, Prendergast JGD, Summers KM, Hume DA. Species-Specificity of Transcriptional Regulation and the Response to Lipopolysaccharide in Mammalian Macrophages. Front Cell Dev Biol 2020; 8:661. [PMID: 32793601 PMCID: PMC7386301 DOI: 10.3389/fcell.2020.00661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 02/02/2023] Open
Abstract
Mammalian macrophages differ in their basal gene expression profiles and response to the toll-like receptor 4 (TLR4) agonist, lipopolysaccharide (LPS). In human macrophages, LPS elicits a temporal cascade of transient gene expression including feed forward activators and feedback regulators that limit the response. Here we present a transcriptional network analysis of the response of sheep bone marrow-derived macrophages (BMDM) to LPS based upon RNA-seq at 0, 2, 4, 7, and 24 h post-stimulation. The analysis reveals a conserved transcription factor network with humans, and rapid induction of feedback regulators that constrain the response at every level. The gene expression profiles of sheep BMDM at 0 and 7 h post LPS addition were compared to similar data obtained from goat, cow, water buffalo, horse, pig, mouse and rat BMDM. This comparison was based upon identification of 8,200 genes annotated in all species and detected at >10TPM in at least one sample. Analysis of expression of transcription factors revealed a conserved transcriptional millieu associated with macrophage differentiation and LPS response. The largest co-expression clusters, including genes encoding cell surface receptors, endosome–lysosome components and secretory activity, were also expressed in all species and the combined dataset defines a macrophage functional transcriptome. All of the large animals differed from rodents in lacking inducible expression of genes involved in arginine metabolism and nitric oxide production. Instead, they expressed inducible transporters and enzymes of tryptophan and kynurenine metabolism. BMDM from all species expressed high levels of transcripts encoding transporters and enzymes involved in glutamine metabolism suggesting that glutamine is a major metabolic fuel. We identify and discuss transcripts that were uniquely expressed or regulated in rodents compared to large animals including ACOD1, CXC and CC chemokines, CD163, CLEC4E, CPM, CSF1, CSF2, CTSK, MARCO, MMP9, SLC2A3, SLC7A7, and SUCNR1. Conversely, the data confirm the conserved regulation of multiple transcripts for which there is limited functional data from mouse models and knockouts. The data provide a resource for functional annotation and interpretation of loci involved in susceptibility to infectious and inflammatory disease in humans and large animal species.
Collapse
Affiliation(s)
- Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mary E B McCulloch
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Zofia M Lisowski
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Charity Muriuki
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Emily L Clark
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel Young
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Clare Pridans
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
22
|
Zuo T, Chen P, Jing S, Zhang T, Chang L, Xu F, Zhao C, Xu P. Quantitative Proteomics Reveals the Development of HBV-Associated Glomerulonephritis Triggered by the Downregulation of SLC7A7. J Proteome Res 2020; 19:1556-1564. [PMID: 32155069 DOI: 10.1021/acs.jproteome.9b00799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a hepadnavirus, hepatitis B virus (HBV) can cause damage to extrahepatic organs. The kidney is one of the organs that is more susceptible to damage. Research studies on HBV-associated glomerulonephritis (HBV-GN) have been going on for decades. However, the underlying molecular mechanism remains obscure. Here, we applied a tandem mass tag (TMT) isobaric labeling-based method to quantitatively profile the kidney proteome of HBV transgenic mice to illustrate the pathological mechanisms of HBV-GN. Weighted correlation network analysis, a clustering method for gene expression, is used to cluster proteins. Totally, we identified 127 proteins that were highly associated with HBV expression out of a total of 5169 quantified proteins. Among them, the downregulated solute carrier (SLC) family proteins are involved in the process of HBV-GN. We also found that IL1B was upregulated in the kidney tissue of HBV transgenic mice. These findings suggest that HBV disrupts the small molecule transport network of the kidney, which contributes to the occurrence of HBV-GN. The transporter, particularly SLC family 7 member 7 (SLC7A7), is involved in this process, which might serve as an intervention target for HBV-GN. All MS data have been deposited to the ProteomeXchange Consortium via the iProX partner repository with the data set identifier PXD016450.
Collapse
Affiliation(s)
- Tao Zuo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P. R. China
| | - Peiru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P. R. China
| | - Sha Jing
- National Clinical Research Center for Aging and Medicine, Huashan Hospital & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P. R. China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P. R. China
| | - Feng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P. R. China
| | - Chao Zhao
- National Clinical Research Center for Aging and Medicine, Huashan Hospital & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P. R. China.,Second Clinical Medicine Collage, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.,Guizhou University School of Medicine, Guiyang 550025, P.R. China
| |
Collapse
|
23
|
Rotoli BM, Barilli A, Visigalli R, Ferrari F, Dall'Asta V. y+LAT1 and y+LAT2 contribution to arginine uptake in different human cell models: Implications in the pathophysiology of Lysinuric Protein Intolerance. J Cell Mol Med 2019; 24:921-929. [PMID: 31705628 PMCID: PMC6933409 DOI: 10.1111/jcmm.14801] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 12/27/2022] Open
Abstract
y+LAT1 (encoded by SLC7A7), together with y+LAT2 (encoded by SLC7A6), is the alternative light subunits composing the heterodimeric transport system y+L for cationic and neutral amino acids. SLC7A7 mutations cause lysinuric protein intolerance (LPI), an inherited multisystem disease characterized by low plasma levels of arginine and lysine, protein-rich food intolerance, failure to thrive, hepatosplenomegaly, osteoporosis, lung involvement, kidney failure, haematologic and immunological disorders. The reason for the heterogeneity of LPI symptoms is thus far only poorly understood. Here, we aimed to quantitatively compare the expression of SLC7A7 and SLC7A6 among different human cell types and evaluate y+LAT1 and y+LAT2 contribution to arginine transport. We demonstrate that system y+L-mediated arginine transport is mainly accounted for by y+LAT1 in monocyte-derived macrophages (MDM) and y+LAT2 in fibroblasts. The kinetic analysis of arginine transport indicates that y+LAT1 and y+LAT2 share a comparable affinity for the substrate. Differences have been highlighted in the expression of SLC7A6 and SLC7A7 mRNA among different cell models: while SLC7A6 is almost equally expressed, SLC7A7 is particularly abundant in MDM, intestinal Caco-2 cells and human renal proximal tubular epithelial cells (HRPTEpC). The characterization of arginine uptake demonstrates that system y+L is operative in renal cells and in Caco-2 where, at the basolateral side, it mediates arginine efflux in exchange with leucine plus sodium. These findings explain the defective absorption/reabsorption of arginine in LPI. Moreover, y+LAT1 is the prevailing transporter in MDM sustaining a pivotal role in the pathogenesis of immunological complications associated with the disease.
Collapse
Affiliation(s)
- Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery (DiMec), University of Parma, Parma, Italy
| | - Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery (DiMec), University of Parma, Parma, Italy
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery (DiMec), University of Parma, Parma, Italy
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery (DiMec), University of Parma, Parma, Italy
| | - Valeria Dall'Asta
- Laboratory of General Pathology, Department of Medicine and Surgery (DiMec), University of Parma, Parma, Italy
| |
Collapse
|
24
|
Inducible Slc7a7 Knockout Mouse Model Recapitulates Lysinuric Protein Intolerance Disease. Int J Mol Sci 2019; 20:ijms20215294. [PMID: 31653080 PMCID: PMC6862226 DOI: 10.3390/ijms20215294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022] Open
Abstract
Lysinuric protein intolerance (LPI) is a rare autosomal disease caused by defective cationic amino acid (CAA) transport due to mutations in SLC7A7, which encodes for the y+LAT1 transporter. LPI patients suffer from a wide variety of symptoms, which range from failure to thrive, hyperammonemia, and nephropathy to pulmonar alveolar proteinosis (PAP), a potentially life-threatening complication. Hyperammonemia is currently prevented by citrulline supplementation. However, the full impact of this treatment is not completely understood. In contrast, there is no defined therapy for the multiple reported complications of LPI, including PAP, for which bronchoalveolar lavages do not prevent progression of the disease. The lack of a viable LPI model prompted us to generate a tamoxifen-inducible Slc7a7 knockout mouse (Slc7a7-/-). The Slc7a7-/- model resembles the human LPI phenotype, including malabsorption and impaired reabsorption of CAA, hypoargininemia and hyperammonemia. Interestingly, the Slc7a7-/- mice also develops PAP and neurological impairment. We observed that citrulline treatment improves the metabolic derangement and survival. On the basis of our findings, the Slc7a7-/- model emerges as a promising tool to further study the complexity of LPI, including its immune-like complications, and to design evidence-based therapies to halt its progression.
Collapse
|
25
|
Noguchi A, Takahashi T. Overview of symptoms and treatment for lysinuric protein intolerance. J Hum Genet 2019; 64:849-858. [PMID: 31213652 DOI: 10.1038/s10038-019-0620-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022]
Abstract
Lysinuric protein intolerance (LPI) is caused by dysfunction of the dibasic amino acid membrane transport owing to the functional abnormality of y+L amino acid transporter-1 (y+ LAT-1). LPI is associated with autosomal recessive inheritance and pathological variants in the responsible gene SLC7A7 are also observed. The pathophysiology of this disease had earlier been understood as a transport defect in polarized cells (e.g., intestinal or renal tubular epithelium); however, in recent years, transport defects in non-polarized cells such as lymphocytes and macrophages have also been recognized as important. Although the former can cause death, malnutrition, and urea cycle dysfunction (hyperammonemia), the latter can induce renal, pulmonary, and immune disorders. Furthermore, although therapeutic interventions can prevent hyperammonemic episodes to some extent, progression of pulmonary and renal complications cannot be prevented, thereby influencing prognosis. Such pathological conditions are currently being explored and further investigation would prove beneficial. In this study, we have summarized the basic pathology as revealed in recent years, along with the clinical aspects and genetic features.
Collapse
Affiliation(s)
- Atsuko Noguchi
- Akita University Graduate School of Medicine, Pediatrics, Akita, Akita, Japan.
| | - Tsutomu Takahashi
- Akita University Graduate School of Medicine, Pediatrics, Akita, Akita, Japan
| |
Collapse
|
26
|
Cui D, Hu YH, Tang G, Shen D, Chen L, Liao JX, Chen SL. [Clinical features of children with lysinuric protein intolerance and SLC7A7 gene mutation: an analysis of 3 cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:375-380. [PMID: 31014432 PMCID: PMC7389226 DOI: 10.7499/j.issn.1008-8830.2019.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/14/2019] [Indexed: 09/12/2023]
Abstract
Lysinuric protein intolerance (LPI) is an autosomal recessive disorder caused by SLC7A7 gene mutation and often involves severe lesions in multiple systems. Lung involvement is frequently seen in children with LPI and such children tend to have a poor prognosis. This article summarizes the clinical manifestations and gene mutation characteristics of three children diagnosed with LPI by SLC7A7 gene analysis. All three children had the manifestations of aversion to protein-rich food after weaning, delayed development, anemia, hepatosplenomegaly, and osteoporosis, as well as an increase in orotic acid in urine. In addition, interstitial pneumonia and diffuse pulmonary interstitial lesions were observed in two children. SLC7A7 gene detection showed three pathogenic mutations in these children, namely c.1387delG(p.V463CfsX56), c.1215G>A(p.W405X) and homozygous c.625+1G>A. After a definite diagnosis was made, all three children were given a low-protein diet and oral administration of citrulline [100 mg/(kg.d)], iron protein succinylate [4 mg/(kg.d)], calcium and zinc gluconates oral solution (10 mL/day) and vitamin D (400 IU/day). In addition, patient 3 was given prednisone acetate (5 mg/day). The children had varying degrees of improvement in symptoms and signs. It is hard to distinguish LPI from urea cycle disorder due to the features of amino acid and organic acid metabolism in LPI, and SLC7A7 gene analysis is the basis for a definite diagnosis of LPI.
Collapse
Affiliation(s)
- Dong Cui
- Department of Inherited Metabolic Diseases, Shenzhen Children's Hospital Affiliated to Medical College of Shantou University, Shenzhen 518038, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Analysis of LPI-causing mutations on y+LAT1 function and localization. Orphanet J Rare Dis 2019; 14:63. [PMID: 30832686 PMCID: PMC6399926 DOI: 10.1186/s13023-019-1028-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/07/2019] [Indexed: 11/13/2022] Open
Abstract
Background y+LAT1, encoded by SCL7A7, is the protein mutated in Lysinuric Protein Intolerance (LPI), a rare metabolic disease caused by a defective cationic amino acid (CAA, arginine, lysine, ornithine) transport at the basolateral membrane of intestinal and renal tubular cells. The disease is characterized by protein-rich food intolerance with secondary urea cycle disorder, but symptoms are heterogeneous with lung and immunological complications that are not explainable by the CAA transport defect. With the exception of the Finnish founder mutation (c.895-2A > T, LPIFin), LPI-causative mutations are heterogeneous and genotype-phenotype correlations have not been found. Here we addressed system y+L-mediated arginine uptake in monocytes from three LPI Italian patients and in lymphoblasts carrying the same mutations; in parallel, the genetic defects carried by the patients were reproduced as eGFP-tagged y+LAT1 mutants in transfected CHO cells to define the function and localization protein. Results System y+L activity is impaired in monocytes isolated from all LPI patients, and in CHO cells transfected with the three eGFP-y+LAT1 mutants, but not in lymphoblasts bearing the same mutations. The analysis of protein localization with confocal microscopy revealed that the eGFP-tagged mutants were retained inside the cytosol, with a pattern of expression quite heterogeneous among the mutants. Conclusions The three mutations studied of y+LAT1 transporter result in a defective arginine transport both in ex vivo (monocytes) and in vitro (CHO transfected cells) models, likely caused by the retention of the mutated proteins in the cytosol. The different effect of y+LAT1 mutation on arginine transport in monocytes and lymphoblasts is supposed to be due to the different expression of SLC7A7 mRNA in the two models, supporting the hypothesis that the impact of LPI defect largely depends on the relative abundance of LPI target gene in each cell type. Electronic supplementary material The online version of this article (10.1186/s13023-019-1028-2) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Advances in sequencing techniques and systematic cohort-analysis of patients with autoinflammatory phenotypes have enabled a burst in the recognition of new autoinflammatory diseases and contributed to the description of the mechanisms involved in autoinflammation. This review focuses on new genetic and mechanistic discoveries that have broadened the definition of autoinflammatory diseases in the context of the established landscape, providing new therapeutic opportunities and avenues for further discoveries. RECENT FINDINGS Mechanistic insights of inflammatory diseases open opportunities for new targeted therapies. Advances in high-throughput screening of small-molecule inhibitors accelerate the discovery of new and more specific therapeutic options. Recent evidence establishes IL-18 as a driver of macrophage activation, emerging as a new biomarker and therapeutic target. Finally, the identification of escape of nonsense-mediated decay as the genetic mechanism resulting in a monogenic immune-dysregulatory disease, unveils a possibility for future discoveries. SUMMARY Recent mechanistic findings in autoinflammatory diseases as well as the identification of specific biomarkers and discovery of new diseases, continue to pave the way for ever more specific targeted approaches. These therapies are not only applicable to monogenic autoinflammatory syndromes but also for other diseases in which the same pathways are dysregulated.
Collapse
|