1
|
Weinstein KN, Domeier PP, Ziegler SF. A splice of life: the discovery, function, and clinical implications of FOXP3 isoforms in autoimmune disease. Int Immunol 2024; 37:83-90. [PMID: 39136284 DOI: 10.1093/intimm/dxae049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/12/2024] [Indexed: 12/28/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subset of CD4+ T cells essential for the maintenance of immune homeostasis and prevention of autoimmunity. Treg lineage and functions are programmed by the X-chromosome encoded transcription factor forkhead box P3 (FOXP3). In humans, multiple FOXP3 isoforms are generated through alternative splicing. A full-length isoform containing all coding exons (FOXP3-FL) and a version lacking the second exon (FOXP3-ΔE2) are the predominant FOXP3 isoforms. Additionally, there are two minor isoforms lacking either exon 7 (FOXP3-ΔE7) and both exons 2 and 7 (FOXP3-ΔE2ΔE7). Although healthy humans express approximately equal levels of the FOXP3-FL and FOXP3-ΔE2 isoforms, sole expression of FOXP3-ΔE2 results in the development of a systemic autoimmune disease that resembles immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. These clinical observations strongly suggest functional defects in suppression by Tregs programmed by the FOXP3-ΔE2 isoform. Work from the past two decades has provided phenotypic and functional evidence of differences between Tregs programmed by the FOXP3-FL, FOXP3-ΔE2, and FOXP3-ΔE7 isoforms. In this review, we discuss the discovery of the FOXP3 isoforms, differences in the phenotype and function of Tregs programmed by different FOXP3 isoforms, and the role that these isoforms are known to play in autoimmunity.
Collapse
Affiliation(s)
- Kristin N Weinstein
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Phillip P Domeier
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, 98101, USA
| | - Steven F Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, 98101, USA
| |
Collapse
|
2
|
Ghosh R, Bishayi B. Neutralization of TLR2 in combination with either TNF-α or IL-1β antibody reduces the severity of septic arthritis through STAT3/mTOR signalling in lymphocytes. Cell Immunol 2024; 405-406:104878. [PMID: 39312873 DOI: 10.1016/j.cellimm.2024.104878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Staphylococcus aureus induced Septic arthritis is considered a medical concern. S.aureus binds TLR2 to induce an array of inflammatory responses. Generation of pro-inflammatory cytokines induces T cell responses and control Th17/Treg cell balance. Regulation of T cell-mediated immunity in response to inflammation is significantly influenced by mTOR. Presence of elevated TNF-α, IL-1β decreases Treg cell activity through STAT3/mTOR, promoting proliferation of T cells towards Th17 cells. Therefore, we postulated, neutralizing TLR2 with either TNF-α or IL-1β in combination could be useful in modifying Th17/Treg cell ratio in order to treat septic arthritis by suppressing expression of mTOR/STAT3. To date, no studies have reported effects of neutralization of TLR2 along with either TNF-α or IL-1β on amelioration of arthritis correlating with mTOR/STAT3 expression. Contribution of T lymphocytes collected from blood, spleen, synovial tissues, their derived cytokines IFN-γ, IL-6, IL-17, TGF-β, IL-10 were noted. Expression of TLR2, TNFR1, TNFR2, NF-κB along with mTOR/STAT3 also recorded. Neutralization of TLR2 along with TNF-α and IL-1β were able to shift Th17 cells into immunosuppressive Treg cells. Furthermore,elevated expression of IL-10, TNFR2 and demoted expression of mTOR/ STAT3 along with NF-κB in lymphocytes confirms its role in resolution of arthritis. It was also effective in reducing oxidative stress via increasing expression of the antioxidant enzymes. As a result, it can be inferred that Treg-derived IL-10, which may mitigate inflammatory effects of septic arthritis by influencing the mTOR/STAT3 interaction in lymphocytes, may be selected as a different therapeutic strategy for reducing the impact of septic arthritis.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Department of Physiology, Immunology laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| | - Biswadev Bishayi
- Department of Physiology, Immunology laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
3
|
Mottola M, Bruzzaniti S, Piemonte E, Lepore MT, Petraio A, Romano R, Castiglione A, Izzo L, Perna F, De Falco C, Brighel F, Formisano L, Gravina MT, Marino M, De Feo M, Matarese G, Galgani M. Extracorporeal Photopheresis Enhances the Frequency and Function of Highly Suppressive FoxP3+ Treg Subsets in Heart Transplanted Individuals. Transplantation 2024:00007890-990000000-00875. [PMID: 39294864 DOI: 10.1097/tp.0000000000005201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
BACKGROUND Extracorporeal photopheresis (ECP) has emerged as a prophylactic and therapeutic immunomodulatory option for managing acute rejection in heart transplants (HTx). The underlying mechanisms through which ECP exerts its immunomodulatory effects remain under investigation. Regulatory T cells (Treg) are a heterogeneous subset of immune lymphocytes that ensure the maintenance of tissue homeostasis, avoiding graft rejection. The transcription factor forkhead box protein 3 (FoxP3) is an essential molecular marker of Treg, acting as a "master regulator" of their genesis, stability, and functions. No study has investigated whether ECP impacts FoxP3 expression and its highly suppressive variants containing the exon 2 (FoxP3-E2), particularly in HTx. METHODS In the current study, we recruited 14 HTx participants who had undergone ECP therapy. We explored the effect of in vivo ECP on CD4+FoxP3+ Treg frequency and in vitro suppressive function in 8 HTx participants before (T0) and after 3 (T1), 6 (T2), and 12 (T3) mo of treatment. As a control group, we included 4 HTx individuals who had not undergone ECP therapy. RESULTS We found that ECP increases the frequency of CD4+FoxP3+ Treg subset with highly suppressive phenotype, including CD4+FoxP3-E2+ Treg. At functional levels, we observed that ECP treatment in HTx individuals effectively improves Treg suppressive ability in controlling the proliferation of autologous conventional CD4+ T lymphocytes. CONCLUSIONS Our findings collectively suggest that ECP exerts its immunomodulatory effects in HTx individuals by positively impacting the frequency and regulatory function of the FoxP3+ Treg compartment.
Collapse
Affiliation(s)
- Maria Mottola
- UOC di Medicina Trasfusionale, AORN dei Colli, Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Naples, Italy
- Unità di Neuroimmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Erica Piemonte
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Andrea Petraio
- UOSD Assistenza Meccanica al circolo e dei Trapianti, AORN dei Colli, Naples, Italy
| | - Renata Romano
- UOC di Medicina Trasfusionale, AORN dei Colli, Naples, Italy
| | - Antonella Castiglione
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Lavinia Izzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Francesco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," Naples, Italy
| | | | | | - Luigi Formisano
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II," Naples, Italy
| | | | - Marina Marino
- UOC di Medicina Trasfusionale, AORN dei Colli, Naples, Italy
| | - Marisa De Feo
- Dipartimento di Cardiochirurgia e dei Trapianti, UOC Cardiochirurgia, AORN dei Colli, Naples, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "L. Vanvitelli," Naples, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy
| |
Collapse
|
4
|
Lepore MT, Bruzzaniti S, La Rocca C, Fusco C, Carbone F, Mottola M, Zuccarelli B, Lanzillo R, Brescia Morra V, Maniscalco GT, De Simone S, Procaccini C, Porcellini A, De Rosa V, Galgani M, Cassano S, Matarese G. Deciphering the role of protein kinase A in the control of FoxP3 expression in regulatory T cells in health and autoimmunity. Sci Rep 2024; 14:17571. [PMID: 39080325 PMCID: PMC11289137 DOI: 10.1038/s41598-024-68098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
The molecular mechanisms that govern differential T cell development from CD4+CD25-conventional T (Tconv) into CD4+CD25+ forkhead-box-P3+ (FoxP3+) inducible regulatory T (iTreg) cells remain unclear. Herein, we investigated the relative contribution of protein kinase A (PKA) in this process. Mechanistically, we found that PKA controlled the efficiency of human iTreg cell generation through the expression of different FoxP3 splicing variants containing or not the exon 2. We found that transient PKA inhibition reduced the recruitment of cAMP-responsive element-binding protein (CREB) on regulatory regions of the FoxP3 gene, a condition that is associated with an impaired acquisition of their suppressive capacity in vitro. To corroborate our findings in a human model of autoimmunity, we measured CREB phosphorylation and FoxP3 levels in iTreg cells from treatment-naïve relapsing-remitting (RR)-multiple sclerosis (MS) subjects. Interestingly, both phospho-CREB and FoxP3 induction directly correlated and were significantly reduced in RR-MS patients, suggesting a previously unknown mechanism involved in the induction and function of human iTreg cells.
Collapse
Affiliation(s)
- Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Clorinda Fusco
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
- Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Mottola
- UOC di Medicina Trasfusionale, AORN Ospedale dei Colli, Ospedale Monaldi, Naples, Italy
| | - Bruno Zuccarelli
- UOC di Medicina Trasfusionale, AORN Ospedale dei Colli, Ospedale Monaldi, Naples, Italy
| | - Roberta Lanzillo
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Vincenzo Brescia Morra
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli", Naples, Italy
| | - Salvatore De Simone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
- Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Porcellini
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Silvana Cassano
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.
| |
Collapse
|
5
|
Achilla C, Chorti A, Papavramidis T, Angelis L, Chatzikyriakidou A. Genetic and Epigenetic Association of FOXP3 with Papillary Thyroid Cancer Predisposition. Int J Mol Sci 2024; 25:7161. [PMID: 39000267 PMCID: PMC11241224 DOI: 10.3390/ijms25137161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of thyroid malignancy with an increased female incidence ratio. The specific traits of X chromosome inheritance may be implicated in gender differences of PTC predisposition. The aim of this study was to investigate the association of two X-linked genes, Forkhead Box P3 (FOXP3) and Protein Phosphatase 1 Regulatory Subunit 3F (PPP1R3F), with PTC predisposition and gender disparity. One hundred thirty-six patients with PTC and an equal number of matched healthy volunteers were enrolled in the study. Genotyping for rs3761548 (FOXP3) and rs5953283 (PPP1R3F) was performed using polymerase chain reaction-restriction fragment length polymorphism assay (PCR-RFLP). The methylation status of FOXP3 was assessed using the combined bisulfite restriction analysis (COBRA) method. The SPSS software was used for statistical analyses. Gender stratification analysis revealed that the CA and AA genotypes and the A allele of FOXP3 rs3761548 variant are associated with PTC predisposition only in females. Moreover, different methylation status was observed up to the promoter locus of FOXP3 between PTC female patients, carrying the CA and CC genotype, and controls. Both revealed associations may explain the higher PTC incidence in females through reducing FOXP3 expression as reported in immune related blood cells.
Collapse
Affiliation(s)
- Charoula Achilla
- Laboratory of Medical Biology and Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angeliki Chorti
- First Propedeutic Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodosios Papavramidis
- First Propedeutic Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Lefteris Angelis
- School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anthoula Chatzikyriakidou
- Laboratory of Medical Biology and Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Saleh QW, Mohammadnejad A, Tepel M. FOXP3 splice variant expression in males and females in healthy populations and in kidney transplant recipients. Sci Rep 2024; 14:12112. [PMID: 38802392 PMCID: PMC11130272 DOI: 10.1038/s41598-024-62149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The forkhead box P3 (FOXP3) transcript is essential for tolerance of alloantigens. Here, we describe the expression of FOXP3 mRNA variants in healthy females and males, and in kidney transplant recipients (KTR). We measured FOXP3 in peripheral blood mononuclear cells from healthy kidney donors (N = 101), and in blood from KTRs (N = 248) before and after transplantation. FOXP3 was measured with quantitative polymerase chain reaction, and differentiated between pre-mature mRNA FOXP3, Total mature FOXP3, FOXP3 in which exon two is spliced, and full length FOXP3. We found similar levels of FOXP3 in healthy female and male kidney donors. We confirmed this result in a publicly available cohort (N = 33) of healthy individuals (GSE97475). Homogenously, female and male KTR FOXP3 levels were similar pre-transplantation, one day post-transplantation and 29 days post-transplantation. This may suggest that kidney transplantation and related immunosuppressive treatments do not influence FOXP3 expression differently in females and males. Finally, fold difference analysis revealed that KTRs express lower levels of mature FOXP3 and higher levels of pre-mature FOXP3 mRNA pre-transplant compared to healthy individuals. This finding may suggest higher pre-mRNA synthesis, lower pre-mRNA degradation, lower spliceosome efficiency or higher degradation of mature FOXP3 mRNA in kidney transplant candidates.
Collapse
Affiliation(s)
- Qais W Saleh
- Department of Nephrology, Odense University Hospital, J. B. Winsløws Vej 4, 5000, Odense, Denmark
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21.3, 5000, Odense C, Denmark
| | - Afsaneh Mohammadnejad
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B, 5000, Odense C, Denmark
| | - Martin Tepel
- Department of Nephrology, Odense University Hospital, J. B. Winsløws Vej 4, 5000, Odense, Denmark.
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21.3, 5000, Odense C, Denmark.
| |
Collapse
|
7
|
McCullough MJ, Bose PG, Mock JR. Regulatory T cells: Supporting lung homeostasis and promoting resolution and repair after lung injury. Int J Biochem Cell Biol 2024; 170:106568. [PMID: 38518980 PMCID: PMC11031275 DOI: 10.1016/j.biocel.2024.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Regulatory T cells, characterized by their expression of the transcription factor Forkhead box P3, are indispensable in maintaining immune homeostasis. The respiratory system is constantly exposed to many environmental challenges, making it susceptible to various insults and infections. Regulatory T cells play essential roles in maintaining homeostasis in the lung and promoting repair after injury. Regulatory T cell function dysregulation can lead to inflammation, tissue damage, or aberrant repair. Research on regulatory T cell mechanisms in the lung has unveiled their influence on lung inflammation and repair mechanisms. In this review, our goal is to highlight the advances in regulatory T cell biology with respect to lung injury and resolution. We further provide a perspective that a deeper understanding of regulatory T cell interactions in the lung microenvironment in health and disease states offers opportunities for therapeutic interventions as treatments to promote lung health.
Collapse
Affiliation(s)
- Morgan J McCullough
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA; Marsico Lung Institute, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Pria G Bose
- Marsico Lung Institute, School of Medicine, University of North Carolina Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Jason R Mock
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA; Marsico Lung Institute, School of Medicine, University of North Carolina Chapel Hill, NC, USA; Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine School of Medicine, University of North Carolina Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Saleh QW, Mohammadnejad A, Tepel M. FOXP3 full length splice variant is associated with kidney allograft tolerance. Front Immunol 2024; 15:1389105. [PMID: 38660296 PMCID: PMC11040551 DOI: 10.3389/fimmu.2024.1389105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Background Progressive decline of allograft function leads to premature graft loss. Forkhead box P3 (FOXP3), a characteristic gene of T-regulatory cells, is known to be essential for auto-antigen tolerance. We assessed the hypothesis that low FOXP3 mRNA splice variant levels in peripheral blood cells early after transplantation are associated with progressive allograft injury. Methods Blood samples were prospectively collected from 333 incident kidney transplant recipients on the first and 29th postoperative day. We used quantitative polymerase chain reaction to determine transcripts of 3 isotypes of FOXP3 splice variants, including pre-mature FOXP3 and full length FOXP3 (FOXP3fl). We investigated the association between FOXP3 splice variant levels and the declines in estimated glomerular filtration rate (eGFR) of more than 5ml/min/1.73m2 within the first-year post-transplant using logistic regression. Results We observed lower FOXP3fl levels in recipients with declining eGFR (N = 132) than in recipients with stable eGFR (N = 201), (logarithmic value -4.13 [IQR -4.50 to -3.84] vs -4.00 [4.32 to -3.74], p=0.02). In ad hoc analysis pre-transplant FOXP3fl levels were similar in both groups. The association between FOXP3fl and declining eGFR was confirmed by multivariable analysis adjusted for potential confounding factors (Odds Ratio 0.51, 95% confidence interval 0.28 to 0.91: p=0.02). When stratifying FOXP3fl levels into quartiles, recipients with lower day1 FOXP3fl had the highest rate of declining eGFR (p=0.04). Conclusion Low FOXP3fl splice variant levels at the first postoperative day in kidney transplant recipients were associated with severe decline of eGFR, a well-known surrogate for hard endpoints.
Collapse
Affiliation(s)
- Qais W. Saleh
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Afsaneh Mohammadnejad
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Martin Tepel
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
McCullough MJ, Tune MK, Cabrera JC, Torres-Castillo J, He M, Feng Y, Doerschuk CM, Dang H, Beltran AS, Hagan RS, Mock JR. Characterization of the MT-2 Treg-like cell line in the presence and absence of forkhead box P3 (FOXP3). Immunol Cell Biol 2024; 102:211-224. [PMID: 38288547 DOI: 10.1111/imcb.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
CD4+ forkhead box P3 (FOXP3)+ regulatory T cells (Tregs) are essential in maintaining immune tolerance and suppressing excessive immune responses. Tregs also contribute to tissue repair processes distinct from their roles in immune suppression. For these reasons, Tregs are candidates for targeted therapies for inflammatory and autoimmune diseases, and in diseases where tissue damage occurs. MT-2 cells, an immortalized Treg-like cell line, offer a model to study Treg biology and their therapeutic potential. In the present study, we use clustered regularly interspaced palindromic repeats (CRISPR)-mediated knockdown of FOXP3 in MT-2 cells to understand the transcriptional and functional changes that occur when FOXP3 is lost and to compare MT-2 cells with primary human Tregs. We demonstrate that loss of FOXP3 affects the transcriptome of MT-2 cells and that FOXP3's potential downstream targets include a wide range of transcripts that participate in the cell cycle, promote growth and contribute to inflammatory processes, but do not wholly simulate previously reported human primary Treg transcriptional changes in the absence of FOXP3. We also demonstrate that FOXP3 regulates cell cycling and proliferation, expression of molecules crucial to Treg function and MT-2 cell-suppressive activities. Thus, MT-2 cells offer opportunities to address regulatory T-cell functions in vitro.
Collapse
Affiliation(s)
- Morgan J McCullough
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Miriya K Tune
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | | | - Jose Torres-Castillo
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Minghong He
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Claire M Doerschuk
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Airways Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Adriana S Beltran
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Jason R Mock
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Santos LGC, Parreira VDSC, da Silva EMG, Santos MDM, Fernandes ADF, Neves-Ferreira AGDC, Carvalho PC, Freitas FCDP, Passetti F. SpliceProt 2.0: A Sequence Repository of Human, Mouse, and Rat Proteoforms. Int J Mol Sci 2024; 25:1183. [PMID: 38256255 PMCID: PMC10816255 DOI: 10.3390/ijms25021183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
SpliceProt 2.0 is a public proteogenomics database that aims to list the sequence of known proteins and potential new proteoforms in human, mouse, and rat proteomes. This updated repository provides an even broader range of computationally translated proteins and serves, for example, to aid with proteomic validation of splice variants absent from the reference UniProtKB/SwissProt database. We demonstrate the value of SpliceProt 2.0 to predict orthologous proteins between humans and murines based on transcript reconstruction, sequence annotation and detection at the transcriptome and proteome levels. In this release, the annotation data used in the reconstruction of transcripts based on the methodology of ternary matrices were acquired from new databases such as Ensembl, UniProt, and APPRIS. Another innovation implemented in the pipeline is the exclusion of transcripts predicted to be susceptible to degradation through the NMD pathway. Taken together, our repository and its applications represent a valuable resource for the proteogenomics community.
Collapse
Affiliation(s)
- Letícia Graziela Costa Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Vinícius da Silva Coutinho Parreira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Esdras Matheus Gomes da Silva
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Av. Brazil 4036, Campus Maré, Rio de Janeiro 21040-361, RJ, Brazil
| | - Marlon Dias Mariano Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Alexander da Franca Fernandes
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Ana Gisele da Costa Neves-Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Av. Brazil 4036, Campus Maré, Rio de Janeiro 21040-361, RJ, Brazil
| | - Paulo Costa Carvalho
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Flávia Cristina de Paula Freitas
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| |
Collapse
|
11
|
Chen W, Que Q, Zhong R, Lin Z, Yi Q, Wang Q. Assessing TGF-β Prognostic Model Predictions for Chemotherapy Response and Oncogenic Role of FKBP1A in Liver Cancer. Curr Pharm Des 2024; 30:3131-3152. [PMID: 39185649 DOI: 10.2174/0113816128326151240820105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The Transforming Growth Factor-Beta (TGF-β) signaling pathway plays a crucial role in the pathogenesis of diseases. This study aimed to identify differentially expressed TGF-β-related genes in liver cancer patients and to correlate these findings with clinical features and immune signatures. METHODS The TCGA-STAD and LIRI-JP cohorts were utilized for a comprehensive analysis of TGF-β- related genes. Differential gene expression, functional enrichment, survival analysis, and machine learning techniques were employed to develop a prognostic model based on a TGF-β-related gene signature (TGFBRS). RESULTS We developed a prognostic model for liver cancer based on the expression levels of nine TGF-β- related genes. The model indicates that higher TGFBRS values are associated with poorer prognosis, higher tumor grades, more advanced pathological stages, and resistance to chemotherapy. Additionally, the TGFBRS-High subtype was characterized by elevated levels of immune-suppressive cells and increased expression of immune checkpoint molecules. Using a Gradient Boosting Decision Tree (GBDT) machine learning approach, the FKBP1A gene was identified as playing a significant role in liver cancer. Notably, knocking down FKBP1A significantly inhibited the proliferation and metastatic capabilities of liver cancer cells both in vitro and in vivo. CONCLUSION Our study highlights the potential of TGFBRS in predicting chemotherapy responses and in shaping the tumor immune microenvironment in liver cancer. The results identify FKBP1A as a promising molecular target for developing preventive and therapeutic strategies against liver cancer. Our findings could potentially guide personalized treatment strategies to improve the prognosis of liver cancer patients.
Collapse
Affiliation(s)
- Weimei Chen
- Department of Blood Transfusion, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Qinghe Que
- Department of Blood Transfusion, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Rongrong Zhong
- Department of Emergency, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Zhou Lin
- Department of Burn Plastic Surgery and Wound Repair Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Qiaolan Yi
- Department of Clinical Laboratory, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Qingshui Wang
- Second Affiliated Hospital of Fujian University of Traditional Chinese Medical University Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
12
|
Sato Y, Osada E, Manome Y. Non-canonical NFKB signaling endows suppressive function through FOXP3-dependent regulatory T cell program. Heliyon 2023; 9:e22911. [PMID: 38125410 PMCID: PMC10730750 DOI: 10.1016/j.heliyon.2023.e22911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Regulatory T cells (Tregs) play a central role in modulating adaptive immune responses in humans and mice. The precise biological role of non-canonical nuclear factor 'κ-light-chain-enhancer' of activated B cells (NFKB) signaling in human Tregs has yet to be fully elucidated. To gain insight into this process, a Treg-like cell line (MT-2) was genetically modified using CRISPR/Cas9. Interestingly, NFKB2 knockout MT-2 cells exhibited downregulation of FOXP3, while NFKB1 knockout did not. Additionally, mRNA expression of FOXP3-dependent molecules was significantly reduced in NFKB2 knockout MT-2 cells. To better understand the functional role of the NFKB signaling, the NFKB1/NFKB2 loci of human primary Tregs were genetically edited using CRISPR/Cas9. Similar to MT-2 cells, NFKB2 knockout human Tregs displayed significantly reduced FOXP3 expression. Furthermore, NFKB2 knockout human Tregs showed downregulation of FOXP3-dependent molecules and a diminished suppressive function compared to wild-type and NFKB1 knockout Tregs. These findings indicate that non-canonical NFKB signaling maintains a Treg-like phenotype and suppressive function in human Tregs through the FOXP3-dependent regulatory T cell program.
Collapse
Affiliation(s)
- Yohei Sato
- Corresponding author. 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, Japan.
| | | | - Yoshinobu Manome
- Core Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Tuomela K, Salim K, Levings MK. Eras of designer Tregs: Harnessing synthetic biology for immune suppression. Immunol Rev 2023; 320:250-267. [PMID: 37522861 DOI: 10.1111/imr.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Since their discovery, CD4+ CD25hi FOXP3hi regulatory T cells (Tregs) have been firmly established as a critical cell type for regulating immune homeostasis through a plethora of mechanisms. Due to their immunoregulatory power, delivery of polyclonal Tregs has been explored as a therapy to dampen inflammation in the settings of transplantation and autoimmunity. Evidence shows that Treg therapy is safe and well-tolerated, but efficacy remains undefined and could be limited by poor persistence in vivo and lack of antigen specificity. With the advent of new genetic engineering tools, it is now possible to create bespoke "designer" Tregs that not only overcome possible limitations of polyclonal Tregs but also introduce new features. Here, we review the development of designer Tregs through the perspective of three 'eras': (1) the era of FOXP3 engineering, in which breakthroughs in the biological understanding of this transcription factor enabled the conversion of conventional T cells to Tregs; (2) the antigen-specificity era, in which transgenic T-cell receptors and chimeric antigen receptors were introduced to create more potent and directed Treg therapies; and (3) the current era, which is harnessing advanced genome-editing techniques to introduce and refine existing and new engineering approaches. The year 2022 marked the entry of "designer" Tregs into the clinic, with exciting potential for application and efficacy in a wide variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Luo Z, Zhang Y, Saleh QW, Zhang J, Zhu Z, Tepel M. Metabolic regulation of forkhead box P3 alternative splicing isoforms and their impact on health and disease. Front Immunol 2023; 14:1278560. [PMID: 37868998 PMCID: PMC10588449 DOI: 10.3389/fimmu.2023.1278560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Forkhead Box P3 (FOXP3) is crucial for the development and suppressive function of human regulatory T cells (Tregs). There are two predominant FOXP3 splicing isoforms in healthy humans, the full-length isoform and the isoform lacking exon 2, with different functions and regulation mechanisms. FOXP3 splicing isoforms show distinct abilities in the cofactor interaction and the nuclear translocation, resulting in different effects on the differentiation, cytokine secretion, suppressive function, linage stability, and environmental adaptation of Tregs. The balance of FOXP3 splicing isoforms is related to autoimmune diseases, inflammatory diseases, and cancers. In response to environmental challenges, FOXP3 transcription and splicing can be finely regulated by T cell antigen receptor stimulation, glycolysis, fatty acid oxidation, and reactive oxygen species, with various signaling pathways involved. Strategies targeting energy metabolism and FOXP3 splicing isoforms in Tregs may provide potential new approaches for the treatment of autoimmune diseases, inflammatory diseases, and cancers. In this review, we summarize recent discoveries about the FOXP3 splicing isoforms and address the metabolic regulation and specific functions of FOXP3 splicing isoforms in Tregs.
Collapse
Affiliation(s)
- Zhidan Luo
- Department of Geriatrics, Chongqing General Hospital, Chongqing, China
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Yihua Zhang
- Department of Cardiology, Chongqing Fifth People’s Hospital, Chongqing, China
| | - Qais Waleed Saleh
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Jie Zhang
- Department of Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Chongqing, China
| | - Martin Tepel
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
15
|
Banerjee S, Galarza-Muñoz G, Garcia-Blanco MA. Role of RNA Alternative Splicing in T Cell Function and Disease. Genes (Basel) 2023; 14:1896. [PMID: 37895245 PMCID: PMC10606310 DOI: 10.3390/genes14101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative RNA splicing, a ubiquitous mechanism of gene regulation in eukaryotes, expands genome coding capacity and proteomic diversity. It has essential roles in all aspects of human physiology, including immunity. This review highlights the importance of RNA alternative splicing in regulating immune T cell function. We discuss how mutations that affect the alternative splicing of T cell factors can contribute to abnormal T cell function and ultimately lead to autoimmune diseases. We also explore the potential applications of strategies that target the alternative splicing changes of T cell factors. These strategies could help design therapeutic approaches to treat autoimmune disorders and improve immunotherapy.
Collapse
Affiliation(s)
- Shefali Banerjee
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA;
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Mariano A. Garcia-Blanco
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA;
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
16
|
Saleh QW, Mohammadnejad A, Tepel M. Lower levels of FOXP3 are associated with prolonged inflammatory responses in kidney transplant recipients. Front Immunol 2023; 14:1252857. [PMID: 37771580 PMCID: PMC10525697 DOI: 10.3389/fimmu.2023.1252857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Background Immunosuppressive treatment of kidney transplant recipients is mainly aimed at pro-inflammatory T effector cells, yet they also target the immunosuppressive T regulatory cells. Here, we test the hypothesis that low levels of the master gene regulator of T regulatory cells, forkhead box P3 (FOXP3) splice variants, are associated with prolonged inflammatory responses to stimuli. Methods From blood samples obtained the first - and 29th day post-transplant, we extracted peripheral blood mononuclear cells and measured mRNA levels of Total FOXP3, pre-mature RNA FOXP3 (pre-mRNA FOXP3), full length FOXP3 (FOXP3fl) and, FOXP3 splice variant excluding exon two (FOXP3d2). We defined the primary outcome as the number of days in which C reactive protein (CRP) was above 50 mg/L. CRP levels were gathered in two periods, the first from the second to 29 days post-transplant, and the second from 30 to 57 days post-transplant. The association was tested using adjusted negative binomial regression. Results From 507 included kidney transplant recipients, 382 recipients had at least one CRP measurement >50 mg/L in the first period, median duration of elevated CRP was 4 days [interquartile range (IQR) 2 to 6]. In the second period, 69 recipients had at least one CRP measurement >50 mg/L, median duration of elevated CRP was 3 days [IQR 2 to 5]. In the first period, we found a significant association between lower levels of Total FOXP3 and prolonged duration of CRP elevation, incidence rate ratio 0.61 (95% confidence interval 0.46-0.80), p<0.01. Conclusion Lower levels of total FOXP3 mRNA levels in peripheral blood of kidney transplant recipients are associated with prolonged duration of inflammatory responses regardless of the underlying stimuli.
Collapse
Affiliation(s)
- Qais W. Saleh
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Afsaneh Mohammadnejad
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Martin Tepel
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Steiner R, Pilat N. The potential for Treg-enhancing therapies in transplantation. Clin Exp Immunol 2023; 211:122-137. [PMID: 36562079 PMCID: PMC10019131 DOI: 10.1093/cei/uxac118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of regulatory T cells (Tregs) as crucial regulators of immune tolerance against self-antigens, these cells have become a promising tool for the induction of donor-specific tolerance in transplantation medicine. The therapeutic potential of increasing in vivoTreg numbers for a favorable Treg to Teff cell ratio has already been demonstrated in several sophisticated pre-clinical models and clinical pilot trials. In addition to improving cell quantity, enhancing Treg function utilizing engineering techniques led to encouraging results in models of autoimmunity and transplantation. Here we aim to discuss the most promising approaches for Treg-enhancing therapies, starting with adoptive transfer approaches and ex vivoexpansion cultures (polyclonal vs. antigen specific), followed by selective in vivostimulation methods. Furthermore, we address next generation concepts for Treg function enhancement (CARs, TRUCKs, BARs) as well as the advantages and caveats inherit to each approach. Finally, this review will discuss the clinical experience with Treg therapy in ongoing and already published clinical trials; however, data on long-term results and efficacy are still very limited and many questions that might complicate clinical translation remain open. Here, we discuss the hurdles for clinical translation and elaborate on current Treg-based therapeutic options as well as their potencies for improving long-term graft survival in transplantation.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Correspondence: Nina Pilat, PhD, Department of Cardiac Surgery, Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Malla R, Adem M, Chakraborty A. Complexity and diversity of FOXP3 isoforms: Novel insights into the regulation of the immune response in metastatic breast cancer. Int Immunopharmacol 2023; 118:110015. [PMID: 36931171 DOI: 10.1016/j.intimp.2023.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
FOXP3 is a key transcription factor in the regulation of immune responses, and recent studies have uncovered the complexity and diversity of FOXP3 isoforms in various cancers, including metastatic breast cancers (mBCs). It has dual role in the tumor microenvironment of mBCs. This review aims to provide novel insights into the complexity and diversity of FOXP3 isoforms in the regulation of the immune response in breast cancer. We discuss the molecular mechanisms underlying the function of FOXP3 isoforms, including their interaction with other proteins, regulation of gene expression, and impact on the immune system. We also highlight the importance of understanding the role of FOXP3 isoforms in breast cancer and the potential for using them as therapeutic targets. This review highlights the crucial role of FOXP3 isoforms in the regulation of the immune response in breast cancer and underscores the need for further research to fully comprehend their complex and diverse functions.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Meghapriya Adem
- Department of Biotechnology, Sri Padmavathi Mahila Visvavidhyalayam, Tirupati 517502, Andhra Pradesh, India
| | - Anindita Chakraborty
- Radiation Biology Laboratory, UGC-DAE-CSR, Kolkata Centere, Kolkata 700098, West Bengal, India
| |
Collapse
|
19
|
Borna S, Dejene B, Lakshmanan U, Schulze J, Weinberg K, Bacchetta R. Analyses of thymocyte commitment to regulatory T cell lineage in thymus of healthy subjects and patients with 22q11.2 deletion syndrome. Front Immunol 2023; 14:1088059. [PMID: 37006241 PMCID: PMC10062184 DOI: 10.3389/fimmu.2023.1088059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
The Chromosome 22q11.2 deletion syndrome (22q11.2DS) results in an inborn error of immunity due to defective thymic organogenesis. Immunological abnormalities in 22q11.2DS patients are thymic hypoplasia, reduced output of T lymphocytes by the thymus, immunodeficiency and increased incidence of autoimmunity. While the precise mechanism responsible for increased incidence of autoimmunity is not completely understood, a previous study suggested a defect in regulatory T cells (Treg) cell lineage commitment during T cell development in thymus. Here, we aimed to analyze this defect in more detail. Since Treg development in human is still ill-defined, we first analyzed where Treg lineage commitment occurs. We performed systematic epigenetic analyses of the Treg specific demethylation region (TSDR) of the FOXP3 gene in sorted thymocytes at different developmental stages. We defined CD3+CD4+CD8+ FOXP3+CD25+ as the T cell developmental stage in human where TSDR demethylation first occurs. Using this knowledge, we analyzed the intrathymic defect in Treg development in 22q11.2DS patients by combination of TSDR, CD3, CD4, CD8 locus epigenetics and multicolor flow cytometry. Our data showed no significant differences in Treg cell frequencies nor in their basic phenotype. Collectively, these data suggest that although 22q11.2DS patients present with reduced thymic size and T cell output, the frequencies and the phenotype of Treg cell at each developmental stage are surprisingly well preserved.
Collapse
Affiliation(s)
- Simon Borna
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Beruh Dejene
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Uma Lakshmanan
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA, United States
| | - Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Rosa Bacchetta,
| |
Collapse
|
20
|
Pavel-Dinu M, Borna S, Bacchetta R. Rare immune diseases paving the road for genome editing-based precision medicine. Front Genome Ed 2023; 5:1114996. [PMID: 36846437 PMCID: PMC9945114 DOI: 10.3389/fgeed.2023.1114996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) genome editing platform heralds a new era of gene therapy. Innovative treatments for life-threatening monogenic diseases of the blood and immune system are transitioning from semi-random gene addition to precise modification of defective genes. As these therapies enter first-in-human clinical trials, their long-term safety and efficacy will inform the future generation of genome editing-based medicine. Here we discuss the significance of Inborn Errors of Immunity as disease prototypes for establishing and advancing precision medicine. We will review the feasibility of clustered regularly interspaced short palindromic repeats-based genome editing platforms to modify the DNA sequence of primary cells and describe two emerging genome editing approaches to treat RAG2 deficiency, a primary immunodeficiency, and FOXP3 deficiency, a primary immune regulatory disorder.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
| | - Simon Borna
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
| | - Rosa Bacchetta
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
21
|
Wang J, Gong R, Zhao C, Lei K, Sun X, Ren H. Human FOXP3 and tumour microenvironment. Immunology 2023; 168:248-255. [PMID: 35689826 DOI: 10.1111/imm.13520] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 01/17/2023] Open
Abstract
The tumour microenvironment (TME) is a complex system composed of cancer cells, stromal cells and immune cells. Regulatory T cells (Tregs) in the TME impede immune surveillance of tumours and suppress antitumor immune responses. Transcription factor forkhead box protein 3 (FOXP3) is the main marker of Tregs, which dominates the function of Tregs. FOXP3 was originally thought to be a Tregs-specific expression molecule, and recent studies have found that FOXP3 is expressed in a variety of tumours with inconsistent functional roles. This review summarizes the recent progress of infiltrating Treg-FOXP3 and tumour-FOXP3 in TME, discusses the communication mechanism between FOXP3+ cells and effector T cells in TME, the relationship between FOXP3 and clinical prognosis, and the potential of FOXP3-targeted therapy.
Collapse
Affiliation(s)
- Jia Wang
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Qingdao Medical School, Qingdao University, Qingdao, Shandong, China
| | - Ruining Gong
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chenyang Zhao
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyuan Sun
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - He Ren
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Tianjin, China
| |
Collapse
|
22
|
Yao X, Zhou H, Duan C, Wu X, Li B, Liu H, Zhang Y. Comprehensive characteristics of pathological subtypes in testicular germ cell tumor: Gene expression, mutation and alternative splicing. Front Immunol 2023; 13:1096494. [PMID: 36713456 PMCID: PMC9883017 DOI: 10.3389/fimmu.2022.1096494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Background Testicular germ cell tumor (TGCT) is the most common tumor in young men, but molecular signatures, especially the alternative splicing (AS) between its subtypes have not yet been explored. Methods To investigate the differences between TGCT subtypes, we comprehensively analyzed the data of gene expression, alternative splicing (AS), and somatic mutation in TGCT patients from the TCGA database. The gene ontology (GO) enrichment analyses were used to explore the function of differentially expressed genes and spliced genes respectively, and Spearman correlation analysis was performed to explore the correlation between differential genes and AS events. In addition, the possible patterns in which AS regulates gene expression were elaborated by the ensemble database transcript atlas. And, we identified important transcription factors that regulate gene expression and AS and functionally validated them in TGCT cell lines. Results We found significant differences between expression and AS in embryonal carcinoma and seminoma, while mixed cell tumors were in between. GO enrichment analyses revealed that both differentially expressed and spliced genes were enriched in transcriptional regulatory pathways, and obvious correlation between expression and AS events was determined. By analyzing the transcript map and the sites where splicing occurs, we have demonstrated that AS regulates gene expression in a variety of ways. We further identified two pivot AS-related molecules (SOX2 and HDAC9) involved in AS regulation, which were validated in embryonal carcinoma and seminoma cell lines. Differences in somatic mutations between subtypes are also of concern, with our results suggesting that mutations in some genes (B3GNT8, CAPN7, FAT4, GRK1, TACC2, and TRAM1L1) occur only in embryonal carcinoma, while mutations in KIT, KARS, and NRAS are observed only in seminoma. Conclusions In conclusion, our analysis revealed the differences in gene expression, AS and somatic mutation among TGCT subtypes, providing a molecular basis for clinical diagnosis and precise therapy of TGCT patients.
Collapse
Affiliation(s)
- Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Stanford Bio-X, Stanford University, Stanford, CA, United States
| | - Yangjun Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Yangjun Zhang,
| |
Collapse
|
23
|
Garcia-Becerra N, Aguila-Estrada MU, Palafox-Mariscal LA, Hernandez-Flores G, Aguilar-Lemarroy A, Jave-Suarez LF. FOXP3 Isoforms Expression in Cervical Cancer: Evidence about the Cancer-Related Properties of FOXP3Δ2Δ7 in Keratinocytes. Cancers (Basel) 2023; 15:cancers15020347. [PMID: 36672296 PMCID: PMC9856939 DOI: 10.3390/cancers15020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common type of cancer among women; the main predisposing factor is persistent infection by high-risk human papillomavirus (hr-HPV), mainly the 16 or 18 genotypes. Both hr-HPVs are known to manipulate the cellular machinery and the immune system to favor cell transformation. FOXP3, a critical transcription factor involved in the biology of regulatory T cells, has been detected as highly expressed in the tumor cells of CC patients. However, its biological role in CC, particularly in the keratinocytes, remained unclarified. Therefore, this work aimed to uncover the effect of FOXP3 on the biology of the tumoral cells. First, public databases were analyzed to identify the FOXP3 expression levels and the transcribed isoforms in CC and normal tissue samples. The study's findings demonstrated an increased expression of FOXP3 in HPV16+ CC samples. Additionally, the FOXP3Δ2 variant was detected as the most frequent splicing isoform in tumoral cells, with a high differential expression level in metastatic samples. However, the analysis of FOXP3 expression in different CC cell lines, HPV+ and HPV-, suggests no relationship between the presence of HPV and FOXP3 expression. Since the variant FOXP3Δ2Δ7 was found highly expressed in the HPV16+ SiHa cell line, a model with constitutive expression of FOXP3Δ2Δ7 was established to evaluate its role in proliferation, migration, and cell division. Finally, RNAseq was performed to identify differentially expressed genes and enriched pathways modulated by FOXP3Δ2Δ7. The exogenous expression of FOXP3Δ2Δ7 promotes cell division, proliferation, and migration. The transcriptomic analyses highlight the upregulation of multiple genes with protumor activities. Moreover, immunological and oncogenic pathways were detected as highly enriched. These data support the hypothesis that FOXP3Δ2Δ7 in epithelial cells induces cancer-related hallmarks and provides information about the molecular events triggered by this isoform, which could be important for developing CC.
Collapse
Affiliation(s)
- Natalia Garcia-Becerra
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Marco Ulises Aguila-Estrada
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Luis Arturo Palafox-Mariscal
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Georgina Hernandez-Flores
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Correspondence: (A.A.-L.); (L.F.J.-S.)
| | - Luis Felipe Jave-Suarez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Correspondence: (A.A.-L.); (L.F.J.-S.)
| |
Collapse
|
24
|
The role of FOXP3 in non-small cell lung cancer and its therapeutic potentials. Pharmacol Ther 2023; 241:108333. [PMID: 36528259 DOI: 10.1016/j.pharmthera.2022.108333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Although in the last few decades we have witnessed the rapid development of treatments for non-small cell lung cancer (NSCLC), it still remains the leading cause of cancer-related death. Increasing efforts have been devoted to exploring potential biomarkers and molecular targets for NSCLC. Foxp3, a transcription factor that was discovered as a master regulator of regulatory T cells (Tregs), has been found to express abnormally in tumoral cells including lung cancer cells. In recent years, increasing evidence have surfaced, revealing the carcinogenic effect of FOXP3 in lung cancer. In this review, we analyzed and summarized the function of FOXP3, its regulation and therapeutic potentials in NSCLC, with a hope to facilitate the development of novel treatments for NSCLC.
Collapse
|
25
|
Ferrara AL, Liotti A, Pezone A, De Rosa V. Therapeutic opportunities to modulate immune tolerance through the metabolism-chromatin axis. Trends Endocrinol Metab 2022; 33:507-521. [PMID: 35508518 DOI: 10.1016/j.tem.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
The ability of the immune system to discriminate external stimuli from self-components - namely immune tolerance - occurs through a coordinated cascade of events involving a dense network of immune cells. Among them, CD4+CD25+ T regulatory cells are crucial to balance immune homeostasis and function. Growing evidence supports the notion that energy metabolites can dictate T cell fate and function via epigenetic modifications, which affect gene expression without altering the DNA sequence. Moreover, changes in cellular metabolism couple with activation of immune pathways and epigenetic remodeling to finely tune the balance between T cell activation and tolerance. This Review summarizes these aspects and critically evaluates novel possibilities for developing therapeutic strategies to modulate immune tolerance through metabolism via epigenetic drugs.
Collapse
Affiliation(s)
- Anne Lise Ferrara
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", 80131 Napoli, Italy; Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Antonietta Liotti
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Antonio Pezone
- Dipartimento di Biologia, Università di Napoli "Federico II", 80131 Napoli, Italy.
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy.
| |
Collapse
|
26
|
Du J, Wang Q, Yang S, Chen S, Fu Y, Spath S, Domeier P, Hagin D, Anover-Sombke S, Haouili M, Liu S, Wan J, Han L, Liu J, Yang L, Sangani N, Li Y, Lu X, Janga SC, Kaplan MH, Torgerson TR, Ziegler SF, Zhou B. FOXP3 exon 2 controls T reg stability and autoimmunity. Sci Immunol 2022; 7:eabo5407. [PMID: 35749515 PMCID: PMC9333337 DOI: 10.1126/sciimmunol.abo5407] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Differing from the mouse Foxp3 gene that encodes only one protein product, human FOXP3 encodes two major isoforms through alternative splicing-a longer isoform (FOXP3 FL) containing all the coding exons and a shorter isoform lacking the amino acids encoded by exon 2 (FOXP3 ΔE2). The two isoforms are naturally expressed in humans, yet their differences in controlling regulatory T cell phenotype and functionality remain unclear. In this study, we show that patients expressing only the shorter isoform fail to maintain self-tolerance and develop immunodeficiency, polyendocrinopathy, and enteropathy X-linked (IPEX) syndrome. Mice with Foxp3 exon 2 deletion have excessive follicular helper T (TFH) and germinal center B (GC B) cell responses, and develop systemic autoimmune disease with anti-dsDNA and antinuclear autoantibody production, as well as immune complex glomerulonephritis. Despite having normal suppressive function in in vitro assays, regulatory T cells expressing FOXP3 ΔE2 are unstable and sufficient to induce autoimmunity when transferred into Tcrb-deficient mice. Mechanistically, the FOXP3 ΔE2 isoform allows increased expression of selected cytokines, but decreased expression of a set of positive regulators of Foxp3 without altered binding to these gene loci. These findings uncover indispensable functions of the FOXP3 exon 2 region, highlighting a role in regulating a transcriptional program that maintains Treg stability and immune homeostasis.
Collapse
Affiliation(s)
- Jianguang Du
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qun Wang
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shuangshuang Yang
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Si Chen
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sabine Spath
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Phillip Domeier
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - David Hagin
- Allen Institute for Immunology, Seattle, WA and secondary affiliation as University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington; Center for Immunity and Immunotherapies, Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Stephanie Anover-Sombke
- Allen Institute for Immunology, Seattle, WA and secondary affiliation as University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington; Center for Immunity and Immunotherapies, Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Maya Haouili
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Han
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juli Liu
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Yang
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Neel Sangani
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University–Purdue University Indianapolis; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Yujing Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarath Chandra Janga
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University–Purdue University Indianapolis; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Troy R. Torgerson
- Allen Institute for Immunology, Seattle, WA and secondary affiliation as University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington; Center for Immunity and Immunotherapies, Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Steven F. Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Baohua Zhou
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Gong Z, Jia H, Xue L, Li D, Zeng X, Wei M, Liu Z, Tong MCF, Chen GG. The emerging role of transcription factor FOXP3 in thyroid cancer. Rev Endocr Metab Disord 2022; 23:421-429. [PMID: 34463908 DOI: 10.1007/s11154-021-09684-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Transcription factor FOXP3 is a crucial regulator in the development and function of regulatory T cells (Treg) that are essential for immunological tolerance and homeostasis. Numerous studies have indicated the correlation of tumor infiltrating FOXP3+ Treg upregulation with poor prognostic parameters in thyroid cancer, including lymph node metastases, extrathyroidal extension, and multifocality. Most immune-checkpoint molecules are expressed in Treg. The blockage of such signals with checkpoint inhibitors has been approved for several solid tumors, but not yet for thyroid cancer. Thyroid abnormalities may be induced by checkpoint inhibitors. For example, hypothyroidism, thyrotoxicosis, painless thyroiditis, or even thyroid storm are more frequently associated with anti-PD-1 antibodies (pembrolizumab and nivolumab). Therefore, Targeting FOXP3+ Treg may have impacts on checkpoint molecules and the growth of thyroid cancer. Several factors may impact the role and stability of FOXP3, such as alternative RNA splicing, mutations, and post-translational modification. In addition, the role of FOXP3+ Treg in the tumor microenvironment is also affected by the complex regulatory network formed by FOXP3 and its transcriptional partners. Here we discussed how the expression and function of FOXP3 were regulated and how FOXP3 interacted with its targets in Treg, aiming to help the development of FOXP3 as a potential therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Hao Jia
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Lingbin Xue
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Dongcai Li
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang, ENT Hospital, Shenzhen, China
| | - Xianhai Zeng
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang, ENT Hospital, Shenzhen, China
| | - Minghui Wei
- Department of Head & Neck Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, Guangdong, China
| | - Zhimin Liu
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Michael C F Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | - George G Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| |
Collapse
|
28
|
Plochg BFJ, Englert H, Rangaswamy C, Konrath S, Malle M, Lampalzer S, Beisel C, Wollin S, Frye M, Aberle J, Kluwe J, Renné T, Mailer RK. Liver damage promotes pro-inflammatory T-cell responses against apolipoprotein B-100. J Intern Med 2022; 291:648-664. [PMID: 34914849 DOI: 10.1111/joim.13434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Liver-derived apolipoprotein B-100 (ApoB100) is an autoantigen that is recognized by atherogenic CD4+ T cells in cardiovascular disease (CVD). CVD is a major mortality risk for patients with chronic inflammatory liver diseases. However, the impact of liver damage for ApoB100-specific T-cell responses is unknown. METHODS We identified ApoB100-specific T cells in blood from healthy controls, nonalcoholic fatty liver disease (NAFLD) patients, and CVD patients by activation-induced marker expression and analyzed their differentiation pattern in correlation to the lipid profile and liver damage parameters in a cross-sectional study. To assess the induction of extrahepatic ApoB100-specific T cells upon transient liver damage in vivo, we performed hydrodynamic tail vein injections with diphtheria toxin A (DTA)-encoding plasmid in human ApoB100-transgenic mice. RESULTS Utilizing immunodominant ApoB100-derived peptides, we found increased ApoB100-specific T-cell populations in NAFLD and CVD patients compared to healthy controls. In a peptide-specific manner, ApoB100 reactivity in healthy controls was accompanied by expression of the regulatory T (Treg)-cell transcription factor FOXP3. In contrast, FOXP3 expression decreased, whereas expression of pro-inflammatory cytokine interleukin (IL)-17A increased in ApoB100-specific T cells from NAFLD and CVD patients. Dyslipidemia and liver damage parameters in blood correlated with reduced FOXP3 expression and elevated IL-17A production in ApoB100-specific T-cell populations, respectively. Moreover, DTA-mediated transient liver damage in human ApoB100-transgenic mice accumulated IL-17a-expressing ApoB100-specific T cells in the periphery. CONCLUSION Our results show that liver damage promotes pro-inflammatory ApoB100-specific T-cell populations, thereby providing a cellular mechanism for the increased CVD risk in liver disease patients.
Collapse
Affiliation(s)
- Bastian F J Plochg
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Englert
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chandini Rangaswamy
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mandy Malle
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sibylle Lampalzer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Beisel
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Salma Wollin
- Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section Endocrinology and Diabetology, University Obesity Centre Hamburg, University Hospital Hamburg-Eppendorf, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Aberle
- Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section Endocrinology and Diabetology, University Obesity Centre Hamburg, University Hospital Hamburg-Eppendorf, Germany
| | - Johannes Kluwe
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Borna S, Lee E, Sato Y, Bacchetta R. Towards gene therapy for IPEX syndrome. Eur J Immunol 2022; 52:705-716. [PMID: 35355253 PMCID: PMC9322407 DOI: 10.1002/eji.202149210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/29/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Abstract
Immune dysregulation polyendocrinopathy enteropathy X linked (IPEX) syndrome is an uncurable disease of the immune system, with immune dysregulation that is caused by mutations in FOXP3. Current treatment options, such as pharmacological immune suppression and allogeneic hematopoietic stem cell transplantation, have been beneficial but present limitations, and their life‐long consequences are ill‐defined. Other similar blood monogenic diseases have been successfully treated using gene transfer in autologous patient cells, thus providing an effective and less invasive therapeutic. Development of gene therapy for patients with IPEX is particularly challenging because successful strategies must restore the complex expression profile of the transcription factor FOXP3, ensuring it is tightly regulated and its cell subset‐specific roles are maintained. This review summarizes current efforts toward achieving gene therapy to treat immune dysregulation in IPEX patients.
Collapse
Affiliation(s)
- Simon Borna
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esmond Lee
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yohei Sato
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
30
|
Mertowska P, Mertowski S, Podgajna M, Grywalska E. The Importance of the Transcription Factor Foxp3 in the Development of Primary Immunodeficiencies. J Clin Med 2022; 11:947. [PMID: 35207219 PMCID: PMC8874698 DOI: 10.3390/jcm11040947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Transcription factors are an extremely important group of proteins that are responsible for the process of selective activation or deactivation of other cellular proteins, usually at the last stage of signal transmission in the cell. An important family of transcription factors that regulate the body's response is the FOX family which plays an important role in regulating the expression of genes involved in cell growth, proliferation, and differentiation. The members of this family include the intracellular protein Foxp3, which regulates the process of differentiation of the T lymphocyte subpopulation, and more precisely, is responsible for the development of regulatory T lymphocytes. This protein influences several cellular processes both directly and indirectly. In the process of cytokine production regulation, the Foxp3 protein interacts with numerous proteins and transcription factors such as NFAT, nuclear factor kappa B, and Runx1/AML1 and is involved in the process of histone acetylation in condensed chromatin. Malfunctioning of transcription factor Foxp3 caused by the mutagenesis process affects the development of disorders of the immune response and autoimmune diseases. This applies to the impairment or inability of the immune system to fight infections due to a disruption of the mechanisms supporting immune homeostasis which in turn leads to the development of a special group of disorders called primary immunodeficiencies (PID). The aim of this review is to provide information on the role of the Foxp3 protein in the human body and its involvement in the development of two types of primary immunodeficiency diseases: IPEX (Immunodysregulation Polyendocrinopathy Enteropathy X-linked syndrome) and CVID (Common Variable Immunodeficiency).
Collapse
Affiliation(s)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.M.); (M.P.); (E.G.)
| | | | | |
Collapse
|
31
|
Adriawan IR, Atschekzei F, Dittrich-Breiholz O, Garantziotis P, Hirsch S, Risser LM, Kosanke M, Schmidt RE, Witte T, Sogkas G. Novel aspects of regulatory T cell dysfunction as a therapeutic target in giant cell arteritis. Ann Rheum Dis 2022; 81:124-131. [PMID: 34583923 PMCID: PMC8762021 DOI: 10.1136/annrheumdis-2021-220955] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Giant cell arteritis (GCA) is the most common primary vasculitis, preferentially affecting the aorta and its large-calibre branches. An imbalance between proinflammatory CD4+ T helper cell subsets and regulatory T cells (Tregs) is thought to be involved in the pathogenesis of GCA and Treg dysfunction has been associated with active disease. Our work aims to explore the aetiology of Treg dysfunction and the way it is affected by remission-inducing immunomodulatory regimens. METHODS A total of 41 GCA patients were classified into active disease (n=14) and disease in remission (n=27). GCA patients' and healthy blood donors' (HD) Tregs were sorted and subjected to transcriptome and phenotypic analysis. RESULTS Transcriptome analysis revealed 27 genes, which were differentially regulated between GCA-derived and HD-derived Tregs. Among those, we identified transcription factors, glycolytic enzymes and IL-2 signalling mediators. We confirmed the downregulation of forkhead box P3 (FOXP3) and interferon regulatory factor 4 (IRF4) at protein level and identified the ineffective induction of glycoprotein A repetitions predominant (GARP) and CD25 as well as the reduced T cell receptor (TCR)-induced calcium influx as correlates of Treg dysfunction in GCA. Inhibition of glycolysis in HD-derived Tregs recapitulated most identified dysfunctions of GCA Tregs, suggesting the central pathogenic role of the downregulation of the glycolytic enzymes. Separate analysis of the subgroup of tocilizumab-treated patients identified the recovery of the TCR-induced calcium influx and the Treg suppressive function to associate with disease remission. CONCLUSIONS Our findings suggest that low glycolysis and calcium signalling account for Treg dysfunction and inflammation in GCA.
Collapse
Affiliation(s)
- Ignatius Ryan Adriawan
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | - Faranaz Atschekzei
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | | | | | - Stefanie Hirsch
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | | | - Maike Kosanke
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Reinhold Ernst Schmidt
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Sato Y, Liu J, Lee E, Perriman R, Roncarolo MG, Bacchetta R. Co-Expression of FOXP3FL and FOXP3Δ2 Isoforms Is Required for Optimal Treg-Like Cell Phenotypes and Suppressive Function. Front Immunol 2021; 12:752394. [PMID: 34737751 PMCID: PMC8560788 DOI: 10.3389/fimmu.2021.752394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
FOXP3 is the master transcription factor in both murine and human FOXP3+ regulatory T cells (Tregs), a T-cell subset with a central role in controlling immune responses. Loss of the functional Foxp3 protein in scurfy mice leads to acute early-onset lethal lymphoproliferation. Similarly, pathogenic FOXP3 mutations in humans lead to immunodysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome, which are characterized by systemic autoimmunity that typically begins in the first year of life. However, although pathogenic FOXP3 mutations lead to overlapping phenotypic consequences in both systems, FOXP3 in human Tregs, but not mouse, is expressed as two predominant isoforms, the full length (FOXP3FL) and the alternatively spliced isoform, delta 2 (FOXP3Δ2). Here, using CRISPR/Cas9 to generate FOXP3 knockout CD4+ T cells (FOXP3KOGFP CD4+ T cells), we restore the expression of each isoform by lentiviral gene transfer to delineate their functional roles in human Tregs. When compared to FOXP3FL or FOXP3Δ2 alone, or double transduction of the same isoform, co-expression of FOXP3FL and FOXP3Δ2 induced the highest overall FOXP3 protein expression in FOXP3KOGFP CD4+ T cells. This condition, in turn, led to optimal acquisition of Treg-like cell phenotypes including downregulation of cytokines, such as IL-17, and increased suppressive function. Our data confirm that co-expression of FOXP3FL and FOXP3Δ2 leads to optimal Treg-like cell function and supports the need to maintain the expression of both when engineering therapeutics designed to restore FOXP3 function in otherwise deficient cells.
Collapse
Affiliation(s)
- Yohei Sato
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Jessica Liu
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Esmond Lee
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rhonda Perriman
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA, United States
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
33
|
Abdelhafeez HEDA, Hamid FFA, Hassan NM, Assem MM, Soliman AF. Relative expression and prognostic significance of forkhead box P3 in childhood B-cell acute lymphoblastic leukemia. Pediatr Blood Cancer 2021; 68:e29129. [PMID: 34133057 DOI: 10.1002/pbc.29129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Despite the favorable survival rates of childhood B-cell acute lymphoblastic leukemia (B-ALL), a significant number of patients present a dismal prognosis. Forkhead box P3 (FOXP3), a marker of regulatory T cells, functions as a transcription factor involved in immune cell regulation, and its expression correlates with prognosis in many malignancies. Therefore, this study aimed to assess the relative gene expression level of FOXP3 in childhood B-ALL and to detect its prognostic utility. METHODS The study included 139 bone marrow samples obtained from 112 patients at diagnosis and 27 healthy children. Following extraction, RNA was reverse transcribed and the relative expression level of FOXP3 was quantified by quantitative PCR. Cytogenetics, immunophenotype, and minimal residual disease were analyzed according to international guidelines. RESULTS A highly significant overexpression of FOXP3 was detected in childhood B-ALL patients at diagnosis, which was associated with a stronger risk for disease relapse and patients' worse survival. Moreover, multivariate regression models highlighted the independent prognostic value of FOXP3 for childhood B-ALL. Finally, the combination of FOXP3 relative expression with clinically used disease markers clearly enhanced the prediction of treatment stratification. CONCLUSIONS High FOXP3 relative expression was associated with inferior outcome suggesting its potentiality as a molecular prognostic marker to predict childhood B-ALL patients' outcomes.
Collapse
Affiliation(s)
| | - Fatma F Abdel Hamid
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Magda M Assem
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed F Soliman
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
34
|
Rais A, Mekki N, Fedhila F, Alosaimi MF, Ben Khaled M, Zameli A, Agrebi N, Sellami MK, Geha R, Ben-Mustapha I, Barbouche MR. Case Report: FOXP3 Mutation in a Patient Presenting With ALPS. Front Immunol 2021; 12:692107. [PMID: 34531853 PMCID: PMC8438314 DOI: 10.3389/fimmu.2021.692107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
ALPS and IPEX are two well-characterized inborn errors of immunity with immune dysregulation, considered as two master models of monogenic auto-immune diseases. Thus, with autoimmunity as their primary clinical manifestation, these two entities may show clinical overlap. Traditionally, immunological biomarkers are used to establish an accurate differential diagnosis. Herein, we describe a patient who presented with clinical features and biomarkers fulfilling the diagnostic criteria of ALPS. Severe apoptotic defect was also shown in the patient's cell lines and PHA-activated peripheral blood lymphocytes. Sanger sequencing of the FAS gene did not reveal any causal mutation. NGS screening revealed a novel deleterious variant located in the N terminal repressor domain of FOXP3 but no mutations in the FAS pathway-related genes. TEMRA cells (terminally differentiated effector memory cells re-expressing CD45RA) and PD1 expression were increased arguing in favor of T-cell exhaustion, which could be induced by unrestrained activation of T effector cells because of Treg deficiency. Moreover, defective FOXP3 observed in the patient could intrinsically induce increased proliferation and resistance to apoptosis in T effector cells. This observation expands the spectrum of FOXP3 deficiency and underscores the role of NGS in detecting mutations that induce overlapping phenotypes among inborn errors of immunity with immune dysregulation. In addition, these findings suggest a potential link between FOXP3 and FAS pathways.
Collapse
Affiliation(s)
- Afef Rais
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Najla Mekki
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Faten Fedhila
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia.,Department of Pediatrics A, Children's Hospital, Tunis, Tunisia
| | | | - Monia Ben Khaled
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia.,Pediatric Immuno-Hematology unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia
| | - Amal Zameli
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Nourhen Agrebi
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Maryam Kallel Sellami
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia.,Department of Immunology, La Rabta University Hospital, Tunis, Tunisia
| | - Raif Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
35
|
Programmed Cell Death in the Small Intestine: Implications for the Pathogenesis of Celiac Disease. Int J Mol Sci 2021; 22:ijms22147426. [PMID: 34299046 PMCID: PMC8306608 DOI: 10.3390/ijms22147426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
The small intestine has a high rate of cell turnover under homeostatic conditions, and this increases further in response to infection or damage. Epithelial cells mostly die by apoptosis, but recent studies indicate that this may also involve pro-inflammatory pathways of programmed cell death, such as pyroptosis and necroptosis. Celiac disease (CD), the most prevalent immune-based enteropathy, is caused by loss of oral tolerance to peptides derived from wheat, rye, and barley in genetically predisposed individuals. Although cytotoxic cells and gluten-specific CD4+ Th1 cells are the central players in the pathology, inflammatory pathways induced by cell death may participate in driving and sustaining the disease through the release of alarmins. In this review, we summarize the recent literature addressing the role of programmed cell death pathways in the small intestine, describing how these mechanisms may contribute to CD and discussing their potential implications.
Collapse
|
36
|
Dirsipam K, Ponnala D, Madduru D, Bonu R, Jahan P. Association of FOXP3 rs3761548 polymorphism and its reduced expression with unexplained recurrent spontaneous abortions: A South Indian study. Am J Reprod Immunol 2021; 86:e13431. [PMID: 33882185 DOI: 10.1111/aji.13431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
PROBLEM Fork Head Box Protein 3 (FOXP3) is an X-linked gene, codes for a master transcription regulatory protein that controls the development and function of immunosuppressive T regulatory (Treg) cells. They are crucial mediators of maternal foetal tolerance and successful pregnancy outcome. The aim of the study is to evaluate the association of FOXP3 rs3761548 functional polymorphism and to assess the serum concentrations of full-length FOXP3 protein in Unexplained Recurrent Spontaneous Abortions (URSA) patients of Southern India. METHOD OF STUDY The study included blood samples from 150 URSA patients and 150 healthy, pregnant parous women. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism was done for rs3761548 FOXP3 genotyping. Serum concentrations of full-length FOXP3 protein were estimated by enzyme-linked immunosorbent assay. RESULTS The frequencies of mutant A allele, CA and AA genotypes of rs3761548 functional polymorphism were significantly elevated in patients compared to healthy, pregnant parous women and exhibited a two, three and twofold increased risk respectively towards URSA. Serum concentrations of full-length FOXP3 protein were high in controls compared to patients (10.14 ± .30 vs. 8.84 ± 1.73 ng/ml; p < .05). CONCLUSION Our results advocate an association of FOXP3 rs3761548 polymorphism and reduced expression of full-length FOXP3 protein with URSA.
Collapse
Affiliation(s)
- Kethora Dirsipam
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, India
| | - Deepika Ponnala
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, India
| | - Dhatri Madduru
- Department of Biochemistry, Osmania University, Hyderabad, India
| | - Rajeswari Bonu
- Department of Obstetrics & Gynaecology, Niloufer Hospital, Hyderabad, India
| | - Parveen Jahan
- School of Sciences, Maulana Azad National Urdu University, Hyderabad, India
| |
Collapse
|
37
|
Dong Y, Yang C, Pan F. Post-Translational Regulations of Foxp3 in Treg Cells and Their Therapeutic Applications. Front Immunol 2021; 12:626172. [PMID: 33912156 PMCID: PMC8071870 DOI: 10.3389/fimmu.2021.626172] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Regulatory T (Treg) cells are indispensable for immune homeostasis due to their roles in peripheral tolerance. As the master transcription factor of Treg cells, Forkhead box P3 (Foxp3) strongly regulates Treg function and plasticity. Because of this, considerable research efforts have been directed at elucidating the mechanisms controlling Foxp3 and its co-regulators. Such work is not only advancing our understanding on Treg cell biology, but also uncovering novel targets for clinical manipulation in autoimmune diseases, organ transplantation, and tumor therapies. Recently, many studies have explored the post-translational regulation of Foxp3, which have shown that acetylation, phosphorylation, glycosylation, methylation, and ubiquitination are important for determining Foxp3 function and plasticity. Additionally, some of these targets have been implicated to have great therapeutic values. In this review, we will discuss emerging evidence of post-translational regulations on Foxp3 in Treg cells and their exciting therapeutic applications.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cuiping Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fan Pan
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| |
Collapse
|
38
|
Li X, Colamatteo A, Kalafati L, Kajikawa T, Wang H, Lim JH, Bdeir K, Chung KJ, Yu X, Fusco C, Porcellini A, De Simone S, Matarese G, Chavakis T, De Rosa V, Hajishengallis G. The DEL-1/β3 integrin axis promotes regulatory T cell responses during inflammation resolution. J Clin Invest 2021; 130:6261-6277. [PMID: 32817592 DOI: 10.1172/jci137530] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
FOXP3+CD4+ regulatory T cells (Tregs) are critical for immune homeostasis and respond to local tissue cues, which control their stability and function. We explored here whether developmental endothelial locus-1 (DEL-1), which, like Tregs, increases during resolution of inflammation, promotes Treg responses. DEL-1 enhanced Treg numbers and function at barrier sites (oral and lung mucosa). The underlying mechanism was dissected using mice lacking DEL-1 or expressing a point mutant thereof, or mice with T cell-specific deletion of the transcription factor RUNX1, identified by RNA sequencing analysis of the DEL-1-induced Treg transcriptome. Specifically, through interaction with αvβ3 integrin, DEL-1 promoted induction of RUNX1-dependent FOXP3 expression and conferred stability of FOXP3 expression upon Treg restimulation in the absence of exogenous TGF-β1. Consistently, DEL-1 enhanced the demethylation of the Treg-specific demethylated region (TSDR) in the mouse Foxp3 gene and the suppressive function of sorted induced Tregs. Similarly, DEL-1 increased RUNX1 and FOXP3 expression in human conventional T cells, promoting their conversion into induced Tregs with increased TSDR demethylation, enhanced stability, and suppressive activity. We thus uncovered a DEL-1/αvβ3/RUNX1 axis that promotes Treg responses at barrier sites and offers therapeutic options for modulating inflammatory/autoimmune disorders.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases, Dresden, Germany, and German Cancer Research Center, Heidelberg, Germany
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hui Wang
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine and
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Xiang Yu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Antonio Porcellini
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II," Complesso Universitario di Monte Santangelo, Naples, Italy
| | - Salvatore De Simone
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Naples, Italy.,Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di Neuroimmunologia, Fondazione Santa Lucia, Rome, Italy
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Bacchetta R, Weinberg K. Thymic origins of autoimmunity-lessons from inborn errors of immunity. Semin Immunopathol 2021; 43:65-83. [PMID: 33532929 PMCID: PMC7925499 DOI: 10.1007/s00281-020-00835-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
During their intrathymic development, nascent T cells are empowered to protect against pathogens and to be operative for a life-long acceptance of self. While autoreactive effector T (Teff) cell progenitors are eliminated by clonal deletion, the intrathymic mechanisms by which thymic regulatory T cell (tTreg) progenitors maintain specificity for self-antigens but escape deletion to exert their regulatory functions are less well understood. Both tTreg and Teff development and selection result from finely coordinated interactions between their clonotypic T cell receptors (TCR) and peptide/MHC complexes expressed by antigen-presenting cells, such as thymic epithelial cells and thymic dendritic cells. tTreg function is dependent on expression of the FOXP3 transcription factor, and induction of FOXP3 gene expression by tTreg occurs during their thymic development, particularly within the thymic medulla. While initial expression of FOXP3 is downstream of TCR activation, constitutive expression is fixed by interactions with various transcription factors that are regulated by other extracellular signals like TCR and cytokines, leading to epigenetic modification of the FOXP3 gene. Most of the understanding of the molecular events underlying tTreg generation is based on studies of murine models, whereas gaining similar insight in the human system has been very challenging. In this review, we will elucidate how inborn errors of immunity illuminate the critical non-redundant roles of certain molecules during tTreg development, shedding light on how their abnormal development and function cause well-defined diseases that manifest with autoimmunity alone or are associated with states of immune deficiency and autoinflammation.
Collapse
Affiliation(s)
- Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA.
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
40
|
Consonni F, Ciullini Mannurita S, Gambineri E. Atypical Presentations of IPEX: Expect the Unexpected. Front Pediatr 2021; 9:643094. [PMID: 33614561 PMCID: PMC7892580 DOI: 10.3389/fped.2021.643094] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Immune dysregulation, polyendocrinopathy, and enteropathy, X-linked (IPEX) syndrome is a rare disorder that has become a model of monogenic autoimmunity. IPEX is caused by mutations in FOXP3 gene, a master regulator of regulatory T cells (Treg). Cases reported in the last 20 years demonstrate that IPEX clinical spectrum encompasses more than the classical triad of early-onset intractable diarrhea, type 1 diabetes (T1D) and eczema. Atypical cases of IPEX include patients with late-onset of symptoms, single-organ involvement, mild disease phenotypes or rare clinical features (e.g., atrophic gastritis, interstitial lung disease, nephropathy etc.). Several atypical presentations have recently been reported, suggesting that IPEX incidence might be underestimated. Immunosuppression (IS) treatment strategies can control the disease, however at the moment allogeneic hematopoietic stem cell transplantation (HSCT) is the only available definitive cure, therefore it is important to achieve a prompt diagnosis. This review aims to describe unusual clinical phenotypes, beyond classical IPEX. Overall, our analysis contributes to increase awareness and finally improve diagnosis and treatment intervention in IPEX in order to ensure a good quality of life.
Collapse
Affiliation(s)
- Filippo Consonni
- Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Sara Ciullini Mannurita
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Eleonora Gambineri
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
41
|
Norton DL, Ceppe A, Tune MK, McCravy M, Devlin T, Drummond MB, Carson SS, Vincent BG, Hagan RS, Dang H, Doerschuk CM, Mock JR. Bronchoalveolar Tregs are associated with duration of mechanical ventilation in acute respiratory distress syndrome. J Transl Med 2020; 18:427. [PMID: 33176790 PMCID: PMC7656499 DOI: 10.1186/s12967-020-02595-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/29/2020] [Indexed: 02/02/2023] Open
Abstract
Background Foxp3+ regulatory T cells (Tregs) play essential roles in immune homeostasis and repair of damaged lung tissue. We hypothesized that patients whose lung injury resolves quickly, as measured by time to liberation from mechanical ventilation, have a higher percentage of Tregs amongst CD4+ T cells in either airway, bronchoalveolar lavage (BAL) or peripheral blood samples. Methods We prospectively enrolled patients with ARDS requiring mechanical ventilation and collected serial samples, the first within 72 h of ARDS diagnosis (day 0) and the second 48–96 h later (day 3). We analyzed immune cell populations and cytokines in BAL, tracheal aspirates and peripheral blood, as well as cytokines in plasma, obtained at the time of bronchoscopy. The study cohort was divided into fast resolvers (FR; n = 8) and slow resolvers (SR; n = 5), based on the median number of days until first extubation for all participants (n = 13). The primary measure was the percentage of CD4+ T cells that were Tregs. Results The BAL of FR contained more Tregs than SR. This finding did not extend to Tregs in tracheal aspirates or blood. BAL Tregs expressed more of the full-length FOXP3 than a splice variant missing exon 2 compared to Tregs in simultaneously obtained peripheral blood. Conclusion Tregs are present in the bronchoalveolar space during ARDS. A greater percentage of CD4+ cells were Tregs in the BAL of FR than SR. Tregs may play a role in the resolution of ARDS, and enhancing their numbers or functions may be a therapeutic target.
Collapse
Affiliation(s)
- Dustin L Norton
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Agathe Ceppe
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Miriya K Tune
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew McCravy
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Thomas Devlin
- Department of Respiratory Care, University of North Carolina, Chapel Hill, NC, USA
| | - M Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Shannon S Carson
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.,Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Claire M Doerschuk
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Jason R Mock
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA. .,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA. .,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA. .,Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina School of Medicine, Marsico Hall 7203, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
42
|
Taylor MR, Roby CR, Elziny S, Duricy E, Taylor TM, Bowers JM. Age, but Not Sex, Modulates Foxp3 Expression in the Rat Brain across Development. Neuroscience 2020; 442:87-99. [PMID: 32599120 DOI: 10.1016/j.neuroscience.2020.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022]
Abstract
The interconnectivity between brain development and the immune system has become an area of interest for many neuroscientists. However, to date, a limited number of known immune mediators of the peripheral nervous system (PNS) have been found to influence the development of the central nervous system (CNS). FOXP3 is a well-established mediator of regulatory T-cells in the PNS. However, the expression pattern of FOXP3 in the CNS and the PNS throughout development is unknown. To fill this void, we have characterized, in several brain regions, the developmental profile of Foxp3 for both sexes using rats. We found different patterns of Foxp3 in the CNS and PNS. In the CNS, we found Foxp3 was ubiquitously expressed, with the levels of Foxp3 varying by brain region. We also found both Foxp3 mRNA and protein levels peak during embryonic development and then steadily decrease with a peak increase during adulthood. In adulthood, the protein but not mRNA increases to the equivalent levels found at the embryonic stage of life. In the PNS, Foxp3 protein levels were low embryonically and increased steadily over the life of the animal with maximal levels reached in adulthood. Patterns observed for both the PNS and CNS were similar in males and females across all developmental timepoints. Our novel findings have implications for understanding how the neural immune system impacts neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Makenzlie R Taylor
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - Clinton R Roby
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - Soad Elziny
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - Erin Duricy
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - Tina M Taylor
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - J Michael Bowers
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA.
| |
Collapse
|
43
|
Jamee M, Zaki-Dizaji M, Lo B, Abolhassani H, Aghamahdi F, Mosavian M, Nademi Z, Mohammadi H, Jadidi-Niaragh F, Rojas M, Anaya JM, Azizi G. Clinical, Immunological, and Genetic Features in Patients with Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) and IPEX-like Syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:2747-2760.e7. [PMID: 32428713 DOI: 10.1016/j.jaip.2020.04.070] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare inborn error of immunity caused by mutations in the forkhead box P3 (FOXP3) gene. OBJECTIVE In this study, we conducted a systematic review of patients with IPEX and IPEX-like syndrome to delineate differences in these 2 major groups. METHODS The literature search was performed in PubMed, Web of Science, and Scopus databases, and demographic, clinical, immunologic, and molecular data were compared between the IPEX and IPEX-like groups. RESULTS A total of 459 patients were reported in 148 eligible articles. Major clinical differences between patients with IPEX and IPEX-like syndrome were observed in rates of pneumonia (11% vs 31%, P < .001), bronchiectasis (0.3% vs 14%, P < .001), diarrhea (56% vs 42%, P = .020), and organomegaly (10% vs 23%, P = .001), respectively. Eosinophilia (95% vs 100%), low regulatory T-cell count (68% vs 50%), and elevated IgE (87% vs 61%) were the most prominent laboratory findings in patients with IPEX and IPEX-like syndrome, respectively. In the IPEX group, a lower mortality rate was observed among patients receiving hematopoietic stem cell transplantation (HSCT) (24%) compared with other patients (43%), P = .008; however, in the IPEX-like group, it was not significant (P = .189). CONCLUSIONS Patients with IPEX syndrome generally suffer from enteropathy, autoimmunity, dermatitis, eosinophilia, and elevated serum IgE. Despite similarities in their clinical presentations, patients with IPEX-like syndrome are more likely to present common variable immunodeficiency-like phenotype such as respiratory tract infections, bronchiectasis, and organomegaly. HSCT is currently the only curative therapy for both IPEX and IPEX-like syndrome and may result in favorable outcome.
Collapse
Affiliation(s)
- Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran; Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Bernice Lo
- Sidra Medicine, Division of Translational Medicine, Research Branch, Doha, Qatar
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Fatemeh Aghamahdi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Mosavian
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zohreh Nademi
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle, United Kingdom
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
44
|
Goodwin M, Lee E, Lakshmanan U, Shipp S, Froessl L, Barzaghi F, Passerini L, Narula M, Sheikali A, Lee CM, Bao G, Bauer CS, Miller HK, Garcia-Lloret M, Butte MJ, Bertaina A, Shah A, Pavel-Dinu M, Hendel A, Porteus M, Roncarolo MG, Bacchetta R. CRISPR-based gene editing enables FOXP3 gene repair in IPEX patient cells. SCIENCE ADVANCES 2020; 6:eaaz0571. [PMID: 32494707 PMCID: PMC7202871 DOI: 10.1126/sciadv.aaz0571] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/20/2020] [Indexed: 05/05/2023]
Abstract
The prototypical genetic autoimmune disease is immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, a severe pediatric disease with limited treatment options. IPEX syndrome is caused by mutations in the forkhead box protein 3 (FOXP3) gene, which plays a critical role in immune regulation. As a monogenic disease, IPEX is an ideal candidate for a therapeutic approach in which autologous hematopoietic stem and progenitor (HSPC) cells or T cells are gene edited ex vivo and reinfused. Here, we describe a CRISPR-based gene correction permitting regulated expression of FOXP3 protein. We demonstrate that gene editing preserves HSPC differentiation potential, and that edited regulatory and effector T cells maintain their in vitro phenotype and function. Additionally, we show that this strategy is suitable for IPEX patient cells with diverse mutations. These results demonstrate the feasibility of gene correction, which will be instrumental for the development of therapeutic approaches for other genetic autoimmune diseases.
Collapse
Affiliation(s)
- M. Goodwin
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - E. Lee
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford University School of Medicine, Stanford, CA, USA
| | - U. Lakshmanan
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - S. Shipp
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - L. Froessl
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - F. Barzaghi
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - L. Passerini
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - M. Narula
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - A. Sheikali
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - C. M. Lee
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - G. Bao
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, USA
| | - C. S. Bauer
- Phoenix Children's Hospital, Phoenix, AZ, USA
| | | | - M. Garcia-Lloret
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | - M. J. Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | - A. Bertaina
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - A. Shah
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - M. Pavel-Dinu
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - A. Hendel
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Ramat-Gan 52900, Israel
| | - M. Porteus
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford University School of Medicine, Stanford, CA, USA
| | - M. G. Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford University School of Medicine, Stanford, CA, USA
| | - R. Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Corresponding author.
| |
Collapse
|
45
|
Arroyo Hornero R, Hamad I, Côrte-Real B, Kleinewietfeld M. The Impact of Dietary Components on Regulatory T Cells and Disease. Front Immunol 2020; 11:253. [PMID: 32153577 PMCID: PMC7047770 DOI: 10.3389/fimmu.2020.00253] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
The rise in the prevalence of autoimmune diseases in developed societies has been associated with a change in lifestyle patterns. Among other factors, increased consumption of certain dietary components, such as table salt and fatty acids and excessive caloric intake has been associated with defective immunological tolerance. Dietary nutrients have shown to modulate the immune response by a direct effect on the function of immune cells or, indirectly, by acting on the microbiome of the gastrointestinal tract. FOXP3+ regulatory T cells (Tregs) suppress immune responses and are critical for maintaining peripheral tolerance and immune homeostasis, modulating chronic tissue inflammation and autoimmune disease. It is now well-recognized that Tregs show certain degree of plasticity and can gain effector functions to adapt their regulatory function to different physiological situations during an immune response. However, plasticity of Tregs might also result in conversion into effector T cells that may contribute to autoimmune pathogenesis. Yet, which environmental cues regulate Treg plasticity and function is currently poorly understood, but it is of significant importance for therapeutic purposes. Here we review the current understanding on the effect of certain dietary nutrients that characterize Western diets in Treg metabolism, stability, and function. Moreover, we will discuss the role of Tregs linking diet and autoimmunity and the potential of dietary-based interventions to modulate Treg function in disease.
Collapse
Affiliation(s)
- Rebeca Arroyo Hornero
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| | - Ibrahim Hamad
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| | - Beatriz Côrte-Real
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| |
Collapse
|
46
|
Colamatteo A, Carbone F, Bruzzaniti S, Galgani M, Fusco C, Maniscalco GT, Di Rella F, de Candia P, De Rosa V. Molecular Mechanisms Controlling Foxp3 Expression in Health and Autoimmunity: From Epigenetic to Post-translational Regulation. Front Immunol 2020; 10:3136. [PMID: 32117202 PMCID: PMC7008726 DOI: 10.3389/fimmu.2019.03136] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the transcription factor Forkhead box-p3 (Foxp3) has shed fundamental insights into the understanding of the molecular determinants leading to generation and maintenance of T regulatory (Treg) cells, a cell population with a key immunoregulatory role. Work over the past few years has shown that fine-tuned transcriptional and epigenetic events are required to ensure stable expression of Foxp3 in Treg cells. The equilibrium between phenotypic plasticity and stability of Treg cells is controlled at the molecular level by networks of transcription factors that bind regulatory sequences, such as enhancers and promoters, to regulate Foxp3 expression. Recent reports have suggested that specific modifications of DNA and histones are required for the establishment of the chromatin structure in conventional CD4+ T (Tconv) cells for their future differentiation into the Treg cell lineage. In this review, we discuss the molecular events that control Foxp3 gene expression and address the associated alterations observed in human diseases. Also, we explore how Foxp3 influences the gene expression programs in Treg cells and how unique properties of Treg cell subsets are defined by other transcription factors.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mario Galgani
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Clorinda Fusco
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli", Naples, Italy
| | - Francesca Di Rella
- Clinical and Experimental Senology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | | | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
47
|
Immunopathogenesis of canine chronic ulcerative stomatitis. PLoS One 2020; 15:e0227386. [PMID: 31923271 PMCID: PMC6953816 DOI: 10.1371/journal.pone.0227386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/17/2019] [Indexed: 11/25/2022] Open
Abstract
Canine Chronic Ulcerative Stomatitis is a spontaneously occurring inflammatory disease of the oral mucosa. An immune-mediated pathogenesis is suspected though not yet proven. We have recently reported on the clinical and histologic features, and identification of select leukocyte cell populations within the lesion. A clinical and histologic similarity to oral lichen planus of people was proposed. In the present study, these initial observations are extended by examining lesions from 24 dogs with clinical evidence of chronic ulcerative stomatitis. Because dogs with chronic ulcerative stomatitis often have concurrent periodontal disease, we wondered if dental plaque/biofilm may be a common instigator of inflammation in both lesions. We hypothesized that dogs with chronic ulcerative stomatitis would exhibit a spectrum of pathologic changes and phenotype of infiltrating leukocytes that would inform lesion pathogenesis and that these changes would differ from inflammatory phenotypes in periodontitis. Previously we identified chronic ulcerative stomatitis lesions to be rich in FoxP3+ and IL17+ cells. As such, we suspect that these leukocytes play an important role in lesion pathogenesis. The current study confirms the presence of moderate to large numbers of FoxP3+ T cells and IL17+ cells in all ulcerative stomatitis lesions using confocal immunofluorescence. Interestingly, the majority of IL17+ cells were determined to be non-T cells and IL17+ cell frequencies were negatively correlated with severity on the clinical scoring system. Three histologic subtypes of ulcerative stomatitis were determined; lichenoid, deep stomatitis and granulomatous. Periodontitis lesions, like stomatitis lesions, were B cell and plasma cell rich, but otherwise differed from the stomatitis lesions. Direct immunofluorescence results did not support an autoantibody-mediated autoimmune disease process. This investigation contributes to the body of literature regarding leukocyte involvement in canine idiopathic inflammatory disease pathogenesis.
Collapse
|
48
|
Huang J, Wang S, Jia Y, Zhang Y, Dai X, Li B. Targeting FOXP3 complex ensemble in drug discovery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:143-168. [PMID: 32312420 DOI: 10.1016/bs.apcsb.2019.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Forkhead Box P3 (FOXP3) is a key transcriptional regulator of regulatory T cells (Tregs), especially for its function of immune suppression. The special immune suppression function of Tregs plays an important role in maintaining immune homeostasis, and is related to several diseases including cancer, and autoimmune diseases. At the same time, FOXP3 takes a place in a large transcriptional complex, whose stability and functions can be controlled by various post-translational modification. More and more researches have suggested that targeting FOXP3 or its partners might be a feasible solution to immunotherapy. In this review, we focus on the transcription factor FOXP3 in Tregs, Treg functions in diseases and the FOXP3 targets.
Collapse
Affiliation(s)
- Jingyao Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuoyang Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxin Jia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujia Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyu Dai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Abstract
The transcription factor FOXP3 controls the immunosuppressive program in CD4+ T cells that is crucial for systemic immune regulation. Mutations of the single X-chromosomal FOXP3 gene in male individuals cause the inherited autoimmune disease immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome. Insufficient gene expression and impaired function of mutant FOXP3 protein prevent the generation of anti-inflammatory regulatory T (Treg) cells and fail to inhibit autoreactive T cell responses. Diversification of FOXP3 functional properties is achieved through alternative splicing that leads to isoforms lacking exon 2 (FOXP3Δ2), exon 7 (FOXP3Δ7), or both (FOXP3Δ2Δ7) specifically in human CD4+ T cells. Several IPEX mutations targeting these exons or promoting their alternative splicing revealed that those truncated isoforms cannot compensate for the loss of the full-length isoform (FOXP3fl). In this review, IPEX mutations that change the FOXP3 isoform profile and the resulting consequences for the CD4+ T-cell phenotype are discussed.
Collapse
Affiliation(s)
- Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
Staats J. Immunophenotyping of Human Regulatory T Cells. Methods Mol Biol 2019; 2032:141-177. [PMID: 31522418 DOI: 10.1007/978-1-4939-9650-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Regulatory T cells, also known as Tregs, play a pivotal role in maintaining homeostasis of the immune system and self-tolerance. Tregs express CD3, CD4, CD25, and FOXP3 but lack CD127. CD4 and CD3 identify helper T lymphocytes, of which Tregs are a subset. CD25 is IL-2Rα, an essential activation marker that is expressed in high levels on Tregs. FOXP3 is the canonical transcription factor, important in the development, maintenance, and identification of Tregs. CD127 is IL-7 receptor, expressed inversely with suppression, and is therefore downregulated on Tregs. Flow cytometry is a powerful tool that is capable of simultaneously measuring Tregs along with several markers associated with subpopulations of Tregs, activation, maturation, proliferation, and surrogates of functional suppression. This chapter describes a multicolor flow cytometry-based approach to measure human Tregs, including details for surface staining, fixation/permeabilization, intracellular/intranuclear staining, acquisition of samples on a flow cytometer, plus analysis and interpretation of resulting FCS files.
Collapse
Affiliation(s)
- Janet Staats
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
- Duke Immune Profiling Core, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|