1
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
Hu K, Wen H, Song T, Che Z, Song Y, Song M. Deciphering the Role of LncRNAs in Osteoarthritis: Inflammatory Pathways Unveiled. J Inflamm Res 2024; 17:6563-6581. [PMID: 39318993 PMCID: PMC11421445 DOI: 10.2147/jir.s489682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Long non-coding RNA (LncRNA), with transcripts over 200 nucleotides in length, play critical roles in numerous biological functions and have emerged as significant players in the pathogenesis of osteoarthritis (OA), an inflammatory condition traditionally viewed as a degenerative joint disease. This review comprehensively examines the influence of LncRNA on the inflammatory processes driving OA progression, focusing on their role in regulating gene expression, cellular activities, and inflammatory pathways. Notably, LncRNAs such as MALAT1, H19, and HOTAIR are upregulated in OA and exacerbate the inflammatory milieu by modulating key signaling pathways like NF-κB, TGF-β/SMAD, and Wnt/β-catenin. Conversely, LncRNA like MEG3 and GAS5, which are downregulated in OA, show potential in dampening inflammatory responses and protecting against cartilage degradation by influencing miRNA interactions and cytokine production. By enhancing our understanding of LncRNA' roles in OA inflammation, we can better leverage them as potential biomarkers for the disease and develop innovative therapeutic strategies for OA management. This paper aims to delineate the mechanisms by which LncRNA influence inflammatory responses in OA and propose them as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Haonan Wen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Ting Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhixin Che
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjia Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Min Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
3
|
Farhan SH, Jasim SA, Bansal P, Kaur H, Abed Jawad M, Qasim MT, Jabbar AM, Deorari M, Alawadi A, Hadi A. Exosomal Non-coding RNA Derived from Mesenchymal Stem Cells (MSCs) in Autoimmune Diseases Progression and Therapy; an Updated Review. Cell Biochem Biophys 2024:10.1007/s12013-024-01432-4. [PMID: 39225902 DOI: 10.1007/s12013-024-01432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Inflammation and autoimmune diseases (AD) are common outcomes of an overactive immune system. Inflammation occurs due to the immune system reacting to damaging stimuli. Exosomes are being recognized as an advanced therapeutic approach for addressing an overactive immune system, positioning them as a promising option for treating AD. Mesenchymal stem cells (MSCs) release exosomes that have strong immunomodulatory effects, influenced by their cell of origin. MSCs-exosomes, being a cell-free therapy, exhibit less toxicity and provoke a diminished immune response compared to cell-based therapies. Exosomal non-coding RNAs (ncRNA), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are intricately linked to various biological and functional aspects of human health. Exosomal ncRNAs can lead to tissue malfunction, aging, and illnesses when they experience tissue-specific alterations as a result of various internal or external problems. In this study, we will examine current trends in exosomal ncRNA researches regarding AD. Then, therapeutic uses of MSCs-exosomal ncRNA will be outlined, with a particle focus on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Shireen Hamid Farhan
- Biotechnology department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq.
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Abeer Mhussan Jabbar
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hadi
- Department of medical laboratories techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
4
|
Rufino AT, Freitas M, Proença C, Ferreira de Oliveira JMP, Fernandes E, Ribeiro D. Rheumatoid arthritis molecular targets and their importance to flavonoid-based therapy. Med Res Rev 2024; 44:497-538. [PMID: 37602483 DOI: 10.1002/med.21990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José M P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, Açores, Portugal
| |
Collapse
|
5
|
Qin Y, Su J. Salidroside suppresses cell growth and inflammatory response of fibroblast-like synoviocytes via inhibition of phosphoinositol-3 kinase/threonine kinase signaling in rheumatoid arthritis. Z Rheumatol 2024; 83:78-87. [PMID: 37851166 DOI: 10.1007/s00393-023-01431-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Salidroside (Sal) is a natural product commonly isolated from Rhodiola rosea L., which has been found to have numerous pharmacological activities (e.g., ameliorating apoptosis and inflammation, and acting as an antioxidant) in various diseases, but its concrete function in rheumatoid arthritis (RA) has not been revealed yet. Here, we aimed to explore the specific role and underlying mechanisms of Sal in RA-fibroblast-like synoviocytes (RA-FLSs). METHODS Cell counting kit 8 (CCK-8) was used to assess the viability of normal-FLSs and RA-FLSs. Cell apoptosis in RA-FLSs was evaluated by flow cytometry. Western blotting was prepared to examine the levels of apoptosis- and signaling-related proteins. Wound-healing and Transwell assays were conducted to examine RA-FLSs migration and invasion. Enzyme-linked immunosorbent assay (ELISA) was used to assess the effect of Sal on tumor necrosis factor-alpha (TNF-α)-induced inflammation in RA-FLSs. RA animal model was established through complete Freund's adjuvant (CFA) induction, and the histopathological changes in synovial tissues of the rat model were analyzed by H&E staining. RESULTS RA-FLSs were treated with 200 μM Sal for 24 h, and cell viability was significantly suppressed. Sal promoted RA-FLSs apoptosis. The migratory and invasive abilities of RA-FLSs were markedly inhibited by Sal. Sal incubation reduced the levels of inflammatory cytokines interleukin‑8 (IL-8), IL-1β, and IL‑6 in RA-FLSs under the stimulation of TNF‑α. Subsequently, Sal downregulated phosphorylated phosphatidylinositol‑3 kinase (p-PI3K) and protein kinase (p-AKT) expression in RA-FLSs. After the treatment with pathway activator 740Y‑P (20 μM) in RA-FLSs, the promotive effect of Sal on cell apoptosis was reversed, and inhibitory effects of it on cell viability, migration, invasion, and inflammatory response were abolished. Sal inhibited RA development in the CFA-induced rat model. CONCLUSION Sal suppressed cell growth and inflammation in RA-FLSs by inactivating PI3K/AKT-signaling pathways.
Collapse
Affiliation(s)
- Yajing Qin
- Department of Rheumatology and Immunology, Qinghai University Affiliated Hospital, 810000, Xining, China
| | - Juan Su
- Department of Rheumatology and Immunology, Qinghai University Affiliated Hospital, 810000, Xining, China.
- Qinghai University Affiliated Hospital, No. 29 Tongren Road, Chengxi District, Xining, Qinghai, China.
| |
Collapse
|
6
|
Weng W, Liu Y, Hu Z, Li Z, Peng X, Wang M, Dong B, Zhong S, Jiang Y, Pan Y. Macrophage extracellular traps promote tumor-like biologic behaviors of fibroblast-like synoviocytes through cGAS-mediated PI3K/Akt signaling pathway in patients with rheumatoid arthritis. J Leukoc Biol 2024; 115:116-129. [PMID: 37648663 DOI: 10.1093/jleuko/qiad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by synovium hyperplasia and bone destruction. Macrophage extracellular traps are released from macrophages under various stimuli and may generate stable autoantigen-DNA complexes, as well as aggravate autoantibody generation and autoimmune responses. We aimed to investigate the role of macrophage extracellular traps on the biologic behaviors of rheumatoid arthritis fibroblast-like synoviocytes. Synovial tissues and fibroblast-like synoviocytes were obtained from patients with rheumatoid arthritis. Extracellular traps in synovium and synovial fluids were detected by immunofluorescence, immunohistochemistry, and SYTOX Green staining. Cell viability, migration, invasion, and cytokine expression of rheumatoid arthritis fibroblast-like synoviocytes were assessed by CCK-8, wound-healing assay, Transwell assays, and quantitative real-time polymerase chain reaction, respectively. RNA sequencing analysis was performed to explore the underlying mechanism, and Western blot was used to validate the active signaling pathways. We found that extracellular trap formation was abundant in rheumatoid arthritis and positively correlated to anti-CCP. Rheumatoid arthritis fibroblast-like synoviocytes stimulated with purified macrophage extracellular traps demonstrated the obvious promotion in tumor-like biologic behaviors. The DNA sensor cGAS in rheumatoid arthritis fibroblast-like synoviocytes was activated after macrophage extracellular trap stimuli. RNA sequencing revealed that differential genes were significantly enriched in the PI3K/Akt signaling pathway, and cGAS inhibitor RU.521 effectively reversed the promotion of tumor-like biologic behaviors in macrophage extracellular trap-treated rheumatoid arthritis fibroblast-like synoviocytes and downregulated the PI3K/Akt activation. In summary, our study demonstrates that macrophage extracellular traps promote the pathogenically biological behaviors of rheumatoid arthritis fibroblast-like synoviocytes through cGAS-mediated activation of the PI3K/Akt signaling pathway. These findings provide a novel insight into the pathogenesis of rheumatoid arthritis and the mechanisms of macrophages in modulating rheumatoid arthritis fibroblast-like synoviocyte tumor-like behaviors.
Collapse
Affiliation(s)
- Weizhen Weng
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
- Department of Infectious Disease, The Third People's Hospital of Shenzhen, 29 Bulang Road, Longgang district, Shenzhen, China
| | - Yan Liu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Zuoyu Hu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Baiyun District, Guangzhou, China
| | - Zhihui Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Xiaohua Peng
- Department of Gastroenterology, The Seventh Affiliated Hospital of Sun Yat-Sen University, 628 Zhenyuan Road, Guangming District, Shenzhen, China
| | - Manli Wang
- Medical Research Center, The Eighth Affiliated Hospital of Sun Yat-sen University, 3025 Shennan Road, Futian District, Shenzhen, China
| | - Bo Dong
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Shuyuan Zhong
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yutong Jiang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yunfeng Pan
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| |
Collapse
|
7
|
Tofigh R, Hosseinpourfeizi M, Safaralizadeh R, Ghoddusifar S, Baradaran B. Serum Levels of Long Non-coding RNAs NEAT1, GAS5, and GAPLINC Altered in Rheumatoid Arthritis. Curr Rheumatol Rev 2024; 20:182-190. [PMID: 37855286 DOI: 10.2174/0115733971251184230921042511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA), an autoimmune joint inflammatory disease, presents a significant challenge due to its prevalence, particularly among women, affecting around 6% of individuals over the age of 65. Novel insights into disease mechanisms are crucial for improved diagnostic and therapeutic approaches. OBJECTIVE Long non-coding RNAs (lncRNAs) have emerged as potential contributors to the pathogenesis of various autoimmune diseases, including RA. This study aims to investigate the unique roles of four lncRNAs-NEAT1, GAS5, TMEVPG1, and GAPLINC-in the etiology of RA. METHODS Leveraging isolated serum samples from RA patients and healthy controls, we comprehensively evaluated the expression profiles of these lncRNAs. RESULTS Notably, our findings unveil a distinctive landscape of lncRNA expressions in RA. Among them, GAPLINC exhibited a significantly elevated average expression in the serum samples of RA patients, suggesting a potential biomarker candidate for disease stratification. Importantly, reduced expression of NEAT1 and GAS5 was observed in RA patients, highlighting their possible roles as diagnostic and prognostic markers. Conversely, TMEVPG1 displayed unaltered expression levels in RA samples. CONCLUSION Our study introduces a novel dimension to RA research by identifying NEAT1, GAS5, and GAPLINC as promising serological biomarkers. These findings hold significant clinical implications, offering potential avenues for improved diagnosis, disease monitoring, and therapeutic interventions in RA.
Collapse
Affiliation(s)
- Roghayeh Tofigh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Sepideh Ghoddusifar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Liang H, Li H, Xia N, Chen J, Gao L, Liu H, Lyu P, Guo X, Yang Z. Circulating long noncoding RNA, Zfpm2-As1, and XIST based on medical data analysis are potential plasma biomarkers for gastric cancer diagnosis. Technol Health Care 2024; 32:4919-4928. [PMID: 38820035 DOI: 10.3233/thc-232033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) participate in diseases, especially tumorigenesis, including gastric cancer (GC). Although lncRNAs in GC tissues have been extensively studied in previous research, the possible significance of circulating lncRNAs in diagnosing GC is still unknown. OBJECTIVE The present work investigated lncRNAs ZFPM2-AS1 and XIST with high expression in GC tissues proved as potential plasma biomarkers from 20 early GC cases, 100 GC cases, and 90 normal subjects. METHODS The possible correlation between ZFPM2-AS1 and XIST expression levels was analyzed with general characteristics and clinicopathological features. The performance in diagnosis was assessed according to receiver operating characteristic (ROC) analysis. RESULTS According to the results, XIST and ZFPM2-AS1 expression remarkably increased within GC plasma relative to normal subjects (P< 0.01); besides, lncRNA XIST expression after surgery had a tendency of downregulation compared with preoperative levels (P< 0.05). Moreover, the area under ROC curve (AUC) values were 0.62 for ZFPM2-AS1 and 0.68 for XIST, while the pooled AUC value of CA-724 and two lncRNAs was 0.751. CONCLUSION Circulating lncRNAs ZFPM2-AS1 and XIST can serve as the candidate plasma biomarkers used to diagnose GC.
Collapse
Affiliation(s)
- Han Liang
- Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hao Li
- Clinical Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Nan Xia
- Clinical Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingjing Chen
- Clinical Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Linlin Gao
- Clinical Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hao Liu
- Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ping Lyu
- Clinical Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaolin Guo
- Clinical Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziwei Yang
- Clinical Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Mardafkan N, Karamali N, Razavi ZS, Mardi A. Molecular mechanism of lncRNAs in pathogenesis and diagnosis of auto-immune diseases, with a special focus on lncRNA-based therapeutic approaches. Life Sci 2024; 336:122322. [PMID: 38042283 DOI: 10.1016/j.lfs.2023.122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Autoimmune diseases are a diverse set of conditions defined by organ damage due to abnormal innate and acquired immune system responses. The pathophysiology of autoimmune disorders is exceedingly intricate and has yet to be fully understood. The study of long non-coding RNAs (lncRNAs), non-protein-coding RNAs with at least 200 nucleotides in length, has gained significant attention due to the completion of the human genome project and the advancement of high-throughput genomic approaches. Recent research has demonstrated how lncRNA alters disease development to different degrees. Although lncRNA research has made significant progress in cancer and generative disorders, autoimmune illnesses are a relatively new research area. Moreover, lncRNAs play crucial functions in differentiating various immune cells, and their potential relationships with autoimmune diseases have received growing attention. Because of the importance of Th17/Treg axis in auto-immune disease development, in this review, we discuss various molecular mechanisms by which lncRNAs regulate the differentiation of Th17/Treg cells. Also, we reviewed recent findings regarding the several approaches in the application of lncRNAs in the diagnosis and treatment of human autoimmune diseases, as well as current challenges in lncRNA-based therapeutic approaches to auto-immune diseases.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, Izmir, Turkey
| | - Nasibeh Mardafkan
- Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Zahra Sadat Razavi
- Department of Immunology, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
10
|
Wen J, Liu J, Wan L, Wang F. Long noncoding RNA/circular RNA regulates competitive endogenous RNA networks in rheumatoid arthritis: molecular mechanisms and traditional Chinese medicine therapeutic significances. Ann Med 2023; 55:973-989. [PMID: 36905646 PMCID: PMC10795602 DOI: 10.1080/07853890.2023.2172605] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/20/2023] [Indexed: 03/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic and autoimmune disease that is mainly featured abnormal fibroblast-like synoviocyte (FLS) proliferation and inflammatory cell infiltration. Abnormal expression or function of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are closely related to human diseases, including RA. There has been increasing evidence showing that in the competitive endogenous RNA (ceRNA) networks, both lncRNA and circRNA are vital in the biological functions of cells. Nevertheless, the exact mechanism of ceRNA in RA remains to be investigated. Herein, we summarized the molecular potencies of lncRNA/circRNA-mediated ceRNA networks in RA, with emphasis on the phenotypic regulation of ceRNA in the progression of RA, including regulation of proliferation, invasion, inflammation and apoptosis, as well as the role of ceRNA in traditional Chinese medicine (TCM) in the treatment of RA. In addition, we also discussed the future direction and potential clinical value of ceRNA in the treatment of RA, which may provide potential reference value for clinical trials of TCM therapy for the treatment of RA.Key messagesLong noncoding RNA/circular RNA can work as the competitive endogenous RNA sponge and participate in the pathogenesis of rheumatoid arthritis.Traditional Chinese medicine and its agents have shown potential roles in the prevention and treatment of rheumatoid arthritis via competitive endogenous RNA.
Collapse
Affiliation(s)
- Jianting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Xin’an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| | - Fanfan Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Internal Medicine Application Foundation Research and Development, Anhui Province—Key Laboratory of Modern Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
11
|
Lei HT, Wang JH, Yang HJ, Wu HJ, Nian FH, Jin FM, Yang J, Tian XM, Wang HD. LncRNA-mediated cell autophagy: An emerging field in bone destruction in rheumatoid arthritis. Biomed Pharmacother 2023; 168:115716. [PMID: 37866000 DOI: 10.1016/j.biopha.2023.115716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
In recent years, research on the mechanism of bone destruction in rheumatoid arthritis (RA) has remained in the initial stages, and the mechanism has not been fully elucidated to date. Recent studies have shown that long noncoding RNAs (lncRNAs) participate in RA bone destruction via autophagy, but the specific regulatory mechanism of lncRNA-mediated autophagy is unclear. Therefore, in this article, we review the mechanisms of lncRNA-mediated autophagy in fibroblast-like synoviocytes and chondrocytes in RA bone destruction. We explain that lncRNAs mediate autophagy and participate in many specific pathological processes of RA bone destruction by regulating signalling pathways and the expression of target genes. Specific lncRNAs can be used as markers for molecular diagnosis, mechanistic regulation, treatment and prognosis of RA.
Collapse
Affiliation(s)
- Hai-Tao Lei
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Jin-Hai Wang
- Traditional Chinese Medicine Department, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Hui-Jun Yang
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Hai-Juan Wu
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Fang-Hong Nian
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Fang-Mei Jin
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Jing Yang
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xue-Mei Tian
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China.
| | - Hai-Dong Wang
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China.
| |
Collapse
|
12
|
Sun Y, Jiang H, Pan L, Han Y, Chen Y, Jiang Y, Wang Y. LncRNA OIP5-AS1/miR-410-3p/Wnt7b axis promotes the proliferation of rheumatoid arthritis fibroblast-like synoviocytes via regulating the Wnt/β-catenin pathway. Autoimmunity 2023; 56:2189136. [PMID: 36942896 DOI: 10.1080/08916934.2023.2189136] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
LncRNA OIP5-AS1 has a common gene imbalance in various cancers and tumours, which plays an important role in regulating its biological function. However, there are few studies on lncRNA OIP5-AS1 in rheumatoid arthritis (RA). The purpose of the present study was to investigate the role of lncRNA OIP5-AS1 in the pathogenesis of RA. In the present study, we established an adjuvant arthritis (AA) rat model to obtain primary fibroblast-like synoviocytes (FLSs);The subcellular localisation of lncRNA OIP5-AS1 was detected by fluorescence in situ hybridisation (FISH) assay; Cell proliferation of FLSs was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay;IL-1β, IL-6 and TNF-α concentrations were measured by enzyme-linked immunosorbent assay (ELISA);Quantitative real-time PCR (qRT-PCR), Western blots(WB) and immunofluorescence were used to detect the expression of lncRNA OIP5-AS1/miR-410-3p/wnt7b signal axis and Wnt/β-catenin signal pathway related indicators in FLSs. FISH assay confirmed the presence of lncRNA OIP5-AS1 in the cytoplasm, suggesting that it acts as a competing endogenous RNA (ceRNA). qRT-PCR showed that the expression of lncRNA OIP5-AS1 was upregulated in FLSs, while the expression of miR-410-3p was downregulated in FLSs. We also found that lncRNA OIP5-AS1 knockdown inhibited the proliferation and inflammation of FLSs. Moreover, the expression of Wnt7b, the downstream target gene of miR-410-3p, and the activation of the Wnt/β-catenin signalling pathway were also inhibited by lncRNA OIP5-AS1 knockdown. These results suggested that lncRNA OIP5-AS1 promotes the activation of the Wnt/β-catenin signalling pathway by regulating the miR-410-3p/Wnt7b signalling axis, thereby participating in the occurrence and development of RA.
Collapse
Affiliation(s)
- Yuan Sun
- Pharmacy Department, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
- Pharmacy Department, ShangHai East Hospital, Shanghai, P.R. China
| | - Hui Jiang
- Pharmacy Department, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
| | - LingYu Pan
- Pharmacy Department, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
| | - YanQuan Han
- Pharmacy Department, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
| | - Yan Chen
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
| | - Yeke Jiang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
| | - Yongzhong Wang
- Pharmacy Department, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
| |
Collapse
|
13
|
Qi W, Jin L, Wu C, Liao H, Zhang M, Zhu Z, Han W, Chen Q, Ding C. Treatment with FAP-targeted zinc ferrite nanoparticles for rheumatoid arthritis by inducing endoplasmic reticulum stress and mitochondrial damage. Mater Today Bio 2023; 21:100702. [PMID: 37408696 PMCID: PMC10319325 DOI: 10.1016/j.mtbio.2023.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a common chronic inflammatory disease characterized by the proliferation of fibroblast-like synoviocytes (FLS), pannus development, cartilage, and bone degradation, and, eventually, loss of joint function. Fibroblast activating protein (FAP) is a particular product of activated FLS and is highly prevalent in RA-derived fibroblast-like synoviocytes (RA-FLS). In this study, zinc ferrite nanoparticles (ZF-NPs) were engineered to target FAP+ (FAP positive) FLS. ZF-NPswere discovered to better target FAP+ FLS due to the surface alteration of FAP peptide and to enhance RA-FLS apoptosis by activating the endoplasmic reticulum stress (ERS) system via the PERK-ATF4-CHOP, IRE1-XBP1 pathway, and mitochondrial damage of RA-FLS. Treatment with ZF-NPs under the influence of an alternating magnetic field (AMF) can significantly amplify ERS and mitochondrial damage via the magnetocaloric effect. It was also observed in adjuvant-induced arthritis (AIA) mice that FAP-targeted ZF-NPs (FAP-ZF-NPs) could significantly suppress synovitis in vivo, inhibit synovial tissue angiogenesis, protect articular cartilage, and reduce M1 macrophage infiltration in synovium in AIA mice. Furthermore, treatment of AIA mice with FAP-ZF-NPs was found to be more promising in the presence of an AMF. These findings demonstrate the potential utility of FAP-ZF-NPs in the treatment of RA.
Collapse
Affiliation(s)
- Weizhong Qi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Li Jin
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Cuixi Wu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hao Liao
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Mengdi Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Weiyu Han
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qiyue Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Menzies Institute for Medical Research, University of Tasmania, 7000, Hobart, Tasmania, Australia
| |
Collapse
|
14
|
Xie B, Lin F, Bao W, Zhang Y, Liu Y, Li X, Hou W, Zeng Q. Long noncoding RNA00324 is involved in the inflammation of rheumatoid arthritis by targeting miR-10a-5p via the NF-κB pathway. Immun Inflamm Dis 2023; 11:e906. [PMID: 37382270 PMCID: PMC10266151 DOI: 10.1002/iid3.906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Altered expressions of genes in immune cells and synovial tissues are involved in the pathology of rheumatoid arthritis (RA). Long noncoding RNAs act as competing endogenous RNAs and can cause immune disorders. The goal of this study was to reveal the association between noncoding RNA linc00324 and RA, and a plausible action mechanism was proposed. METHODS RT-qPCR was used to evaluate the expression of linc00324 in peripheral blood mononuclear cells isolated from 50 RA patients and 50 healthy controls, and the correlations between linc00324 level and the clinical indicators were analyzed. Flow cytometry was used to characterize CD4+ T cells. The effects of linc00324 on cytokine production and cell proliferation of CD4+ T cells were evaluated by ELISA assay and Western blot. The interaction between linc00324 and miR-10a-5p was investigated by RNA immunoprecipitation and dual-luciferase assays. RESULTS The linc00324 expression was significantly enhanced in RA patients, and linc00324 expression was positively correlated with rheumatoid factor and CD4+ T cells. Overexpression of linc00324 promoted CD4+ T cells proliferation, and enhanced chemokine MIP-1α secretion and NF-κB phosphorylation level, whereas knockout of linc00324 blocked CD4+ T cell proliferation and NF-κB phosphorylation. Overexpression of miR-10a-5p led to the decrease of CD4+ T cells proliferation and NF-κB phosphorylation, and reversed the effects of linc00324 on cell proliferation and NF-κB activity. CONCLUSION Linc00324 was upregulated in RA and may exaggerate inflammation by targeting miR-10a-5p through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Binbin Xie
- Department of Biochemistry and Molecular BiologyGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Faquan Lin
- Department of Clinical LaboratoryFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Wei Bao
- Department of Biochemistry and Molecular BiologyGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Yangyang Zhang
- Department of Biochemistry and Molecular BiologyGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Yi Liu
- Department of Biochemistry and Molecular BiologyGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Xiaohui Li
- Department of Biochemistry and Molecular BiologyGuangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Wei Hou
- Key Laboratory of Thalassemia ResearchLife Sciences Institute of Guangxi Medical UniversityNanningGuangxiPeople's Republic of China
| | - Qiyan Zeng
- Key Laboratory of Biological Molecular Medicine ResearchEducation Department of Guangxi Zhuang Autonomous RegionNanningGuangxiPeople's Republic of China
| |
Collapse
|
15
|
Elazazy O, Midan HM, Shahin RK, Elesawy AE, Elballal MS, Sallam AAM, Elbadry AMM, Elrebehy MA, Bhnsawy A, Doghish AS. Long non-coding RNAs and rheumatoid arthritis: Pathogenesis and clinical implications. Pathol Res Pract 2023; 246:154512. [PMID: 37172525 DOI: 10.1016/j.prp.2023.154512] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of noncoding RNAs with a length larger than 200 nucleotides that participate in various diseases and biological processes as they can control gene expression by different mechanisms. Rheumatoid arthritis (RA) is an inflammatory autoimmune disorder characterized by symmetrical destructive destruction of distal joints as well as extra-articular involvement. Different studies have documented and proven the abnormal expression of lncRNAs in RA patients. Various lncRNAs have proven potential as biomarkers and targets for diagnosing, prognosis and treating RA. This review will focus on RA pathogenesis, clinical implications, and related lncRNA expressions that help to identify new biomarkers and treatment targets.
Collapse
Affiliation(s)
- Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Abdullah M M Elbadry
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt.
| | - Abdelmenem Bhnsawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| |
Collapse
|
16
|
Liu J, Song S, Zhao R, Zhang HY, Zhang SX. The functions and networks of non-coding RNAs in the pathogenesis of Rheumatoid Arthritis. Biomed Pharmacother 2023; 163:114707. [PMID: 37087979 DOI: 10.1016/j.biopha.2023.114707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease. Its main feature is inflammation of synovial tissue with irreversible joint damage and severe physical damage. Non-coding RNAs (ncRNAs) are a class of RNAs that do not have the ability to encode proteins but are vital regulators that mediate many fundamental cellular processes and play an essential role in the pathogenesis of RA. Multiple verified ncRNAs have been confirmed as a prospective biomarkers for diagnosing and treating RA. In this paper, we aim to sort out the role of ncRNAs in the pathogenesis of RA and provide new ideas for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Jia Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - Shan Song
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - Rong Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - He-Yi Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China.
| |
Collapse
|
17
|
Rheumatoid arthritis and non-coding RNAs; how to trigger inflammation. Life Sci 2023; 315:121367. [PMID: 36639050 DOI: 10.1016/j.lfs.2023.121367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic inflammatory disease categorized by continuous synovitis in the joints and systemic inflammatory responses that can cause lifelong disability. The major cause of RA is the dysregulation of the immune response. The development of RA disease includes multiplex association of several interleukins and cells, which leads to synovial cell growth, cartilage and bone damage. The primary stage of RA disease is related to the modification of both the innate and adaptive immune systems, which leads to the formation of autoantibodies. This process results in many damaged molecules and epitope spreading. Both the innate (e.g., dendritic cells, macrophages, and neutrophils) and acquired immune cells (e.g., T and B lymphocytes) will increase and continue the chronic inflammatory condition in the next stages of the RA disease. In recent years, non-coding RNAs have been proved as significant controllers of biological functions, especially immune cell expansion and reactions. Non-coding RNAs were primarily containing microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). Various studies confirmed non-coding RNAs as hopeful markers for diagnosing and curing RA. This review will describe and cover existing knowledge about RA pathogenesis, which might be favorable for discovering possible ncRNA markers for RA.
Collapse
|
18
|
Xu S, Liu D, Kuang Y, Li R, Wang J, Shi M, Zou Y, Qiu Q, Liang L, Xiao Y, Xu H. Long Noncoding RNA HAFML Promotes Migration and Invasion of Rheumatoid Fibroblast-like Synoviocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:135-147. [PMID: 36458981 DOI: 10.4049/jimmunol.2200453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/02/2022] [Indexed: 01/04/2023]
Abstract
The aggressive phenotype exhibited by fibroblast-like synoviocytes (FLSs) is critical for the progression of joint destruction in rheumatoid arthritis (RA). Long noncoding RNAs (lncRNAs) have crucial roles in the pathogenesis of diverse disorders; however, few have been identified that might be able to control the joint damage in RA. In this study, we identified an lncRNA, ENST00000509194, which was expressed at abnormally high levels in FLSs and synovial tissues from patients with RA. ENST00000509194 positively modulates the migration and invasion of FLSs by interacting with human Ag R (HuR, also called ELAVL1), an RNA-binding protein that mainly stabilizes mRNAs. ENST00000509194 binds directly to HuR in the cytoplasm to form a complex that promotes the expression of the endocytic adaptor protein APPL2 by stabilizing APPL2 mRNA. Knockdown of HuR or APPL2 impaired the migration and invasion of RA FLSs. Given its close association with HuR and FLS migration, we named ENST00000509194 as HAFML (HuR-associated fibroblast migratory lncRNA). Our findings suggest that an increase in synovial HAFML might contribute to FLS-mediated rheumatoid synovial aggression and joint destruction, and that the lncRNA HAFML might be a potential therapeutic target for dysregulated fibroblasts in a wide range of diseases.
Collapse
Affiliation(s)
- Siqi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Di Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kuang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruiru Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingnan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology, The First People's Hospital of Foshan, Foshan, Guangdong, China; and
| | - Yaoyao Zou
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Jiang Y, Zhong S, He S, Weng J, Liu L, Ye Y, Chen H. Biomarkers (mRNAs and non-coding RNAs) for the diagnosis and prognosis of rheumatoid arthritis. Front Immunol 2023; 14:1087925. [PMID: 36817438 PMCID: PMC9929281 DOI: 10.3389/fimmu.2023.1087925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
In recent years, diagnostic and therapeutic approaches for rheumatoid arthritis (RA) have continued to improve. However, in the advanced stages of the disease, patients are unable to achieve long-term clinical remission and often suffer from systemic multi-organ damage and severe complications. Patients with RA usually have no overt clinical manifestations in the early stages, and by the time a definitive diagnosis is made, the disease is already at an advanced stage. RA is diagnosed clinically and with laboratory tests, including the blood markers C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) and the autoantibodies rheumatoid factor (RF) and anticitrullinated protein antibodies (ACPA). However, the presence of RF and ACPA autoantibodies is associated with aggravated disease, joint damage, and increased mortality, and these autoantibodies have low specificity and sensitivity. The etiology of RA is unknown, with the pathogenesis involving multiple factors and clinical heterogeneity. The early diagnosis, subtype classification, and prognosis of RA remain challenging, and studies to develop minimally invasive or non-invasive biomarkers in the form of biofluid biopsies are becoming more common. Non-coding RNA (ncRNA) molecules are composed of long non-coding RNAs, small nucleolar RNAs, microRNAs, and circular RNAs, which play an essential role in disease onset and progression and can be used in the early diagnosis and prognosis of RA. In this review of the diagnostic and prognostic approaches to RA disease, we provide an overview of the current knowledge on the subject, focusing on recent advances in mRNA-ncRNA as diagnostic and prognostic biomarkers from the biofluid to the tissue level.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuxin Zhong
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Shenghua He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Juanling Weng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijin Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufeng Ye
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hanwei Chen
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Department of Radiology, GuangzhouPanyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China
| |
Collapse
|
20
|
Ravaei A, Zimmer-Bensch G, Govoni M, Rubini M. lncRNA-mediated synovitis in rheumatoid arthritis: A perspective for biomarker development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:103-119. [PMID: 36126801 DOI: 10.1016/j.pbiomolbio.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a regulatory class of noncoding RNAs with a wide range of activities such as transcriptional and post-transcriptional regulations. Emerging evidence has demonstrated that various lncRNAs contribute to the initiation and progression of Rheumatoid Arthritis (RA) through distinctive mechanisms. The present study reviews the recent findings on lncRNA role in RA development. It focuses on the involvement of different lncRNAs in the main steps of RA pathogenesis including T cell activation, cytokine dysregulation, fibroblast-like synoviocyte (FLS) activation and joint destruction. Besides, it discusses the current findings on RA diagnosis and the potential of lncRNAs as diagnostic, prognostic and predictive biomarkers in Rheumatology clinic.
Collapse
Affiliation(s)
- Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology II), RWTH Aachen University, Aachen, Germany.
| | - Marcello Govoni
- Department of Medical Science, Section of Rheumatology, University of Ferrara, Ferrara, Italy.
| | - Michele Rubini
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
21
|
Evolving understandings for the roles of non-coding RNAs in autoimmunity and autoimmune disease. J Autoimmun 2022:102948. [DOI: 10.1016/j.jaut.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
|
22
|
Xie J, He C, Su Y, Ding Y, Zhu X, Xu Y, Ding J, Zhou H, Wang H. Research progress on microRNA in gout. Front Pharmacol 2022; 13:981799. [PMID: 36339582 PMCID: PMC9631428 DOI: 10.3389/fphar.2022.981799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 07/30/2023] Open
Abstract
Gout is a common form of arthritis caused by the deposition of sodium urate crystals in the joints and tissues around them. MicroRNAs (miRNAs) are noncoding RNAs that have been shown to be involved in regulating the pathogenesis of gout through multiple cellular signaling pathways, which may be potential targets for the treatment of gout. In this review, we systematically discuss the regulatory roles of related miRNAs in gout, which will provide help for the treatment of gout and miRNAs is expected to become a potential biomarker for gout diagnosis.
Collapse
Affiliation(s)
- Jing Xie
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Cuixia He
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yue Su
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuzhou Ding
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xingyu Zhu
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuanyuan Xu
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiaxiang Ding
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Zhou
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, China
| | - Hongju Wang
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
23
|
Xiao L, Lin S, Zhan F. One of the active ingredients in Paeoniae Radix Alba functions as JAK1 inhibitor in rheumatoid arthritis. Front Pharmacol 2022; 13:906763. [PMID: 36199685 PMCID: PMC9527307 DOI: 10.3389/fphar.2022.906763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022] Open
Abstract
Objective: We aimed to explore and verify the mechanism underlying the action of the active ingredients of Paeoniae Radix Alba (PRA) in the treatment of rheumatoid arthritis (RA). Methods: The protein targets of PRA’s six active ingredients and RA were identified. Then, the intersection of the two groups was studied. The drug–target network was constructed, visualized, and analyzed by Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed to analyze these genes. Furthermore, we validated our predictions of the potential targets through a docking study. Finally, the anti-inflammatory effect of Palbinone (PB), one of the active ingredients of PRA, was tested by conducting in vitro and in vivo studies. Results: Six active ingredients of PRA were identified, and 103 overlapping genes were discovered. Functional enrichment analysis indicated that the genes are mostly enriched in IL-17 signaling pathway, Th17 cell differentiation, and the FoxO, ErbB, and TNF signaling pathways. 10 hub genes and two gene cluster modules were identified by Cytoscape. Molecular docking analysis proved that PB was able to bind to the ATP binding site of Janus kinase (JAK)1, thereby acting as a potential inhibitor of JAK1. In vitro and in vivo studies demonstrated that PB exerts its anti-inflammatory role via the inhibition of JAK1. Conclusion: We constructed a multitarget pharmacological network of PRA in RA treatment. PB, one of the active compounds of PRA, was demonstrated to be a promising inhibitor of JAK1.
Collapse
|
24
|
Plewka P, Raczynska KD. Long Intergenic Noncoding RNAs Affect Biological Pathways Underlying Autoimmune and Neurodegenerative Disorders. Mol Neurobiol 2022; 59:5785-5808. [PMID: 35796900 PMCID: PMC9395482 DOI: 10.1007/s12035-022-02941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are a class of independently transcribed molecules longer than 200 nucleotides that do not overlap known protein-coding genes. LincRNAs have diverse roles in gene expression and participate in a spectrum of biological processes. Dysregulation of lincRNA expression can abrogate cellular homeostasis, cell differentiation, and development and can also deregulate the immune and nervous systems. A growing body of literature indicates their important and multifaceted roles in the pathogenesis of several different diseases. Furthermore, certain lincRNAs can be considered potential therapeutic targets and valuable diagnostic or prognostic biomarkers capable of predicting the onset of a disease, its degree of activity, or the progression phase. In this review, we discuss possible mechanisms and molecular functions of lincRNAs in the pathogenesis of selected autoimmune and neurodegenerative disorders: multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, Huntington's disease, Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. This summary can provide new ideas for future research, diagnosis, and treatment of these highly prevalent and devastating diseases.
Collapse
Affiliation(s)
- Patrycja Plewka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Katarzyna Dorota Raczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
25
|
Sonic Hedgehog Promotes Proliferation and Migration of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via Rho/ROCK Signaling. J Immunol Res 2022; 2022:3423692. [PMID: 35785032 PMCID: PMC9242744 DOI: 10.1155/2022/3423692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/13/2023] Open
Abstract
Objective. To explore the underlying mechanism of the sonic hedgehog (Shh) signaling pathway in promoting cell proliferation and migration in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). Method. FLS were collected from 8 patients with RA and 3 patients with osteoarthritis (OA). The expression of smoothened (Smo, the Shh pathway activator) was quantified by real-time PCR and western blot. FLS were incubated with cyclopamine (a Smo antagonist), purmorphamine (a Smo agonist), Y27632 (a Rho/ROCK signaling inhibitor), or a combination of purmorphamine and Y27632, respectively. Cell proliferation was examined using cell counting kit-8 and cell cycle assays while cell migration was measured with Transwell and wound healing assays. Results. The expression of Smo was higher in FLS from RA patients than from OA patients (
). RA-FLS treated with purmorphamine showed significantly activated proliferation (119.69 vs. 100.0) and migration (252.38 vs. 178.57) compared to untreated cells (both
). RA-FLS incubated with cyclopamine or a combination of purmorphamine and Y27632 exhibited significant suppression of proliferation (81.55 vs. 100.0 and 85.84 vs. 100.0) and migration (100 vs. 178.57 and 109.52 vs. 185) ability (all
). Conclusion. Our results demonstrated that Shh promoted cell growth and migration of FLS in RA patients through the Rho/ROCK signaling pathway.
Collapse
|
26
|
Chen Y, Dang J, Lin X, Wang M, Liu Y, Chen J, Chen Y, Luo X, Hu Z, Weng W, Shi X, Bi X, Lu Y, Pan Y. RA Fibroblast-Like Synoviocytes Derived Extracellular Vesicles Promote Angiogenesis by miRNA-1972 Targeting p53/mTOR Signaling in Vascular Endotheliocyte. Front Immunol 2022; 13:793855. [PMID: 35350778 PMCID: PMC8957937 DOI: 10.3389/fimmu.2022.793855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/10/2022] [Indexed: 01/20/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory in joints. Invasive pannus is a characteristic pathological feature of RA. RA fibroblast-like synoviocytes (FLSs) are showed tumor-like biological characters that facilitate pannus generation. Importantly, it has been documented that extracellular vesicle (EVs) derived microRNAs have a vital role of angiogenesis in various immune inflammatory diseases. However, whether RA FLSs derived EVs can facilitate angiogenesis and the underlying mechanism is undefined. Herein, we aim to investigate the key role of RA FLSs derived EVs on angiogenesis in endothelial cells (ECs). We indicate that RA FLSs derived EVs promote ECs angiogenesis by enhancing migration and tube formation of ECs in vitro. Also, we confirm that RA FLSs derived EVs can significantly facilitate ECs angiogenesis with a matrigel angiogenesis mice model. In terms of the mechanisms, both RNAs and proteins in EVs play roles in promoting ECs angiogenesis, but the RNA parts are more fundamental in this process. By combining microRNA sequencing and qPCR results, miR-1972 is identified to facilitate ECs angiogenesis. The blockage of miR-1972 significantly abrogated the angiogenesis stimulative ability of RA FLSs derived EVs in ECs, while the overexpression of miR-1972 reversed the effect in ECs. Specifically, the p53 level is decreased, and the phosphorylated mTOR is upregulated in miR-1972 overexpressed ECs, indicating that miR-1972 expedites angiogenesis through p53/mTOR pathway. Collectively, RA FLSs derived EVs can promote ECs angiogenesis via miR-1972 targeted p53/mTOR signaling, targeting on RA FLSs derived EVs or miR-1972 provides a promising strategy for the treatment of patients with RA.
Collapse
Affiliation(s)
- Yixiong Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Rheumatology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaorong Lin
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Manli Wang
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yan Liu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingrong Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiqing Luo
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zuoyu Hu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weizhen Weng
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Shi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan Bi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yunfeng Pan
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Huang W, Li X, Huang C, Tang Y, Zhou Q, Chen W. LncRNAs and Rheumatoid Arthritis: From Identifying Mechanisms to Clinical Investigation. Front Immunol 2022; 12:807738. [PMID: 35087527 PMCID: PMC8786719 DOI: 10.3389/fimmu.2021.807738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic chronic autoinflammatory disease, and the synovial hyperplasia, pannus formation, articular cartilage damage and bone matrix destruction caused by immune system abnormalities are the main features of RA. The use of Disease Modifying Anti-Rheumatic Drugs (DMARDs) has achieved great advances in the therapy of RA. Yet there are still patients facing the problem of poor response to drug therapy or drug intolerance. Current therapy methods can only moderate RA progress, but cannot stop or reverse the damage it has caused. Recent studies have reported that there are a variety of long non-coding RNAs (LncRNAs) that have been implicated in mediating many aspects of RA. Understanding the mechanism of LncRNAs in RA is therefore critical for the development of new therapy strategies and prevention strategies. In this review, we systematically elucidate the biological roles and mechanisms of action of LncRNAs and their mechanisms of action in RA. Additionally, we also highlight the potential value of LncRNAs in the clinical diagnosis and therapy of RA.
Collapse
Affiliation(s)
- Wentao Huang
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xue Li
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central, Hospital, Guangzhou, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central, Hospital, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenli Chen
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
28
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|
29
|
Wang J, Shen C, Li R, Wang C, Xiao Y, Kuang Y, Lao M, Xu S, Shi M, Cai X, Liang L, Xu H. Increased long noncoding RNA LINK-A contributes to rheumatoid synovial inflammation and aggression. JCI Insight 2021; 6:146757. [PMID: 34877935 PMCID: PMC8675191 DOI: 10.1172/jci.insight.146757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) play a key role in controlling synovial inflammation and joint destruction in rheumatoid arthritis (RA). The contribution of long noncoding RNAs (lncRNAs) to RA is largely unknown. Here, we show that the lncRNA LINK-A, located mainly in cytoplasm, has higher-than-normal expression in synovial tissues and FLSs from patients with RA. Synovial LINK-A expression was positively correlated with the severity of synovitis in patients with RA. LINK-A knockdown decreased migration, invasion, and expression and secretion of matrix metalloproteinases and proinflammatory cytokines in RA FLSs. Mechanistically, LINK-A controlled RA FLS inflammation and invasion through regulation of tyrosine protein kinase 6–mediated and leucine-rich repeat kinase 2–mediated HIF-1α. On the other hand, we also demonstrate that LINK-A could bind with microRNA 1262 as a sponge to control RA FLS aggression but not inflammation. Our findings suggest that increased level of LINK-A may contribute to FLS-mediated rheumatoid synovial inflammation and aggression. LINK-A might be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Jingnan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuyu Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruiru Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Kuang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minxi Lao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Siqi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maohua Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Zou Y, Shen C, Shen T, Wang J, Zhang X, Zhang Q, Sun R, Dai L, Xu H. LncRNA THRIL is involved in the proliferation, migration, and invasion of rheumatoid fibroblast-like synoviocytes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1368. [PMID: 34733920 PMCID: PMC8506560 DOI: 10.21037/atm-21-1362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/20/2021] [Indexed: 01/01/2023]
Abstract
Background Fibroblast-like synoviocytes (FLSs), which can migrate and directly invade the cartilage and the bone, are crucial players in joint damage in rheumatoid arthritis (RA). Nevertheless, the detailed mechanisms underlying the aberrant activation of RA FLSs remain unclear. Several studies have attempted to explore the relationship between long non-coding RNAs (lncRNAs) and RA pathology; however, the role of lncRNAs in RA is unknown. The present study aimed to determine the functions of tumor necrosis factor-α and heterogeneous nuclear ribonucleoprotein L-related immunoregulatory lincRNA (THRIL) in RA FLSs migration and invasion. Methods Small interfering RNA targeting THRIL or lentivirus overexpressing THRIL was used to knockdown or overexpress THRIL. Quantitative reverse transcription polymerase chain reaction (PCR) was employed for the detection of RNA expression. The proliferation rate of RA FLSs was measured using a 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. Migration and invasion were detected using a transwell chamber. Downstream targets were identified using a human cell cycle real-time PCR array and a human cell motility real-time PCR array. Results A significant decrease in THRIL expression was found in RA FLSs compared with cells from healthy control (HC)patients. THRIL is mainly localized in the nucleus. Knockdown of THRIL increased the proliferation, migration, and invasion of RA FLSs. In contrast, THRIL overexpression had the opposite effect. THRIL knockdown increased interleukin-1β (IL-1β)-triggered expression of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13. THRIL overexpression led to a significant decrease in MMP-13 expression in response to stimulation with IL-1β. Furthermore, we observed that the expression levels of cyclin-dependent kinase 1 (CDK1) and G2 and S phase-expressed-1 (GTSE1), both of which are associated with cellular mobility and proliferation, were downregulated with THRIL overexpression. Conclusions Reduced expression of lncRNA THRIL represses the proliferation, migration, and invasion of RA FLSs, suggesting that lncRNA THRIL might be a potential target for RA therapy.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuyu Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Shen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingnan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuepei Zhang
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhang
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Runlu Sun
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lie Dai
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Wang S, Yang X, Xie W, Fu S, Chen Q, Li Z, Zhang Z, Sun T, Gong B, Ma M. LncRNA GAPLINC Promotes Renal Cell Cancer Tumorigenesis by Targeting the miR-135b-5p/CSF1 Axis. Front Oncol 2021; 11:718532. [PMID: 34722262 PMCID: PMC8551964 DOI: 10.3389/fonc.2021.718532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are closely related to the occurrence and development of cancer. Gastric adenocarcinoma-associated, positive CD44 regulator, long intergenic noncoding RNA (GAPLINC) is a recently identified lncRNA that can actively participate in the tumorigenesis of various cancers. Here, we investigated the functional roles and mechanism of GAPLINC in renal cell carcinoma (RCC) development. Methods Differentially expressed lncRNAs between RCC tissues and normal kidney tissues were detected by using a microarray technique. RNA sequencing was applied to explore the mRNA expression profile changes after GAPLINC silencing. After gain- and loss-of-function approaches were implemented, the effect of GAPLINC on RCC in vitro and in vivo was assessed by cell proliferation and migration assays. Moreover, rescue experiments and luciferase reporter assays were used to study the interactions between GAPLINC, miR-135b-5p and CSF1. Results GAPLINC was significantly upregulated in RCC tissues and cell lines and was associated with a poor prognosis in RCC patients. Knockdown of GAPLINC repressed RCC growth in vitro and in vivo, while overexpression of GAPLINC exhibited the opposite effect. Mechanistically, we found that GAPLINC upregulates oncogene CSF1 expression by acting as a sponge of miR-135b-5p. Conclusion Taken together, our results suggest that GAPLINC is a novel prognostic marker and molecular therapeutic target for RCC.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaorong Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengqiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiang Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhilong Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
32
|
José Alcaraz M. New potential therapeutic approaches targeting synovial fibroblasts in rheumatoid arthritis. Biochem Pharmacol 2021; 194:114815. [PMID: 34715065 DOI: 10.1016/j.bcp.2021.114815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Synovial cells play a key role in joint destruction during chronic inflammation. In particular, activated synovial fibroblasts (SFs) undergo intrinsic alterations leading to an aggressive phenotype mediating cartilage destruction and bone erosion in rheumatoid arthritis (RA). Recent research has revealed a number of targets to control arthritogenic changes in SFs. Therefore, identification of SF phenotypes, control of epigenetic changes, modulation of cellular functions, or regulation of the activity of cation channels and different signaling pathways has been investigated. Although many of these approaches have shown efficacy in vitro and in animal models of RA, further research is needed to select the most relevant targets for drug development. This review is focused on the role of SFs as a potential strategy to discover novel therapeutic targets in RA aimed at preserving joint architecture and function.
Collapse
Affiliation(s)
- María José Alcaraz
- Department of Pharmacology, University of Valencia, and Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
33
|
Differential Expression of Long Noncoding RNAs Reveals a Potential Biomarker for Intractable Pemphigus. DISEASE MARKERS 2021; 2021:5594659. [PMID: 34531933 PMCID: PMC8440090 DOI: 10.1155/2021/5594659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) are involved in autoimmune diseases. However, the role of lncRNAs in pemphigus remains elusive. Objective The study is aimed at investigating the expression profile in pemphigus patients to identify a circulating lncRNA as a novel biomarker for pemphigus. Method A global lncRNA expression profile in peripheral blood mononuclear cells (PBMCs) was measured by lncRNA microarray. Differentially expressed lncRNAs were validated by quantitative reverse transcriptase-PCR (qRT-PCR). The functional and biological processes of the differentially expressed lncRNAs were analyzed by bioinformatics. Results lncRNA ENST00000585297 in the PBMCs of pemphigus patients was highly expressed compared with those of HCs and BP patients. The area under the receiver operating characteristic (ROC) curve was 0.846 (95%confidence interval (CI) = 0.7526 to 0.9397). Intriguingly, we found that the expression of ENST00000585297 was upregulated in pemphigus patients whose symptoms could not be managed within four weeks compared to other patients whose symptoms could be managed in four weeks or less (P < 0.05). In addition, ENST00000585297 expression in pemphigus patients was positively correlated with the dosage of prednisone needed to manage the disorder (r = 0.4905, P = 0.0094). A competing endogenous RNA (ceRNA) regulatory network was constructed based on the ceRNA theory. Further verification demonstrated that silencing of ENST00000585297 increased the expression of miR-584-3p. Conclusions Our study revealed for the first time the expression profile of lncRNAs in pemphigus patients. In addition, our study identified ENST00000585297 as a biomarker and indicator for the intractable course of pemphigus.
Collapse
|
34
|
Li X, Wang Y. Cinnamaldehyde Attenuates the Progression of Rheumatoid Arthritis through Down-Regulation of PI3K/AKT Signaling Pathway. Inflammation 2021; 43:1729-1741. [PMID: 32851511 DOI: 10.1007/s10753-020-01246-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cinnamaldehyde (CA), as an active compound isolated from the bark of Cinnamomum cassia, has been reported to possess the anti-fungal, anti-bacterial, anti-inflammatory, anti-mutagenic, and anti-oxidant properties. However, the possible effects and underlying mechanisms of CA on rheumatoid arthritis (RA) have not been revealed yet. In the present study, we found that CA obviously improved the type II collagen-induced RA in rats, accompanied with decreasing pro-inflammatory factors, proliferation and metastasis. In addition, CA decreased the expression levels of TNF-α, IL-1β, and IL-6 in RA-FLSs. Besides, CA remarkably inhibited the proliferation, downregulated the EdU-positive cells, and promoted apoptosis of RA-FLSs by CCK-8, EdU and flow cytometry analysis. Moreover, the results of wound healing, transwell migration and invasion assays showed that CA inhibited the migration and invasion of RA-FLSs. Further, western blot experiment showed CA inhibited the activation of PI3K/AKT signaling pathway in RA-FLSs. Finally, 740Y-P, the PI3K/AKT signaling pathway activator, could reverse the effects of CA on the proliferation and metastasis in RA-FLSs. In conclusion, we confirmed that CA exhibited potential therapeutic properties against RA via suppressing proliferation and metastasis of RA-FLSs by blockage of PI3K/AKT signaling pathway. Therefore, our study provides evidence that CA may emerge as a therapeutic option for RA treatment.
Collapse
Affiliation(s)
- Xiang Li
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yue Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
35
|
Wang M, Chen Y, Bi X, Luo X, Hu Z, Liu Y, Shi X, Weng W, Mo B, Lu Y, Pan Y. LncRNA NEAT1_1 suppresses tumor-like biologic behaviors of fibroblast-like synoviocytes by targeting the miR-221-3p/uPAR axis in rheumatoid arthritis. J Leukoc Biol 2021; 111:641-653. [PMID: 34254354 DOI: 10.1002/jlb.3a0121-067rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are the predominant effector cells in the pathological progression of rheumatoid arthritis (RA). Therefore, elucidating the underlying molecular mechanism of the biologic behaviors in RA-FLSs will be helpful in developing the potent targets for the treatment of RA. We have previously documented that the tumor-like biologic behaviors of RA-FLSs are exacerbated by urokinase-type plasminogen activator receptor (uPAR), a specifically up-regulated receptor in RA-FLSs. Here, we investigate the further mechanism of uPAR and clarify its function in RA-FLSs. We demonstrate that miR-221-3p positively correlates to uPAR and regulates uPAR level in RA-FLSs. Simultaneously, one long noncoding RNA, nuclear paraspeckle assembly transcript 1_1 (NEAT1_1) is identified, which can predictively target miR-221-3p at three sites, indicating a strong possibility of being a competing endogenous RNA in RA-FLSs. Interestingly, NEAT1_1 and miR-221-3p can colocate in the nucleus and cytoplasm in RA-FLSs. Importantly, NEAT1_1 can act as a rheostat for the miR-221-3p/uPAR axis and the downstream JAK signaling. In line with the biologic function, NEAT1_1 negatively regulates the tumor-like characters, and cytokine secretions of RA-FLSs. Collectively, our data provide new insight into the mechanisms of NEAT1_1 in modulating RA-FLSs tumor-like behaviors. The targeting of NEAT1_1 and miR-221-3p/uPAR axis may have a promising therapeutic role in patients with RA.
Collapse
Affiliation(s)
- Manli Wang
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yixiong Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan Bi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiqing Luo
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zuoyu Hu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Shi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weizhen Weng
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Biyao Mo
- Division of Rheumatology, Department of Internal Medicine, Hainan General Hospital, Hainan affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunfeng Pan
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Tsai CY, Hsieh SC, Liu CW, Lu CH, Liao HT, Chen MH, Li KJ, Wu CH, Shen CY, Kuo YM, Yu CL. The Expression of Non-Coding RNAs and Their Target Molecules in Rheumatoid Arthritis: A Molecular Basis for Rheumatoid Pathogenesis and Its Potential Clinical Applications. Int J Mol Sci 2021; 22:ijms22115689. [PMID: 34073629 PMCID: PMC8198764 DOI: 10.3390/ijms22115689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a typical autoimmune-mediated rheumatic disease presenting as a chronic synovitis in the joint. The chronic synovial inflammation is characterized by hyper-vascularity and extravasation of various immune-related cells to form lymphoid aggregates where an intimate cross-talk among innate and adaptive immune cells takes place. These interactions facilitate production of abundant proinflammatory cytokines, chemokines and growth factors for the proliferation/maturation/differentiation of B lymphocytes to become plasma cells. Finally, the autoantibodies against denatured immunoglobulin G (rheumatoid factors), EB virus nuclear antigens (EBNAs) and citrullinated protein (ACPAs) are produced to trigger the development of RA. Furthermore, it is documented that gene mutations, abnormal epigenetic regulation of peptidylarginine deiminase genes 2 and 4 (PADI2 and PADI4), and thereby the induced autoantibodies against PAD2 and PAD4 are implicated in ACPA production in RA patients. The aberrant expressions of non-coding RNAs (ncRNAs) including microRNAs (miRs) and long non-coding RNAs (lncRNAs) in the immune system undoubtedly derange the mRNA expressions of cytokines/chemokines/growth factors. In the present review, we will discuss in detail the expression of these ncRNAs and their target molecules participating in developing RA, and the potential biomarkers for the disease, its diagnosis, cardiovascular complications and therapeutic response. Finally, we propose some prospective investigations for unraveling the conundrums of rheumatoid pathogenesis.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Ming-Han Chen
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Cheih-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
37
|
Jiang H, Fan C, Lu Y, Cui X, Liu J. Astragaloside regulates lncRNA LOC100912373 and the miR‑17‑5p/PDK1 axis to inhibit the proliferation of fibroblast‑like synoviocytes in rats with rheumatoid arthritis. Int J Mol Med 2021; 48:130. [PMID: 34013364 PMCID: PMC8136124 DOI: 10.3892/ijmm.2021.4963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Previous studies have confirmed that astragaloside (AST) exerts a positive effect on alleviating synovial and joint injury in rheumatoid arthritis (RA). However, the precise mechanisms through which AST acts in the treatment of RA remain unclear. Long non-coding RNA (lncRNA) LOC100912373 was identified as a key gene related to RA and has been proven to interact with miR-17-5p, in order to regulate the pyruvate dehydrogenase kinase 1 and protein kinase B axis (PDK1/AKT axis). The present study aimed to determine whether AST may treat RA through the interaction between lncRNA LOC100912373 and the miR-17-5p/PDK1 axis. MTT assays and flow cytometry were used to detect the proliferation and cell cycle progression of AST-treated fibroblast-like synoviocytes (FLSs). The expression of lncRNA LOC100912373 and miR-17-5p, as well as relative the mRNA expression of the PDK1 and AKT genes following AST intervention was detected by reverse transcription-quantitative PCR (RT-qPCR), immunofluorescence and western blot analysis. The results revealed that AST inhibited FLS proliferation, reduced lncRNA LOC100912373 expression levels, increased miR-17-5p expression levels, and decreased the PDK1 and p-AKT expression levels. Additionally, consecutive rescue experiments revealed that AST counteracted the effects of lncRNA LOC100912373 overexpression on FLS proliferation and cell cycle progression. On the whole, the present study demonstrates that AST inhibits FLS proliferation by regulating the expression of lncRNA LOC100912373 and the miR-17-5p/PDK1 axis.
Collapse
Affiliation(s)
- Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yunqi Lu
- Department of Biochemistry, Drew University, Madison, NJ 07940, USA
| | - Xiaoya Cui
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jian Liu
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
38
|
Lnc RNA ZFAS1 regulates the proliferation, apoptosis, inflammatory response and autophagy of fibroblast-like synoviocytes via miR-2682-5p/ADAMTS9 axis in rheumatoid arthritis. Biosci Rep 2021; 40:225963. [PMID: 32744323 PMCID: PMC7435024 DOI: 10.1042/bsr20201273] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Backgrounds: Rheumatoid arthritis (RA) is a frequent autoimmune disease. Emerging evidence indicated that ZNFX1 antisense RNA1 (ZFAS1) participates in the physiological and pathological processes in RA. However, knowledge of ZFAS1 in RA is limited, the potential work pathway of ZFAS1 needs to be further investigated. Methods: Levels of ZFAS1, microRNA (miR)-2682-5p, and ADAM metallopeptidase with thrombospondin type 1 motif 9 (ADAMTS9) were estimated using quantitative real-time polymerase chain reaction (qRT-PCR) assay. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was conducted to explore the ability of cell proliferation in fibroblast-like synoviocytes (FLS-RA). Cell apoptosis was measured via flow cytometry. Also, levels of ADAMTS9, apoptosis-related proteins, cleaved-caspase-3 (active large subunit), and autophagy-related proteins were identified adopting Western blot. Enzyme-linked immunosorbent assay (ELISA) was performed to determine the productions of inflammatory cytokines. Beside, the interrelation between miR-2682-5p and ZFAS1 or ADAMTS9 was verified utilizing dual-luciferase reporter assay. Results: High levels of ZFAS1 and ADAMTS9, and a low level of miR-2682-5p were observed in RA synovial tissues and FLS-RA. Knockdown of ZFAS1 led to the curbs of cell proliferation, inflammation, autophagy, and boost apoptosis in FLS-RA, while these effects were abolished via regaining miR-2682-5p inhibition. Additionally, the influence of miR-2682-5p on cell phenotypes and inflammatory response were eliminated by ADAMTS9 up-regulation in FLS-RA. Mechanically, ZFAS1 exerted its role through miR-2682-5p/ADAMTS9 axis in RA. Conclusion: ZFAS1/miR-2682-5p/ADAMTS9 axis could modulate the cell behaviors, inflammatory response in FLS-RA, might provide a potential therapeutic target for RA treatment.
Collapse
|
39
|
Miao C, Bai L, Yang Y, Huang J. Dysregulation of lncRNAs in Rheumatoid Arthritis: Biomarkers, Pathogenesis and Potential Therapeutic Targets. Front Pharmacol 2021; 12:652751. [PMID: 33776780 PMCID: PMC7994855 DOI: 10.3389/fphar.2021.652751] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of unknown etiology, mainly manifested by persistent abnormal proliferation of fibroblast-like synoviocytes (FLSs), inflammation, synovial hyperplasia and cartilage erosion, accompanied by joint swelling and joint destruction. Abnormal expression or function of long noncoding RNAs (lncRNAs) are closely related to human diseases, including cancers, mental diseases, autoimmune diseases and others. The abnormal sequence and spatial structure of lncRNAs, the disorder expression and the abnormal interaction with the binding protein will lead to the change of gene expression in the way of epigenetic modification. Increasing evidence demonstrated that lncRNAs were involved in the activation of FLSs, which played a key role in the pathogenesis of RA. In this review, the research progress of lncRNAs in the pathogenesis of RA was systematically summarized, including the role of lncRNAs in the diagnosis of RA, the regulatory mechanism of lncRNAs in the pathogenesis of RA, and the intervention role of lncRNAs in the treatment of RA. Furthermore, the activated signal pathways, the role of DNA methylation and other mechanism have also been overview in this review.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, China
| | - Liangliang Bai
- Department of Biomedical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yaru Yang
- Department of Pharmacy, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jinling Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
40
|
Guo D, Lv J, Chen X, Yan X, Ma F, Liu Y, Chen X, Xie J, Zhang M, Jin Z, Cai L, Sun X, Niu D, Duan DD. Study of miRNA interactome in active rheumatoid arthritis patients reveals key pathogenic roles of dysbiosis in the infection-immune network. Rheumatology (Oxford) 2021; 60:1512-1522. [PMID: 32910145 PMCID: PMC7937024 DOI: 10.1093/rheumatology/keaa369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To characterize serum microRNA (miR) and the miR interactome of active RA patients in RA aetiology and pathogenesis. METHODS The differentially expressed miRs (DEmiRs) in serum of naïve active RA patients (NARAPs, n = 9, into three pools) vs healthy controls (HCs, n = 15, into five pools) were identified with Agilent human miR microarray analysis. Candidate driver genes in epigenetic and pathogenic signalling pathway modules for RA were analysed using miRTarBase and a molecular complex detection algorithm. The interactome of these DEmiRs in RA pathogenesis were further characterized with gene ontology and Kyoto Encyclopaedia of Genes and Genomes. RESULTS Three upregulated DEmiRs (hsa-miR-187-5p, -4532, -4516) and eight downregulated DEmiRs (hsa-miR-125a-3p, -575, -191-3p, -6865-3p, -197-3p, -6886-3p, -1237-3p, -4436b-5p) were identified in NARAPs. Interactomic analysis from heterogeneous experimentally validated sources yielded 1719 miR-target interactions containing 5.67% strong and 94.33% less strong experimental evidence. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes analyses allocated the upregulated DEmiRs in the infection modules and the downregulated DEmiRs in the immune signalling pathways. Specifically, these DEmiRs revealed the significant contributions of the intestinal microbiome dysbiosis in the infection-inflammation-immune network for activation of T cells, immune pathways of IL-17, Toll-like receptor, TNF, Janus kinase-signal transducer and activator of transcription, osteoclast cell differentiation pathway and IgA production to the active RA pathogenesis. CONCLUSIONS Our experiment-based interactomic study of DEmiRs in serum of NARAPs revealed novel clinically relevant miRs interactomes in the infection-inflammation-immune network of RA. These results provide valuable resources for understanding the integrated function of the miR network in RA pathogenesis and the application of circulating miRs as biomarkers for early aetiologic RA diagnosis.
Collapse
Affiliation(s)
- Donggeng Guo
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jinhan Lv
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xi Chen
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoxu Yan
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fenglian Ma
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuanyuan Liu
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xu Chen
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jing Xie
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Mingzhu Zhang
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zheyu Jin
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lijun Cai
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xichun Sun
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Dongsheng Niu
- Department of Rheumatology and Immunology, Ningxia Clinical Institute of Bone and Joint Research, the Affiliated People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Dayue D Duan
- Center for Phenomics of Traditional Chinese Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
41
|
Jiang C, Yang Q, Wang B, Yang J, Li L, Tian X, Liu Y. Mechanism of Long Non-Coding RNA Homeobox Transcript Antisense RNAs Regulates Rheumatoid Arthritis Synovial Fibroblasts Multiplication, Immigration, and Invasion. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long non-coding RNA HOX transcript antisense RNAs (LncRNA HOTAIR) are aberrantly expressed in rheumatoid arthritis synovial fibroblasts (RASFs), the main cells in rheumatoid arthritis (RA). The inhibition, proliferation, and migrative ability of these cells offer one of the most important
therapies for RA. To investigate HOTAIR in RA, 72 patients with RA were selected along with 72 healthy volunteers. Serum HOTAIR and miRNA-526b-3p levels were measured in the study groups by qRT-PCR. Following the primary isolation and culture of RASFs, HOTAIR and miRNA-526b-3p expression was
detected in RASFs using qRT-PCR and the CCK-8 method was used to measure the cell proliferative capacity. The TNF-α and IL-1β levels were measured using enzyme-linked immunosorbent assay, while cell motility and invasive capacity were tested by the wound healing assay and transwell
chamber assay, respectively. The dual-luciferase reporter assay measured the target-relationship of HOTAIR and miRNA-526b-3p. Western blot detected MMP-2 and MMP-13 protein levels in the samples. We show that serum HOTAIR expression levels were dramatically augmented (P < 0.05) in
RA patients compared with the healthy individuals. However, the miRNA-526b-3p level was dramatically reduced (P < 0.05). Transfection of si-HOTAIR significantly reduced the OD value of RASFs, while the TNF-α level, IL-1β level, migration healing rate, MMP-2 protein expression,
MMP-13 protein expression (P < 0.05), and the invasive ability were all dramatically debased (P < 0.05). HOTAIR could be a competing endogenous RNAs for miRNA-526b-3p. Inhibiting miR-526b-3p expression could dramatically reduce silent HOTAIR on multiplication, immigration, invasion,
and inflammatory factor secretion of RASFs. These findings provide evidence that silent HOTAIR inhibits multiplication, immigration, invasion, and inflammatory factor secretion of RASFs by up-regulating the expression of miRNA-526b-3p.
Collapse
Affiliation(s)
- Chang Jiang
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Qun Yang
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Bo Wang
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Jun Yang
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Linan Li
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Xiliang Tian
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Yang Liu
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| |
Collapse
|
42
|
Long non-coding RNA GAS5 suppresses rheumatoid arthritis progression via miR-128-3p/HDAC4 axis. Mol Cell Biochem 2021; 476:2491-2501. [PMID: 33611674 DOI: 10.1007/s11010-021-04098-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a highly relevant public health problem. RA fibroblast-like synoviocytes (RAFLSs) play an important role in RA progression. Long non-coding RNA growth arrest-specific transcript 5 (GAS5) could improve RA by inducing RAFLSs apoptosis. However, the mechanism of GAS5 in RA remains unclear. RT-qPCR detected the expressions of GAS5, microRNA-128-3p (miR-128-3p), and histone deacetylase 4 (HDAC4) in RA synovial tissues and RAFLSs. Proliferation, apoptosis, migration, and invasion were measured by Cell Counting Kit-8 assay (CCK-8), flow cytometry, and transwell assays, severally. The protein levels of B-cell lymphoma-2 (Bcl-2), C-caspase 3, Bcl-2 related X protein (Bax), Tumor Necrosis factor-α (TNF-α), Interleukin 6 (IL-6), Interleukin 17 (IL-17), HDAC4, phosphorylation-protein kinase B (p-AKT), AKT, a phosphorylation-mechanistic target of rapamycin (p-mTOR), and mTOR were assessed by western blot assay. The interaction between miR-128-3p and GAS5 or HDAC4 was predicted by ENCORI or TargetScan Human and verified by the dual-luciferase reporter, RNA Immunoprecipitation (RIP), and RNA pull-down assays. GAS5 and HDAC4 were downregulated, and miR-128-3p was upregulated in RA synovial tissues and RAFLSs. Function analysis indicated that GAS5 curbed proliferation, migration, invasion, inflammation, and facilitated apoptosis of RAFLSs. Rescue assay confirmed that miR-128-3p overexpression or HDAC4 knockdown weakened the inhibitory effect of GAS5 or anti-miR-128-3p on RA development. GAS5 acted as a miR-128-3p sponge to upregulate HDAC4 expression. Besides, GAS5/miR-128-3p/HDAC4 axis regulated RA progression partially through the AKT/mTOR pathway. Our studies disclosed that GAS5 restrained inflammation in synovial tissue partly through regulating HDAC4 via miR-128-3p, suggesting a potential lncRNA-targeted therapy for RA treatment.
Collapse
|
43
|
Abstract
Long non-coding RNA (lncRNA) plays a contributory role in rheumatoid arthritis (RA). In this review, we summarized the current findings of lncRNAs in RA, including cellular function and the potential mechanisms. Serum lncRNA levels are associated with serum proinflammatory cytokines and disease activity. LncRNAs regulate proliferation, migration, invasion and apoptosis of RA fibroblast-like synoviocytes (FLSs), modulate the differentiation of T lymphocytes and macrophages, and affect bone formation-destruction balance of chondrocytes. Besides, lncRNAs are involved in inflammation and cell motivation signaling pathways. In-depth research on lncRNAs may help elucidate the pathogenesis of RA and provides clues for novel treatment targets.
Collapse
|
44
|
Liu W, Sheng L, Nie L, Wen X, Mo X. Functional interaction between long non-coding RNA and microRNA in rheumatoid arthritis. J Clin Lab Anal 2020; 34:e23489. [PMID: 33319382 PMCID: PMC7755821 DOI: 10.1002/jcla.23489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
MicroRNA (miRNA) has received widespread attention for its role in several key cellular processes such as cell differentiation, cell proliferation, apoptosis, and autoimmune diseases. Although we now have a good understanding of miRNA expression and function, our knowledge regarding the molecular mechanism of long non‐coding RNA (lncRNA) is still in its infancy. In this review, we will briefly introduce the definition and function of lncRNA and summarize the interactions between lncRNA and miRNA and their research progress in rheumatoid arthritis (RA). The expression of miR‐16, miR‐146a, miR‐155, and miR‐223 and the interactions between HOTAIR and miR138, ZFAS1 and miR‐27a, and GAPLINC and miR‐575 are representative examples that may augment the understanding of the pathogenesis of RA and help in the development of new biomarkers and target therapies.
Collapse
Affiliation(s)
- Weiwei Liu
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Li Sheng
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Lei Nie
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Xiaoyun Wen
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Xiaodan Mo
- Medical College of Northwest Minzu University, Lanzhou, China
| |
Collapse
|
45
|
An updated advance of autoantibodies in autoimmune diseases. Autoimmun Rev 2020; 20:102743. [PMID: 33333232 DOI: 10.1016/j.autrev.2020.102743] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Autoantibodies are abnormal antibodies which are generated by pathogenic B cells when targeting an individual's own tissue. Autoantibodies have been identified as a symbol of autoimmune disorders and are frequently considered a clinical marker of these disorders. Autoimmune diseases, including system lupus erythematosus and rheumatoid arthritis, consist of a series of disorders that share some similarities and differences. They are characterized by chronic, systemic, excessive immune activation and inflammation and involve in almost all body tissues. Autoimmune diseases occur more frequently in women than men due to hormonal impacts. In this review we systemically introduce and summarize the latest advances of various autoantibodies in multiple autoimmune diseases.
Collapse
|
46
|
FOXM1/LINC00152 feedback loop regulates proliferation and apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via Wnt/β-catenin signaling pathway. Biosci Rep 2020; 40:221642. [PMID: 31854447 PMCID: PMC6974425 DOI: 10.1042/bsr20191900] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/29/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA), a chronic systemic disease, is featured with inflammatory synovitis, which can lead to destruction on bone and cartilage and even cause disability. Emerging studies demonstrated that Fibroblast-like synoviocytes (FLS) is a vital cellular participant in RA progression. Long non-coding RNAs (lncRNAs) are also reported to participate in the pathogenesis of RA. In our present study, lncRNA microarray analysis was applied to screen out lncRNAs differentially expressed in RA FLS. Among which, cytoskeleton regulator RNA (LINC00152) presented biggest fold change. Gain- or loss-of function assays were further carried out in RA FLS, and the results revealed that LINC00152 promoted proliferation but induced apoptosis in RA FLS. Furthermore, up-regulation of LINC00152 may induce promotion of Wnt/β-catenin signaling pathway in RA FLS. Mechanistically, we found that forkhead box M1 (FOXM1) transcriptionally activated LINC00152 in RA FLS. Additionally, LINC00152 positively regulated FOXM1 via sponging miR-1270. In conclusion, the present study focused on elucidating the function of FOXM1/LINC00152 positive feedback loop in RA FLS and its association with Wnt/β-catenin signaling.
Collapse
|
47
|
Liu F, Feng XX, Zhu SL, Lin L, Huang HY, Zhang BY, Huang JL. Long non-coding RNA SNHG1 regulates rheumatoid synovial invasion and proliferation by interaction with PTBP1. Int Immunopharmacol 2020; 90:107182. [PMID: 33218941 DOI: 10.1016/j.intimp.2020.107182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/04/2020] [Accepted: 11/02/2020] [Indexed: 02/09/2023]
Abstract
Fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) present proliferative and aggressive cell phenotype. RA-FLSs are the essential effector cells that lead to symptoms like synovial inflammation and joint destruction. Currently, the cause of RA-FLSs involving in the pathological process of RA remains unknown. Accumulate researches have demonstrated that lncRNAs may play a critical role in regulating the biological behaviors of RA-FLSs, but the mechanism is still unclear. Here, we found that lncRNA small nucleolar RNA host gene 1 (SNHG1) is up-regulated in RA-FLSs compared with FLSs from trauma arthritis and osteoarthritis patients. The results suggest that SNHG1 in RA-FLSs helps to sustain the cellular functions of proliferation, migration and invasion. Furthermore, the regulation mechanism depends on the interaction between SNHG1 and polypyridine tract-binding protein 1 (PTBP1). This interaction influences PTBP1 expression that participates in the regulation of RA-FLSs biological behaviors. Our results suggest that up-regulated SNHG1 of RA-FLSs may contribute to synovial aggression and disease progression in RA and be favourable for RA treatment target RA-FLSs.
Collapse
Affiliation(s)
- Fang Liu
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Xue Feng
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shang-Ling Zhu
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lang Lin
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong-Yu Huang
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Bai-Yu Zhang
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jian-Lin Huang
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
48
|
Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Dysregulation of non-coding RNAs in Rheumatoid arthritis. Biomed Pharmacother 2020; 130:110617. [DOI: 10.1016/j.biopha.2020.110617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
|
49
|
Liu Y, Cao F, Sun B, Bellanti JA, Zheng SG. Magnetic nanoparticles: A new diagnostic and treatment platform for rheumatoid arthritis. J Leukoc Biol 2020; 109:415-424. [PMID: 32967052 DOI: 10.1002/jlb.5mr0420-008rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition characterized by articular synovitis that eventually leads to the destruction of cartilage and bone in the joints with resulting pain and disability. The current therapies for RA are divided into 4 categories: non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, nonbiological disease-modifying anti-rheumatic drugs (DMARDs), and biological DMARDs. Each drug grouping is beset with significant setbacks that not only include limited drug bioavailability and high clearance, but also varying degrees of drug toxicity to normal tissues. Recently, nanotechnology has provided a promising tool for the development of novel therapeutic and diagnostic systems in the area of malignant and inflammatory diseases. Among these, magnetic nanoparticles (MNPs) have provided an attractive carrier option for delivery of therapeutic agents. Armed with an extra magnetic probe, MNPs are capable of more accurately targeting the local lesion with avoidance of unpleasant systemic side effects. This review aims to provide an introduction to the applications of magnetic nanoparticles in RA, focusing on the latest advances, challenges, and opportunities for future development.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fenglin Cao
- Department of Internal Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
50
|
Wang Y, Hou L, Yuan X, Xu N, Zhao S, Yang L, Zhang N. LncRNA NEAT1 Targets Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via the miR-410-3p/YY1 Axis. Front Immunol 2020; 11:1975. [PMID: 32983133 PMCID: PMC7485383 DOI: 10.3389/fimmu.2020.01975] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
LncRNA NEAT1 functions as an oncogene in multiple human cancers. However, its expression and role in fibroblast-like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA) remain unclear. Thus, we investigated the expression of NEAT1 in synovial tissues and FLSs in RA, to determine its role in the development of RA. Quantitative real-time polymerase chain reaction was used to measure the expression of NEAT1. FLS proliferation was evaluated using cell proliferation assays. Flow cytometry was used to analyze cell cycle progression and apoptosis in FLSs. Binding between NEAT1 and miR-410-3p was demonstrated by dual-luciferase assays. We found that NEAT1 was upregulated in synovial tissues and FLSs in RA. Upregulation of NEAT1 promoted cell proliferation, induced S-to G2/M phase transition, and suppressed apoptosis in RA FLSs. NEAT1 directly bound to and negatively modulated miR-410-3p expression, while positively regulating YinYang 1(YY1; a miR-410-3p target). Inhibiting miR-410-3p and upregulating YY1 partially restored the inhibitory role in cell viability induced by the depletion of NEAT1 in RA FLSs. Besides pro-proliferative and anti-apoptotic roles, upregulation of NEAT1 promoted migration, invasion, and inflammatory cytokines secretion in RA FLSs. Taken together, our results suggest that the NEAT1 may serve as a novel diagnostic and therapeutic target for patients with RA.
Collapse
Affiliation(s)
- Yuejiao Wang
- Department of Rheumatology and Immunology at Shengjing Hospital of China Medical University, Shenyang, China
| | - Linxin Hou
- Department of Rheumatology and Immunology at Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaowei Yuan
- Department of Orthopedics at Shengjing Hospital of China Medical University, Shenyang, China
| | - Neili Xu
- Department of Rheumatology and Immunology at Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Zhao
- Department of Rheumatology and Immunology at Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Yang
- Department of Rheumatology and Immunology at Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning Zhang
- Department of Rheumatology and Immunology at Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|