1
|
Deshmukh VN, Patil S, Hinge DD. The Burden and Prevention of Human Papillomavirus (HPV) Infections and Cervical Cancer in India: A Literature Review. Cureus 2024; 16:e72435. [PMID: 39588431 PMCID: PMC11588293 DOI: 10.7759/cureus.72435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/26/2024] [Indexed: 11/27/2024] Open
Abstract
Human papillomavirus (HPV) is a widespread viral infection affecting the reproductive tract and is associated with multiple types of cancer. It is a significant global health concern, with cervical cancer being one of the most common cancers affecting women worldwide. HPV infection has been found in both married and unmarried women. The burden of cervical cancer is particularly high in middle- and low-income countries, where HPV vaccination and screening programs are often limited. India faces a substantial challenge with cervical cancer and HPV infection. Cervical cancer ranks as one of the leading cancers among women in India. Studies over recent decades have indicated varying levels of HPV prevalence in the general female population in India. Recognizing the importance of addressing this issue, the Government of India has prioritized cervical cancer elimination as a national public health goal. A strategic plan has been launched to increase cervical cancer screening coverage in adult women and HPV vaccination coverage in girls. This review examines literature published from 2000 to 2023 on the epidemiology of cervical cancer and HPV in India. It also explores the development of prevention strategies, focusing on cervical screening and HPV vaccination programs. Government policy documents were analyzed to understand the national strategic vision and targets. The review concludes by discussing ongoing challenges and future directions for cervical cancer elimination efforts in India.
Collapse
Affiliation(s)
- Vinit N Deshmukh
- Department of Molecular Biology and Genetics, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satish Patil
- Department of Microbiology, Krishna Institute of Medical Sciences, Karad, IND
| | - Dilip D Hinge
- Department of Molecular Biology and Genetics, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
2
|
Zhou D, Xue J, Sun Y, Zhu L, Zhao M, Cui M, Zhang M, Jia J, Luo L. Patterns of single and multiple HPV infections in female: A systematic review and meta-analysis. Heliyon 2024; 10:e35736. [PMID: 39263181 PMCID: PMC11386290 DOI: 10.1016/j.heliyon.2024.e35736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Background Data on the patterns of single and multiple HPV infections are largely limited to small size studies, and the regional difference have not been systematically examined. Methods A literature search was conducted using PubMed, Embase, and Web of Science databases up to Sept 22, 2023. The pooled prevalence of HPV infection were calculated using random-effects meta-analysis. Subgroup analysis was used to explore the heterogeneity, and publication bias was evaluated by Egger's test and Begg's test. Results There were 121 studies included with 1,682,422 participants. Globally, the most common genotypes of single HPV infection were HPV16 (7.05 %), 18 (1.94 %), 52 (1.93 %), 58 (1.68 %), and 31 (1.53 %), as well as HPV 16 (4.91 %), 31 (2.68 %), 52 (2.20 %), 51 (1.99 %), and 18 (1.96 %) in multiple HPV infections. Apart from HPV16 and 18, HPV52 and 58 were common in Asia, HPV31 and 51 was in Europe, North and South America, and HPV35 and 45 were in Africa. The prevalence of HPV infection among different age groups (<30, 30-50, >50 years age groups) was 20.93 %, 16.27 %, and 18.69 %, respectively. The single HPV infection prevalence in the No-ILs, LSILs, HSILs, and cervical cancer groups were 16.17 %, 51.60 %, 57.12 %, and 62.88 %, respectively, as well as in multiple infections were 5.09 %, 30.93 %, 32.86 %, and 21.26. Conclusion Developing local HPV vaccines is necessary based on the HPV infection pattern. It is essential to educate young women to get vaccinated and encourage elderly women to have regular cervical cancer screenings to reduce the danger of cervical cancer.
Collapse
Affiliation(s)
- Dan Zhou
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- School of Public Health, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jing Xue
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Yaqiong Sun
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Liling Zhu
- School of Public Health, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Ming Zhao
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- School of Public Health, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Meimei Cui
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- School of Basic Medical, Weifang Medical University, Weifang, China
| | - Min Zhang
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- School of Public Health, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jingjing Jia
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- School of Basic Medical, Jiamusi University, Jiamusi, China
| | - Limei Luo
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
3
|
Prosper P, Rodríguez Puertas R, Guérin DMA, Branda MM. Computational method for designing vaccines applied to virus-like particles (VLPs) as epitope carriers. Vaccine 2024; 42:3916-3929. [PMID: 38782665 DOI: 10.1016/j.vaccine.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/06/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Nonenveloped virus-like particles (VLPs) are self-assembled oligomeric structures composed of one or more proteins that originate from diverse viruses. Because these VLPs have similar antigenicity to the parental virus, they are successfully used as vaccines against cognate virus infection. Furthermore, after foreign antigenic sequences are inserted in their protein components (chimVLPs), some VLPs are also amenable to producing vaccines against pathogens other than the virus it originates from (these VLPs are named platform or epitope carrier). Designing chimVLP vaccines is challenging because the immunogenic response must be oriented against a given antigen without altering stimulant properties inherent to the VLP. An important step in this process is choosing the location of the sequence modifications because this must be performed without compromising the assembly and stability of the original VLP. Currently, many immunogenic data and computational tools can help guide the design of chimVLPs, thus reducing experimental costs and work. In this study, we analyze the structure of a novel VLP that originate from an insect virus and describe the putative regions of its three structural proteins amenable to insertion. For this purpose, we employed molecular dynamics (MD) simulations to assess chimVLP stability by comparing mutated and wild-type (WT) VLP protein trajectories. We applied this procedure to design a chimVLP that can serve as a prophylactic vaccine against the SARS-CoV-2 virus. The methodology described in this work is generally applicable for VLP-based vaccine development.
Collapse
Affiliation(s)
- Pascalita Prosper
- Instituto de Física Aplicada - INFAP, Universidad Nacional de San Luis/CONICET, Argentina, Av. Ejército de los Andes 950, 5700 San Luis, San Luis, Argentina
| | - Rafael Rodríguez Puertas
- Universidad del País Vasco (UPV/EHU), Dept. Farmacología, Facultad de Medicina, B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain; Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Diego M A Guérin
- Universidad del País Vasco (UPV/EHU) and Instituto Biofisika (CSIC, UPV/EHU), B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain
| | - María Marta Branda
- Instituto de Física Aplicada - INFAP, Universidad Nacional de San Luis/CONICET, Argentina, Av. Ejército de los Andes 950, 5700 San Luis, San Luis, Argentina.
| |
Collapse
|
4
|
Gupta Y, Baranwal M, Chudasama B. Zika virus precursor membrane peptides induce immune response in peripheral blood mononuclear cells. Hum Immunol 2024; 85:110761. [PMID: 38272735 DOI: 10.1016/j.humimm.2024.110761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Zika virus is a re-merging flavivirus allied to serious mental health conditions in the fetuses. There is currently no preventives or treatment available for Zika infection. In this work, we have extended the in silico analysis by performing the molecular docking of previous reported three conserved Zika virus precursor membrane (prM) peptides (MP1, MP2 and MP3) with HLA complex (pHLA) and T cell receptors (TCR) and also evaluated the peptide specific immune response in human peripheral blood mononuclear cells (PBMC). Most of the CD8+ and CD4+ T cell peptides-HLA complexes demonstrated good binding energies (ΔG) and HADDOCK scores in molecular docking analysis. Immunogenic response of peptides is measured as human peripheral blood mononuclear cell (PBMC) proliferation and interferon-gamma (IFN-γ) production using a 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and a sandwich enzyme-linked immunosorbent assay (ELISA) respectively on ten different healthy blood samples. Peptide MP3 exhibited significant results in eight (cell proliferation) and seven (IFN-γ secretion) healthy volunteers' blood samples out of ten. Additionally, peptides MP1 and MP2 presented significant cell proliferation and IFN-γ release in six healthy blood samples. Thus, the outcomes from in silico and in vitro studies showed the immunogenic potential of peptides which need to validated in different experimental system before considering as candidate vaccine against Zika virus infection.
Collapse
Affiliation(s)
- Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Bhupendra Chudasama
- School of Physics & Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
5
|
Lien TS, Sun DS, Wu WS, Chang HH. Simulation of Hemorrhage Pathogenesis in Mice through Dual Stimulation with Dengue Envelope Protein Domain III-Coated Nanoparticles and Antiplatelet Antibody. Int J Mol Sci 2023; 24:ijms24119270. [PMID: 37298220 DOI: 10.3390/ijms24119270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Dengue hemorrhagic fever (DHF) is a severe form of dengue virus (DENV) infection that can lead to abnormal immune responses, endothelial vascular dysfunction, and hemorrhage pathogenesis. The virion-associated envelope protein domain III (EIII) is thought to play a role in the virulence of DENV by damaging endothelial cells. However, it is unclear whether EIII-coated nanoparticles simulating DENV virus particles could cause a more severe pathogenesis than soluble EIII alone. This study aimed to investigate whether EIII-coated silica nanoparticles (EIII-SNPs) could elicit greater cytotoxicity in endothelial cells and hemorrhage pathogenesis in mice compared to EIII or silica nanoparticles alone. The main methods included in vitro assays to assess cytotoxicity and in vivo experiments to examine hemorrhage pathogenesis in mice. EIII-SNPs induced greater endothelial cytotoxicity in vitro than EIII or silica nanoparticles alone. Two-hit combined treatment with EIII-SNPs and antiplatelet antibodies to simulate DHF hemorrhage pathogenesis during secondary DENV infections resulted in higher endothelial cytotoxicity than either treatment alone. In mouse experiments, two-hit combined treatment with EIII-SNPs and antiplatelet antibodies resulted in more severe hemorrhage pathogenesis compared to single treatments of EIII, EIII-SNPs, or antiplatelet antibodies alone. These findings suggest that EIII-coated nanoparticles are more cytotoxic than soluble EIII and could be used to develop a tentative dengue two-hit hemorrhage pathogenesis model in mice. Additionally, our results indicated that EIII-containing DENV particles could potentially exacerbate hemorrhage pathogenesis in DHF patients who have antiplatelet antibodies, highlighting the need for further research on the potential role of EIII in DHF pathogenesis.
Collapse
Affiliation(s)
- Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
6
|
Gupta AK, Kumar M. An integrative approach toward identification and analysis of therapeutic targets involved in HPV pathogenesis with a focus on carcinomas. Cancer Biomark 2023; 36:31-52. [PMID: 36245368 DOI: 10.3233/cbm-210413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Persistent infection of high-risk HPVs is known to cause diverse carcinomas, mainly cervical, oropharyngeal, penile, etc. However, efficient treatment is still lacking. OBJECTIVE Identify and analyze potential therapeutic targets involved in HPV oncogenesis and repurposing drug candidates. METHODS Integrative analyses were performed on the compendium of 1887 HPV infection-associated or integration-driven disrupted genes cataloged from the Open Targets Platform and HPVbase resource. Potential target genes are prioritized using STRING, Cytoscape, cytoHubba, and MCODE. Gene ontology and KEGG pathway enrichment analysis are performed. Further, TCGA cancer genomic data of CESC and HNSCC is analyzed. Moreover, regulatory networks are also deduced by employing NetworkAnalyst. RESULTS We have implemented a unique approach for identifying and prioritizing druggable targets and repurposing drug candidates against HPV oncogenesis. Overall, hundred key genes with 44 core targets were prioritized with transcription factors (TFs) and microRNAs (miRNAs) regulators pertinent to HPV pathogenesis. Genomic alteration profiling further substantiated our findings. Among identified druggable targets, TP53, NOTCH1, PIK3CA, EP300, CREBBP, EGFR, ERBB2, PTEN, and FN1 are frequently mutated in CESC and HNSCC. Furthermore, PIK3CA, CCND1, RFC4, KAT5, MYC, PTK2, EGFR, and ERBB2 show significant copy number gain, and FN1, CHEK1, CUL1, EZH2, NRAS, and H2AFX was marked for the substantial copy number loss in both carcinomas. Likewise, under-explored relevant regulators, i.e., TFs (HINFP, ARID3A, NFATC2, NKX3-2, EN1) and miRNAs (has-mir-98-5p, has-mir-24-3p, has-mir-192-5p, has-mir-519d-3p) is also identified. CONCLUSIONS We have identified potential therapeutic targets, transcriptional and post-transcriptional regulators to explicate HPV pathogenesis as well as potential repurposing drug candidates. This study would aid in biomarker and drug discovery against HPV-mediated carcinoma.
Collapse
Affiliation(s)
- Amit Kumar Gupta
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Qi W, Qingfeng L, Jing Z, Maolin Z, Zhihui Z, Wangqi D, Shanli Z, Jun C, Pengfei J, Lifang Z. A novel multi-epitope vaccine of HPV16 E5E6E7 oncoprotein delivered by HBc VLPs induced efficient prophylactic and therapeutic antitumor immunity in tumor mice model. Vaccine 2022; 40:7693-7702. [PMID: 36376215 DOI: 10.1016/j.vaccine.2022.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Human papilloma virus type 16 (HPV16) is the most prevalent etiologic agent associated with cervical cancer, and its early proteins E5, E6 and E7 play important roles in cervical epithelium transformation to cervical intraepithelial neoplasia and even cervical cancer. Hence, these oncoproteins are ideal target antigens for developing immunotherapeutic vaccines against HPV-associated infection and cervical cancer. Currently, multi-epitope vaccines have been a promising strategy for immunotherapy for viral infection or cancers. In this study, the E5aa28-46, E6aa37-57 and E7aa26-57 peptides were selected and linked to form a novel multi-epitopes vaccine (E765m), which was inserted into the major immune dominant region (MIR) of hepatitis B virus core antigen (HBc) to construct a HBc-E765m chimeric virus-like particles (cVLPs). The immunogenicity and immunotherapeutic effect of the cVLPs vaccine was evaluated in immunized mice and a tumor-bearing mouse model. The results showed that HBc-E765m cVLPs elicited high E5-, E6- and E7- specific CTL and serum IgG antibody responses, and also relatively high levels of the cytokines IFN-γ, IL-4 and IL-5. More importantly, the cVLPs vaccine significant suppressed tumor growth in mice bearing E5-TC-1 tumors. Our findings provide strong evidence that this novel HBc-E765m cVLPs vaccine could be a candidate vaccine for specific immunotherapy in HPV16-associated cervical intraepithelial neoplasia or cervical cancer.
Collapse
Affiliation(s)
- Wang Qi
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Li Qingfeng
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Zhang Jing
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Zheng Maolin
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Zhang Zhihui
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Du Wangqi
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Zhu Shanli
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Chen Jun
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Jiang Pengfei
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Zhang Lifang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China.
| |
Collapse
|
8
|
Akhatova A, Azizan A, Atageldiyeva K, Ashimkhanova A, Marat A, Iztleuov Y, Suleimenova A, Shamkeeva S, Aimagambetova G. Prophylactic Human Papillomavirus Vaccination: From the Origin to the Current State. Vaccines (Basel) 2022; 10:1912. [PMID: 36423008 PMCID: PMC9696339 DOI: 10.3390/vaccines10111912] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 07/30/2023] Open
Abstract
Immunization is the most successful method in preventing and controlling infectious diseases, which has helped saving millions of lives worldwide. The discovery of the human papillomavirus (HPV) infection being associated with a variety of benign conditions and cancers has driven the development of prophylactic HPV vaccines. Currently, four HPV vaccines are available on the pharmaceutical market: Cervarix, Gardasil, Gardasil-9, and the recently developed Cecolin. Multiple studies have proven the HPV vaccines' safety and efficacy in preventing HPV-related diseases. Since 2006, when the first HPV vaccine was approved, more than 100 World Health Organization member countries reported the implementation of HPV immunization. However, HPV vaccination dread, concerns about its safety, and associated adverse outcomes have a significant impact on the HPV vaccine implementation campaigns all over the world. Many developed countries have successfully implemented HPV immunization and achieved tremendous progress in preventing HPV-related conditions. However, there are still many countries worldwide which have not created, or have not yet implemented, HPV vaccination campaigns, or have failed due to deficient realization plans associated with establishing successful HPV vaccination programs. Lack of proper HPV information campaigns, negative media reflection, and numerous myths and fake information have led to HPV vaccine rejection in many states. Thus, context-specific health educational interventions on HPV vaccination safety, effectiveness, and benefits are important to increase the vaccines' acceptance for efficacious prevention of HPV-associated conditions.
Collapse
Affiliation(s)
- Ayazhan Akhatova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Azliyati Azizan
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University, Henderson, NV 89014, USA
| | - Kuralay Atageldiyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Clinical Academic Department of Internal Medicine, CF University Medical Center, Astana 10000, Kazakhstan
| | - Aiymkul Ashimkhanova
- Department of Medicine, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Aizada Marat
- Department of Obstetrics and Gynecology #1, NJSC “Astana Medical University”, Astana 010000, Kazakhstan
| | - Yerbolat Iztleuov
- Medical Center, Marat Ospanov West-Kazakhstan Medical University, Aktobe 030000, Kazakhstan
| | - Assem Suleimenova
- Kazakh Institute of Oncology and Radiology, Almaty 050000, Kazakhstan
| | - Saikal Shamkeeva
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Gulzhanat Aimagambetova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
9
|
Qian C, Yang Y, Xu Q, Wang Z, Chen J, Chi X, Yu M, Gao F, Xu Y, Lu Y, Sun H, Shen J, Wang D, Zhou L, Li T, Wang Y, Zheng Q, Yu H, Zhang J, Gu Y, Xia N, Li S. Characterization of an Escherichia coli-derived triple-type chimeric vaccine against human papillomavirus types 39, 68 and 70. NPJ Vaccines 2022; 7:134. [PMID: 36316367 PMCID: PMC9622684 DOI: 10.1038/s41541-022-00557-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 10/13/2022] [Indexed: 11/22/2022] Open
Abstract
In vaccinology, a potent immunogen has two prerequisite attributes-antigenicity and immunogenicity. We have rational designed a triple-type HPV vaccine against HPV58, -33 and -52 covered in Gardasil 9 based on the sequence homology and similar surface loop structure of L1 protein, which is related to cross-type antigenicity. Here, we design another triple-type vaccine against non-vaccine types HPV39, -68 and -70 by immunogenicity optimization considering type specific immunodominant epitopes located in separate region for different types. First, we optimized the expression of wild-type HPV39, -68 and -70 L1-only virus-like particles (VLPs) in E. coli through N-terminal truncation of HPV L1 proteins and non-fusion soluble expression. Second, based on genetic relationships and an L1 homologous loop-swapping rationale, we constructed several triple-type chimeric VLPs for HPV39, -68 and -70, and obtained the lead candidate named H39-68FG-70DE by the immunogenicity optimization using reactivity profile of a panel type-specific monoclonal antibodies. Through comprehensive characterization using various biochemical, VLP-based analyses and immune assays, we show that H39-68FG-70DE assumes similar particulate properties as that of its parental VLPs, along with comparable neutralization immunogenicity for all three HPV types. Overall, this study shows the promise and translatability of an HPV39/68/70 triple-type vaccine, and the possibility of expanding the type-coverage of current HPV vaccines. Our study further expanded the essential criteria on the rational design of a cross-type vaccine, i.e. separate sites with inter-type similar sequence and structure as well as type-specific immunodominant epitope to be clustered together.
Collapse
Affiliation(s)
- Ciying Qian
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yurou Yang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Qin Xu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Zhiping Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Jie Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Xin Chi
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Miao Yu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Fei Gao
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yujie Xu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yihan Lu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Hui Sun
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Jingjia Shen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Daning Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Lizhi Zhou
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Tingting Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yingbin Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Qingbing Zheng
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Hai Yu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Jun Zhang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Ying Gu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Ningshao Xia
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Shaowei Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
10
|
Pastor Y, Ghazzaui N, Hammoudi A, Centlivre M, Cardinaud S, Levy Y. Refining the DC-targeting vaccination for preventing emerging infectious diseases. Front Immunol 2022; 13:949779. [PMID: 36016929 PMCID: PMC9396646 DOI: 10.3389/fimmu.2022.949779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
The development of safe, long-term, effective vaccines is still a challenge for many infectious diseases. Thus, the search of new vaccine strategies and production platforms that allow rapidly and effectively responding against emerging or reemerging pathogens has become a priority in the last years. Targeting the antigens directly to dendritic cells (DCs) has emerged as a new approach to enhance the immune response after vaccination. This strategy is based on the fusion of the antigens of choice to monoclonal antibodies directed against specific DC surface receptors such as CD40. Since time is essential, in silico approaches are of high interest to select the most immunogenic and conserved epitopes to improve the T- and B-cells responses. The purpose of this review is to present the advances in DC vaccination, with special focus on DC targeting vaccines and epitope mapping strategies and provide a new framework for improving vaccine responses against infectious diseases.
Collapse
Affiliation(s)
- Yadira Pastor
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Nour Ghazzaui
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Adele Hammoudi
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Mireille Centlivre
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Sylvain Cardinaud
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France
- *Correspondence: Yves Levy,
| |
Collapse
|
11
|
Chen F, Novák Z, Dannecker C, Mokráš C, Sui L, Zhang Y, You Z, Han L, Lang J, Hillemanns P. Multicentre, prospective, randomised controlled trial to evaluate hexaminolevulinate photodynamic therapy (Cevira) as a novel treatment in patients with high-grade squamous intraepithelial lesion: APRICITY phase 3 study protocol. BMJ Open 2022; 12:e061740. [PMID: 35667715 PMCID: PMC9171256 DOI: 10.1136/bmjopen-2022-061740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION High-risk human papilloma virus (HPV)-associated cervical cancer is the fourth most common cancer in women worldwide. Current treatments of high-grade squamous intraepithelial lesion (HSIL) of the cervix are based on invasive surgical interventions, compromising cervical competence and functionality. APRICITY is a multicentre, prospective, double-blind, randomised controlled phase 3 study further evaluating the efficacy and safety of Cevira, an integrated drug-delivery and light-delivery device for hexaminolevulinate photodynamic therapy, which shows promise as a novel, non-invasive outpatient therapy for women with HSIL. METHODS AND ANALYSIS Patients with biopsy-confirmed HSIL histology are invited to participate in the study planned to be conducted at 47 sites in China and 25 sites in Ukraine, Russia and the European Union. The aim is to include at least 384 patients, which will be randomised to either Cevira or placebo group (2:1). All patients will be assessed 3 months after first treatment and a second treatment will be administered in patients who are HPV positive or have at least low-grade squamous intraepithelial lesion. Primary endpoint is the proportion of the responders 6 months after first treatment. Secondary efficacy and safety endpoints will be assessed at 6 months, and data for secondary performance endpoints of the Cevira device will be collected at 3 months and 6 months, in case second treatment was administered. All patients in the Cevira group will be enrolled in an open, long-term extension study for 6 months to collect additional efficacy and safety data (study extension endpoints). ETHICS AND DISSEMINATION The study was approved by the ethics committee of the Peking Union Medical College Hospital and Hannover Medical University, Germany. Findings will be disseminated through peer review publications and conference presentations. TRIAL REGISTRATION NUMBER NCT04484415; clinicaltrials.gov.
Collapse
Affiliation(s)
- Fei Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Zoltán Novák
- Aranyklinika Gynecology, Budapest, Hungary
- Department of Gynaecology, National Institute of Oncology, Budapest, Hungary
| | - Christian Dannecker
- Department of Obstetrics and Gynaecology, University Hospital Augsburg, Augsburg, Germany
| | | | - Long Sui
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhixue You
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Ling Han
- Asieris Pharmaceuticals (Shanghai) Co., Ltd, Shanghai, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Peter Hillemanns
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
- Comprehensive Cancer Center Niedersachsen, Hannover, Germany
| |
Collapse
|
12
|
Jasrotia R, Dhanjal DS, Bhardwaj S, Sharma P, Chopra C, Singh R, Kumar A, Mubayi A, Kumar D, Kumar R, Goyal A. Nanotechnology based vaccines: Cervical cancer management and perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Yousefi Z, Aria H, Ghaedrahmati F, Bakhtiari T, Azizi M, Bastan R, Hosseini R, Eskandari N. An Update on Human Papilloma Virus Vaccines: History, Types, Protection, and Efficacy. Front Immunol 2022; 12:805695. [PMID: 35154080 PMCID: PMC8828558 DOI: 10.3389/fimmu.2021.805695] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted agent worldwide. Early prevention with HPV vaccination is a safe and effective method against this disease. HPV vaccines provided more protection against several oncogenic HPV strains. Three prophylactic HPV vaccines have been approved to target high-risk HPV types and protect against HPV-related disorders. These existing vaccines are based on the recombinant DNA technology and purified L1 protein that is assembled to form HPV empty shells. The prophylactic vaccines are highly immunogenic and can induce production of specific neutralizing antibodies. However, therapeutic vaccines are different from these prophylactic vaccines. They induced cell-mediated immunity against transformed cells, instead of neutralizing antibodies. The second generation of prophylactic HPV vaccines, made from alternative viral components using cost-effective production strategies, is undergoing clinical evaluation. The purpose of this review is to provide a complete and up-to-date review of the types of HPV vaccines and the efficiency of each of them for readers.
Collapse
Affiliation(s)
- Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hamid Aria
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahereh Bakhtiari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Bastan
- Department of Immunopharmacology, Faculty of Medicine, Karaj University of Medical Sciences, Alborz, Iran
| | - Reza Hosseini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Vickram A, Dhama K, Thanigaivel S, Chakraborty S, Anbarasu K, Dey N, Karunakaran R. Strategies for successful designing of immunocontraceptive vaccines and recent updates in vaccine development against sexually transmitted infections - A Review. Saudi J Biol Sci 2022; 29:2033-2046. [PMID: 35531220 PMCID: PMC9073025 DOI: 10.1016/j.sjbs.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 11/28/2022] Open
Abstract
Background Objective Methods Results Conclusion
Collapse
Affiliation(s)
- A.S. Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - S. Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences &, Animal Husbandry, R.K.Nagar, West Tripura, Pin- 799008, India
| | - K. Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India
| | - Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India
| | - Rohini Karunakaran
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah, Malaysia
- Corresponding author.
| |
Collapse
|
15
|
Sallam M, Al-Mahzoum K, Eid H, Assaf AM, Abdaljaleel M, Al-Abbadi M, Mahafzah A. Attitude towards HPV Vaccination and the Intention to Get Vaccinated among Female University Students in Health Schools in Jordan. Vaccines (Basel) 2021; 9:vaccines9121432. [PMID: 34960177 PMCID: PMC8707789 DOI: 10.3390/vaccines9121432] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is a leading cause of morbidity and mortality in women worldwide. The availability of prophylactic vaccines for high-risk types of human papillomavirus (HPV) infection represents an important advancement in the prevention of cervical cancer. In Jordan, the availability of the HPV vaccination is restricted to individuals who are willing to pay. The aim of the current study was to evaluate the willingness and attitude of female university students in health schools/faculties in Jordan to get HPV vaccination and their knowledge about the virus. A self-administered online questionnaire was distributed in October 2021, which comprised 27 items to evaluate HPV knowledge, history of HPV vaccination, intentions to get the HPV vaccine, and the reason(s) behind vaccine refusal for those who rejected vaccination. The study sample comprised 836 participants: medical students (39.7%), pharmacy students (26.0%), dental students (21.2%), and nursing students (13.2%). Only 524 participants had heard of HPV prior to the study (62.7%), of which 48.7% knew about the availability of HPV vaccines. The lowest level of HPV knowledge was observed among nursing students. Only 19/524 students reported a history of HPV vaccination (3.6%). The overall willingness to receive HPV vaccination if provided freely was 75.0%, while only 16.0% were willing to pay for the vaccine. The most common reason for HPV vaccine rejection was the perceived low risk to get HPV infection. Significantly higher intentions to get HPV vaccination were found among older participants and medical students. The embrace of vaccine conspiracy beliefs was associated with a significantly less willingness to get the HPV vaccination (p < 0.001). Dependence on the internet/social media as the source of HPV knowledge was associated with a significantly lower intention to get HPV vaccination (p = 0.002). The coverage of the HPV vaccination among female university students in health schools in Jordan appeared extremely low; however, three-fourths of the students who had heard of HPV were willing to receive the HPV vaccination if provided freely. Complacency appeared as a major factor for HPV vaccine rejection. Increasing the levels of knowledge and awareness of HPV infection and its association with cervical cancer through reliable sources is recommended. This can be helpful for the individual benefit of the students besides the potentially positive role they can play in community education. Countering vaccine conspiracy beliefs with proper education and awareness programs can be helpful to appraise the role of HPV vaccines in cancer prevention.
Collapse
Affiliation(s)
- Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.); (M.A.-A.); (A.M.)
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, 22184 Malmö, Sweden
- Correspondence: ; Tel.: +962-791845186
| | | | - Huda Eid
- School of Dentistry, The University of Jordan, Amman 11942, Jordan;
| | - Areej M. Assaf
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Maram Abdaljaleel
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.); (M.A.-A.); (A.M.)
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
| | - Mousa Al-Abbadi
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.); (M.A.-A.); (A.M.)
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
| | - Azmi Mahafzah
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.); (M.A.-A.); (A.M.)
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
| |
Collapse
|
16
|
Abbasifarid E, Bolhassani A, Irani S, Sotoodehnejadnematalahi F. Synergistic effects of exosomal crocin or curcumin compounds and HPV L1-E7 polypeptide vaccine construct on tumor eradication in C57BL/6 mouse model. PLoS One 2021; 16:e0258599. [PMID: 34648579 PMCID: PMC8516259 DOI: 10.1371/journal.pone.0258599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the most common malignant tumor in females worldwide. Human papillomavirus (HPV) infection is associated with the occurrence of cervical cancer. Thus, developing an effective and low-cost vaccine against HPV infection, especially in developing countries is an important issue. In this study, a novel HPV L1-E7 fusion multiepitope construct designed by immunoinformatics tools was expressed in bacterial system. HEK-293T cells-derived exosomes were generated and characterized to use as a carrier for crocin and curcumin compounds. The exosomes loaded with crocin and curcumin compounds as a chemotherapeutic agent (ExoCrocin and ExoCurcumin) were used along with the L1-E7 polypeptide for evaluation of immunological and anti-tumor effects in C57BL/6 mouse model. In vitro studies showed that ExoCrocin and ExoCurcumin were not cytotoxic at a certain dose, and they could enter tumor cells. In vivo studies indicated that combination of the L1-E7 polypeptide with ExoCrocin or ExoCurcumin could produce a significant level of immunity directed toward Th1 response and CTL activity. These regimens showed the protective and therapeutic effects against tumor cells (the percentage of tumor-free mice: ~100%). In addition, both ExoCrocin and ExoCurcumin represented similar immunological and anti-tumor effects. Generally, the use of exosomal crocin or curcumin forms along with the L1-E7 polypeptide could significantly induce T-cell immune responses and eradicate tumor cells.
Collapse
Affiliation(s)
- Elnaz Abbasifarid
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: ,
| | - Shiva Irani
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
17
|
Kayyal M, Bolhassani A, Noormohammadi Z, Sadeghizadeh M. In Silico Design and Immunological Studies of Two Novel Multiepitope DNA-Based Vaccine Candidates Against High-Risk Human Papillomaviruses. Mol Biotechnol 2021; 63:1192-1222. [PMID: 34308516 DOI: 10.1007/s12033-021-00374-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Human papillomaviruses (HPV)-16 and 18 are the most prevalent types associated with cervical cancer. HPV L1 and L2 capsid proteins and E7 oncoprotein play crucial roles in HPV-related diseases. Hence, these proteins were proposed as target antigens for preventive and therapeutic vaccines. In this study, two multiepitope DNA-based HPV vaccine candidates were designed using in silico analysis including the immunogenic and conserved epitopes of HPV16/18 L1, L2 and E7 proteins (the L1-L2-E7 fusion DNA), and of heat shock protein 70 (HSP70) linked to the L1-L2-E7 DNA construct (the HSP70-L1-L2-E7 fusion DNA). Next, the expression of the L1-L2-E7 and HSP70-L1-L2-E7 multiepitope DNA constructs was evaluated in a mammalian cell line. Finally, immunological responses and antitumor effects of the DNA constructs were investigated in C57BL/6 mice. Our data indicated high expression rates of the designed multiepitope L1-L2-E7 DNA (~ 56.16%) and HSP70-L1-L2-E7 DNA (~ 80.45%) constructs in vitro. The linkage of HSP70 epitopes to the L1-L2-E7 DNA construct significantly increased the gene expression. Moreover, the HSP70-L1-L2-E7 DNA construct could significantly increase immune responses toward Th1 response and CTL activity, and induce stronger antitumor effects in mouse model. Thus, the designed HSP70-L1-L2-E7 DNA construct represents promising results for development of HPV DNA vaccine candidates.
Collapse
Affiliation(s)
- Matin Kayyal
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Zapata-Cuellar L, Gaona-Bernal J, Manuel-Cabrera CA, Martínez-Velázquez M, Sánchez-Hernández C, Elizondo-Quiroga D, Camacho-Villegas TA, Gutiérrez-Ortega A. Development of a Platform for Noncovalent Coupling of Full Antigens to Tobacco Etch Virus-Like Particles by Means of Coiled-Coil Oligomerization Motifs. Molecules 2021; 26:molecules26154436. [PMID: 34361589 PMCID: PMC8348948 DOI: 10.3390/molecules26154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022] Open
Abstract
Virus-like particles are excellent inducers of the adaptive immune response of humans and are presently being used as scaffolds for the presentation of foreign peptides and antigens derived from infectious microorganisms for subunit vaccine development. The most common approaches for peptide and antigen presentation are translational fusions and chemical coupling, but some alternatives that seek to simplify the coupling process have been reported recently. In this work, an alternative platform for coupling full antigens to virus-like particles is presented. Heterodimerization motifs inserted in both Tobacco etch virus coat protein and green fluorescent protein directed the coupling process by simple mixing, and the obtained complexes were easily taken up by a macrophage cell line.
Collapse
Affiliation(s)
- Lorena Zapata-Cuellar
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Biotecnología Médica y Farmacéutica, Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico; (L.Z.-C.); (C.A.M.-C.); (M.M.-V.); (D.E.-Q.)
| | - Jorge Gaona-Bernal
- Centro Universitario de Ciencias de la Salud, Departamento de Microbiología y Patología, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico;
| | - Carlos Alberto Manuel-Cabrera
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Biotecnología Médica y Farmacéutica, Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico; (L.Z.-C.); (C.A.M.-C.); (M.M.-V.); (D.E.-Q.)
| | - Moisés Martínez-Velázquez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Biotecnología Médica y Farmacéutica, Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico; (L.Z.-C.); (C.A.M.-C.); (M.M.-V.); (D.E.-Q.)
| | - Carla Sánchez-Hernández
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Departamento de Producción Agrícola, Universidad de Guadalajara, Carretera Guadalajara-Nogales km 15.5, Zapopan 45510, Mexico;
| | - Darwin Elizondo-Quiroga
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Biotecnología Médica y Farmacéutica, Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico; (L.Z.-C.); (C.A.M.-C.); (M.M.-V.); (D.E.-Q.)
| | - Tanya Amanda Camacho-Villegas
- CONACYT-CIATEJ, Unidad de Biotecnología Médica y Farmacéutica, Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico;
| | - Abel Gutiérrez-Ortega
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Biotecnología Médica y Farmacéutica, Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico; (L.Z.-C.); (C.A.M.-C.); (M.M.-V.); (D.E.-Q.)
- Correspondence:
| |
Collapse
|
19
|
Oral Immunization of Larvae and Juvenile of Lumpfish ( Cyclopterus lumpus) against Vibrio anguillarum Does Not Influence Systemic Immunity. Vaccines (Basel) 2021; 9:vaccines9080819. [PMID: 34451944 PMCID: PMC8402551 DOI: 10.3390/vaccines9080819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
Vibrio anguillarum, a marine bacterial pathogen that causes vibriosis, is a recurrent pathogen of lumpfish (Cyclopterus lumpus). Lumpfish is utilized as a cleaner fish in the Atlantic salmon (Salmo salar) aquaculture in the North Atlantic region because of its ability to visualize and prey on the ectoparasite sea lice (Lepeophtheirus salmonis) on the skin of Atlantic salmon, and its performance in cold environments. Lumpfish immunity is critical for optimal performance and sea lice removal. Oral vaccine delivery at a young age is the desired method for fish immunization because is easy to use, reduces fish stress during immunization, and can be applied on a large scale while the fish are at a young age. However, the efficacy of orally delivered inactivated vaccines is controversial. In this study, we evaluated the effectiveness of a V. anguillarum bacterin orally delivered to cultured lumpfish and contrasted it to an intraperitoneal (i.p.) boost delivery. We bio-encapsulated V. anguillarum bacterin in Artemia salina live-feed and orally immunized lumpfish larvae. Vaccine intake and immune response were evaluated by microscopy and quantitative polymerase chain reaction (qPCR) analysis, respectively. qPCR analyses showed that the oral immunization of lumpfish larvae resulted in a subtle stimulation of canonical immune transcripts such as il8b, il10, igha, ighmc, ighb, ccl19, ccl20, cd8a, cd74, ifng, and lgp2. Nine months after oral immunization, one group was orally boosted, and a second group was both orally and i.p. boosted. Two months after boost immunization, lumpfish were challenged with V. anguillarum (7.8 × 105 CFU dose−1). Orally boosted fish showed a relative percentage of survival (RPS) of 2%. In contrast, the oral and i.p. boosted group showed a RPS of 75.5% (p < 0.0001). V. anguillarum bacterin that had been orally delivered was not effective in lumpfish, which is in contrast to the i.p. delivered bacterin that protected the lumpfish against vibriosis. This suggests that orally administered V. anguillarum bacterin did not reach the deep lymphoid tissues, either in the larvae or juvenile fish, therefore oral immunization was not effective. Oral vaccines that are capable of crossing the epithelium and reach deep lymphoid tissues are required to confer an effective protection to lumpfish against V. anguillarum
Collapse
|
20
|
Huang B, Zhu L, Wei H, Shi H, Zhang D, Yuan H, Luan L, Zheng N, Xu S, Nawaz W, Hong Y, Wu X, Wu Z. Potent Neutralizing Humanized Antibody With Topical Therapeutic Potential Against HPV18-Related Cervical Cancer. Front Immunol 2021; 12:678318. [PMID: 34248960 PMCID: PMC8264373 DOI: 10.3389/fimmu.2021.678318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Cervical cancer caused by human papillomavirus (HPV) infections is the fourth most common cancer in women worldwide. Current prophylactic HPV vaccines have achieved promising success in preventing HPV infection. However, still 570,000 new cases were reported in 2018. The current primary treatment for the patient with cervical cancer is either surgery or chemoradiotherapy. Cervical cancer still lacks standard medical therapy. HPV18 induced cervical cancer has the worst prognosis and high mortality compared to other HPV infections. The development of HPV18 related with cervical malignancy requires the persistent infection of cervical-vaginal epithelium by HPV18 subtype, which can take years to transform the epithelium. This period of repeated infection provides a window for therapeutic intervention. Neutralizing antibodies formulated as topical agents that inhibit HPV18 infection should reduce the chance of cervical malignancy. We previously demonstrated that potent neutralizing anti-sera against HPV18 infection were induced by HPV18 viral like particle (VLP) generated in mammalian cells. We, therefore, isolated two potent neutralizing antibodies, 2A12 and 8H4, from over 3,810 hybridomas prepared from mice immunized with HPV18 VLP. 2A12 and 8H4 exhibited excellent potency, with 50% virus-inhibitory concentrations (IC50) of 0.4 and 0.9 ng/ml, respectively. Furthermore, 2A12 and 8H4 recognized distinct and non-overlapping quaternary epitopes and bound specifically with HPV18. Humanized 2A12 (Hu2A12) retained comparable neutralizing activity against HPV18 infection in various acidic pH settings and in hydrogel formulation with IC50 values of 0.04 to 0.77 ng/ml, indicating that Hu2A12 will be a promising candidate for clinical development as a topical vaginal biopharmaceutical agent against HPV18 infection.
Collapse
Affiliation(s)
- Bilian Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Linjing Zhu
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Hongxia Wei
- Department of Infection, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Haixia Shi
- Department of Antibody, Y-Clone Medical Science Co. Ltd., Suzhou, China
| | - Doudou Zhang
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Huanyun Yuan
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Linlin Luan
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Shijie Xu
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Waqas Nawaz
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Ying Hong
- Obstetrics and Gynecology Department, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.,Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.,School of Life Sciences, Ningxia University, Yinchuan, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
21
|
R S J. The Immune Microenvironment in Human Papilloma Virus-Induced Cervical Lesions-Evidence for Estrogen as an Immunomodulator. Front Cell Infect Microbiol 2021; 11:649815. [PMID: 33996630 PMCID: PMC8120286 DOI: 10.3389/fcimb.2021.649815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Globally, human papilloma virus (HPV) infection is a common sexually transmitted disease. However, most of the HPV infections eventually resolve aided by the body’s efficient cell-mediated immune responses. In the vast majority of the small group of patients who develop overt disease too, it is the immune response that culminates in regression of lesions. It is therefore a rarity that persistent infection by high-risk genotypes of HPV compounded by other risk factors progresses through precancer (various grades of cervical intraepithelial neoplasia—CIN) to cervical cancer (CxCa). Hence, although CxCa is a rare culmination of HPV infection, the latter is nevertheless causally linked to >90% of cancer. The three ‘Es’ of cancer immunoediting viz. elimination, equilibrium, and escape come into vogue during the gradual evolution of CIN 1 to CxCa. Both cell-intrinsic and extrinsic mechanisms operate to eliminate virally infected cells: cell-extrinsic players are anti-tumor/antiviral effectors like Th1 subset of CD4+ T cells, CD8+ cytotoxic T cells, Natural Killer cells, etc. and pro-tumorigenic/immunosuppressive cells like regulatory T cells (Tregs), Myeloid-Derived Suppressor Cells (MDSCs), type 2 macrophages, etc. And accordingly, when immunosuppressive cells overpower the effectors e.g., in high-grade lesions like CIN 2 or 3, the scale is tilted towards immune escape and the disease progresses to cancer. Estradiol has long been considered as a co-factor in cervical carcinogenesis. In addition to the gonads, the Peyer’s patches in the gut synthesize estradiol. Over and above local production of the hormone in the tissues, estradiol metabolism by the gut microbiome: estrobolome versus tryptophan non-metabolizing microbiome, regulates free estradiol levels in the intestine and extraintestinal mucosal sites. Elevated tissue levels of the hormone serve more than one purpose: besides a direct growth-promoting action on cervical epithelial cells, estradiol acting genomically via Estrogen Receptor-α also boosts the function of the stromal and infiltrating immunosuppressive cells viz. Tregs, MDSCs, and carcinoma-associated fibroblasts. Hence as a corollary, therapeutic repurposing of Selective Estrogen Receptor Disruptors or aromatase inhibitors could be useful for modulating immune function in cervical precancer/cancer. The immunomodulatory role of estradiol in HPV-mediated cervical lesions is reviewed.
Collapse
Affiliation(s)
- Jayshree R S
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| |
Collapse
|
22
|
He J, Li T, Wang Y, Song Z, Li Q, Liu Y, Cui Y, Ma S, Deng J, Wei X, Ding X. Genetic variability of human papillomavirus type 39 based on E6, E7 and L1 genes in Southwest China. Virol J 2021; 18:72. [PMID: 33832494 PMCID: PMC8027298 DOI: 10.1186/s12985-021-01528-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Background Human papillomavirus type 39 associated with genital intraepithelial neoplasia and invasive cancers, has a high prevalence in Southwest China. HPV E6, E7 are two main papillomavirus oncoproteins, closely relate to the function of HPV immortalization, cell transformation, and carcinogenesis. L1 is the major capsid protein, can reflect the replication status of the virus in cells and the progression of cervical lesions. The purpose of this study is to reveal the prevalence of HPV 39 and the genetic polymorphisms of HPV39 based on E6, E7 and L1 gene in southwest China. Methods Cell samples were collected by cervical scraped for HPV detecting and typing, and HPV39 positive samples were selected out. Important E6, E7 and L1 genes of HPV39 were sequenced and analyzed for the study of HPV39 genetic polymorphisms. Phylogenetic trees were constructed by Maximum-likelihood and Kimura 2-parameters methods in Molecular Evolutionary Genetics Analysis version 6.0. The selection pressures of E6, E7 and L1 genes were estimated by Datamonkey web server. The secondary and three-dimensional structure of HPV39 E6, E7 proteins were created by sopma server and SWISS-MODEL software.
Results 344 HPV39 positive samples were selected from 5718 HPV positive cell samples. Among HPV39 E6-E7 sequences, 20 single nucleotide mutations were detected, including 10 non-synonymous and 10 synonymous mutations; 26 single nucleotide mutations were detected in HPV39 L1 sequences, including 7 non-synonymous and 19 synonymous mutations respectively. 11 novel variants of HPV39 E6-E7 (5 in E6 and 6 in E7) and 14 novel variants of HPV39 L1 were identified in this study. A-branch was the most frequent HPV39 lineage in southwest China during our investigation. Selective pressure analysis showed that codon sites 26, 87, 151 in E6 and 75, 180, 222, 272, 284, 346, 356 in L1 were positively selected sites, as well as codon sites 45, 138, 309, 381 were negative selection sites in L1 gene, E7 has neither positive selection sites nor negative selection sites. A certain degree of secondary and three-dimensional structure dislocation was existed due to the non-synonymous mutations. Conclusions Amino acid substitution affected the secondary and three-dimensional structure of HPV39, and resulting in the differences of carcinogenic potential and biological functions as well as the immune response due to the antigen epitopes difference, the antigen epitopes with stronger adaptability in Southwest will be screened out based on the above research results for the later vaccine development. And gene polymorphism of HPV39 in Southwest China may improve the effectiveness of clinical test and vaccine design, specifically for women in Southwest China.
Collapse
Affiliation(s)
- Jiaoyu He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Tianjun Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Youliang Wang
- The People's Hospital of Pengzhou, Pengzhou, Sichuan, People's Republic of China
| | - Zhilin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Qiufu Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Yiran Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Yanru Cui
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Siyu Ma
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Junhang Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Xia Wei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Xianping Ding
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China. .,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China. .,Institute of Medical Genetics, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
23
|
Thomas A, Necchi A, Muneer A, Tobias-Machado M, Tran ATH, Van Rompuy AS, Spiess PE, Albersen M. Penile cancer. Nat Rev Dis Primers 2021; 7:11. [PMID: 33574340 DOI: 10.1038/s41572-021-00246-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/27/2022]
Abstract
Penile squamous cell carcinoma (PSCC) is a rare cancer with orphan disease designation and a prevalence of 0.1-1 per 100,000 men in high-income countries, but it constitutes up to 10% of malignancies in men in some African, Asian and South American regions. Risk factors for PSCC include the absence of childhood circumcision, phimosis, chronic inflammation, poor penile hygiene, smoking, immunosuppression and infection with human papillomavirus (HPV). Several different subtypes of HPV-related and non-HPV-related penile cancers have been described, which also have different prognostic profiles. Localized disease can be effectively managed by topical therapy, surgery or radiotherapy. As PSCC is characterized by early lymphatic spread and imaging is inadequate for the detection of micrometastatic disease, correct and upfront surgical staging of the inguinal lymph nodes is crucial in disease management. Advanced stages of disease require multimodal management. Optimal sequencing of treatments and patient selection are still being investigated. Cisplatin-based chemotherapy regimens are the mainstay of systemic therapy for advanced PSCC, but they have poor and non-durable responses and high rates of toxic effects, indicating a need for the development of more effective and less toxic therapeutic options. Localized and advanced penile cancers and their treatment have profound physical and psychosexual effects on the quality of life of patients and survivors by altering sexual and urinary function and causing lymphoedema.
Collapse
Affiliation(s)
- Anita Thomas
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Urology, University Hospitals Leuven, Leuven, Belgium.,Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Andrea Necchi
- Genitourinary Medical Oncology, IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - Asif Muneer
- Department of Urology, University College London Hospitals, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre, University College London Hospitals, London, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Marcos Tobias-Machado
- Section of Urologic Oncology, Department of Urology, ABC Medical School, Instituto do Cancer Vieira de Carvalho, São Paulo, Brazil
| | - Anna Thi Huyen Tran
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | | | - Philippe E Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Maarten Albersen
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium. .,Department of Urology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Gasmi Benahmed A, Gasmi A, Dadar M, Arshad M, Bjørklund G. The role of sugar-rich diet and salivary proteins in dental plaque formation and oral health. J Oral Biosci 2021; 63:134-141. [PMID: 33497842 DOI: 10.1016/j.job.2021.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dental plaque is a complex colorless film of bacteria that develops on the surfaces of teeth. Different mechanisms of microbial adhesion to tooth surfaces exist. Both non-specific and specific types of adherence have been anticipated. HIGHLIGHT The present review evaluated the effect of sugar-rich diet and salivary proteins on oral hygiene and dental plaque development. CONCLUSION The oral microbiota is essential for maintaining and reestablishing a healthy oral cavity. Different types of sugars have different effects on the inhibition and formation of dental plaque. The peptides, proteins, and amino acids secreted by parotid glands in the oral cavity facilitate neutralizing the acidity in dental plaque and preventing dental caries. A properly balanced diet is crucial for both a healthy oral cavity and the oral microbiome.
Collapse
Affiliation(s)
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maria Arshad
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo I Rana, Norway.
| |
Collapse
|
25
|
Osazuwa-Peters N, Simpson MC, Rohde RL, Challapalli SD, Massa ST, Adjei Boakye E. Differences in Sociodemographic Correlates of Human Papillomavirus-Associated Cancer Survival in the United States. Cancer Control 2021; 28:10732748211041894. [PMID: 34696619 PMCID: PMC8552385 DOI: 10.1177/10732748211041894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Human papillomavirus (HPV)-associated cancers account for about 9% of the cancer mortality burden in the United States; however, survival differs among sociodemographic factors. We determine sociodemographic and clinical variables associated with HPV-associated cancer survival. METHODS Data derived from the Surveillance, Epidemiology, and End Results 18 cancer registry were analyzed for a cohort of adult patients diagnosed with a first primary HPV-associated cancer (anal, cervical, oropharyngeal, penile, vaginal, and vulvar cancers), between 2007 and 2015. Multivariable Fine and Gray proportional hazards regression models stratified by anatomic site estimated the association of sociodemographic and clinical variables and cancer-specific survival. RESULTS A total of 77 774 adults were included (11 216 anal, 27 098 cervical, 30 451 oropharyngeal, 2221 penile, 1176 vaginal, 5612 vulvar; average age = 57.2 years). The most common HPV-associated cancer was cervical carcinoma (58%) for females and oropharyngeal (81%) for male. Among patients diagnosed with anal/rectal squamous cell carcinoma (SCC), males had a higher risk of death than females. NonHispanic (NH) blacks had a higher risk of death from anal/rectal SCC, oropharyngeal SCC, and cervical carcinoma; and Hispanics had a higher risk of death from oropharyngeal SCC than NH whites. Marital status was associated with risk of death for all anatomic sites except vulvar. Compared to nonMedicaid insurance, patients with Medicaid and uninsured had higher risk of death from anal/rectal SCC, oropharyngeal SCC, and cervical carcinoma. CONCLUSIONS There exists gender (anal) and racial and insurance (anal, cervical, and oropharyngeal) disparities in relative survival. Concerted efforts are needed to increase and sustain progress made in HPV vaccine uptake among these specific patient subgroups, to reduce cancer incidence.
Collapse
Affiliation(s)
- Nosayaba Osazuwa-Peters
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Matthew C. Simpson
- Department of Otolaryngology-Head and Neck Surgery, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Rebecca L. Rohde
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sai D Challapalli
- Department of Otorhinolaryngology, Head and Neck Surgery, McGovern Medical School, Houston, TX, USA
| | - Sean T. Massa
- Department of Otolaryngology, Head and Neck Surgery, Washington University in Saint Louis School of Medicine, St Louis, MO, USA
| | - Eric Adjei Boakye
- Department of Population Science and Policy, Southern Illinois University School of Medicine, Springfield, IL, USA
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
26
|
Schmidt S, Bonilla WV, Reiter A, Stemeseder F, Kleissner T, Oeler D, Berka U, El-Gazzar A, Kiefmann B, Schulha SC, Raguz J, Habbeddine M, Scheinost M, Qing X, Lauterbach H, Matushansky I, Pinschewer DD, Orlinger KK. Live-attenuated lymphocytic choriomeningitis virus-based vaccines for active immunotherapy of HPV16-positive cancer. Oncoimmunology 2020; 9:1809960. [PMID: 33457095 PMCID: PMC7781782 DOI: 10.1080/2162402x.2020.1809960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Infection with human papillomavirus (HPV) is associated with a variety of cancer types and limited therapy options. Therapeutic cancer vaccines targeting the HPV16 oncoproteins E6 and E7 have recently been extensively explored as a promising immunotherapy approach to drive durable antitumor T cell immunity and induce effective tumor control. With the goal to achieve potent and lasting antitumor T cell responses, we generated a novel lymphocytic choriomeningitis virus (LCMV)-based vaccine, TT1-E7E6, targeting HPV16 E6 and E7. This replication-competent vector was stably attenuated using a three-segmented viral genome packaging strategy. Compared to wild-type LCMV, TT1-E7E6 demonstrated significantly reduced viremia and CNS immunopathology. Intravenous vaccination of mice with TT1-E7E6 induced robust expansion of HPV16-specific CD8+ T cells producing IFN-γ, TNF-α and IL-2. In the HPV16 E6 and E7-expressing TC-1 tumor model, mice immunized with TT1-E7E6 showed significantly delayed tumor growth or complete tumor clearance accompanied with prolonged survival. Tumor control by TT1-E7E6 was also achieved in established large-sized tumors in this model. Furthermore, a combination of TT1-E7E6 with anti-PD-1 therapy led to enhanced antitumor efficacy with complete tumor regression in the majority of tumor-bearing mice that were resistant to anti-PD-1 treatment alone. TT1-E7E6 vector itself did not exhibit oncolytic properties in TC-1 cells, while the antitumor effect was associated with the accumulation of HPV16-specific CD8+ T cells with reduced PD-1 expression in the tumor tissues. Together, our results suggest that TT1-E7E6 is a promising therapeutic vaccine for HPV-positive cancers.
Collapse
Affiliation(s)
| | - Weldy V Bonilla
- Department of Biomedicine - Haus Petersplatz, Petersplatz 10, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Petersplatz 10, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | | |
Collapse
|
27
|
Gupta AK, Kumar M. HPVomics: An integrated resource for the human papillomavirus epitome and therapeutics. Genomics 2020; 112:4853-4862. [PMID: 32871223 DOI: 10.1016/j.ygeno.2020.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 12/01/2022]
Abstract
Human papillomaviruses (HPVs) belongs to the Papillomaviridae family, which is divided into high-risk (HR), and low-risk (LR) HPVs based on their disease-causing competence. HR-HPVs 16 and 18 are known to cause distinct carcinomas like cervical and head and neck, whereas LR-HPVs are commonly associated with the genital warts. We have developed an integrative platform; HPVomics dedicated to the potential therapeutic regimens targeting all HPV genes including oncoproteins E6, E7 and E5. We primarily focused on eighteen HR-HPVs and eleven LR-HPVs. It mainly deals with therapeutically imperative elements, i.e., vaccine epitopes, siRNAs, sgRNAs, and anti-viral peptides. Simultaneously, it also comprises of genome browser, whole-genome sequences and annotation of HPVs with searching and filtering capabilities. Moreover, we have also developed an integrated support vector machine (SVM) based computational algorithm "HPVepi" for the prediction of HPV epitome. We hope that HPVomics (http://bioinfo.imtech.res.in/manojk/hpvomics/) will assist the scientific community engaged in HPV research.
Collapse
Affiliation(s)
- Amit Kumar Gupta
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160036, India.
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
28
|
Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z, Agi E. Development of multiepitope therapeutic vaccines against the most prevalent high-risk human papillomaviruses. Immunotherapy 2020; 12:459-479. [DOI: 10.2217/imt-2019-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Our goal was the development of DNA- or peptide-based multiepitope vaccines targeting HPV E7, E6 and E5 oncoproteins in tumor mouse model. Materials & methods: After designing the multiepitope E7, E6 and E5 constructs from four types of high risk HPVs (16, 18, 31 & 45) using bioinformatics tools, mice vaccination was performed by different homologous and heterologous modalities in a prophylactic setting. Then, anti-tumor effects of the best prophylactic strategies were studied in a therapeutic setting. Results: In both prophylactic and therapeutic experiments, groups receiving homologous E7+E6+E5 polypeptide, and heterologous E7+E6+E5 DNA prime/polypeptide boost were successful in complete rejection of tumors. Conclusion: The designed multiepitope constructs can be considered as promising candidates to develop effective therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Heidar Ali Panahi
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Javadi
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| |
Collapse
|
29
|
Mboumba Bouassa RS, Péré H, Jenabian MA, Veyer D, Meye JF, Touzé A, Bélec L. Natural and vaccine-induced B cell-derived systemic and mucosal humoral immunity to human papillomavirus. Expert Rev Anti Infect Ther 2020; 18:579-607. [PMID: 32242472 DOI: 10.1080/14787210.2020.1750950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Human papillomavirus (HPV) are the causative agent of mucosal neoplasia. Both cervical, anal and oropharyngeal cancers incidence is constantly increasing, making the HPV infection, a significant worldwide concern. Together, the CD8+ T cytotoxic cell-mediated response and the HPV-specific antibody response control most of the HPV infections before the development of cancers.Areas covered: We searched the MEDLINE and EMBASE databases and identified 228 eligible studies from 1987 to 2019 which examines both naturally acquired and vaccine induced humoral immunity against HPV infection in female and male subjects from worldwide origin. Herein, we synthesize current knowledge on the features of systemic and mucosal humoral immunity against HPV. We discuss the issues of the balance between the viral clearance or the escape to the host immune response, the differences between natural and vaccine-induced HPV-specific antibodies and their neutralizing capability. We also discuss the protection afforded after natural infection or following prophylactic vaccination.Expert opinion: Understanding the antibody response induced by HPV infection has led to the design of first-generation prophylactic vaccines. Now, prophylactic vaccination induces protective and long-lasting antibody response which would also strengthened the natural moderate humoral response in people previously exposed to the virus.
Collapse
Affiliation(s)
- Ralph-Sydney Mboumba Bouassa
- Laboratoire De Virologie, Assistance Publique-Hôpitaux De Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France.,Laboratoire de virologie, Ecole Doctorale Régionale En Infectiologie Tropicale, Franceville, Gabon.,INSERM UMR U970 (Immunothérapie Et Traitement Anti-angiogénique En cancérologie), Paris Centre De Recherche Cardiovasculaire (PARCC), Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Hélène Péré
- Laboratoire De Virologie, Assistance Publique-Hôpitaux De Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France.,INSERM UMR U970 (Immunothérapie Et Traitement Anti-angiogénique En cancérologie), Paris Centre De Recherche Cardiovasculaire (PARCC), Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Mohammad-Ali Jenabian
- Département Des Sciences Biologiques Et Centre De Recherche BioMed, Université Du Québec À Montréal (UQAM), Montreal, QC, Canada
| | - David Veyer
- Laboratoire De Virologie, Assistance Publique-Hôpitaux De Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Jean-François Meye
- Service De Gynécologie Obstétrique, Centre Hospitalo-Universitaire d'Agondjé Et Faculté De Médecine De Libreville, Université Des Sciences De La Santé, Libreville, Gabon
| | - Antoine Touzé
- UMRINRA ISP 1282, Equipe Biologie Des Infections À Polyomavirus, Université De Tours, Tours, France
| | - Laurent Bélec
- Laboratoire De Virologie, Assistance Publique-Hôpitaux De Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France.,INSERM UMR U970 (Immunothérapie Et Traitement Anti-angiogénique En cancérologie), Paris Centre De Recherche Cardiovasculaire (PARCC), Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France
| |
Collapse
|
30
|
Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020; 9:13-30. [PMID: 32161726 PMCID: PMC7049754 DOI: 10.2147/itt.s241064] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
The use of vaccines have resulted in a remarkable improvement in global health. It has saved several lives, reduced treatment costs and raised the quality of animal and human lives. Current traditional vaccines came empirically with either vague or completely no knowledge of how they modulate our immune system. Even at the face of potential vaccine design advance, immune-related concerns (as seen with specific vulnerable populations, cases of emerging/re-emerging infectious disease, pathogens with complex lifecycle and antigenic variability, need for personalized vaccinations, and concerns for vaccines' immunological safety -specifically vaccine likelihood to trigger non-antigen-specific responses that may cause autoimmunity and vaccine allergy) are being raised. And these concerns have driven immunologists toward research for a better approach to vaccine design that will consider these challenges. Currently, immunoinformatics has paved the way for a better understanding of some infectious disease pathogenesis, diagnosis, immune system response and computational vaccinology. The importance of this immunoinformatics in the study of infectious diseases is diverse in terms of computational approaches used, but is united by common qualities related to host–pathogen relationship. Bioinformatics methods are also used to assign functions to uncharacterized genes which can be targeted as a candidate in vaccine design and can be a better approach toward the inclusion of women that are pregnant into vaccine trials and programs. The essence of this review is to give insight into the need to focus on novel computational, experimental and computation-driven experimental approaches for studying of host–pathogen interactions and thus making a case for its use in vaccine development.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Wilson Okechukwu Obialor
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Martins Ositadimma Ifeanyichukwu
- Department of Immunology, College of Health Sciences, Faculty of Medicine, Nnamdi Azikiwe University, Anambra, Nigeria.,Department of Medical Laboratory Science,Faculty of Health Science and Technology, College of Health Sciences, Nnamdi Azikiwe University,Nnewi Campus, Nnewi, Nigeria
| | - Damian Chukwu Odimegwu
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Enugu, Nigeria
| | - Jude Nnaemeka Okoyeh
- Department of Biology and Clinical Laboratory Science, Division of Arts and Sciences, Neumann University, Aston, PA 19014-1298, USA
| | - George Ogonna Emechebe
- Department of Pediatrics, Faculty of Clinical Medicine, Chukwuemeka Odumegwu Ojukwu University, Awka, Nigeria
| | - Samson Adedeji Adejumo
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Gordon C Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
31
|
Aldhafeeri K, Alshaikh M, Kilany F, AlKhaldi S, Alamri A. Unusual Manifestation of Benign Squamous Papilloma of the Uvula: A Case Report and Review of Literature. Cureus 2020; 12:e6716. [PMID: 32133247 PMCID: PMC7034761 DOI: 10.7759/cureus.6716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Squamous papilloma is an exophytic overgrowth of the soft tissue that is associated with human papillomavirus infection. It is rarely reported in the literature and uncommonly located on the uvula. We report a rare case of a squamous papilloma located in the uvula. Despite the small size of the tumor, the patient complaints were significant to mass-related symptoms. In addition, related literature was reviewed and results were discussed.
Collapse
Affiliation(s)
- Khalid Aldhafeeri
- Otorhinolaryngology Head and Neck Surgery, Royal Commission Hospital, Jubail, SAU
| | - Mohammed Alshaikh
- Otolaryngology, ENT and Cochlear Implant Center, Royal Commission Hospital, Jubail, SAU
| | - Fawziyah Kilany
- Otorhinolaryngology Head and Neck Surgery, Royal Commission Hospital, Jubail, SAU
| | - Saud AlKhaldi
- Otolaryngology, College of Medicine, Royal Commission Hospital, Jubail, SAU
| | - Abdullah Alamri
- Otolaryngology Head and Neck Surgery, King Fahad General Hospital, Jeddah, SAU
| |
Collapse
|
32
|
Šterbenc A, Triglav T, Poljak M. An update on prophylactic human papillomavirus (HPV) vaccines: a review of key literature published between September 2018 and September 2019. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2019. [DOI: 10.15570/actaapa.2019.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|