1
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2024; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
2
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Xie R, Luo Y, Bao B, Wu X, Guo J, Wang J, Qu X, Che X, Zheng C. The Role of Fatty Acid Metabolism, the Related Potential Biomarkers, and Targeted Therapeutic Strategies in Gastrointestinal Cancers. Drug Dev Res 2024; 85:e70014. [PMID: 39527665 DOI: 10.1002/ddr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Gastrointestinal cancer has emerged as a significant global health concern due to its high incidence and mortality, limited effectiveness of early detection, suboptimal treatment outcomes, and poor prognosis. Metabolic reprogramming is a prominent feature of cancer, and fatty acid metabolism assumes a pivotal role in bridging glucose metabolism and lipid metabolism. Fatty acids play important roles in cellular structural composition, energy supply, signal transduction, and other lipid-related processes. Changes in the levels of fatty acid metabolite may indicate the malignant transformation of gastrointestinal cells, which have an impact on the prognosis of patients and can be used as a marker to monitor the efficacy of anticancer therapy. Therefore, targeting key enzymes involved in fatty acid metabolism, either as monotherapy or in combination with other agents, is a promising strategy for anticancer treatment. This article reviews the potential mechanisms of fatty acid metabolism disorders in the occurrence and development of gastrointestinal tumors, and summarizes the related potential biomarkers and anticancer strategies.
Collapse
Affiliation(s)
- Ruixi Xie
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Luo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bowen Bao
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinshu Wu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia Guo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin Wang
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunlei Zheng
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Oncology, Shanghai Electric Power Hospital, Shanghai, China
| |
Collapse
|
4
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Cuyàs E, Pedarra S, Verdura S, Pardo MA, Espin Garcia R, Serrano-Hervás E, Llop-Hernández À, Teixidor E, Bosch-Barrera J, López-Bonet E, Martin-Castillo B, Lupu R, Pujana MA, Sardanyès J, Alarcón T, Menendez JA. Fatty acid synthase (FASN) is a tumor-cell-intrinsic metabolic checkpoint restricting T-cell immunity. Cell Death Discov 2024; 10:417. [PMID: 39349429 PMCID: PMC11442875 DOI: 10.1038/s41420-024-02184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024] Open
Abstract
Fatty acid synthase (FASN)-catalyzed endogenous lipogenesis is a hallmark of cancer metabolism. However, whether FASN is an intrinsic mechanism of tumor cell defense against T cell immunity remains unexplored. To test this hypothesis, here we combined bioinformatic analysis of the FASN-related immune cell landscape, real-time assessment of cell-based immunotherapy efficacy in CRISPR/Cas9-based FASN gene knockout (FASN KO) cell models, and mathematical and mechanistic evaluation of FASN-driven immunoresistance. FASN expression negatively correlates with infiltrating immune cells associated with cancer suppression, cytolytic activity signatures, and HLA-I expression. Cancer cells engineered to carry a loss-of-function mutation in FASN exhibit an enhanced cytolytic response and an accelerated extinction kinetics upon interaction with cytokine-activated T cells. Depletion of FASN results in reduced carrying capacity, accompanied by the suppression of mitochondrial OXPHOS and strong downregulation of electron transport chain complexes. Targeted FASN depletion primes cancer cells for mitochondrial apoptosis as it synergizes with BCL-2/BCL-XL-targeting BH3 mimetics to render cancer cells more susceptible to T-cell-mediated killing. FASN depletion prevents adaptive induction of PD-L1 in response to interferon-gamma and reduces constitutive overexpression of PD-L1 by abolishing PD-L1 post-translational palmitoylation. FASN is a novel tumor cell-intrinsic metabolic checkpoint that restricts T cell immunity and may be exploited to improve the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Stefano Pedarra
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Miguel Angel Pardo
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roderic Espin Garcia
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Eduard Teixidor
- Medical Oncology, Catalan Institute of Oncology, 17007, Girona, Spain
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology, 17007, Girona, Spain
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071, Girona, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, 17007, Girona, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Unit of Clinical Research, Catalan Institute of Oncology, 17007, Girona, Spain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Laboratory, Rochester, MN, 55905, USA
| | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Sardanyès
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
| | - Tomás Alarcón
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
- ICREA, 08010, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain.
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain.
| |
Collapse
|
6
|
Ghosh S, Dutta R, Ghatak D, Goswami D, De R. Immunometabolic characteristics of Dendritic Cells and its significant modulation by mitochondria-associated signaling in the tumor microenvironment influence cancer progression. Biochem Biophys Res Commun 2024; 726:150268. [PMID: 38909531 DOI: 10.1016/j.bbrc.2024.150268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Dendritic cells (DCs) mediated T-cell responses is critical to anti-tumor immunity. This study explores immunometabolic attributes of DC, emphasizing on mitochondrial association, in Tumor Microenvironment (TME) that regulate cancer progression. Conventional DC subtypes cross-present tumor-associated antigens to activate lymphocytes. However, plasmacytoid DCs participate in both pro- and anti-tumor signaling where mitochondrial reactive oxygen species (mtROS) play crucial role. CTLA-4, CD-47 and other surface-receptors of DC negatively regulates T-cell. Increased glycolysis-mediated mitochondrial citrate buildup and translocation to cytosol with augmented NADPH, enhances mitochondrial fatty acid synthesis fueling DCs. Different DC subtypes and stages, exhibit variable mitochondrial content, membrane potential, structural dynamics and bioenergetic metabolism regulated by various cytokine stimulation, e.g., GM-CSF, IL-4, etc. CD8α+ cDC1s augmented oxidative phosphorylation (OXPHOS) which diminishes at advance effector stages. Glutaminolysis in mitochondria supplement energy in DCs but production of kynurenine and other oncometabolites leads to immunosuppression. Mitochondria-associated DAMPs cause activation of cGAS-STING pathway and inflammasome oligomerization stimulating DC and T cells. In this study, through a comprehensive survey and critical analysis of the latest literature, the potential of DC metabolism for more effective tumor therapy is highlighted. This underscores the need for future research to explore specific therapeutic targets and potential drug candidates.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
7
|
Sant'Ana AN, Kehl Dias C, Krolow E Silva S, Figueiró F. Immunometabolism in cancer: A journey into innate and adaptive cells. Int Rev Immunol 2024; 44:17-30. [PMID: 39267425 DOI: 10.1080/08830185.2024.2401353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
In recent years, mostly spanning the past decade, the concept of immunometabolism has ushered with a novel perspective on carcinogenesis, tumor progression, and tumor response to therapy. It has become clear that the metabolic state of immune cells plays a significant role in shaping their antitumor or protumor activities within the cancer microenvironment. Consequently, the examination of tumor metabolic heterogeneity, including an exploration of immunometabolism, proves indispensable for enhancing prognostic tools and advancing the quest for personalized treatments. Here we have delved into how metabolic reprogramming profoundly influences the acquisition and maintenance of functional states, spanning from effector and cytotoxic profiles to regulatory and immunosuppressive phenotypes in both innate and adaptive immunity. These alterations wield considerable influence over tumor evolution and affect the outcome of cancer. Furthermore, we explore some of the cellular signaling mechanisms that underpin the metabolic and phenotypic flexibility of immune cells in response to external stimuli.
Collapse
Affiliation(s)
- Alexia Nedel Sant'Ana
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Camila Kehl Dias
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Sacha Krolow E Silva
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Zhang H, Li S, Wang D, Liu S, Xiao T, Gu W, Yang H, Wang H, Yang M, Chen P. Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment. Biomark Res 2024; 12:96. [PMID: 39227970 PMCID: PMC11373140 DOI: 10.1186/s40364-024-00646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Tumor cells possess complex immune evasion mechanisms to evade immune system attacks, primarily through metabolic reprogramming, which significantly alters the tumor microenvironment (TME) to modulate immune cell functions. When a tumor is sufficiently immunogenic, it can activate cytotoxic T-cells to target and destroy it. However, tumors adapt by manipulating their metabolic pathways, particularly glucose, amino acid, and lipid metabolism, to create an immunosuppressive TME that promotes immune escape. These metabolic alterations impact the function and differentiation of non-tumor cells within the TME, such as inhibiting effector T-cell activity while expanding regulatory T-cells and myeloid-derived suppressor cells. Additionally, these changes lead to an imbalance in cytokine and chemokine secretion, further enhancing the immunosuppressive landscape. Emerging research is increasingly focusing on the regulatory roles of non-tumor cells within the TME, evaluating how their reprogrammed glucose, amino acid, and lipid metabolism influence their functional changes and ultimately aid in tumor immune evasion. Despite our incomplete understanding of the intricate metabolic interactions between tumor and non-tumor cells, the connection between these elements presents significant challenges for cancer immunotherapy. This review highlights the impact of altered glucose, amino acid, and lipid metabolism in the TME on the metabolism and function of non-tumor cells, providing new insights that could facilitate the development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Haixia Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shizhen Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyang Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
9
|
De Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat Rev Immunol 2024; 24:654-669. [PMID: 38649722 PMCID: PMC11365797 DOI: 10.1038/s41577-024-01026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Accumulating evidence suggests that metabolic rewiring in malignant cells supports tumour progression not only by providing cancer cells with increased proliferative potential and an improved ability to adapt to adverse microenvironmental conditions but also by favouring the evasion of natural and therapy-driven antitumour immune responses. Here, we review cancer cell-intrinsic and cancer cell-extrinsic mechanisms through which alterations of metabolism in malignant cells interfere with innate and adaptive immune functions in support of accelerated disease progression. Further, we discuss the potential of targeting such alterations to enhance anticancer immunity for therapeutic purposes.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Cenigaonandia‐Campillo A, Garcia‐Bautista A, Rio‐Vilariño A, Cebrian A, del Puerto L, Pellicer JA, Gabaldón JA, Pérez‐Sánchez H, Carmena‐Bargueño M, Meroño C, Traba J, Fernandez‐Aceñero MJ, Baños‐Herraiz N, Mozas‐Vivar L, Núñez‐Delicado E, Garcia‐Foncillas J, Aguilera Ó. Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrest. Mol Oncol 2024; 18:2212-2233. [PMID: 38425123 PMCID: PMC11467799 DOI: 10.1002/1878-0261.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), metabolic rewiring and resistance to standard therapy are closely associated. PDAC cells show enormous requirements for glucose-derived citrate, the first rate-limiting metabolite in the synthesis of new lipids. Both the expression and activity of citrate synthase (CS) are extraordinarily upregulated in PDAC. However, no previous relationship between gemcitabine response and citrate metabolism has been documented in pancreatic cancer. Here, we report for the first time that pharmacological doses of vitamin C are capable of exerting an inhibitory action on the activity of CS, reducing glucose-derived citrate levels. Moreover, ascorbate targets citrate metabolism towards the de novo lipogenesis pathway, impairing fatty acid synthase (FASN) and ATP citrate lyase (ACLY) expression. Lowered citrate availability was found to be directly associated with diminished proliferation and, remarkably, enhanced gemcitabine response. Moreover, the deregulated citrate-derived lipogenic pathway correlated with a remarkable decrease in extracellular pH through inhibition of lactate dehydrogenase (LDH) and overall reduced glycolytic metabolism. Modulation of citric acid metabolism in highly chemoresistant pancreatic adenocarcinoma, through molecules such as vitamin C, could be considered as a future clinical option to improve patient response to standard chemotherapy regimens.
Collapse
Affiliation(s)
| | - Ana Garcia‐Bautista
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Anxo Rio‐Vilariño
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Arancha Cebrian
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Laura del Puerto
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - José Antonio Pellicer
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Horacio Pérez‐Sánchez
- Bioinformatics and High‐Performance Computing Research Group (BIO‐HPC), Computer Engineering DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Miguel Carmena‐Bargueño
- Bioinformatics and High‐Performance Computing Research Group (BIO‐HPC), Computer Engineering DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Carolina Meroño
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones CientíficasUniversidad Autónoma de Madrid (CSIC‐UAM)Spain
- Instituto Universitario de Biología Molecular‐UAM (IUBM‐UAM), Departamento de Biología MolecularUniversidad Autónoma de MadridSpain
| | - Javier Traba
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones CientíficasUniversidad Autónoma de Madrid (CSIC‐UAM)Spain
- Instituto Universitario de Biología Molecular‐UAM (IUBM‐UAM), Departamento de Biología MolecularUniversidad Autónoma de MadridSpain
| | | | | | - Lorena Mozas‐Vivar
- Preclinical programe START Madrid‐FJD Hospital fundación Jiménez DíazSpain
| | - Estrella Núñez‐Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Jesús Garcia‐Foncillas
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Óscar Aguilera
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
- Universidad Católica de Murcia (UCAM)Spain
| |
Collapse
|
11
|
Fattahi MJ, Sedaghat F, Haghshenas MR, Ariafar A, Shiravani Z, Malekzadeh M, Madani S. Two metabolic enzymes, LDH and FASN, serum levels in Bladder cancer patients. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:636-643. [PMID: 39359453 PMCID: PMC11444101 DOI: 10.22088/cjim.15.4.636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/07/2023] [Indexed: 10/04/2024]
Abstract
Background Bladder cancer is one of the most common cancers in the world and is associated with high treatment costs and mortality. The role of different enzymes and molecules in this cancer has been the subject of extensive research in recent years. Among these, the role of metabolic enzymes such as FASN and LDH has been studied less than others. Therefore, the present study was designed to investigate the role of FASN and LDH in bladder cancer patients. Methods One hundred cases diagnosed with bladder cancer and 50 sex-age- matched healthy individuals as control were examined. FASN and LDH serum levels in both patients and controls were determined by human-specific sandwich ELISA kits. Results Serum levels of FASN and LDH elevated in bladder cancer patients in comparison to healthy individuals (P= 0.03, P= 0.01, respectively). We also found that than higher stages of bladder cancer (III-IV) had higher serum levels of LDH and FASN compared to early stages (I-II) (P= 0.007 and P= 0.006, respectively). Moreover, there was a statistically significant association between smoking history and serum FASN levels in bladder cancer patients (P=0.015). However, there were no remarkable associations between the serum levels of LDH and FASN with other clinicopathological features including sex, age, tumor grade, and tumor size. Conclusion The data indicate that LDH and FASN may be good and useful biomarkers in the diagnosis and clinical management of bladder cancer. However, further studies are needed.
Collapse
Affiliation(s)
- Mohammad Javad Fattahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sedaghat
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ariafar
- Urology-Oncology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shiravani
- Gynecology Oncology Division, Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahyar Malekzadeh
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Madani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Bai R, Cui J. Regulation of fatty acid synthase on tumor and progress in the development of related therapies. Chin Med J (Engl) 2024; 137:1894-1902. [PMID: 38273440 PMCID: PMC11332710 DOI: 10.1097/cm9.0000000000002880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 01/27/2024] Open
Abstract
ABSTRACT Fatty acid synthase (FASN) is an essential molecule in lipid metabolic pathways, which are crucial for cancer-related studies. Recent studies have focused on a comprehensive understanding of the novel and important regulatory effects of FASN on malignant biological behavior and immune-cell infiltration, which are closely related to tumor occurrence and development, immune escape, and immune response. FASN-targeting antitumor treatment strategies are being developed. Therefore, in this review, we focused on the effects of FASN on tumor and immune-cell infiltration and reviewed the progress of related anti-tumor therapy development.
Collapse
Affiliation(s)
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
13
|
Liu Y, Zhao Y, Song H, Li Y, Liu Z, Ye Z, Zhao J, Wu Y, Tang J, Yao M. Metabolic reprogramming in tumor immune microenvironment: Impact on immune cell function and therapeutic implications. Cancer Lett 2024; 597:217076. [PMID: 38906524 DOI: 10.1016/j.canlet.2024.217076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Understanding of the metabolic reprogramming has revolutionized our insights into tumor progression and potential treatment. This review concentrates on the aberrant metabolic pathways in cancer cells within the tumor microenvironment (TME). Cancer cells differ from normal cells in their metabolic processing of glucose, amino acids, and lipids in order to adapt to heightened biosynthetic and energy needs. These metabolic shifts, which crucially alter lactic acid, amino acid and lipid metabolism, affect not only tumor cell proliferation but also TME dynamics. This review also explores the reprogramming of various immune cells in the TME. From a therapeutic standpoint, targeting these metabolic alterations represents a novel cancer treatment strategy. This review also discusses approaches targeting the regulation of metabolism of different nutrients in tumor cells and influencing the tumor microenvironment to enhance the immune response. In summary, this review summarizes metabolic reprogramming in cancer and its potential as a target for innovative therapeutic strategies, offering fresh perspectives on cancer treatment.
Collapse
Affiliation(s)
- Yuqiang Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yu Zhao
- Department of Thoracic Surgery, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China
| | - Huisheng Song
- Affiliated Qingyuan Hospital, Guangzhou Medica University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511500, China
| | - Yunting Li
- Department of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zihao Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhiming Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jianzhu Zhao
- Department of oncology, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China
| | - Yuzheng Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jun Tang
- Department of Thoracic Surgery, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China.
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
14
|
Märkl B, Reitsam NG, Grochowski P, Waidhauser J, Grosser B. The SARIFA biomarker in the context of basic research of lipid-driven cancers. NPJ Precis Oncol 2024; 8:165. [PMID: 39085485 PMCID: PMC11291993 DOI: 10.1038/s41698-024-00662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
SARIFA was very recently introduced as a histomorphological biomarker with strong prognostic power for colorectal, gastric, prostate, and pancreatic cancer. It is characterized by the direct contact between tumor cells and adipocytes due to a lack of stromal reaction. This can be easily evaluated on routinely available H&E-slides with high interobserver agreement. SARIFA also reflects a specific tumor biology driven by metabolic reprogramming. Tumor cells in SARIFA-positive tumors benefit from direct interaction with adipocytes as an external source of lipids. Numerous studies have shown that lipid metabolism is crucial in carcinogenesis and cancer progression. We found that the interaction between tumor cells and adipocytes was not triggered by obesity, as previously assumed. Instead, we believe that this is due to an immunological mechanism. Knowledge about lipid metabolism in cancer from basic experiments can be transferred to develop strategies targeting this reprogramed metabolism.
Collapse
Affiliation(s)
- Bruno Märkl
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany.
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany.
- WERA Comprehensive Cancer Center, Augsburg, Germany.
| | - Nic G Reitsam
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
| | - Przemyslaw Grochowski
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
| | - Johanna Waidhauser
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
- Hematology and Oncology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
| | - Bianca Grosser
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
| |
Collapse
|
15
|
Ahmad N, Moton S, Kuttikrishnan S, Prabhu KS, Masoodi T, Ahmad S, Uddin S. Fatty acid synthase: A key driver of ovarian cancer metastasis and a promising therapeutic target. Pathol Res Pract 2024; 260:155465. [PMID: 39018927 DOI: 10.1016/j.prp.2024.155465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Fatty acid synthase (FASN) is a critical enzyme essential for the production of fats in the body. The abnormal expression of FASN is associated with different types of malignancies, including ovarian cancer. FASN plays a crucial role in cell growth and survival as a metabolic oncogene, although the specific processes that cause its dysregulation are still unknown. FASN interacts with signaling pathways linked to the progression of cancer. Pharmacologically inhibiting or inactivating the FASN gene has shown potential in causing the death of cancer cells, offering a possible treatment approach. This review examines the function of FASN in ovarian cancer, namely its level of expression, influence on the advancement of the disease, and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Nuha Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tariq Masoodi
- Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sarfraz Ahmad
- Gynecologic Oncology Program, AdventHealth Cancer Institute, Orlando, FL 32804, USA; Florida State University, College of Medicine, Orlando, FL 32801, USA; University of Central Florida, College of Medicine, Orlando, FL 32827, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India.
| |
Collapse
|
16
|
Guo J, Yan W, Duan H, Wang D, Zhou Y, Feng D, Zheng Y, Zhou S, Liu G, Qin X. Therapeutic Effects of Natural Products on Liver Cancer and Their Potential Mechanisms. Nutrients 2024; 16:1642. [PMID: 38892575 PMCID: PMC11174683 DOI: 10.3390/nu16111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Liver cancer ranks third globally among causes of cancer-related deaths, posing a significant public health challenge. However, current treatments are inadequate, prompting a growing demand for novel, safe, and effective therapies. Natural products (NPs) have emerged as promising candidates in drug development due to their diverse biological activities, low toxicity, and minimal side effects. This paper begins by reviewing existing treatment methods and drugs for liver cancer. It then summarizes the therapeutic effects of NPs sourced from various origins on liver cancer. Finally, we analyze the potential mechanisms of NPs in treating liver cancer, including inhibition of angiogenesis, migration, and invasion; regulation of the cell cycle; induction of apoptosis, autophagy, pyroptosis, and ferroptosis; influence on tumor metabolism; immune regulation; regulation of intestinal function; and regulation of key signaling pathways. This systematic review aims to provide a comprehensive overview of NPs research in liver cancer treatment, offering a foundation for further development and application in pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Jinhong Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Wenjie Yan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Hao Duan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Diandian Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Yaxi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
| | - Shiqi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Gaigai Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Xia Qin
- Graduate Department, Beijing Union University, Beijing 100101, China
| |
Collapse
|
17
|
Liu L, Sun J, Zhong C, Zhang A, Wang G, Chen S, Zhang S, Wang M, Li L. Identification of a fatty acid metabolism-related gene signature to predict prognosis in stomach adenocarcinoma. Aging (Albany NY) 2024; 16:8552-8571. [PMID: 38742949 PMCID: PMC11164501 DOI: 10.18632/aging.205823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Fatty acid metabolism (FAM) contributes to tumorigenesis and tumor development, but the role of FAM in the progression of stomach adenocarcinoma (STAD) has not been comprehensively clarified. METHODS The expression data and clinical follow-up information were obtained from The Cancer Genome Atlas (TCGA). FAM pathway was analyzed by gene set enrichment analysis (GSEA) and single-sample GSEA (ssGSEA) methods. Univariate Cox regression analysis was conducted to select prognosis genes. Molecular subtypes were classified by consensus clustering analysis. Furthermore, least absolute shrinkage and selection operator (Lasso) analysis was employed to develop a risk model. ESTIMATE and tumour immune dysfunction and exclusion (TIDE) algorithm were used to assess immunity. pRRophetic package was conducted to predict drug sensitivity. RESULTS Based on 14 FAM related prognosis genes (FAMRG), 2 clusters were determined. Patients in C2 showed a worse overall survival (OS). Furthermore, a 7-FAMRG risk model was established as an independent predictor for STAD, with a higher riskscore indicating an unfavorable OS. High riskscore patients had higher TIDE score and these patients were more sensitive to anticancer drugs such as Bortezomib, Dasatinib and Pazopanib. A nomogram based on riskscore was an effective prediction tool applicable to clinical settings. The results from pan-cancer analysis supported a prominent application value of riskscore model in other cancer types. CONCLUSION The FAMRGs model established in this study could help predict STAD prognosis and offer new directions for future studies on dysfunctional FAM-induced damage and anti-tumor drugs in STAD disease.
Collapse
Affiliation(s)
- Lei Liu
- Department of Gastroenterology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jing Sun
- Department of Spinal Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Changqing Zhong
- Department of Gastroenterology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Ang Zhang
- Department of Hematopathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Guodong Wang
- Department of Gastroenterology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Sheng Chen
- Department of Gastroenterology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Shuai Zhang
- Department of Gastroenterology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Min Wang
- Department of Gastroenterology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Lianyong Li
- Department of Gastroenterology, Strategic Support Force Medical Center, Beijing 100101, China
| |
Collapse
|
18
|
Ucche S, Hayakawa Y. Immunological Aspects of Cancer Cell Metabolism. Int J Mol Sci 2024; 25:5288. [PMID: 38791327 PMCID: PMC11120853 DOI: 10.3390/ijms25105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer cells adeptly manipulate their metabolic processes to evade immune detection, a phenomenon intensifying the complexity of cancer progression and therapy. This review delves into the critical role of cancer cell metabolism in the immune-editing landscape, highlighting how metabolic reprogramming facilitates tumor cells to thrive despite immune surveillance pressures. We explore the dynamic interactions within the tumor microenvironment (TME), where cancer cells not only accelerate their glucose and amino acid metabolism but also induce an immunosuppressive state that hampers effective immune response. Recent findings underscore the metabolic competition between tumor and immune cells, particularly focusing on how this interaction influences the efficacy of emerging immunotherapies. By integrating cutting-edge research on the metabolic pathways of cancer cells, such as the Warburg effect and glutamine addiction, we shed light on potential therapeutic targets. The review proposes that disrupting these metabolic pathways could enhance the response to immunotherapy, offering a dual-pronged strategy to combat tumor growth and immune evasion.
Collapse
Affiliation(s)
- Sisca Ucche
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan;
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yoshihiro Hayakawa
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan;
| |
Collapse
|
19
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
20
|
Dang Q, Li B, Jin B, Ye Z, Lou X, Wang T, Wang Y, Pan X, Hu Q, Li Z, Ji S, Zhou C, Yu X, Qin Y, Xu X. Cancer immunometabolism: advent, challenges, and perspective. Mol Cancer 2024; 23:72. [PMID: 38581001 PMCID: PMC10996263 DOI: 10.1186/s12943-024-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.
Collapse
Affiliation(s)
- Qin Dang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bing Jin
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ting Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Pan
- Department of Hepatobiliary Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Rezaie J, Chodari L, Mohammadpour-Asl S, Jafari A, Niknam Z. Cell-mediated barriers in cancer immunosurveillance. Life Sci 2024; 342:122528. [PMID: 38408406 DOI: 10.1016/j.lfs.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The immune cells within the tumor microenvironment (TME) exert multifaceted functions ranging from tumor-antagonizing or tumor-promoting activities. During the initial phases of tumor development, the tumor-antagonizing immune cells in the TME combat cancer cells in an immune surveillance process. However, with time, cancer cells can evade detection and impede the immune cells' effectiveness through diverse mechanisms, such as decreasing immunogenic antigen presentation on their surfaces and/or secreting anti-immune factors that cause tolerance in TME. Moreover, some immune cells cause immunosuppressive situations and inhibit antitumoral immune responses. Physical and cellular-mediated barriers in the TME, such as cancer-associated fibroblasts, tumor endothelium, the altered lipid composition of tumor cells, and exosomes secreted from cancer cells, also mediate immunosuppression and prevent extravasation of immune cells. Due to successful clinical outcomes of cancer treatment strategies the potential barriers must be identified and addressed. We need to figure out how to optimize cancer immunotherapy strategies, and how to combine therapeutic approaches for maximum clinical benefit. This review provides a detailed overview of various cells and molecules in the TME, their association with escaping from immune surveillance, therapeutic targets, and future perspectives for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
22
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
23
|
Wu Y, Pu X, Wang X, Xu M. Reprogramming of lipid metabolism in the tumor microenvironment: a strategy for tumor immunotherapy. Lipids Health Dis 2024; 23:35. [PMID: 38302980 PMCID: PMC10832245 DOI: 10.1186/s12944-024-02024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Lipid metabolism in cancer cells has garnered increasing attention in recent decades. Cancer cells thrive in hypoxic conditions, nutrient deficiency, and oxidative stress and cannot be separated from alterations in lipid metabolism. Therefore, cancer cells exhibit increased lipid metabolism, lipid uptake, lipogenesis and storage to adapt to a progressively challenging environment, which contribute to their rapid growth. Lipids aid cancer cell activation. Cancer cells absorb lipids with the help of transporter and translocase proteins to obtain energy. Abnormal levels of a series of lipid synthases contribute to the over-accumulation of lipids in the tumor microenvironment (TME). Lipid reprogramming plays an essential role in the TME. Lipids are closely linked to several immune cells and their phenotypic transformation. The reprogramming of tumor lipid metabolism further promotes immunosuppression, which leads to immune escape. This event significantly affects the progression, treatment, recurrence, and metastasis of cancer. Therefore, the present review describes alterations in the lipid metabolism of immune cells in the TME and examines the connection between lipid metabolism and immunotherapy.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Gastroenterology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xi Pu
- Department of Gastroenterology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Department of Radiation Oncology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China.
| | - Min Xu
- Department of Gastroenterology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China.
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
24
|
Chuang YM, Tzeng SF, Ho PC, Tsai CH. Immunosurveillance encounters cancer metabolism. EMBO Rep 2024; 25:471-488. [PMID: 38216787 PMCID: PMC10897436 DOI: 10.1038/s44319-023-00038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Tumor cells reprogram nutrient acquisition and metabolic pathways to meet their energetic, biosynthetic, and redox demands. Similarly, metabolic processes in immune cells support host immunity against cancer and determine differentiation and fate of leukocytes. Thus, metabolic deregulation and imbalance in immune cells within the tumor microenvironment have been reported to drive immune evasion and to compromise therapeutic outcomes. Interestingly, emerging evidence indicates that anti-tumor immunity could modulate tumor heterogeneity, aggressiveness, and metabolic reprogramming, suggesting that immunosurveillance can instruct cancer progression in multiple dimensions. This review summarizes our current understanding of how metabolic crosstalk within tumors affects immunogenicity of tumor cells and promotes cancer progression. Furthermore, we explain how defects in the metabolic cascade can contribute to developing dysfunctional immune responses against cancers and discuss the contribution of immunosurveillance to these defects as a feedback mechanism. Finally, we highlight ongoing clinical trials and new therapeutic strategies targeting cellular metabolism in cancer.
Collapse
Affiliation(s)
- Yu-Ming Chuang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Sheue-Fen Tzeng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| | - Chin-Hsien Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
25
|
Xiao Y, Yang Y, Xiong H, Dong G. The implications of FASN in immune cell biology and related diseases. Cell Death Dis 2024; 15:88. [PMID: 38272906 PMCID: PMC10810964 DOI: 10.1038/s41419-024-06463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Fatty acid metabolism, particularly fatty acid synthesis, is a very important cellular physiological process in which nutrients are used for energy storage and biofilm synthesis. As a key enzyme in the fatty acid metabolism, fatty acid synthase (FASN) is receiving increasing attention. Although previous studies on FASN have mainly focused on various malignancies, many studies have recently reported that FASN regulates the survival, differentiation, and function of various immune cells, and subsequently participates in the occurrence and development of immune-related diseases. However, few studies to date systematically summarized the function and molecular mechanisms of FASN in immune cell biology and related diseases. In this review, we discuss the regulatory effect of FASN on immune cells, and the progress in research on the implications of FASN in immune-related diseases. Understanding the function of FASN in immune cell biology and related diseases can offer insights into novel treatment strategies for clinical diseases.
Collapse
Affiliation(s)
- Yucai Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272007, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
26
|
Zhang S, Lv K, Liu Z, Zhao R, Li F. Fatty acid metabolism of immune cells: a new target of tumour immunotherapy. Cell Death Discov 2024; 10:39. [PMID: 38245525 PMCID: PMC10799907 DOI: 10.1038/s41420-024-01807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Metabolic competition between tumour cells and immune cells for limited nutrients is an important feature of the tumour microenvironment (TME) and is closely related to the outcome of tumour immune escape. A large number of studies have proven that tumour cells need metabolic reprogramming to cope with acidification and hypoxia in the TME while increasing energy uptake to support their survival. Among them, synthesis, oxidation and uptake of fatty acids (FAs) in the TME are important manifestations of lipid metabolic adaptation. Although different immune cell subsets often show different metabolic characteristics, various immune cell functions are closely related to fatty acids, including providing energy, providing synthetic materials and transmitting signals. In the face of the current situation of poor therapeutic effects of tumour immunotherapy, combined application of targeted immune cell fatty acid metabolism seems to have good therapeutic potential, which is blocked at immune checkpoints. Combined application of adoptive cell therapy and cancer vaccines is reflected. Therefore, it is of great interest to explore the role of fatty acid metabolism in immune cells to discover new strategies for tumour immunotherapy and improve anti-tumour immunity.
Collapse
Affiliation(s)
- Sheng Zhang
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kebing Lv
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Liu
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ran Zhao
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Li
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, China.
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China.
| |
Collapse
|
27
|
Zhang S, Gao Y, Wang P, Wang S, Wang Y, Li M, Wang A, Zhao K, Zhang Z, Sun J, Guo D, Liang Z. Tryptophan metabolism enzymes are potential targets in ovarian clear cell carcinoma. Cancer Med 2023; 12:21996-22005. [PMID: 38062922 PMCID: PMC10757115 DOI: 10.1002/cam4.6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 12/31/2023] Open
Abstract
AIM As the second most prevalent subtype of epithelial ovarian cancers, ovarian clear cell carcinoma (OCCC) is known for its chemoresistance to conventional platinum-based therapy. In this work, we examined the tryptophan (Trp) metabolism enzymes' differential expression in patients with OCCC to assess the potential for personalised treatment. METHODS A total of 127 OCCC tissues were used to construct tissue microarrays, and immunohistochemistry (IHC) staining of the Trp enzymes IDO1, IDO2, TDO2 and IL4I1 was performed. The correlations between Trp enzyme expression and clinical characteristics were analysed. RESULTS Positive IDO1, IDO2, TDO2 and IL4I1 staining was identified in 26.8%, 94.5%, 75.6% and 82.7% of OCCC respectively. IDO1-positive samples were more common in the chemoresistant group than in the platinum-sensitive group (46.7% vs. 19.8%). Moreover, positive expression of IDO1, TDO2 and IL4I1 was related to advanced stage, metastasis, bilateral tumours, endometriosis and tumour rupture (p < 0.05) respectively. Univariate analysis revealed a significant association between bilateral tumours, lymph node metastasis, advanced stage, distant metastasis and aberrant cytology with a poor prognosis for OCCC, while the absence of residual tumour was correlated with a favourable outcome (p < 0.05). However, only bilateral tumours and lymph node metastases were related to a poor prognosis after multivariate analysis. CONCLUSION This is the first study to investigate the expression of the Trp enzymes IDO1, IDO2, TDO2 and IL4I1 in OCCC tissues. IDO2, TDO2 and IL4I1 were detected in the majority of OCCC. Clinical traits were correlated with IDO1, IDO2, TDO2 and IL4I1 expression. IDO1 may be used as a therapeutic target given the large percentage of chemoresistant cases with IDO1 expression. These results will aid the development of personalised therapies for OCCC.
Collapse
Affiliation(s)
- Sumei Zhang
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yike Gao
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| | - Pan Wang
- Department of PathologyAffiliated Hospital of Hebei UniversityBaodingHebei ProvinceChina
| | - Shu Wang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital (PUMCH)Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- National Clinical Research Centre for Obstetric & Gynaecologic DiseasesBeijingChina
| | - Yuming Wang
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| | - Mei Li
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| | - Anqi Wang
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Kun Zhao
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zixin Zhang
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jian Sun
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| | - Dan Guo
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
28
|
Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res 2023; 46:855-881. [PMID: 38060103 PMCID: PMC10725365 DOI: 10.1007/s12272-023-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
The reprogramming of lipid metabolism and its association with oncogenic signaling pathways within the tumor microenvironment (TME) have emerged as significant hallmarks of cancer. Lipid metabolism is defined as a complex set of molecular processes including lipid uptake, synthesis, transport, and degradation. The dysregulation of lipid metabolism is affected by enzymes and signaling molecules directly or indirectly involved in the lipid metabolic process. Regulation of lipid metabolizing enzymes has been shown to modulate cancer development and to avoid resistance to anticancer drugs in tumors and the TME. Because of this, understanding the metabolic reprogramming associated with oncogenic progression is important to develop strategies for cancer treatment. Recent advances provide insight into fundamental mechanisms and the connections between altered lipid metabolism and tumorigenesis. In this review, we explore alterations to lipid metabolism and the pivotal factors driving lipid metabolic reprogramming, which exacerbate cancer progression. We also shed light on the latest insights and current therapeutic approaches based on small molecular inhibitors and phytochemicals targeting lipid metabolism for cancer treatment. Further investigations are worthwhile to fully understand the underlying mechanisms and the correlation between altered lipid metabolism and carcinogenesis.
Collapse
Affiliation(s)
- Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, 16227, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University, Seoul, 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
29
|
Zhao Y, Zhang X, An M, Zhang J, Liu Y. Recent advancements in nanomedicine based lipid metabolism for tumour immunotherapy. J Drug Target 2023; 31:1050-1064. [PMID: 37962291 DOI: 10.1080/1061186x.2023.2283829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Therapy on lipid metabolism is emerging as a groundbreaking cancer treatment, offering the unprecedented opportunity to effectively treat and in several cases. Tumorigenesis is inextricably linked to lipid metabolism. In this regard, the features of lipid metabolism include lipid synthesis, decomposition, metabolism and lipid storage and mobilisation from intracellular lipid droplets. Most importantly, the regulation of lipid metabolism is central to the appropriate immune response of tumour cells, and ultimately to exert the immune efforts to realise the perspective of many anti-tumour effects. Different cancers and immune cells have different dependence on lipid metabolism, playing a pivotal role in differentiation and function of immune cells. However, what lies before the immunotherapy targeting lipid metabolism is side effects of systemic toxicity and defects of individual drugs, which strongly highlights that nanodelivery strategy is a magnet for it to enhance drug efficiency, reduce drug toxicity and improve application deficiencies. This review will first focus on emerging research progress of lipid metabolic reprogramming mechanism, and then explore the complex role of lipid metabolism in the tumour cells including the effect on immune cells and their nano-preparations of monotherapy and multiple therapies used in combination, in a shift away from conventional cancer research.HighlightsThe regulation of lipid metabolism is central to the appropriate immune response of tumour cells, and ultimately to exert the immune efforts to realise the perspective of many anti-tumour effects.Preparations of focusing lipid metabolism have side effects of systemic toxicity and defects of individual drugs. It strongly highlights that nanodelivery strategy is a magnet for it to enhance drug efficiency, reduce drug toxicity and improve application deficiencies.This review will first focus on emerging research progress of lipid metabolic reprogramming mechanism, and then explore the complex role of lipid metabolism in the tumour cells including the effect on immune cells as well as their nano-preparations of monotherapy and multiple therapies used in combination, in a shift away from conventional cancer research.
Collapse
Affiliation(s)
- Yumeng Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
30
|
Yin D, Zhang Y, Li H, Cheng L. Association of TOP2A and ADH1B with lipid levels and prognosis in patients with lung adenocarcinoma and squamous cell carcinoma. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:1301-1315. [PMID: 37985446 PMCID: PMC10730466 DOI: 10.1111/crj.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Although lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) have different pathological and clinical features, they may share common driver genes. It was found that lipid levels can be used for early diagnosis of NSCLC; however, the relationship between driver genes and genes regulating lipid metabolism and their relationship with patient prognosis needs further investigation. METHODS Genes whose expression was up- or down-regulated in both LUAD and LUSC were identified using the GEO database. Online tools like GEPIA 2, PrognoScan, UALCAN, and TIMER2.0 were used to investigate the association of these gene expressions with the patient's prognosis and lipid regulatory genes. The association between clinical lipid levels and the risk of LUAD and LUSC was analyzed by using a multiple logistic regression model. RESULTS Topoisomerase II alpha (TOP2A) and alcohol dehydrogenase 1B (ADH1B) were identified as the only genes up- and down-regulated in both LUAD and LUSC. TOP2A and ADH1B expression levels significantly correlated with the patient's gender, age, individual cancer stage, histological subtype, nodal metastasis status, and TP53 mutation status. Additionally, only LUAD patients with higher TOP2A or lower ADH1B expressions displayed poor overall and relapse-free survival rates. Moreover, TOP2A levels exhibited a negative correlation with adipose triglyceride lipase (ATGL) and ATP-binding cassette transporter A1 (ABCA1) in both LUAD and LUSC. However, ADH1B showed inverse associations with the above-mentioned genes when compared to TOP2A expressions in both LUAD and LUSC. Furthermore, elevated triglyceride (OR = 1.59; 95% CI = 1.01 to 2.49; P < 0.05) and total cholesterol (OR = 2.45; 95% CI = 1.08 to 5.57; P < 0.05) levels might increase the risk of LUAD. CONCLUSIONS TOP2A and ADH1B can be used as diagnostic markers for LUAD and LUSC, but only as independent prognostic factors for LUAD, and may be involved in lipid metabolism in LUAD patients but not in LUSC. Thus, combining genetic diagnostics with lipid panel tests might be an effective method for an early diagnosis and improved prognosis of LUAD.
Collapse
Affiliation(s)
- Dongdong Yin
- First Affiliated Hospital (Huainan First People's Hospital)Anhui University of Science and TechnologyHuainanChina
| | - Yinci Zhang
- First Affiliated Hospital (Huainan First People's Hospital)Anhui University of Science and TechnologyHuainanChina
| | - Hui Li
- First Affiliated Hospital (Huainan First People's Hospital)Anhui University of Science and TechnologyHuainanChina
| | - Longqiang Cheng
- First Affiliated Hospital (Huainan First People's Hospital)Anhui University of Science and TechnologyHuainanChina
| |
Collapse
|
31
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Sun Z, Zhang L, Liu L. Reprogramming the lipid metabolism of dendritic cells in tumor immunomodulation and immunotherapy. Biomed Pharmacother 2023; 167:115574. [PMID: 37757492 DOI: 10.1016/j.biopha.2023.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells in the human body. They detect and process environmental signals and communicate with T cells to bridge innate and adaptive immunity. Cell activation, function, and survival are closely associated with cellular metabolism. An increasing number of studies have revealed that lipid metabolism affects DC activation as well as innate and acquired immune responses. Combining lipid metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T-cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in cancer therapy. This review summarizes the lipid metabolism of DCs under physiological conditions, analyzes the role of reprogramming the lipid metabolism of DCs in tumor immune regulation, and discusses potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Zhanbo Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lixian Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
33
|
Augustin RC, Newman S, Li A, Joy M, Lyons M, Pham MP, Lucas P, Smith K, Sander C, Isett B, Davar D, Najjar YG, Zarour HM, Kirkwood JM, Luke JJ, Bao R. Identification of tumor-intrinsic drivers of immune exclusion in acral melanoma. J Immunother Cancer 2023; 11:e007567. [PMID: 37857525 PMCID: PMC10603348 DOI: 10.1136/jitc-2023-007567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Acral melanoma (AM) has distinct characteristics as compared with cutaneous melanoma and exhibits poor response to immune checkpoint inhibitors (ICIs). Tumor-intrinsic mechanisms of immune exclusion have been identified in many cancers but less studied in AM. We characterized clinically annotated tumors from patients diagnosed with AM at our institution in correlation with ICI response using whole transcriptome RNAseq, whole exome sequencing, CD8 immunohistochemistry, and multispectral immunofluorescence imaging. A defined interferon-γ-associated T cell-inflamed gene signature was used to categorize tumors into non-T cell-inflamed and T cell-inflamed phenotypes. In combination with AM tumors from two published studies, we systematically assessed the immune landscape of AM and detected differential gene expression and pathway activation in a non-T cell-inflamed tumor microenvironment (TME). Two single-cell(sc) RNAseq AM cohorts and 11 bulk RNAseq cohorts of various tumor types were used for independent validation on pathways associated with lack of ICI response. In total, 892 specimens were included in this study. 72.5% of AM tumors showed low expression of the T cell-inflamed gene signature, with 23.9% of total tumors categorized as the non-T cell-inflamed phenotype. Patients of low CD3+CD8+PD1+ intratumoral T cell density showed poor prognosis. We identified 11 oncogenic pathways significantly upregulated in non-T cell-inflamed relative to T cell-inflamed TME shared across all three acral cohorts (MYC, HGF, MITF, VEGF, EGFR, SP1, ERBB2, TFEB, SREBF1, SOX2, and CCND1). scRNAseq analysis revealed that tumor cell-expressing pathway scores were significantly higher in low versus high T cell-infiltrated AM tumors. We further demonstrated that the 11 pathways were enriched in ICI non-responders compared with responders across cancers, including AM, cutaneous melanoma, triple-negative breast cancer, and non-small cell lung cancer. Pathway activation was associated with low expression of interferon stimulated genes, suggesting suppression of antigen presentation. Across the 11 pathways, fatty acid synthase and CXCL8 were unifying downstream target molecules suggesting potential nodes for therapeutic intervention. A unique set of pathways is associated with immune exclusion and ICI resistance in AM. These data may inform immunotherapy combinations for immediate clinical translation.
Collapse
Affiliation(s)
- Ryan C Augustin
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah Newman
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Aofei Li
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marion Joy
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Maureen Lyons
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Mary P Pham
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Peter Lucas
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katelyn Smith
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Cindy Sander
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Brian Isett
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Diwakar Davar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hassane M Zarour
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John M Kirkwood
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason John Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Corey Z, Schechter E, Nemenoff RA. Un-FASN-ing cancer's seat belt: Linking lipid metabolism and antigen presentation. Cell Chem Biol 2023; 30:1004-1006. [PMID: 37738950 DOI: 10.1016/j.chembiol.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
MHC-II expression on cancer cells is associated with improved treatment outcome. In this issue, Huang et al.1 report a panel of small molecules that selectively upregulate MHC-II on cancer cells through suppression of fatty acid synthase (FASN), resulting in inhibition of tumor growth. Targeting this link between lipid metabolism and antigen presentation may improve response to immunotherapy.
Collapse
Affiliation(s)
- Zachary Corey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elyse Schechter
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raphael A Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
35
|
Sun H, Zhang L, Wang Z, Gu D, Zhu M, Cai Y, Li L, Tang J, Huang B, Bosco B, Li N, Wu L, Wu W, Li L, Liang Y, Luo L, Liu Q, Zhu Y, Sun J, Shi L, Xia T, Yang C, Xu Q, Han X, Zhang W, Liu J, Meng D, Shao H, Zheng X, Li S, Pan H, Ke J, Jiang W, Zhang X, Han X, Chu J, An H, Ge J, Pan C, Wang X, Li K, Wang Q, Ding Q. Single-cell transcriptome analysis indicates fatty acid metabolism-mediated metastasis and immunosuppression in male breast cancer. Nat Commun 2023; 14:5590. [PMID: 37696831 PMCID: PMC10495415 DOI: 10.1038/s41467-023-41318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Male breast cancer (MBC) is a rare but aggressive malignancy with cellular and immunological characteristics that remain unclear. Here, we perform transcriptomic analysis for 111,038 single cells from tumor tissues of six MBC and thirteen female breast cancer (FBC) patients. We find that that MBC has significantly lower infiltration of T cells relative to FBC. Metastasis-related programs are more active in cancer cells from MBC. The activated fatty acid metabolism involved with FASN is related to cancer cell metastasis and low immune infiltration of MBC. T cells in MBC show activation of p38 MAPK and lipid oxidation pathways, indicating a dysfunctional state. In contrast, T cells in FBC exhibit higher expression of cytotoxic markers and immune activation pathways mediated by immune-modulatory cytokines. Moreover, we identify the inhibitory interactions between cancer cells and T cells in MBC. Our study provides important information for understanding the tumor immunology and metabolism of MBC.
Collapse
Affiliation(s)
- Handong Sun
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Lishen Zhang
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Zhonglin Wang
- Department of Breast Surgery, The Second People's Hospital of Lianyungang, 41 Hailian East Road, 222006, Lianyungang, China
| | - Danling Gu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
| | - Mengyan Zhu
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Yun Cai
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Lu Li
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Jiaqi Tang
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Bin Huang
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Bakwatanisa Bosco
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Ning Li
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Lingxiang Wu
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Wei Wu
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Liangyu Li
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Yuan Liang
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Lin Luo
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Quanzhong Liu
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Yanhui Zhu
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Jie Sun
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, 215006, Suzhou, China
| | - Liang Shi
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Tiansong Xia
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Chuang Yang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Qitong Xu
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Xue Han
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Weiming Zhang
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Jianxia Liu
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, 215006, Suzhou, China
| | - Dong Meng
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214000, Wuxi, China
| | - Hua Shao
- Department of Breast Surgery, The Second People's Hospital of Lianyungang, 41 Hailian East Road, 222006, Lianyungang, China
| | - Xiangxin Zheng
- Department of Breast Surgery, Affiliated Suqian Hospital of Xuzhou Medical University, 138 Huanghe South Road, 223800, Suqian, China
| | - Shuqin Li
- The Affiliated Lianyungang Hospital of Xuzhou Medical University, 6 Zhenhua East Road, 222006, Lianyungang, China
| | - Hua Pan
- Liyang People's Hospital, 70 Jianshe West Road, 213300, Liyang, China
| | - Jing Ke
- The Affiliated Hospital of Nantong University, 20 Xisi Road, 226300, Nantong, China
| | - Wenying Jiang
- Department of Breast Surgery, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, 213000, Changzhou, China
| | - Xiaolan Zhang
- Department of Breast Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Lane, 213000, Changzhou, China
| | - Xuedong Han
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, 1 Huanghe West Road, 223300, Huai'an, China
| | - Jian Chu
- Department of General Surgery, the First People's Hospital of Yancheng, 66 Renmin South Road, 224001, Yancheng, China
| | - Hongyin An
- Department of General Surgery, the First People's Hospital of Yancheng, 66 Renmin South Road, 224001, Yancheng, China
| | - Juyan Ge
- Department of Pathology, The Second People's Hospital of Lianyungang, 41 Hailian East Road, 222006, Lianyungang, China
| | - Chi Pan
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University, College of Medicine, 88 Jiefang Road, 310009, Hangzhou, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kening Li
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China.
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China.
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China.
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, China.
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 211166, Nanjing, Jiangsu, China.
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China.
- Biomedical Big Data Center, Nanjing Medical University, 211166, Nanjing, Jiangsu, China.
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
| |
Collapse
|
36
|
Tang PW, Frisbie L, Hempel N, Coffman L. Insights into the tumor-stromal-immune cell metabolism cross talk in ovarian cancer. Am J Physiol Cell Physiol 2023; 325:C731-C749. [PMID: 37545409 DOI: 10.1152/ajpcell.00588.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The ovarian cancer tumor microenvironment (TME) consists of a constellation of abundant cellular components, extracellular matrix, and soluble factors. Soluble factors, such as cytokines, chemokines, structural proteins, extracellular vesicles, and metabolites, are critical means of noncontact cellular communication acting as messengers to convey pro- or antitumorigenic signals. Vast advancements have been made in our understanding of how cancer cells adapt their metabolism to meet environmental demands and utilize these adaptations to promote survival, metastasis, and therapeutic resistance. The stromal TME contribution to this metabolic rewiring has been relatively underexplored, particularly in ovarian cancer. Thus, metabolic activity alterations in the TME hold promise for further study and potential therapeutic exploitation. In this review, we focus on the cellular components of the TME with emphasis on 1) metabolic signatures of ovarian cancer; 2) understanding the stromal cell network and their metabolic cross talk with tumor cells; and 3) how stromal and tumor cell metabolites alter intratumoral immune cell metabolism and function. Together, these elements provide insight into the metabolic influence of the TME and emphasize the importance of understanding how metabolic performance drives cancer progression.
Collapse
Affiliation(s)
- Priscilla W Tang
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Leonard Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Gynecologic Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
37
|
Augustin RC, Newman S, Li A, Joy M, Lyons M, Pham M, Lucas PC, Smith K, Sander C, Isett B, Davar D, Najjar YG, Zarour HM, Kirkwood JM, Luke JJ, Bao R. Identification of tumor-intrinsic drivers of immune exclusion in acral melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554717. [PMID: 37662409 PMCID: PMC10473736 DOI: 10.1101/2023.08.24.554717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Acral melanoma (AM) has distinct characteristics as compared to cutaneous melanoma and exhibits poor response to immune checkpoint inhibitors (ICI). Tumor-intrinsic mechanisms of immune exclusion have been identified in many cancers but less studied in AM. Methods We characterized clinically annotated tumors from patients diagnosed with AM at our institution in correlation with ICI response using whole transcriptome RNAseq, whole exome sequencing, CD8 immunohistochemistry, and multispectral immunofluorescence imaging. A defined interferon-γ-associated T cell-inflamed gene signature was used to categorize tumors into non-T cell-inflamed and T cell-inflamed phenotypes. In combination with AM tumors from two published studies, we systematically assessed the immune landscape of AM and detected differential gene expression and pathway activation in a non-T cell-inflamed tumor microenvironment (TME). Two single-cell(sc) RNAseq AM cohorts and 11 bulk RNAseq cohorts of various tumor types were used for independent validation on pathways associated with lack of ICI response. In total, 892 specimens were included in this study. Results 72.5% of AM tumors showed low expression of the T cell-inflamed gene signature, with 23.9% of total tumors categorized as the non-T cell-inflamed phenotype. Patients of low CD3 + CD8 + PD1 + intratumoral T cell density showed poor prognosis. We identified 11 oncogenic pathways significantly upregulated in non-T cell-inflamed relative to T cell-inflamed TME shared across all three acral cohorts (MYC, HGF, MITF, VEGF, EGFR, SP1, ERBB2, TFEB, SREBF1, SOX2, and CCND1). scRNAseq analysis revealed that tumor cell-expressing pathway scores were significantly higher in low vs high T cell-infiltrated AM tumors. We further demonstrated that the 11 pathways were enriched in ICI non-responders compared to responders across cancers, including acral melanoma, cutaneous melanoma, triple-negative breast cancer, and non-small cell lung cancer. Pathway activation was associated with low expression of interferon stimulated genes, suggesting suppression of antigen presentation. Across the 11 pathways, fatty acid synthase and CXCL8 were unifying downstream target molecules suggesting potential nodes for therapeutic intervention. Conclusions A unique set of pathways is associated with immune exclusion and ICI resistance in AM. These data may inform immunotherapy combinations for immediate clinical translation.
Collapse
|
38
|
Zipinotti Dos Santos D, de Souza JC, Pimenta TM, da Silva Martins B, Junior RSR, Butzene SMS, Tessarolo NG, Cilas PML, Silva IV, Rangel LBA. The impact of lipid metabolism on breast cancer: a review about its role in tumorigenesis and immune escape. Cell Commun Signal 2023; 21:161. [PMID: 37370164 PMCID: PMC10304265 DOI: 10.1186/s12964-023-01178-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the second most frequent type of cancer in the world and most common among women, configuring a major challenge to global health. BC is a complex and heterogeneous disease that can be subdivided into distinct tumor types based on the expression of molecular markers predicting patient outcomes and response to therapy. A growing number of studies have tried to expand the known markers by investigating the association of altered lipid metabolism with BC immune escape, progression, and metastasis. In this review, we describe the metabolic peculiarities of each BC subtype, understanding how this influences its aggressiveness and identifying whether these intrinsic vulnerabilities of each subtype can play a role in therapeutic management and may affect immune system cells in the tumor microenvironment. CONCLUSION The evidence suggests so far that when changes occur in lipid pathways, it can affect the availability of structural lipids for membrane synthesis, lipid synthesis, and degradation that contribute to energy homeostasis and cell signaling functions. These findings will guide the next steps on the path to understanding the mechanisms underlying how lipids alterations are related to disparities in chemotherapeutic response and immune escape in BC. Video Abstract.
Collapse
Affiliation(s)
- Diandra Zipinotti Dos Santos
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitoria (Espírito Santo), Brazil.
| | - Josiany Carlos de Souza
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitoria (Espírito Santo), Brazil
| | - Tatiana Massariol Pimenta
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Bárbara da Silva Martins
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Roberto Silva Ribeiro Junior
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Solenny Maria Silva Butzene
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Nayara Gusmão Tessarolo
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM24, University of São Paulo School of Medicine, São Paulo, (São Paulo), Brazil
| | | | - Ian Victor Silva
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Leticia B A Rangel
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitoria (Espírito Santo), Brazil.
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil.
- Biochemistry Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil.
| |
Collapse
|
39
|
Fu X, Song J, Yan W, Downs BM, Wang W, Li J. The biological function of tumor-derived extracellular vesicles on metabolism. Cell Commun Signal 2023; 21:150. [PMID: 37349803 PMCID: PMC10286389 DOI: 10.1186/s12964-023-01111-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/24/2023] [Indexed: 06/24/2023] Open
Abstract
Multiple studies have shown that extracellular vesicles (EVs) play a key role in the process of information transfer and material transport between cells. EVs are classified into different types according to their sizes, which includes the class of exosomes. In comparison to normal EVs, tumor-derived EVs (TDEs) have both altered components and quantities of contents. TDEs have been shown to help facilitate an environment conducive to the occurrence and development of tumor by regulation of glucose, lipids and amino acids. Furthermore, TDEs can also affect the host metabolism and immune system. EVs have been shown to have multiple clinically useful properties, including the use of TDEs as biomarkers for the early diagnosis of diseases and using the transport properties of exosomes for drug delivery. Targeting the key bioactive cargoes of exosomes could be applied to provide new strategies for the treatment of tumors. In this review, we summarize the finding of studies focused on measuring the effects of TDE on tumor-related microenvironment and systemic metabolism. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Junlong Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Wei Yan
- School of Life Science, Wuhan University, Wuhan, 430072 Hubei China
| | - Bradley M. Downs
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Juanjuan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| |
Collapse
|
40
|
Duong LK, Corbali HI, Riad TS, Ganjoo S, Nanez S, Voss T, Barsoumian HB, Welsh J, Cortez MA. Lipid metabolism in tumor immunology and immunotherapy. Front Oncol 2023; 13:1187279. [PMID: 37205182 PMCID: PMC10185832 DOI: 10.3389/fonc.2023.1187279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Lipids are a diverse class of biomolecules that have been implicated in cancer pathophysiology and in an array of immune responses, making them potential targets for improving immune responsiveness. Lipid and lipid oxidation also can affect tumor progression and response to treatment. Although their importance in cellular functions and their potential as cancer biomarkers have been explored, lipids have yet to be extensively investigated as a possible form of cancer therapy. This review explores the role of lipids in cancer pathophysiology and describes how further understanding of these macromolecules could prompt novel treatments for cancer.
Collapse
Affiliation(s)
- Lisa K. Duong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Halil Ibrahim Corbali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Thomas S. Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Selene Nanez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tiffany Voss
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
41
|
Liu J, Zhang X, Wang H, Zuo X, Hong L. Comprehensive Analysis of Purine-Metabolism-Related Gene Signature for Predicting Ovarian Cancer Prognosis, Immune Landscape, and Potential Treatment Options. J Pers Med 2023; 13:jpm13050776. [PMID: 37240946 DOI: 10.3390/jpm13050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Purine metabolism is an important branch of metabolic reprogramming and has received increasing attention in cancer research. Ovarian cancer is an extremely dangerous gynecologic malignancy for which there are no adequate tools to predict prognostic risk. Here, we identified a prognostic signature consisting of nine genes related to purine metabolism, including ACSM1, CACNA1C, EPHA4, TPM3, PDIA4, JUNB, EXOSC4, TRPM2, and CXCL9. The risk groups defined by the signature are able to distinguish the prognostic risk and the immune landscape of patients. In particular, the risk scores offer promising personalized drug options. By combining risk scores with clinical characteristics, we have created a more detailed composite nomogram that allows for a more complete and individualized prediction of prognosis. In addition, we demonstrated metabolic differences between platinum-resistant and platinum-sensitive ovarian cancer cells. In summary, we have performed the first comprehensive analysis of genes related to purine metabolism in ovarian cancer patients and created a feasible prognostic signature that will aid in risk prediction and support personalized medicine.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaohu Zuo
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
42
|
Ursino C, Mouric C, Gros L, Bonnefoy N, Faget J. Intrinsic features of the cancer cell as drivers of immune checkpoint blockade response and refractoriness. Front Immunol 2023; 14:1170321. [PMID: 37180110 PMCID: PMC10169604 DOI: 10.3389/fimmu.2023.1170321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade represents the latest revolution in cancer treatment by substantially increasing patients' lifetime and quality of life in multiple neoplastic pathologies. However, this new avenue of cancer management appeared extremely beneficial in a minority of cancer types and the sub-population of patients that would benefit from such therapies remain difficult to predict. In this review of the literature, we have summarized important knowledge linking cancer cell characteristics with the response to immunotherapy. Mostly focused on lung cancer, our objective was to illustrate how cancer cell diversity inside a well-defined pathology might explain sensitivity and refractoriness to immunotherapies. We first discuss how genomic instability, epigenetics and innate immune signaling could explain differences in the response to immune checkpoint blockers. Then, in a second part we detailed important notions suggesting that altered cancer cell metabolism, specific oncogenic signaling, tumor suppressor loss as well as tight control of the cGAS/STING pathway in the cancer cells can be associated with resistance to immune checkpoint blockade. At the end, we discussed recent evidences that could suggest that immune checkpoint blockade as first line therapy might shape the cancer cell clones diversity and give rise to the appearance of novel resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Julien Faget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Univ Montpellier, Institut du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
43
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
44
|
Vanauberg D, Schulz C, Lefebvre T. Involvement of the pro-oncogenic enzyme fatty acid synthase in the hallmarks of cancer: a promising target in anti-cancer therapies. Oncogenesis 2023; 12:16. [PMID: 36934087 PMCID: PMC10024702 DOI: 10.1038/s41389-023-00460-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023] Open
Abstract
An accelerated de novo lipogenesis (DNL) flux is a common characteristic of cancer cells required to sustain a high proliferation rate. The DNL enzyme fatty acid synthase (FASN) is overexpressed in many cancers and is pivotal for the increased production of fatty acids. There is increasing evidences of the involvement of FASN in several hallmarks of cancer linked to its ability to promote cell proliferation via membranes biosynthesis. In this review we discuss about the implication of FASN in the resistance to cell death and in the deregulation of cellular energetics by increasing nucleic acids, protein and lipid synthesis. FASN also promotes cell proliferation, cell invasion, metastasis and angiogenesis by enabling the building of lipid rafts and consequently to the localization of oncogenic receptors such as HER2 and c-Met in membrane microdomains. Finally, FASN is involved in immune escape by repressing the activation of pro-inflammatory cells and promoting the recruitment of M2 macrophages and T regulatory cells in the tumor microenvironment. Here, we provide an overview of the involvement of the pro-oncogenic enzyme in the hallmarks of cancer making FASN a promising target in anti-cancer therapy to circumvent resistance to chemotherapies.
Collapse
Affiliation(s)
- Dimitri Vanauberg
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
45
|
Yan CY, Zhao ML, Wei YN, Zhao XH. Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics 2023; 28:212-229. [PMID: 36860815 PMCID: PMC9969274 DOI: 10.1016/j.omto.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in females worldwide, and the liver is one of the most common sites of distant metastases in breast cancer patients. Patients with breast cancer liver metastases face limited treatment options, and drug resistance is highly prevalent, leading to a poor prognosis and a short survival. Liver metastases respond extremely poorly to immunotherapy and have shown resistance to treatments such as chemotherapy and targeted therapies. Therefore, to develop and to optimize treatment strategies as well as to explore potential therapeutic approaches, it is crucial to understand the mechanisms of drug resistance in breast cancer liver metastases patients. In this review, we summarize recent advances in the research of drug resistance mechanisms in breast cancer liver metastases and discuss their therapeutic potential for improving patient prognoses and outcomes.
Collapse
Affiliation(s)
- Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
46
|
ZHONG JIATENG, GUO JINGYU, ZHANG XINYU, FENG SHUANG, DI WENYU, WANG YANLING, ZHU HUIFANG. The remodeling roles of lipid metabolism in colorectal cancer cells and immune microenvironment. Oncol Res 2023; 30:231-242. [PMID: 37305350 PMCID: PMC10207963 DOI: 10.32604/or.2022.027900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Lipid is a key component of plasma membrane, which plays an important role in the regulation of various cell biological behaviors, including cell proliferation, growth, differentiation and intracellular signal transduction. Studies have shown that abnormal lipid metabolism is involved in many malignant processes, including colorectal cancer (CRC). Lipid metabolism in CRC cells can be regulated not only by intracellular signals, but also by various components in the tumor microenvironment, including various cells, cytokines, DNA, RNA, and nutrients including lipids. In contrast, abnormal lipid metabolism provides energy and nutrition support for abnormal malignant growth and distal metastasis of CRC cells. In this review, we highlight the remodeling roles of lipid metabolism crosstalk between the CRC cells and the components of tumor microenvironment.
Collapse
Affiliation(s)
- JIATENG ZHONG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - JINGYU GUO
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - XINYU ZHANG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - SHUANG FENG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - WENYU DI
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - YANLING WANG
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - HUIFANG ZHU
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
47
|
Pajai S, John JE, Tripathi SC. Targeting immune-onco-metabolism for precision cancer therapy. Front Oncol 2023; 13:1124715. [PMID: 36816957 PMCID: PMC9932929 DOI: 10.3389/fonc.2023.1124715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Immune cells play a key role in host defence against infection and cancer. Unlike infection, cancer is a multidimensional disease where cancer cells require continuous activation of certain pathways to sustain their growth and survival. The tumour milieu plays an important role in defining the metabolic reprogramming to support this growth and evasion from the immune system. Cancer and stromal cells modulate each other's metabolism during cancer progression or regression. The mechanism related to change in the metabolism and its role in the crosstalk between tumour and immune cells is still an area of immense importance. Current treatment modalities can be immensely complemented and benefited by targeting the immuno-oncology metabolism, that can improve patient prognosis. This emerging aspect of immune-oncology metabolism is reviewed here, discussing therapeutic possibilities within various metabolic pathways and their effect on immune and cancer cell metabolism.
Collapse
|
48
|
Review to Understand the Crosstalk between Immunotherapy and Tumor Metabolism. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020862. [PMID: 36677919 PMCID: PMC9863813 DOI: 10.3390/molecules28020862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Immune checkpoint inhibitors have ushered in a new era of cancer treatment by increasing the likelihood of long-term survival for patients with metastatic disease and by introducing fresh therapeutic indications in cases where the disease is still in its early stages. Immune checkpoint inhibitors that target the proteins cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or programmed death-1/programmed death ligand-1 have significantly improved overall survival in patients with certain cancers and are expected to help patients achieve complete long-lasting remissions and cures. Some patients who receive immune checkpoint inhibitors, however, either experience therapeutic failure or eventually develop immunotherapy resistance. Such individuals are common, which necessitates a deeper understanding of how cancer progresses, particularly with regard to nutritional regulation in the tumor microenvironment (TME), which comprises metabolic cross-talk between metabolites and tumor cells as well as intracellular metabolism in immune and cancer cells. Combination of immunotherapy with targeted metabolic regulation might be a focus of future cancer research despite a lack of existing clinical evidence. Here, we reviewed the significance of the tumor microenvironment and discussed the most significant immunological checkpoints that have recently been identified. In addition, metabolic regulation of tumor immunity and immunological checkpoints in the TME, including glycolysis, amino acid metabolism, lipid metabolism, and other metabolic pathways were also incorporated to discuss the possible metabolism-based treatment methods being researched in preclinical and clinical settings. This review will contribute to the identification of a relationship or crosstalk between tumor metabolism and immunotherapy, which will shed significant light on cancer treatment and cancer research.
Collapse
|
49
|
Yu X, Tong H, Chen J, Tang C, Wang S, Si Y, Wang S, Tang Z. CircRNA MBOAT2 promotes intrahepatic cholangiocarcinoma progression and lipid metabolism reprogramming by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export. Cell Death Dis 2023; 14:20. [PMID: 36635270 PMCID: PMC9837196 DOI: 10.1038/s41419-022-05540-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
The carcinogenic role of FASN by regulating lipid metabolism reprogramming has been well-established in multiple tumors. However, whether mechanisms during intrahepatic cholangiocarcinoma (ICC) progression, such as circRNAs, regulate FASN expression remains unknown. Here we demonstrate a lipid metabolism-related circRNA, circMBOAT2 (hsa_circ_0007334 in circBase), frequently upregulated in ICC tissues, and positively correlated with ICC malignant features. CircMBOAT2 knockdown inhibits the growth and metastasis of ICC cells. Mechanistically, circMBOAT2 combines with PTBP1 and protects PTBP1 from ubiquitin/proteasome-dependent degradation, impairing the function of PTBP1 to transfer FASN mRNA from the nucleus to the cytoplasm. Moreover, circMBOAT2 and FASN have the same effect on fatty acid profile, unsaturated fatty acids instead of saturated fatty acids are primarily regulated and associated with malignant behaviors of ICC cells. The levels of lipid peroxidation and ROS were significantly higher when FASN was knocked down and recovered when circMBOAT2 was overexpressed. Our results identified that circMBOAT2 was upregulated in ICC and promoted progression by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export, which altered lipid metabolic profile and regulated redox homeostasis in ICC, suggesting that circMBOAT2 may serve as an available therapeutic target for ICC with active lipid metabolism.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huanjun Tong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jialu Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chenwei Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shuqing Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu Si
- Department of Blood Transfusion, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Department of Blood Transfusion, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
50
|
Zhang M, Yu L, Sun Y, Hao L, Bai J, Yuan X, Wu R, Hong M, Liu P, Duan X, Wang C. Comprehensive Analysis of FASN in Tumor Immune Infiltration and Prognostic Value for Immunotherapy and Promoter DNA Methylation. Int J Mol Sci 2022; 23:15603. [PMID: 36555243 PMCID: PMC9779179 DOI: 10.3390/ijms232415603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Fatty acid synthase (FASN) promotes tumor progression in multiple cancers. In this study, we comprehensively examined the expression, prognostic significance, and promoter methylation of FASN, and its correlation with immune cell infiltration in pan-cancer. Our results demonstrated that elevated FASN expression was significantly associated with an unfavorable prognosis in many cancer types. Furthermore, FASN promoter DNA methylation can be used as a tumor prognosis marker. Importantly, high levels of FASN were significantly negatively correlated with tumor immune infiltration in 35 different cancers. Additionally, FASN was significantly associated with tumor mutational burden (TMB) and microsatellite instability (MSI) in multiple malignancies, suggesting that it may be essential for tumor immunity. We also investigated the effects of FASN expression on immunotherapy efficacy and prognosis. In up to 15 tumors, it was significantly negatively correlated with immunotherapy-related genes, such as PD-1, PD-L1, and CTLA-4. Moreover, we found that tumors with high FASN expression may be more sensitive to immunotherapy and have a good prognosis with PD-L1 treatment. Finally, we confirmed the tumor-suppressive effect of mir-195-5p through FASN. Altogether, our results suggested that FASN may serve as a novel prognostic indicator and immunotherapeutic target in various malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|