1
|
Crilly NP, Zita MD, Beaver AK, Sysa-Shah P, Bhalodia A, Gabrielson K, Adamo L, Mugnier MR. A murine model of Trypanosoma brucei-induced myocarditis and cardiac dysfunction. Microbiol Spectr 2025:e0162324. [PMID: 39791886 DOI: 10.1128/spectrum.01623-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025] Open
Abstract
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of T. brucei infection. Despite the importance of T. brucei as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of T. brucei-associated cardiomyopathy. We present the first clinically relevant, reproducible murine model of cardiac dysfunction in chronic T. brucei infection. Similar to humans, mice showed histological evidence of myocarditis and elevation of serum NT-proBNP with electrocardiographic abnormalities. Serum NT-proBNP levels were elevated prior to the development of severe ventricular dysfunction. On flow cytometry, myocarditis was associated with an increase of most myocardial immune cell populations, including multiple T cell and macrophage subsets, corroborating the notion that T. brucei-associated cardiac damage is an immune-mediated event. This novel mouse model represents a powerful and practical tool to investigate the pathogenesis of T. brucei-mediated heart damage and supports the development of therapeutic options for T. brucei-associated cardiac disease. In characterizing this model, we provide evidence that T. brucei causes cardiac disease, and we suggest that immunopathology is an important contributor to cardiac pathology. Along with other recent studies, our work demonstrates the importance of extravascular spaces, including the heart, for T. brucei pathogenesis. IMPORTANCE African trypanosomiasis is a neglected tropical disease affecting both people and cattle, which represents a major public health problem in sub-Saharan Africa with an enormous socioeconomic impact. Cardiac disease represents an underappreciated clinical manifestation of African trypanosomiasis that may lead to lifelong illness despite successful treatment of infection. However, this aspect of African trypanosomiasis remains poorly understood, partially due to a lack of well-characterized and practical animal models. In this study, we present the development and characterization of a novel, reproducible, and cost-effective mouse model of cardiac dysfunction in African trypanosomiasis. We demonstrate that this model recapitulates major features of cardiac dysfunction in natural infection, including the presence of parasites in the cardiac interstitial spaces, alterations of cardiac biomarkers, and functional changes. This model represents a resource to support the understanding of cardiac complications of trypanosomiasis and the development of new therapies to prevent and treat cardiac involvement in African trypanosomiasis.
Collapse
Affiliation(s)
- Nathan P Crilly
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marcelle Dina Zita
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander K Beaver
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Molecular Imaging Service Center and Cancer Functional Imaging Core, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aashik Bhalodia
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathy Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Monica R Mugnier
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Dos Santos Nascimento IJ, Santos MB, De Jesus Marinho WP, de Moura RO. Insights to Design New Drugs against Human African Trypanosomiasis Targeting Rhodesain using Covalent Docking, Molecular Dynamics Simulations, and MM-PBSA Calculations. Curr Comput Aided Drug Des 2025; 21:67-82. [PMID: 38310575 DOI: 10.2174/0115734099274797231205055827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Neglected tropical diseases (NTDs) are parasitic and bacterial diseases that affect approximately 149 countries, mainly the poor population without basic sanitation. Among these, Human African Trypanosomiasis (HAT), known as sleeping sickness, shows alarming data, with treatment based on suramin and pentamidine in the initial phase and melarsoprol and eflornithine in the chronic phase. Thus, to discover new drugs, several studies point to rhodesain as a promising drug target due to the function of protein degradation and intracellular transport of proteins between the insect and host cells and is present in all cycle phases of the parasite. METHODS Here, based on the previous studies by Nascimento et al. (2021) [5], that show the main rhodesain inhibitors development in the last decade, molecular docking and dynamics were applied in these inhibitors datasets to reveal crucial information that can be into drug design. RESULTS Also, our findings using MD simulations and MM-PBSA calculations confirmed Gly19, Gly23, Gly65, Asp161, and Trp184, showing high binding energy (ΔGbind between -72.782 to -124.477 kJ.mol-1). In addition, Van der Waals interactions have a better contribution (-140,930 to -96,988 kJ.mol-1) than electrostatic forces (-43,270 to -6,854 kJ.mol-1), indicating Van der Waals interactions are the leading forces in forming and maintaining ligand-rhodesain complexes. Thus, conventional and covalent docking was employed and highlighted the presence of Michael acceptors in the ligands in a peptidomimetics scaffold, and interaction with Gly19, Gly23, Gly65, Asp161, and Trp184 is essential to the inhibiting activity. Furthermore, the Dynamic Cross-Correlation Maps (DCCM) show more correlated movements for all complexes than the free rhodesain and strong interactions in the regions of the aforementioned residues. Principal Component Analysis (PCA) demonstrates complex stability corroborating with RMSF and RMSD. CONCLUSION This study can provide valuable insights that can guide researchers worldwide to discover a new promising drug against HAT.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Cesmac University Center, Pharmacy Departament, Maceió, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Mirelly Barbosa Santos
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Washley Phyama De Jesus Marinho
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
3
|
Liu LJ, Francisco KR, Sun YU, Serafim MSM, Amarasinghe DK, Teixeira TR, Lucero B, Kronenberger T, Elsayed W, Elwakeel H, Al-Hindy M, Almaliti J, Gerwick WH, O'Donoghue AJ, Caffrey CR. Carmaphycin B-Based Proteasome Inhibitors to Treat Human African Trypanosomiasis: Structure-Activity Relationship and In Vivo Efficacy. ACS Infect Dis 2024; 10:4182-4193. [PMID: 39589805 DOI: 10.1021/acsinfecdis.4c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
The proteasome is essential for eukaryotic cell proteostasis, and inhibitors of the 20S proteasome are progressing preclinically and clinically as antiparasitics. We screenedTrypanosoma brucei, the causative agent of human and animal African trypanosomiasis, in vitro with a set of 27 carmaphycin B analogs, irreversible epoxyketone inhibitors that were originally developed to inhibit thePlasmodium falciparum20S (Pf20S). The structure-activity relationship was distinct from that of the human c20S antitarget by the acceptance of d-amino acids at the P3 position of the peptidyl backbone to yield compounds with greatly decreased toxicity to human cells. For the three most selective compounds, binding to the Tb20S β5 catalytic subunit was confirmed by competition with a fluorescent activity-based probe. For one compound, J-80, with its P3 d-configuration, the differential binding to the parasite's β5 subunit was supported by both covalent and noncovalent docking analysis. Further, J-80 was equipotent against both Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense in vitro. In a mouse model of Stage 1 T. brucei infection, a single intraperitoneal (i.p.) dose of 40 mg/kg J-80 halted the growth of the parasite, and when given at 50 mg/kg i.p. twice daily for 5 days, parasitemia was decreased to below the detectable limit, with parasite recrudescence 48 h after the last dose. The in vivo proof of principle demonstrated by a potent, selective, and irreversible inhibitor of Tb20S reveals an alternative path to the development of kinetoplastid proteasome inhibitors that differs from the current focus on allosteric reversible inhibitors.
Collapse
Affiliation(s)
- Lawrence J Liu
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Karol R Francisco
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yujie Uli Sun
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Mateus Sá Magalhães Serafim
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil, 31270901
| | - Dilini K Amarasinghe
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Thaiz R Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Bobby Lucero
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
- Partner-site Tübingen, German Center for Infection Research (DZIF), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Waad Elsayed
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Abassia, Cairo 1181, Egypt
| | - Hala Elwakeel
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Abassia, Cairo 1181, Egypt
| | - Momen Al-Hindy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jehad Almaliti
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - William H Gerwick
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Anthony J O'Donoghue
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Zhan Q, He Q, Tiedje KE, Day KP, Pascual M. Hyper-diverse antigenic variation and resilience to transmission-reducing intervention in falciparum malaria. Nat Commun 2024; 15:7343. [PMID: 39187488 PMCID: PMC11347654 DOI: 10.1038/s41467-024-51468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Intervention efforts against falciparum malaria in high-transmission regions remain challenging, with rapid resurgence typically following their relaxation. Such resilience co-occurs with incomplete immunity and a large transmission reservoir from high asymptomatic prevalence. Incomplete immunity relates to the large antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene and recombinant family known as var. With a stochastic agent-based model, we investigate the existence of a sharp transition in resurgence ability with intervention intensity and identify molecular indicators informative of its proximity. Their application to survey data with deep sampling of var sequences from individual isolates in northern Ghana suggests that the transmission system was brought close to transition by intervention with indoor residual spraying. These results indicate that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University, New York, NY, 10003, USA.
- Department of Environmental Studies, New York University, New York, NY, 10003, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
5
|
Kennedy PGE. The evolving spectrum of human African trypanosomiasis. QJM 2024; 117:391-395. [PMID: 38065835 DOI: 10.1093/qjmed/hcad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Indexed: 06/27/2024] Open
Abstract
Human African trypanosomiasis (HAT), or sleeping sickness, continues to be a major threat to human health in 36 countries throughout sub-Saharan Africa with up to 60 million people at risk. Over the last decade, there have been several advances in this area, some of which are discussed in this overview. Due to the concerted efforts of several bodies, including better identification and treatment of cases and improved tsetse fly vector control, the number of cases of HAT has declined dramatically. The clinical heterogeneity of HAT has also been increasingly recognized, and the disease, while usually fatal if untreated or inadequately treated, does not always have a uniformly fatal outcome. Improved methods of HAT diagnosis have now been developed including rapid diagnostic tests. Novel drug treatment of HAT has also been developed, notably nifurtimox-eflornithine combination therapy (NECT) for late-stage Trypanosoma brucei gambiense, oral fexinidazole for early and the early component of the late-stage of T.b. gambiense, and the new oral compounds of the oxaborole group, which have shown considerable promise in field trials. Advances in HAT neuropathogenesis have been steady, though largely incremental, with a particular focus on the role of the blood-brain barrier in parasite entry into the central nervous system and the relevant importance of both innate and adaptive immunity. While the World Health Organization goal of elimination of HAT as a public health problem by 2020 has probably been achieved, it remains to be seen whether the second more ambitious goal of interruption of transmission of HAT by 2030 will be attained.
Collapse
Affiliation(s)
- P G E Kennedy
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Wellcome Surgical Institute, Garscube Campus, Glasgow G61 1QH, UK
| |
Collapse
|
6
|
Crilly NP, Zita MD, Beaver AK, Sysa-Shah P, Bhalodia A, Gabrielson K, Adamo L, Mugnier MR. A murine model of Trypanosoma brucei-induced myocarditis and cardiac dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.560950. [PMID: 37873308 PMCID: PMC10592974 DOI: 10.1101/2023.10.05.560950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of T. brucei infection. Despite the importance of T. brucei as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of T. brucei-associated cardiomyopathy. We present the first clinically relevant, reproducible murine model of cardiac dysfunction in chronic T. brucei infection. Similar to humans, mice showed histological evidence of myocarditis and elevation of serum NT-proBNP with electrocardiographic abnormalities. Serum NT-proBNP levels were elevated prior to the development of severe ventricular dysfunction. On flow cytometry, myocarditis was associated with an increase of most myocardial immune cell populations, including multiple T cell and macrophage subsets, corroborating the notion that T. brucei-associated cardiac damage is an immune-mediated event. This novel mouse model represents a powerful and practical tool to investigate the pathogenesis of T. brucei-mediated heart damage and supports the development of therapeutic options for T. brucei-associated cardiac disease.
Collapse
Affiliation(s)
- Nathan P. Crilly
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marcelle Dina Zita
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander K. Beaver
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Molecular Imaging Service Center and Cancer Functional Imaging Core, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aashik Bhalodia
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathy Gabrielson
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Monica R. Mugnier
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Chirwa KA, Francisco KR, Dube PS, Park H, Legoabe LJ, Teixeira TR, Caffrey CR, Beteck RM. Tractable Quinolone Hydrazides Exhibiting Sub-Micromolar and Broad Spectrum Antitrypanosomal Activities. ChemMedChem 2024; 19:e202300667. [PMID: 38326914 PMCID: PMC11076157 DOI: 10.1002/cmdc.202300667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nagana and Human African Trypanosomiasis (HAT), caused by (sub)species of Trypanosoma, are diseases that impede human and animal health, and economic growth in Africa. The few drugs available have drawbacks including suboptimal efficacy, adverse effects, drug resistance, and difficult routes of administration. New drugs are needed. A series of 20 novel quinolone compounds with affordable synthetic routes was made and evaluated in vitro against Trypanosoma brucei and HEK293 cells. Of the 20 compounds, 12 had sub-micromolar potencies against the parasite (EC50 values=0.051-0.57 μM), and most were non-toxic to HEK293 cells (CC50 values>5 μM). Two of the most potent compounds presented sub-micromolar activities against other trypanosome (sub)species (T. cruzi and T. b. rhodesiense). Although aqueous solubility is poor, both compounds possess good logD values (2-3), and either robust or poor microsomal stability profiles. These varying attributes will be addressed in future reports.
Collapse
Affiliation(s)
- Kgothatso A Chirwa
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Karol R Francisco
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Phelelisiwe S Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Hayoung Park
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Thaiz Rodrigues Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
8
|
Shukla R, Soni J, Kumar A, Pandey R. Uncovering the diversity of pathogenic invaders: insights into protozoa, fungi, and worm infections. Front Microbiol 2024; 15:1374438. [PMID: 38596382 PMCID: PMC11003270 DOI: 10.3389/fmicb.2024.1374438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Post COVID-19, there has been renewed interest in understanding the pathogens challenging the human health and evaluate our preparedness towards dealing with health challenges in future. In this endeavour, it is not only the bacteria and the viruses, but a greater community of pathogens. Such pathogenic microorganisms, include protozoa, fungi and worms, which establish a distinct variety of disease-causing agents with the capability to impact the host's well-being as well as the equity of ecosystem. This review summarises the peculiar characteristics and pathogenic mechanisms utilized by these disease-causing organisms. It features their role in causing infection in the concerned host and emphasizes the need for further research. Understanding the layers of pathogenesis encompassing the concerned infectious microbes will help expand targeted inferences with relation to the cause of the infection. This would strengthen and augment benefit to the host's health along with the maintenance of ecosystem network, exhibiting host-pathogen interaction cycle. This would be key to discover the layers underlying differential disease severities in response to similar/same pathogen infection.
Collapse
Affiliation(s)
- Richa Shukla
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Kumar
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Matos ÂP, Saldanha-Corrêa FMP, Gomes RDS, Hurtado GR. Exploring microalgal and cyanobacterial metabolites with antiprotozoal activity against Leishmania and Trypanosoma parasites. Acta Trop 2024; 251:107116. [PMID: 38159713 DOI: 10.1016/j.actatropica.2023.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Neglected tropical diseases (NTD) like Leishmaniasis and trypanosomiasis affect millions of people annually, while currently used antiprotozoal drugs have serious side effects. Drug research based on natural products has shown that microalgae and cyanobacteria are a promising platform of biochemically active compounds with antiprotozoal activity. These unicellular photosynthetic organisms are rich in polyunsaturated fatty acids, pigments including phycocyanin, chlorophylls and carotenoids, polyphenols, bioactive peptides, terpenes, alkaloids, which have proven antioxidant, antimicrobial, antiviral, antiplasmodial and antiprotozoal properties. This review provides up-to-date information regarding ongoing studies on substances synthesized by microalgae and cyanobacteria with notable activity against Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei, the causative agents of Leishmaniasis, Chagas disease, and human African trypanosomiasis, respectively. Extracts of several freshwater or marine microalgae have been tested on different strains of Leishmania and Trypanosoma parasites. For instance, ethanolic extract of Chlamydomonas reinhardtii and Tetraselmis suecica have biological activity against T. cruzi, due to their high content of carotenoids, chlorophylls, phenolic compounds and flavonoids that are associated with trypanocidal activity. Halophilic Dunaliella salina showed moderate antileishmanial activity that may be attributed to the high β-carotene content in this microalga. Peptides such as almiramides, dragonamides, and herbamide that are biosynthesized by marine cyanobacteria Lyngbya majuscula were found to have increased activity in micromolar scale IC50 against L. donovani, T. Cruzi, and T. brucei parasites. The cyanobacterial peptides symplocamide and venturamide isolated from Symploca and Oscillatoria species, respectively, and the alkaloid nostocarbonile isolated from Nostoc have shown promising antiprotozoal properties and are being explored for pharmaceutical and medicinal purposes. The discovery of new molecules from microalgae and cyanobacteria with therapeutic potential against Leishmaniasis and trypanosomiasis may address an urgent medical need: effective and safe treatments of NTDs.
Collapse
Affiliation(s)
- Ângelo Paggi Matos
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Rodovia Presidente Dutra Km 138, Eugênio de Melo, São José dos Campos 12247-004, Brazil.
| | | | - Roberto da Silva Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Gabriela Ramos Hurtado
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Rodovia Presidente Dutra Km 138, Eugênio de Melo, São José dos Campos 12247-004, Brazil; Institute of Science and Technology, São Paulo State University (UNESP), Rodovia Presidente Dutra Km 138, Eugênio de Melo, São José dos Campos 12247-004, Brazil.
| |
Collapse
|
10
|
Zheng Y, van den Kerkhof M, Ibrahim M, De Esch IJP, Maes L, Sterk GJ, Caljon G, Leurs R. Lead Optimization of the 5-Phenylpyrazolopyrimidinone NPD-2975 toward Compounds with Improved Antitrypanosomal Efficacy. J Med Chem 2024; 67:2849-2863. [PMID: 38330051 PMCID: PMC10895668 DOI: 10.1021/acs.jmedchem.3c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Human African trypanosomiasis (HAT) still faces few therapeutic options and emerging drug resistance, stressing an urgency for novel antitrypanosomal drug discovery. Here, we describe lead optimization efforts aiming at improving antitrypanosomal efficacy and better physicochemical properties based on our previously reported optimized hit NPD-2975 (pIC50 7.2). Systematic modification of the 5-phenylpyrazolopyrimidinone NPD-2975 led to the discovery of a R4-substituted analogue 31c (NPD-3519), showing higher in vitro potency (pIC50 7.8) against Trypanosoma brucei and significantly better metabolic stability. Further, in vivo pharmacokinetic evaluation of 31c and experiments in an acute T. brucei mouse model confirmed improved oral bioavailability and antitrypanosomal efficacy at 50 mg/kg with no apparent toxicity. With good physicochemical properties, low toxicity, improved pharmacokinetic features, and in vivo efficacy, 31c may serve as a promising candidate for future drug development for HAT.
Collapse
Affiliation(s)
- Yang Zheng
- Amsterdam
Institute of Molecular and Life Sciences, Division of Medicinal Chemistry,
Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Magali van den Kerkhof
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Mohamed Ibrahim
- Amsterdam
Institute of Molecular and Life Sciences, Division of Medicinal Chemistry,
Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Iwan J. P. De Esch
- Amsterdam
Institute of Molecular and Life Sciences, Division of Medicinal Chemistry,
Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Louis Maes
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Geert Jan Sterk
- Amsterdam
Institute of Molecular and Life Sciences, Division of Medicinal Chemistry,
Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Guy Caljon
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Rob Leurs
- Amsterdam
Institute of Molecular and Life Sciences, Division of Medicinal Chemistry,
Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| |
Collapse
|
11
|
Zhan Q, He Q, Tiedje KE, Day KP, Pascual M. Hyper-diverse antigenic variation and resilience to transmission-reducing intervention in falciparum malaria. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.01.24301818. [PMID: 38370729 PMCID: PMC10871444 DOI: 10.1101/2024.02.01.24301818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Intervention against falciparum malaria in high transmission regions remains challenging, with relaxation of control efforts typically followed by rapid resurgence. Resilience to intervention co-occurs with incomplete immunity, whereby children eventually become protected from severe disease but not infection and a large transmission reservoir results from high asymptomatic prevalence across all ages. Incomplete immunity relates to the vast antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene family known as var. Recent deep sampling of var sequences from individual isolates in northern Ghana showed that parasite population structure exhibited persistent features of high-transmission regions despite the considerable decrease in prevalence during transient intervention with indoor residual spraying (IRS). We ask whether despite such apparent limited impact, the transmission system had been brought close to a transition in both prevalence and resurgence ability. With a stochastic agent-based model, we investigate the existence of such a transition to pre-elimination with intervention intensity, and of molecular indicators informative of its approach. We show that resurgence ability decreases sharply and nonlinearly across a narrow region of intervention intensities in model simulations, and identify informative molecular indicators based on var gene sequences. Their application to the survey data indicates that the transmission system in northern Ghana was brought close to transition by IRS. These results suggest that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago; Chicago, IL, 60637, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University; West Lafayette, IN, 47907, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne; Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne; Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University; New York, NY, 10012, USA
- Department of Environmental Studies, New York University; New York, NY, 10012, USA
- Santa Fe Institute; Santa Fe, NM, 87501, USA
| |
Collapse
|
12
|
Dube NP, Thatyana M, Mokgalaka-Fleischmann NS, Mansour AM, Tembu VJ, Manicum ALE. Review on the Applications of Selected Metal-Based Complexes on Infectious Diseases. Molecules 2024; 29:406. [PMID: 38257319 PMCID: PMC10819944 DOI: 10.3390/molecules29020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Fatalities caused by infectious diseases (i.e., diseases caused by parasite, bacteria, and viruses) have become reinstated as a major public health threat globally. Factors such as antimicrobial resistance and viral complications are the key contributors to the death numbers. As a result, new compounds with structural diversity classes are critical for controlling the virulence of pathogens that are multi-drug resistant. Derivatization of bio-active organic molecules with organometallic synthons is a promising strategy for modifying the inherent and enhanced properties of biomolecules. Due to their redox chemistry, bioactivity, and structural diversity, organometallic moieties make excellent candidates for lead structures in drug development. Furthermore, organometallic compounds open an array of potential in therapy that existing organic molecules lack, i.e., their ability to fulfill drug availability and resolve the frequent succumbing of organic molecules to drug resistance. Additionally, metal complexes have the potential towards metal-specific modes of action, preventing bacteria from developing resistance mechanisms. This review's main contribution is to provide a thorough account of the biological efficacy (in vitro and in vitro) of metal-based complexes against infectious diseases. This resource can also be utilized in conjunction with corresponding journals on metal-based complexes investigated against infectious diseases.
Collapse
Affiliation(s)
- Nondumiso P. Dube
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| | - Maxwell Thatyana
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| | - Ntebogeng S. Mokgalaka-Fleischmann
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| | - Ahmed M. Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Vuyelwa J. Tembu
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| | - Amanda-Lee E. Manicum
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| |
Collapse
|
13
|
Jakabek D, Chaganti J, Brew BJ. Infectious leukoencephalopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:431-453. [PMID: 39322393 DOI: 10.1016/b978-0-323-99209-1.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Leukoencephalopathy from infectious agents may have a rapid course, such as human simplex virus encephalitis; however, in many diseases, it may take months or years before diagnosis, such as in subacute sclerosing panencephalitis or Whipple disease. There are wide geographic distributions and susceptible populations, including both immunocompetent and immunodeficient patients. Many infections have high mortality rates, such as John Cunningham virus and subacute sclerosing panencephalitis, although others have effective treatments if suspected and treated early, such as herpes simplex encephalitis. This chapter will describe viral, bacterial, and protozoal infections, which predominantly cause leukoencephalopathy. We focus on the clinical presentation of these infectious agents briefly covering epidemiology and subtypes of infections. Next, we detail current pathophysiologic mechanisms causing white matter injury. Diagnostic and confirmatory tests are discussed. We cover predominantly MRI imaging features of leukoencephalopathies, and in addition, summarize the common imaging features. Additionally, we detail how imaging features may be used to narrow the differential of a leukoencephalopathy clinical presentation. Lastly, we present an outline of common treatment approaches where available.
Collapse
Affiliation(s)
- David Jakabek
- Department of Neurology, St. Vincent's Hospital, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Joga Chaganti
- Department of Radiology, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Bruce James Brew
- Department of Neurology, St. Vincent's Hospital, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia; University of Notre Dame, Sydney, NSW, Australia; Department of HIV Medicine and Peter Duncan Neurosciences Unit St Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Ortiz-Martínez Y, Kouamé MG, Bongomin F, Lakoh S, Henao-Martínez AF. Human African Trypanosomiasis (Sleeping Sickness)-Epidemiology, Clinical Manifestations, Diagnosis, Treatment, and Prevention. CURRENT TROPICAL MEDICINE REPORTS 2023; 10:222-234. [PMID: 38939748 PMCID: PMC11210952 DOI: 10.1007/s40475-023-00304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 06/29/2024]
Abstract
Purpose of Review Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a vector-borne parasitic neglected tropical disease (NTD) endemic in sub-Saharan Africa. This review aims to enhance our understanding of HAT and provide valuable insights to combat this significant public health issue by synthesizing the latest research and evidence. Recent Findings HAT has reached a historical < 1000 cases in 2018. In patients without neurologic symptoms and signs, the likelihood of a severe meningoencephalitic stage is deemed low, obviating the need for a lumbar puncture to guide treatment decisions using fexinidazole. Summary Both forms of the disease, gambiense HAT (gHAT) and rhodesiense HAT (rHAT), have specific epidemiology, risk factors, diagnosis, and treatment. Disease management still requires a high index of suspicion, infectious disease expertise, and specialized medical care. Essential stakeholders in health policy are critical to accomplishing the elimination goals of the NTD roadmap for 2021-2030.
Collapse
Affiliation(s)
- Yeimer Ortiz-Martínez
- Department of Internal Medicine, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Sulaiman Lakoh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Andrés F. Henao-Martínez
- Division of Infectious Diseases, Department of Medicine, University of Colorado, Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Tiberti N, Longoni SS, Combes V, Piubelli C. Host-Derived Extracellular Vesicles in Blood and Tissue Human Protozoan Infections. Microorganisms 2023; 11:2318. [PMID: 37764162 PMCID: PMC10536481 DOI: 10.3390/microorganisms11092318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Blood and tissue protozoan infections are responsible for an enormous burden in tropical and subtropical regions, even though they can also affect people living in high-income countries, mainly as a consequence of migration and travel. These pathologies are responsible for heavy socio-economic issues in endemic countries, where the lack of proper therapeutic interventions and effective vaccine strategies is still hampering their control. Moreover, the pathophysiological mechanisms associated with the establishment, progression and outcome of these infectious diseases are yet to be fully described. Among all the players, extracellular vesicles (EVs) have raised significant interest during the last decades due to their capacity to modulate inter-parasite and host-parasite interactions. In the present manuscript, we will review the state of the art of circulating host-derived EVs in clinical samples or in experimental models of human blood and tissue protozoan diseases (i.e., malaria, leishmaniasis, Chagas disease, human African trypanosomiasis and toxoplasmosis) to gain novel insights into the mechanisms of pathology underlying these conditions and to identify novel potential diagnostic markers.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Valéry Combes
- Microvesicles and Malaria Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| |
Collapse
|
17
|
Gao G, Chen A, Gong J, Lin W, Wu W, Mohammad Ismail Hajary S, Lian G, Luo L, Xie L. Comprehensive analyses of m6A RNA methylation patterns and related immune microenvironment in idiopathic pulmonary arterial hypertension. Front Genet 2023; 14:1222368. [PMID: 37732317 PMCID: PMC10507408 DOI: 10.3389/fgene.2023.1222368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disease with a poor prognosis and high heritability, characterized by elevated pulmonary vascular resistance (PVR) and pulmonary artery pressure. N6-methyladenosine (m6A) RNA modification influences many RNA metabolism pathways. However, the position of m6A methylation regulators in IPAH remains unknown. Therefore, the study aims to disclose the function m6A regulators exert in the pathological mechanisms of IPAH and the immune microenvironment involved. The GSE117261 dataset was downloaded from the Gene Expression Omnibus (GEO) to screen the differentially expressed genes (DEGs) between normal and IPAH samples. Functional and pathway enrichment analyses of DEGs were then conducted by Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG). We also identified the differentially-expressed m6A (DEm6A) regulators between normal and IPAH samples. Key m6A regulators related to the prediction of IPAH were selected using the random forest model. The results showed that FMR1, RBM15, HNRNPA2B1 and IGFBP3 were upregulated in IPAH. In contrast, LRPPRC was downregulated. The single sample gene set enrichment analysis (ssGSEA) method was then adopted to estimate the immune microenvironment in distinct m6A clusters and m6A phenotype-related genes (PRGs) clusters, respectively. Furthermore, we calculated the m6A score via principal component analysis (PCA), and the Sankey diagram was selected to present the correlation among the m6A clusters, m6A PRGs clusters and m6A score. Finally, quantitative RT-PCR and Western blotting were used to validate the key genes in human pulmonary artery smooth muscle cells (HPASMCs) treated by human platelet-derived growth factor-BB (PDGF-BB). The relative mRNA and protein expression levels of FMR1 were significantly elevated, however, the relative mRNA and protein expression levels of LRPPRC were downregulated. Besides, the relative mRNA level of HNRNPA2B1 was increased. Generally, this bioinformatics analysis might provoke more insights into diagnosing and treating IPAH.
Collapse
Affiliation(s)
- Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| | - Ai Chen
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| | - Weijun Lin
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| | - Weibin Wu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| | - Sagor Mohammad Ismail Hajary
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| | - Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| |
Collapse
|
18
|
Jamabo M, Mahlalela M, Edkins AL, Boshoff A. Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies. Int J Mol Sci 2023; 24:12529. [PMID: 37569903 PMCID: PMC10420020 DOI: 10.3390/ijms241512529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Maduma Mahlalela
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Adrienne L. Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Centre (BioBRU), Rhodes University, Makhanda 6139, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| |
Collapse
|
19
|
Chandrasegaran P, Nabilla Lestari A, Sinton MC, Gopalakrishnan J, Quintana JF. Modelling host- Trypanosoma brucei gambiense interactions in vitro using human induced pluripotent stem cell-derived cortical brain organoids. F1000Res 2023; 12:437. [PMID: 37588058 PMCID: PMC10425695 DOI: 10.12688/f1000research.131507.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
Background: Sleeping sickness is caused by the extracellular parasite Trypanosoma brucei and is associated with neuroinflammation and neuropsychiatric disorders, including disruption of sleep/wake patterns, and is now recognised as a circadian disorder. Sleeping sickness is traditionally studied using murine models of infection due to the lack of alternative in vitro systems that fully recapitulate the cellular diversity and functionality of the human brain. The aim of this study is to develop a much-needed in vitro system that reduces and replaces live animals for the study of infections in the central nervous system, using sleeping sickness as a model infection. Methods: We developed a co-culture system using induced pluripotent stem cell (iPSC)-derived cortical human brain organoids and the human pathogen T. b. gambiense to model host-pathogen interactions in vitro. Upon co-culture, we analysed the transcriptional responses of the brain organoids to T. b. gambiense over two time points. Results: We detected broad transcriptional changes in brain organoids exposed to T. b. gambiense, mainly associated with innate immune responses, chemotaxis, and blood vessel differentiation compared to untreated organoids. Conclusions: Our co-culture system provides novel, more ethical avenues to study host-pathogen interactions in the brain as alternative models to experimental infections in mice. Although our data support the use of brain organoids to model host-pathogen interactions during T. brucei infection as an alternative to in vivo models, future work is required to increase the complexity of the organoids ( e.g., addition of microglia and vasculature). We envision that the adoption of organoid systems is beneficial to researchers studying mechanisms of brain infection by protozoan parasites. Furthermore, organoid systems have the potential to be used to study other parasites that affect the brain significantly reducing the number of animals undergoing moderate and/or severe protocols associated with the study of neuroinflammation and brain infections.
Collapse
Affiliation(s)
- Praveena Chandrasegaran
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), University of Glasgow, Glasgow, Scotland, G61 1QH, UK
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, Scotland, G61 1QH, UK
| | - Agatha Nabilla Lestari
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), University of Glasgow, Glasgow, Scotland, G61 1QH, UK
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, Scotland, G61 1QH, UK
| | - Matthew C. Sinton
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), University of Glasgow, Glasgow, Scotland, G61 1QH, UK
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, Scotland, G61 1QH, UK
| | - Jay Gopalakrishnan
- Laboratory of Centrosome and Cytoskeleton Biology, Laboratory for Centrosome and Cytoskeleton Biology, Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, 40225, Germany
| | - Juan F. Quintana
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), University of Glasgow, Glasgow, Scotland, G61 1QH, UK
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, Scotland, G61 1QH, UK
| |
Collapse
|
20
|
Pinheiro KMP, Guinati BGS, Moreira NS, Coltro WKT. Low-Cost Microfluidic Systems for Detection of Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:117-138. [PMID: 37068747 DOI: 10.1146/annurev-anchem-091522-024759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neglected tropical diseases (NTDs) affect tropical and subtropical countries and are caused by viruses, bacteria, protozoa, and helminths. These kinds of diseases spread quickly due to the tropical climate and limited access to clean water, sanitation, and health care, which make exposed people more vulnerable. NTDs are reported to be difficult and inefficient to diagnose. As mentioned, most NTDs occur in countries that are socially vulnerable, and the lack of resources and access to modern laboratories and equipment intensify the difficulty of diagnosis and treatment, leading to an increase in the mortality rate. Portable and low-cost microfluidic systems have been widely applied for clinical diagnosis, offering a promising alternative that can meet the needs for fast, affordable, and reliable diagnostic tests in developing countries. This review provides a critical overview of microfluidic devices that have been reported in the literature for the detection of the most common NTDs over the past 5 years.
Collapse
Affiliation(s)
| | | | - Nikaele S Moreira
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil;
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil;
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, Brazil
| |
Collapse
|
21
|
Paterson S, Vallatos A, Rodgers J, Holmes WM. Application of diffusion weighted multiple boli ASL to a murine model of human African trypanosomiasis. Sci Rep 2023; 13:8684. [PMID: 37248398 DOI: 10.1038/s41598-023-34665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Human African Trypanosomiasis (HAT) is a parasitic disease originating in sub-Saharan Africa. There is limited information about the changes in the blood brain barrier (BBB) during this infection. This study is the first to apply diffusion weighted ASL (DWASL) to examine changes in BBB impairment. No significant changes in water exchange across the BBB were found during the infection, even when a loss of barrier integrity was seen using Contrast Enhanced MRI (Gd-DTPA) during the late stage of the disease. Furthermore, using multiple boli ASL (mbASL), changes in cerebral blood flow (CBF) were found during the course of infection. Overall, this study highlights the need for further study of the BBB during HAT infection to understand the complex mechanisms behind impairment.
Collapse
Affiliation(s)
- Samantha Paterson
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Antoine Vallatos
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Jean Rodgers
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - William M Holmes
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
22
|
Di Chio C, Previti S, Totaro N, De Luca F, Allegra A, Schirmeister T, Zappalà M, Ettari R. Dipeptide Nitrile CD34 with Curcumin: A New Improved Combination Strategy to Synergistically Inhibit Rhodesain of Trypanosoma brucei rhodesiense. Int J Mol Sci 2023; 24:ijms24108477. [PMID: 37239824 DOI: 10.3390/ijms24108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Rhodesain is the main cysteine protease of Trypanosoma brucei rhodesiense, the parasite causing the acute lethal form of Human African Trypanosomiasis. Starting from the dipeptide nitrile CD24, the further introduction of a fluorine atom in the meta position of the phenyl ring spanning in the P3 site and the switch of the P2 leucine with a phenylalanine led to CD34, a synthetic inhibitor that shows a nanomolar binding affinity towards rhodesain (Ki = 27 nM) and an improved target selectivity with respect to the parent dipeptide nitrile CD24. In the present work, following the Chou and Talalay method, we carried out a combination study of CD34 with curcumin, a nutraceutical obtained from Curcuma longa L. Starting from an affected fraction (fa) of rhodesain inhibition of 0.5 (i.e., the IC50), we observed an initial moderate synergistic action, which became a synergism for fa values ranging from 0.6 to 0.7 (i.e., 60-70% inhibition of the trypanosomal protease). Interestingly, at 80-90% inhibition of rhodesain proteolytic activity, we observed a strong synergism, resulting in 100% enzyme inhibition. Overall, in addition to the improved target selectivity of CD34 with respect to CD24, the combination of CD34 + curcumin resulted in an increased synergistic action with respect to CD24 + curcumin, thus suggesting that it is desirable to use CD34 and curcumin in combination.
Collapse
Affiliation(s)
- Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Santo Previti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Noemi Totaro
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
23
|
Rojas-Pirela M, Kemmerling U, Quiñones W, Michels PAM, Rojas V. Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases? Biomolecules 2023; 13:biom13040599. [PMID: 37189347 DOI: 10.3390/biom13040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Trypanosomiases are a group of tropical diseases that have devastating health and socio-economic effects worldwide. In humans, these diseases are caused by the pathogenic kinetoplastids Trypanosoma brucei, causing African trypanosomiasis or sleeping sickness, and Trypanosoma cruzi, causing American trypanosomiasis or Chagas disease. Currently, these diseases lack effective treatment. This is attributed to the high toxicity and limited trypanocidal activity of registered drugs, as well as resistance development and difficulties in their administration. All this has prompted the search for new compounds that can serve as the basis for the development of treatment of these diseases. Antimicrobial peptides (AMPs) are small peptides synthesized by both prokaryotes and (unicellular and multicellular) eukaryotes, where they fulfill functions related to competition strategy with other organisms and immune defense. These AMPs can bind and induce perturbation in cell membranes, leading to permeation of molecules, alteration of morphology, disruption of cellular homeostasis, and activation of cell death. These peptides have activity against various pathogenic microorganisms, including parasitic protists. Therefore, they are being considered for new therapeutic strategies to treat some parasitic diseases. In this review, we analyze AMPs as therapeutic alternatives for the treatment of trypanosomiases, emphasizing their possible application as possible candidates for the development of future natural anti-trypanosome drugs.
Collapse
|
24
|
Abstract
African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Gosselies, Belgium;
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium;
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; .,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Goswami A, Koley T, Rajan MV, Madhuri P, Upadhyay N, Das U, Kumar M, Ethayathulla AS, Hariprasad G. Structural Modelling of Platelet Activating Factor Acetyl Hydrolase in Leishmania donovani, Trypanosoma cruzi, and Trypanosoma brucei: Implications on Therapeutics for Leishmaniasis, Chagas Disease, and Sleeping Sickness. Infect Drug Resist 2023; 16:2117-2128. [PMID: 37070125 PMCID: PMC10105589 DOI: 10.2147/idr.s403411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
Purpose Leishmaniasis, Chagas disease, and sleeping sickness are caused by protozoa Leishmania donovani, Trypanosoma cruzi, and Trypanosoma brucei, respectively. Platelet activating factor acetyl hydrolase (PAF-AH) is an inflammatory protein implicated in pathogenesis of these three infections, thereby making them attractive drug targets. Methods PAF-AH sequences were retrieved from UniProt and aligned using Clustal Omega. Homologous models of parasitic proteins were built based on crystal structure of human PAF-AH and validated using PROCHECK server. Volumes of substrate-binding channel were calculated using the ProteinsPlus program. High throughput virtual screening using Glide program in Schrodinger was done with ZINC drug library against parasitic PAF-AH enzymes. Complexes with best hits were energy-minimized and subjected to 100 ns molecular dynamic simulation and analyzed. Results PAF-AH enzyme sequences from protozoa Leishmania donovani, Trypanosoma cruzi, Trypanosoma brucei, and human have a minimum of 34% sequence similarity with each other. Corresponding structures show a globular conformation consisting of twisted β-pleated sheets, flanked by α-helices on either side. Catalytic triad of serine-histidine-aspartate is conserved. Substrate-binding channel residues are conserved to an extent, with a lower channel volume in human as compared to target enzymes. Drug screening resulted in identification of three molecules that had better affinities than the substrate to the target enzymes. These molecules fulfill Lipinski's rules for drug likeness and also bind with less affinity to the human counterpart, thereby establishing a high selective index. Conclusion Structures of PAF-AH from protozoan parasites and humans belong to the same family of enzymes and have a similar three-dimensional fold. However, they show subtle variations in residue composition, secondary structure composition, substrate-binding channel volume, and conformational stability. These differences result in certain specific molecules being potent inhibitors of the target enzymes while simultaneously having weaker binding to human homologue.
Collapse
Affiliation(s)
- Arunima Goswami
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tirthankar Koley
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhan Vishal Rajan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pathak Madhuri
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Upadhyay
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
- Correspondence: Gururao Hariprasad, Tel +91-11-26594240, Fax +91-11-26588663, Email
| |
Collapse
|
26
|
Feineis D, Bringmann G. Asian Ancistrocladus Lianas as Creative Producers of Naphthylisoquinoline Alkaloids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 119:1-335. [PMID: 36587292 DOI: 10.1007/978-3-031-10457-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This book describes a unique class of secondary metabolites, the mono- and dimeric naphthylisoquinoline alkaloids. They occur in lianas of the paleotropical Ancistrocladaceae and Dioncophyllaceae families, exclusively. Their unprecedented structures include stereogenic centers and rotationally hindered, and thus likewise stereogenic, axes. Extended recent investigations on six Ancistrocladus species from Asia, as reported in this review, shed light on their fascinating phytochemical productivity, with over 100 such intriguing natural products. This high chemodiversity arises from a likewise unique biosynthesis from acetate-malonate units, following a novel polyketidic pathway to plant-derived isoquinoline alkaloids. Some of the compounds show most promising antiparasitic activities. Likewise presented are strategies for the regio- and stereoselective total synthesis of the alkaloids, including the directed construction of the chiral axis.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
27
|
Costa TFR, Goundry A, Morrot A, Grab DJ, Mottram JC, Lima APCA. Trypanosoma brucei rhodesiense Inhibitor of Cysteine Peptidase (ICP) Is Required for Virulence in Mice and to Attenuate the Inflammatory Response. Int J Mol Sci 2022; 24:656. [PMID: 36614101 PMCID: PMC9820468 DOI: 10.3390/ijms24010656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
The protozoan Trypanosoma brucei rhodesiense causes Human African Trypanosomiasis, also known as sleeping sickness, and penetrates the central nervous system, leading to meningoencephalitis. The Cathepsin L-like cysteine peptidase of T. b. rhodesiense has been implicated in parasite penetration of the blood-brain barrier and its activity is modulated by the chagasin-family endogenous inhibitor of cysteine peptidases (ICP). To investigate the role of ICP in T. b. rhodesiense bloodstream form, ICP-null (Δicp) mutants were generated, and lines re-expressing ICP (Δicp:ICP). Lysates of Δicp displayed increased E-64-sensitive cysteine peptidase activity and the mutant parasites traversed human brain microvascular endothelial cell (HBMEC) monolayers in vitro more efficiently. Δicp induced E-selectin in HBMECs, leading to the adherence of higher numbers of human neutrophils. In C57BL/6 mice, no Δicp parasites could be detected in the blood after 6 days, while mice infected with wild-type (WT) or Δicp:ICP displayed high parasitemia, peaking at day 12. In mice infected with Δicp, there was increased recruitment of monocytes to the site of inoculation and higher levels of IFN-γ in the spleen. At day 14, mice infected with Δicp exhibited higher preservation of the CD4+, CD8+, and CD19+ populations in the spleen, accompanied by sustained high IFN-γ, while NK1.1+ populations receded nearly to the levels of uninfected controls. We propose that ICP helps to downregulate inflammatory responses that contribute to the control of infection.
Collapse
Affiliation(s)
- Tatiana F. R. Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Amy Goundry
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
- Centro de Pesquisa em Tuberculose, Fundação Oswaldo Cruz (FIOCRUZ), Manguinhos 21040-900, Brazil
| | - Dennis J. Grab
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, York YO10 5DD, UK
| | - Ana Paula C. A. Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
28
|
VSGs Expressed during Natural T. b. gambiense Infection Exhibit Extensive Sequence Divergence and a Subspecies-Specific Bias towards Type B N-Terminal Domains. mBio 2022; 13:e0255322. [PMID: 36354333 PMCID: PMC9765701 DOI: 10.1128/mbio.02553-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trypanosoma brucei gambiense is the primary causative agent of human African trypanosomiasis (HAT), a vector-borne disease endemic to West and Central Africa. The extracellular parasite evades antibody recognition within the host bloodstream by altering its variant surface glycoprotein (VSG) coat through a process of antigenic variation. The serological tests that are widely used to screen for HAT use VSG as one of the target antigens. However, the VSGs expressed during human infection have not been characterized. Here, we use VSG sequencing (VSG-seq) to analyze the VSGs expressed in the blood of patients infected with T. b. gambiense and compared them to VSG expression in Trypanosoma brucei rhodesiense infections in humans as well as Trypanosoma brucei brucei infections in mice. The 44 VSGs expressed during T. b. gambiense infection revealed a striking bias toward expression of type B N termini (82% of detected VSGs). This bias is specific to T. b. gambiense, which is unique among T. brucei subspecies in its chronic clinical presentation and anthroponotic nature. The expressed T. b. gambiense VSGs also share very little similarity to sequences from 36 T. b. gambiense whole-genome sequencing data sets, particularly in areas of the VSG protein exposed to host antibodies, suggesting the antigen repertoire is under strong selective pressure to diversify. Overall, this work demonstrates new features of antigenic variation in T. brucei gambiense and highlights the importance of understanding VSG repertoires in nature. IMPORTANCE Human African trypanosomiasis is a neglected tropical disease primarily caused by the extracellular parasite Trypanosoma brucei gambiense. To avoid elimination by the host, these parasites repeatedly replace their variant surface glycoprotein (VSG) coat. Despite the important role of VSGs in prolonging infection, VSG expression during human infections is poorly understood. A better understanding of natural VSG gene expression dynamics can clarify the mechanisms that T. brucei uses to alter its VSG coat. We analyzed the expressed VSGs detected in the blood of patients with trypanosomiasis. Our findings indicate that there are features of antigenic variation unique to human-infective T. brucei subspecies and that natural VSG repertoires may vary more than previously expected.
Collapse
|
29
|
Paterson S, Holmes WM, Rodgers J. Serial magnetic resonance imaging of splenomegaly in the Trypanosoma brucei infected mouse. PLoS Negl Trop Dis 2022; 16:e0010962. [PMID: 36477669 PMCID: PMC9728833 DOI: 10.1371/journal.pntd.0010962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Splenomegaly, an enlargement of the spleen, is a known clinical sign of the parasitic disease, human African trypanosomiasis. This study follows the development of splenomegaly in a group of mice over multiple infection points, using a non-invasive imaging modality, magnetic resonance imaging (MRI). CD-1 mice infected with GVR35 T.b. brucei demonstrated a significant increase in spleen size from day 7 post-infection, with changes in the spleen tracked in individual animals over five time points. At the final time point, the mean spleen weight calculated using the spleen volume from the MR images was compared with the post-mortem gross spleen weight. No significant difference was detected between the two methods (1.62 ± 0.06g using MRI and 1.51 ± 0.04g gross weight, p = 0.554). Haematology and histological analysis were also performed, giving additional insight into splenomegaly for the GVR35 strain of infection. The study demonstrates that MRI is a useful tool when examining changes in organ volume throughout HAT infection and may be applicable in the investigation of a range of conditions where changes in organ volume occur and MRI has not been used previously.
Collapse
Affiliation(s)
- Samantha Paterson
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - William Matthew Holmes
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Jean Rodgers
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
30
|
Xie Y, Liang H, Jiang N, Liu D, Zhang N, Li Q, Zhang K, Sang X, Feng Y, Chen R, Zhang Y, Chen Q. Graphene quantum dots induce cascadic apoptosis via interaction with proteins associated with anti-oxidation after endocytosis by Trypanosoma brucei. Front Immunol 2022; 13:1022050. [PMID: 36561761 PMCID: PMC9763322 DOI: 10.3389/fimmu.2022.1022050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma brucei, the pathogen causing African sleeping sickness (trypanosomiasis) in humans, causes debilitating diseases in many regions of the world, but mainly in African countries with tropical and subtropical climates. Enormous efforts have been devoted to controlling trypanosomiasis, including expanding vector control programs, searching for novel anti-trypanosomial agents, and developing vaccines, but with limited success. In this study, we systematically investigated the effect of graphene quantum dots (GQDs) on trypanosomal parasites and their underlying mechanisms. Ultrasmall-sized GQDs can be efficiently endocytosed by T. brucei and with no toxicity to mammalian-derived cells, triggering a cascade of apoptotic reactions, including mitochondrial disorder, intracellular reactive oxygen species (ROS) elevation, Ca2+ accumulation, DNA fragmentation, adenosine triphosphate (ATP) synthesis impairment, and cell cycle arrest. All of these were caused by the direct interaction between GQDs and the proteins associated with cell apoptosis and anti-oxidation responses, such as trypanothione reductase (TryR), a key protein in anti-oxidation. GQDs specifically inhibited the enzymatic activity of TryR, leading to a reduction in the antioxidant capacity and, ultimately, parasite apoptotic death. These data, for the first time, provide a basis for the exploration of GQDs in the development of anti-trypanosomials.
Collapse
Affiliation(s)
- Yiwei Xie
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Hongrui Liang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Dingyuan Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Kai Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang, China,Research Unit for Pathogenic Mechanism of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang Agricultural University, Shenyang, China,*Correspondence: Qijun Chen,
| |
Collapse
|
31
|
Steinhorst J, Tianyi FL, Habib AG, Oluoch GO, Lalloo DG, Stienstra Y. Uniting behind a common goal: Collaboration between traditional healers and allopathic health care workers to improve rural snakebite care. Toxicon X 2022; 16:100140. [PMID: 36353448 PMCID: PMC9637966 DOI: 10.1016/j.toxcx.2022.100140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/22/2022] [Indexed: 12/12/2022] Open
Abstract
Snakebite envenoming is an acute medical emergency which affects hundreds of thousands of people worldwide, primarily in remote rural areas of low-and middle income countries in the Global South. A considerable proportion of snakebite patients turn to traditional healers (THs) for help, driven by a number of push and pull factors. These include socio-cultural factors, geographical proximity, and the absence or inaccessibility of overstretched and often costly allopathic healthcare services. Although traditional healers and allopathic healthcare staff share a common focus -the recovery and well-being of their patients- both systems operate largely in parallel to each other with collaborations being an exception rather than the rule. This is to the detriment of snakebite patients, who frequently find themselves being caught-up in the dualism between the two separate systems. Given the right circumstances, snakebite patients could benefit from elements of care from both modalities. Here, we have reviewed the role of THs in snakebite care and explored how their integration into the formal healthcare system could improve the implementation and outcome of care. The effective recruitment of THs to aid in disease control and treatment efforts in diseases other than snakebite underscores the potential benefits of this strategy. Carefully devised proof of concept studies are needed to test our hypothesis that collaborations between the formal healthcare sector and THs are feasible and improve outcomes in snakebite care.
Collapse
Affiliation(s)
- Jonathan Steinhorst
- University of Groningen, Department of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, Groningen, the Netherlands
| | - Frank-Leonel Tianyi
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Abdulrazaq Garba Habib
- Infectious Disease and Tropical Medicine Unit, Department of Medicine, College of Health Science, Bayero University Kano, Nigeria
| | - George O. Oluoch
- Kenya Snakebite Research & Intervention Centre, Institute of Primate Research, Karen, Nairobi, Kenya
| | - David G. Lalloo
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ymkje Stienstra
- University of Groningen, Department of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, Groningen, the Netherlands
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
32
|
De Vlaminck K, Van Hove H, Kancheva D, Scheyltjens I, Pombo Antunes AR, Bastos J, Vara-Perez M, Ali L, Mampay M, Deneyer L, Miranda JF, Cai R, Bouwens L, De Bundel D, Caljon G, Stijlemans B, Massie A, Van Ginderachter JA, Vandenbroucke RE, Movahedi K. Differential plasticity and fate of brain-resident and recruited macrophages during the onset and resolution of neuroinflammation. Immunity 2022; 55:2085-2102.e9. [PMID: 36228615 DOI: 10.1016/j.immuni.2022.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Microglia and border-associated macrophages (BAMs) are brain-resident self-renewing cells. Here, we examined the fate of microglia, BAMs, and recruited macrophages upon neuroinflammation and through resolution. Upon infection, Trypanosoma brucei parasites invaded the brain via its border regions, triggering brain barrier disruption and monocyte infiltration. Fate mapping combined with single-cell sequencing revealed microglia accumulation around the ventricles and expansion of epiplexus cells. Depletion experiments using genetic targeting revealed that resident macrophages promoted initial parasite defense and subsequently facilitated monocyte infiltration across brain barriers. These recruited monocyte-derived macrophages outnumbered resident macrophages and exhibited more transcriptional plasticity, adopting antimicrobial gene expression profiles. Recruited macrophages were rapidly removed upon disease resolution, leaving no engrafted monocyte-derived cells in the parenchyma, while resident macrophages progressively reverted toward a homeostatic state. Long-term transcriptional alterations were limited for microglia but more pronounced in BAMs. Thus, brain-resident and recruited macrophages exhibit diverging responses and dynamics during infection and resolution.
Collapse
Affiliation(s)
- Karen De Vlaminck
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannah Van Hove
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daliya Kancheva
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Scheyltjens
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ana Rita Pombo Antunes
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Bastos
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Monica Vara-Perez
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leen Ali
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Myrthe Mampay
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lauren Deneyer
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Juliana Fabiani Miranda
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ruiyao Cai
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Luc Bouwens
- Cell Differentiation Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Benoît Stijlemans
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Laboratory, VIB Center for Inflammation Research, Ghent, Belgium; Ghent Gut Inflammation Group, Ghent University, Ghent, Belgium
| | - Kiavash Movahedi
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
33
|
Álvarez-Rodríguez A, Jin BK, Radwanska M, Magez S. Recent progress in diagnosis and treatment of Human African Trypanosomiasis has made the elimination of this disease a realistic target by 2030. Front Med (Lausanne) 2022; 9:1037094. [PMID: 36405602 PMCID: PMC9669443 DOI: 10.3389/fmed.2022.1037094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is caused by unicellular flagellated protozoan parasites of the genus Trypanosoma brucei. The subspecies T. b. gambiense is mainly responsible for mostly chronic anthroponotic infections in West- and Central Africa, accounting for roughly 95% of all HAT cases. Trypanosoma b. rhodesiense results in more acute zoonotic infections in East-Africa. Because HAT has a two-stage pathogenesis, treatment depends on clinical assessment of patients and the determination whether or not parasites have crossed the blood brain barrier. Today, ultimate confirmation of parasitemia is still done by microscopy analysis. However, the introduction of diagnostic lateral flow devices has been a major contributor to the recent dramatic drop in T. b. gambiense HAT. Other techniques such as loop mediated isothermal amplification (LAMP) and recombinant polymerase amplification (RPA)-based tests have been published but are still not widely used in the field. Most recently, CRISPR-Cas technology has been proposed to improve the intrinsic diagnostic characteristics of molecular approaches. This will become crucial in the near future, as preventing the resurgence of HAT will be a priority and will require tools with extreme high positive and negative predicted values, as well as excellent sensitivity and specificity. As for treatment, pentamidine and suramin have historically been the drugs of choice for the treatment of blood-stage gambiense-HAT and rhodesiense-HAT, respectively. For treatment of second-stage infections, drugs that pass the blood brain barrier are needed, and melarsoprol has been effectively used for both forms of HAT in the past. However, due to the high occurrence of post-treatment encephalopathy, the drug is not recommended for use in T. b. gambiense HAT. Here, a combination therapy of eflornithine and nifurtimox (NECT) has been the choice of treatment since 2009. As this treatment requires IV perfusion of eflornithine, efforts were launched in 2003 by the drugs for neglected disease initiative (DNDi) to find an oral-only therapy solution, suitable for rural sub-Saharan Africa treatment conditions. In 2019 this resulted in the introduction of fexinidazole, with a treatment regimen suitable for both the blood-stage and non-severe second-stage T. b. gambiense infections. Experimental treatment of T. b. rhodesiense HAT has now been initiated as well.
Collapse
Affiliation(s)
- Andrés Álvarez-Rodríguez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bo-Kyung Jin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- *Correspondence: Stefan Magez,
| |
Collapse
|
34
|
Melachio Tanekou TT, Bouaka Tsakeng CU, Tirados I, Torr SJ, Njiokou F, Acho A, Wondji CS. Environmental mutations in the Campo focus challenge elimination of sleeping sickness transmission in Cameroon. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:260-268. [PMID: 35593526 PMCID: PMC10138755 DOI: 10.1111/mve.12579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/03/2022] [Indexed: 05/13/2023]
Abstract
Sleeping sickness is still prevalent in Campo, southern Cameroon, despite the efforts of World Health Organization and the National Control Programme in screening and treating cases. Reducing disease incidence still further may need the control of tsetse vectors. We update entomological and parasitological parameters necessary to guide tsetse control in Campo. Tsetse flies were trapped, their apparent densities were evaluated as the number of flies captured per trap per day and mapped using GIS tools. Polymerase chain reaction based methods were used to identify their trypanosome infection rates. Glossina palpalis palpalis was the dominant vector species representing 93.42% and 92.85% of flies captured respectively during the heavy and light dry seasons. This species presented high densities, that is, 3.87, 95% CI [3.84-3.91], and 2.51, 95% CI [2.49-2.53] flies/trap/day in the two seasons. Moreover, 16.79% (of 1054) and 20.23% (of 1132 flies) were found infected with at least 1 trypanosome species for the 2 seasons respectively, Trypanosoma congolense being the most prevalent species, and Trypanosoma. brucei gambiense identified in 4 samples. Tsetse flies are abundant in Campo and present high trypanosome infection rates. The detection of tsetse infected with human trypanosomes near the newly created palm grove show workers' exposition. Tsetse densities maps built will guide vector control with 'Tiny Targets'.
Collapse
Affiliation(s)
- Tito Tresor Melachio Tanekou
- Centre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Biological Sciences, Faculty of ScienceUniversity of BamendaBamendaCameroon
| | - Calmes Ursain Bouaka Tsakeng
- Centre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Biochemistry, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| | - Inaki Tirados
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Steve J. Torr
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| | - Alphonse Acho
- Programme National de Lutte contre la Trypanosomose Humaine Africaine (PNLTHA)Ministry of Public HealthYaoundéCameroon
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
35
|
Orahoske CM, Afrin M, Li Y, Hanna J, Marbury M, Li B, Su B. Identification of Prazosin as a Potential Flagellum Attachment Zone 1(FAZ1) Inhibitor for the Treatment of Human African Trypanosomiasis. ACS Infect Dis 2022; 8:1711-1726. [PMID: 35894227 DOI: 10.1021/acsinfecdis.2c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human African trypanosomiasis (HAT) remains a health threat to sub-Saharan Africa. The current treatments suffer from drug resistance and life-threatening side effects, making drug discovery for HAT still important. A high-throughput screening of the library of pharmaceutically active compounds identified prazosin, an α-adrenoceptor antagonist, that showed selective activity toward Trypanosoma brucei brucei. Furthermore, a series of prazosin analogues were examined, and overall, the new analogues had improved activity and selectivity. To elucidate the binding partner, a biotin-conjugated probe was synthesized, and a protein pulldown assay combined with a proteomic analysis identified the flagellum attachment zone 1 (FAZ1) filament as an interacting partner. Additionally, prazosin treatment resulted in dysfunction of the flagellum of trypanosome cells, which is indicative of a FAZ1 irregularity. We also examined the drug distribution by utilizing immunofluorescence with a designed fluorescent analogue that showed partial colocalization with FAZ1. With the activity of the prazosin analogues, a structure-activity relationship (SAR) was summarized for future lead optimization. Our findings provide a new group of FAZ1 inhibitors as novel antitrypanosomal agents.
Collapse
Affiliation(s)
- Cody M Orahoske
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Marjia Afrin
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Yaxin Li
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Jovana Hanna
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Myah Marbury
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Bibo Li
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| |
Collapse
|
36
|
Previti S, Ettari R, Calcaterra E, Di Chio C, Ravichandran R, Zimmer C, Hammerschmidt S, Wagner A, Bogacz M, Cosconati S, Schirmeister T, Zappalà M. Development of Urea-Bond-Containing Michael Acceptors as Antitrypanosomal Agents Targeting Rhodesain. ACS Med Chem Lett 2022; 13:1083-1090. [PMID: 35859868 PMCID: PMC9290002 DOI: 10.1021/acsmedchemlett.2c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
![]()
Human African Trypanosomiasis
(HAT) is a neglected tropical disease
widespread in sub-Saharan Africa. Rhodesain, a cysteine protease of Trypanosoma brucei rhodesiense, has been identified as a
valid target for the development of anti-HAT agents. Herein, we report
a series of urea-bond-containing Michael acceptors, which were demonstrated
to be potent rhodesain inhibitors with Ki values ranging from 0.15 to 2.51 nM, and five of them showed comparable k2nd values to that of K11777, a potent antitrypanosomal
agent. Moreover, most of the urea derivatives exhibited single-digit
micromolar activity against the protozoa, and the presence of substituents
at the P3 position appears to be essential for the antitrypanosomal
effect. Replacement of Phe with Leu at the P2 site kept unchanged
the inhibitory properties. Compound 7 (SPR7) showed the
best compromise in terms of rhodesain inhibition, selectivity, and
antiparasitic activity, thus representing a new lead compound for
future SAR studies.
Collapse
Affiliation(s)
- Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Elsa Calcaterra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Rahul Ravichandran
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Stefan Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Annika Wagner
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Marta Bogacz
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Sandro Cosconati
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
37
|
Venturelli A, Tagliazucchi L, Lima C, Venuti F, Malpezzi G, Magoulas GE, Santarem N, Calogeropoulou T, Cordeiro-da-Silva A, Costi MP. Current Treatments to Control African Trypanosomiasis and One Health Perspective. Microorganisms 2022; 10:microorganisms10071298. [PMID: 35889018 PMCID: PMC9321528 DOI: 10.3390/microorganisms10071298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Human African Trypanosomiasis (HAT, sleeping sickness) and Animal African Trypanosomiasis (AAT) are neglected tropical diseases generally caused by the same etiological agent, Trypanosoma brucei. Despite important advances in the reduction or disappearance of HAT cases, AAT represents a risky reservoir of the infections. There is a strong need to control AAT, as is claimed by the European Commission in a recent document on the reservation of antimicrobials for human use. Control of AAT is considered part of the One Health approach established by the FAO program against African Trypanosomiasis. Under the umbrella of the One Health concepts, in this work, by analyzing the pharmacological properties of the therapeutic options against Trypanosoma brucei spp., we underline the need for clearer and more defined guidelines in the employment of drugs designed for HAT and AAT. Essential requirements are addressed to meet the challenge of drug use and drug resistance development. This approach shall avoid inter-species cross-resistance phenomena and retain drugs therapeutic activity.
Collapse
Affiliation(s)
- Alberto Venturelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
| | - Lorenzo Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
- Doctorate School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Clara Lima
- Host-Parasite Interactions Group, Institute of Research and Innovation in Health, University of Porto, 4099-002 Porto, Portugal; (C.L.); (N.S.); (A.C.-d.-S.)
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Federica Venuti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
| | - Giulia Malpezzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
| | - George E. Magoulas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (G.E.M.); (T.C.)
| | - Nuno Santarem
- Host-Parasite Interactions Group, Institute of Research and Innovation in Health, University of Porto, 4099-002 Porto, Portugal; (C.L.); (N.S.); (A.C.-d.-S.)
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (G.E.M.); (T.C.)
| | - Anabela Cordeiro-da-Silva
- Host-Parasite Interactions Group, Institute of Research and Innovation in Health, University of Porto, 4099-002 Porto, Portugal; (C.L.); (N.S.); (A.C.-d.-S.)
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
- Correspondence:
| |
Collapse
|
38
|
Elrufaie HA, Mohamed LM, Hamd AY, Bala NA, Elbadawi FA, Ghaboosh H, Alzain AA. Discovery of novel natural products as rhodesain inhibitors for human African trypanosomiasis using in silico techniques. J Biomol Struct Dyn 2022:1-13. [PMID: 35751127 DOI: 10.1080/07391102.2022.2092550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Human African Trypanosomiasis (HAT) or sleeping sickness is caused by the Trypanosoma brucei rhodesiense, a subspecies of the Trypanosomatide family. The parasite is associated with high morbidity and mortality rate in both animals and humans, claimed to be more fatal than other vector-transmitted diseases such as malaria. The majority of existing medications are highly toxic, not effective in the late chronic phase of the disease, and require maximum dosages to fully eradicate the parasite. In this study, we used computational methods to find out natural products that inhibit the Rhodesain, a parasitic enzyme that plays an important role in the parasite's pathogenicity, multiplication, and ability to pass through the host's blood-brain barrier. A library of 270540 natural products from ZINC databases was processed by using e-pharmacophore hypnosis and screening procedures, molecular docking, ADMET processes, and MM-GBSA calculations. This led to the identification of 3 compounds (ZINC000096269390, ZINC000035485292, and ZINC000035485242) which were then subjected to molecular dynamics. The findings of this study showed excellent binding affinity and stability toward the Rhodesain and suggest they may be a hopeful treatment for HAT in the future if further clinical trials were performed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hisham A Elrufaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Linda M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Aya Y Hamd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Noor A Bala
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | | | - Hiba Ghaboosh
- Department of Pharmaceutics, University of Gezira, Wad Madani, Sudan
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
39
|
Previti S, Ettari R, Di Chio C, Ravichandran R, Bogacz M, Hellmich UA, Schirmeister T, Cosconati S, Zappalà M. Development of Reduced Peptide Bond Pseudopeptide Michael Acceptors for the Treatment of Human African Trypanosomiasis. Molecules 2022; 27:3765. [PMID: 35744891 PMCID: PMC9229991 DOI: 10.3390/molecules27123765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is an endemic protozoan disease widespread in the sub-Saharan region that is caused by T. b. gambiense and T. b. rhodesiense. The development of molecules targeting rhodesain, the main cysteine protease of T. b. rhodesiense, has led to a panel of inhibitors endowed with micro/sub-micromolar activity towards the protozoa. However, whilst impressive binding affinity against rhodesain has been observed, the limited selectivity towards the target still remains a hard challenge for the development of antitrypanosomal agents. In this paper, we report the synthesis, biological evaluation, as well as docking studies of a series of reduced peptide bond pseudopeptide Michael acceptors (SPR10-SPR19) as potential anti-HAT agents. The new molecules show Ki values in the low-micro/sub-micromolar range against rhodesain, coupled with k2nd values between 1314 and 6950 M-1 min-1. With a few exceptions, an appreciable selectivity over human cathepsin L was observed. In in vitro assays against T. b. brucei cultures, SPR16 and SPR18 exhibited single-digit micromolar activity against the protozoa, comparable to those reported for very potent rhodesain inhibitors, while no significant cytotoxicity up to 70 µM towards mammalian cells was observed. The discrepancy between rhodesain inhibition and the antitrypanosomal effect could suggest additional mechanisms of action. The biological characterization of peptide inhibitor SPR34 highlights the essential role played by the reduced bond for the antitrypanosomal effect. Overall, this series of molecules could represent the starting point for further investigations of reduced peptide bond-containing analogs as potential anti-HAT agents.
Collapse
Affiliation(s)
- Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Rahul Ravichandran
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (R.R.); (S.C.)
| | - Marta Bogacz
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstraße 10, 07743 Jena, Germany; (M.B.); (U.A.H.)
| | - Ute A. Hellmich
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstraße 10, 07743 Jena, Germany; (M.B.); (U.A.H.)
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany;
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (R.R.); (S.C.)
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
| |
Collapse
|
40
|
Curvicollide D Isolated from the Fungus Amesia sp. Kills African Trypanosomes by Inhibiting Transcription. Int J Mol Sci 2022; 23:ijms23116107. [PMID: 35682786 PMCID: PMC9181715 DOI: 10.3390/ijms23116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Sleeping sickness or African trypanosomiasis is a serious health concern with an added socio-economic impact in sub-Saharan Africa due to direct infection in both humans and their domestic livestock. There is no vaccine available against African trypanosomes and its treatment relies only on chemotherapy. Although the current drugs are effective, most of them are far from the modern concept of a drug in terms of toxicity, specificity and therapeutic regime. In a search for new molecules with trypanocidal activity, a high throughput screening of 2000 microbial extracts was performed. Fractionation of one of these extracts, belonging to a culture of the fungus Amesia sp., yielded a new member of the curvicollide family that has been designated as curvicollide D. The new compound showed an inhibitory concentration 50 (IC50) 16-fold lower in Trypanosoma brucei than in human cells. Moreover, it induced cell cycle arrest and disruption of the nucleolar structure. Finally, we showed that curvicollide D binds to DNA and inhibits transcription in African trypanosomes, resulting in cell death. These results constitute the first report on the activity and mode of action of a member of the curvicollide family in T. brucei.
Collapse
|
41
|
Trypanosoma brucei brucei Induced Hypoglycaemia Depletes Hepatic Glycogen and Altered Hepatic Hexokinase and Glucokinase Activities in Infected Mice. Acta Parasitol 2022; 67:1097-1106. [PMID: 35476260 DOI: 10.1007/s11686-022-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Little progress has been made in understanding the effect of Trypanosoma brucei brucei infection that was allowed to run its course without treatment on human and animal carbohydrate metabolism even though most of the symptoms associated with the disease can be clearly linked with interference with host energy generation. The present study therefore assessed the course of untreated Trypanosoma brucei brucei infection on hepatic glycogen, hepatic hexokinase and glucokinase activities. METHODS Mice were grouped into two: control and infected group. Trypanosomiasis was induced by intraperitoneal inoculation of 1 × 104 parasites/mice in 0.3 ml of phosphate saline glucose. The infection was allowed to run its course until the first mortality was recorded with all the mice showing chronic symptoms of the second stage of the disease before the research was terminated. Blood and liver samples were collected from the mice in each group for the assessment of hepatic glycogen and total protein, hepatic hexokinase and glucokinase activities, liver biomarkers, blood glucose and protein with packed cell volume. RESULTS The infection resulted in decrease in blood glucose, hepatic glycogen, liver protein, PCV, hepatic hexokinase and glucokinase activities, but increase in serum total protein and liver biomarkers. CONCLUSION Trypanosomiasis negatively affects hepatic integrity, resulting in the depletion of hepatic glycogen content and suppression of both hepatic hexokinase and glucokinase activities. The suppression of hepatic hexokinase and glucokinase activities suggested that trypanosomiasis affected the oxidation of glucose and host energy generation via glycolysis. This probably denied the host of the needed energy which is likely the reason for early death in untreated African trypanosomiasis.
Collapse
|
42
|
Pedra-Rezende Y, Macedo IS, Midlej V, Mariante RM, Menna-Barreto RFS. Different Drugs, Same End: Ultrastructural Hallmarks of Autophagy in Pathogenic Protozoa. Front Microbiol 2022; 13:856686. [PMID: 35422792 PMCID: PMC9002357 DOI: 10.3389/fmicb.2022.856686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 01/18/2023] Open
Abstract
Protozoan parasites interact with a wide variety of organisms ranging from bacteria to humans, representing one of the most common causes of parasitic diseases and an important public health problem affecting hundreds of millions of people worldwide. The current treatment for these parasitic diseases remains unsatisfactory and, in some cases, very limited. Treatment limitations together with the increased resistance of the pathogens represent a challenge for the improvement of the patient’s quality of life. The continuous search for alternative preclinical drugs is mandatory, but the mechanisms of action of several of these compounds have not been described. Electron microscopy is a powerful tool for the identification of drug targets in almost all cellular models. Interestingly, ultrastructural analysis showed that several classes of antiparasitic compounds induced similar autophagic phenotypes in trypanosomatids, trichomonadids, and apicomplexan parasites as well as in Giardia intestinalis and Entamoeba spp. with the presence of an increased number of autophagosomes as well as remarkable endoplasmic reticulum profiles surrounding different organelles. Autophagy is a physiological process of eukaryotes that maintains homeostasis by the self-digestion of nonfunctional organelles and/or macromolecules, limiting redundant and damaged cellular components. Here, we focus on protozoan autophagy to subvert drug effects, discussing its importance for successful chemotherapy.
Collapse
Affiliation(s)
- Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Isabela S Macedo
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael M Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
43
|
Idro R, Ogwang R, Barragan A, Raimondo JV, Masocha W. Neuroimmunology of Common Parasitic Infections in Africa. Front Immunol 2022; 13:791488. [PMID: 35222377 PMCID: PMC8866860 DOI: 10.3389/fimmu.2022.791488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections of the central nervous system are an important cause of morbidity and mortality in Africa. The neurological, cognitive, and psychiatric sequelae of these infections result from a complex interplay between the parasites and the host inflammatory response. Here we review some of the diseases caused by selected parasitic organisms known to infect the nervous system including Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei spp., and Taenia solium species. For each parasite, we describe the geographical distribution, prevalence, life cycle, and typical clinical symptoms of infection and pathogenesis. We pay particular attention to how the parasites infect the brain and the interaction between each organism and the host immune system. We describe how an understanding of these processes may guide optimal diagnostic and therapeutic strategies to treat these disorders. Finally, we highlight current gaps in our understanding of disease pathophysiology and call for increased interrogation of these often-neglected disorders of the nervous system.
Collapse
Affiliation(s)
- Richard Idro
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Rodney Ogwang
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Nairobi, Kenya
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
44
|
Abstract
Pentamidine (PTM), which is a diamine that is widely known for its antimicrobial activity, is a very interesting drug whose mechanism of action is not fully understood. In recent years, PTM has been proposed as a novel potential drug candidate for the treatment of mental illnesses, myotonic dystrophy, diabetes, and tumors. Nevertheless, the systemic administration of PTM causes severe side effects, especially nephrotoxicity. In order to efficiently deliver PTM and reduce its side effects, several nanosystems that take advantage of the chemical characteristics of PTM, such as the presence of two positively charged amidine groups at physiological pH, have been proposed as useful delivery tools. Polymeric, lipidic, inorganic, and other types of nanocarriers have been reported in the literature for PTM delivery, and they are all in different development phases. The available approaches for the design of PTM nanoparticulate delivery systems are reported in this review, with a particular emphasis on formulation strategies and in vitro/in vivo applications. Furthermore, a critical view of the future developments of nanomedicine for PTM applications, based on recent repurposing studies, is provided. Created with BioRender.com.
Collapse
|
45
|
Recent Progress in the Development of Indole-Based Compounds Active against Malaria, Trypanosomiasis and Leishmaniasis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010319. [PMID: 35011552 PMCID: PMC8746838 DOI: 10.3390/molecules27010319] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 01/06/2023]
Abstract
Human protozoan diseases represent a serious health problem worldwide, affecting mainly people in social and economic vulnerability. These diseases have attracted little investment in drug discovery, which is reflected in the limited available therapeutic arsenal. Authorized drugs present problems such as low efficacy in some stages of the disease or toxicity, which result in undesirable side effects and treatment abandonment. Moreover, the emergence of drug-resistant parasite strains makes necessary an even greater effort to develop safe and effective antiparasitic agents. Among the chemotypes investigated for parasitic diseases, the indole nucleus has emerged as a privileged molecular scaffold for the generation of new drug candidates. In this review, the authors provide an overview of the indole-based compounds developed against important parasitic diseases, namely malaria, trypanosomiasis and leishmaniasis, by focusing on the design, optimization and synthesis of the most relevant synthetic indole scaffolds recently reported.
Collapse
|
46
|
Kotepui KU, Masangkay FR, De Jesus Milanez G, Kotepui M. Prevalence and outcomes of malaria as co-infection among patients with human African trypanosomiasis: a systematic review and meta-analysis. Sci Rep 2021; 11:23777. [PMID: 34893680 PMCID: PMC8664815 DOI: 10.1038/s41598-021-03295-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
Human African trypanosomiasis (HAT) is endemic in Africa; hence, the possibility of co-infection with malaria among patients with HAT exists. The present study investigated co-infection with malaria among patients with HAT to provide current evidence and characteristics to support further studies. Potentially relevant studies that reported Plasmodium spp. infection in patients with HAT was searched in PubMed, Web of Science, and Scopus. The risk of bias among the included studies was assessed using the checklist for analytical cross-sectional studies developed by the Joanna Briggs Institute. The pooled prevalence of Plasmodium spp. infection in patients with HAT was quantitatively synthesized using a random-effects model. Subgroup analyses of study sites and stages of HAT were performed to identify heterogeneity regarding prevalence among the included studies. The heterogeneity of the outcome among the included studies was assessed using Cochran’s Q and I2 statistics for consistency. Publication bias was assessed if the number of included studies was 10 or more. For qualitative synthesis, a narrative synthesis of the impact of Plasmodium spp. infection on the clinical and outcome characteristics of HAT was performed when the included studies provided qualitative data. Among 327 studies identified from three databases, nine studies were included in the systematic review and meta-analysis. The prevalence of Plasmodium spp. co-infection (692 cases) among patients with HAT (1523 cases) was 50% (95% confidence interval [CI] = 28–72%, I2 = 98.1%, seven studies). Subgroup analysis by type of HAT (gambiense or rhodesiense HAT) revealed that among patients with gambiense HAT, the pooled prevalence of Plasmodium spp. infection was 46% (95% CI = 14–78%, I2 = 96.62%, four studies), whereas that among patients with rhodesiense HAT was 44% (95% CI = 40–49%, I2 = 98.3%, three studies). Qualitative syntheses demonstrated that Plasmodium spp. infection in individuals with HAT might influence the risk of encephalopathy syndrome, drug toxicity, and significantly longer corrected QT time. Moreover, longer hospital stays and higher treatment costs were recorded among co-infected individuals. Because of the high prevalence of malaria among patients with HAT, some patients were positive for malaria parasites despite being asymptomatic. Therefore, it is suggested to test every patient with HAT for malaria before HAT treatment. If malaria is present, then antimalarial treatment is recommended before HAT treatment. Antimalarial treatment in patients with HAT might decrease the probability of poor clinical outcomes and case fatality in HAT.
Collapse
Affiliation(s)
- Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Frederick Ramirez Masangkay
- Department of Medical Technology, Institute of Arts and Sciences, Far Eastern University-Manila, Manila, Philippines
| | - Giovanni De Jesus Milanez
- Department of Medical Technology, Faculty of Pharmacy, Royal and Pontifical University of Santo Tomas, Manila, Philippines
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
47
|
Lutje V, Probyn K, Seixas J, Bergman H, Villanueva G. Chemotherapy for second-stage human African trypanosomiasis: drugs in use. Cochrane Database Syst Rev 2021; 12:CD015374. [PMID: 34882307 PMCID: PMC8656462 DOI: 10.1002/14651858.cd015374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Human African trypanosomiasis, or sleeping sickness, is a severe disease affecting people in the poorest parts of Africa. It is usually fatal without treatment. Conventional treatments require days of intravenous infusion, but a recently developed drug, fexinidazole, can be given orally. Another oral drug candidate, acoziborole, is undergoing clinical development and will be considered in subsequent editions. OBJECTIVES: To evaluate the effectiveness and safety of currently used drugs for treating second-stage Trypanosoma brucei gambiense trypanosomiasis (gambiense human African trypanosomiasis, g-HAT). SEARCH METHODS On 14 May 2021, we searched the Cochrane Infectious Diseases Group Specialized Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, Latin American and Caribbean Health Science Information database, BIOSIS, ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform. We also searched reference lists of included studies, contacted researchers working in the field, and contacted relevant organizations. SELECTION CRITERIA Eligible studies were randomized controlled trials that included adults and children with second-stage g-HAT, treated with anti-trypanosomal drugs currently in use. DATA COLLECTION AND ANALYSIS Two review authors extracted data and assessed risk of bias; a third review author acted as an arbitrator if needed. The included trial only reported dichotomous outcomes, which we presented as risk ratio (RR) or risk difference (RD) with 95% confidence intervals (CI). MAIN RESULTS: We included one trial comparing fexinidazole to nifurtimox combined with eflornithine (NECT). This trial was conducted between October 2012 and November 2016 in the Democratic Republic of the Congo and the Central African Republic, and included 394 participants. The study reported on efficacy and safety, with up to 24 months' follow-up. We judged the study to be at low risk of bias in all domains except blinding; as the route of administration and dosing regimens differed between treatment groups, participants and personnel were not blinded, resulting in a high risk of performance bias. Mortality with fexinidazole may be higher at 24 months compared to NECT. There were 9/264 deaths in the fexinidazole group and 2/130 deaths in the NECT group (RR 2.22, 95% CI 0.49 to 10.11; 394 participants; low-certainty evidence). None of the deaths were related to treatment. Fexinidazole likely results in an increase in the number of people relapsing during follow-up, with 14 participants in the fexinidazole group (14/264) and none in the NECT group (0/130) relapsing at 24 months (RD 0.05, 95% CI 0.02 to 0.08; 394 participants; moderate-certainty evidence). We are uncertain whether there is any difference between the drugs regarding the incidence of serious adverse events at 24 months. (31/264 with fexinidazole and 13/130 with NECT group at 24 months). Adverse events were common with both drugs (247/264 with fexinidazole versus 121/130 with NECT), with no difference between groups (RR 1.01, 95% CI 0.95 to 1.06; 394 participants; moderate-certainty evidence). AUTHORS' CONCLUSIONS: Oral treatment with fexinidazole is much easier to administer than conventional treatment, but deaths and relapse appear to be more common. However, the advantages or an oral option are considerable, in terms of convenience, avoiding hospitalisation and multiple intravenous infusions, thus increasing adherence.
Collapse
Affiliation(s)
- Vittoria Lutje
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Jorge Seixas
- Institute of Hygiene and Tropical Medicine and Global Health and Tropical Medicine R&D Center, NOVA University, Lisbon, Portugal
| | | | | |
Collapse
|
48
|
Microarray profiling predicts early neurological and immune phenotypic traits in advance of CNS disease during disease progression in Trypanosoma. b. brucei infected CD1 mouse brains. PLoS Negl Trop Dis 2021; 15:e0009892. [PMID: 34762691 PMCID: PMC8584711 DOI: 10.1371/journal.pntd.0009892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
Human African trypanosomiasis (HAT), also known as sleeping sickness, is a major cause of mortality and morbidity in sub-Saharan Africa. We hypothesised that recent findings of neurological features and parasite brain infiltration occurring at much earlier stages in HAT than previously thought could be explained by early activation of host genetic programmes controlling CNS disease. Accordingly, a transcriptomal analysis was performed on brain tissue at 0, 7, 14, 21 and 28dpi from the HAT CD1/GVR35 mouse model. Up to 21dpi, most parasites are restricted to the blood and lymphatic system. Thereafter the trypanosomes enter the brain initiating the encephalitic stage. Analysis of ten different time point Comparison pairings, revealed a dynamic transcriptome comprising four message populations. All 7dpi Comparisons had by far more differentially expressed genes compared to all others. Prior to invasion of the parenchyma, by 7dpi, ~2,000 genes were up-regulated, denoted [7dpi↑] in contrast to a down regulated population [7dpi↓] also numbering ~2,000. However, by 14dpi both patterns had returned to around the pre-infected levels. The third, [28dpi↑] featured over three hundred transcripts which had increased modestly up to14dpi, thereafter were significantly up-regulated and peaked at 28dpi. The fourth, a minor population, [7dpi↑-28dpi↑], had similar elevated levels at 7dpi and 28dpi. KEGG and GO enrichment analysis predicted a diverse phenotype by 7dpi with changes to innate and adaptive immunity, a Type I interferon response, neurotransmission, synaptic plasticity, pleiotropic signalling, circadian activity and vascular permeability without disruption of the blood brain barrier. This key observation is consistent with recent rodent model neuroinvasion studies and clinical reports of Stage 1 HAT patients exhibiting CNS symptoms. Together, these findings challenge the strict Stage1/Stage2 phenotypic demarcation in HAT and show that that significant neurological, and immune changes can be detected prior to the onset of CNS disease.
Collapse
|
49
|
Li Y, Orahoske CM, Dano R, Zhang W, Li B, Su B. Pharmacokinetic study of an anti-trypanosome agent with different formulations and administration routes in mice by HPLC-MS/MS. Biomed Chromatogr 2021; 35:e5169. [PMID: 33978959 PMCID: PMC8434948 DOI: 10.1002/bmc.5169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 05/05/2021] [Indexed: 11/06/2022]
Abstract
Previously compound 12 showed great anti-trypanosome activity without toxicity in an in vivo study. In the current study, a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated to investigate its pharmacokinetics in mouse plasma. A protein precipitation method was applied to extract the compound, and it was then separated using a Kinetex C18 column with mobile phase consisting of acetonitrile-0.1% formic acid water (50:50, v/v) at a flow rate of 300 μl/min. The analytes were detected with the multiple reaction monitoring in negative electrospray ionization source for quantitative response of the compounds. Compound 12 was detected at m/z 477.0 → 367.2, while the internal standard compound 14 was detected at m/z 499.2 → 268.2. Inter- and intra-day precision was <5.22 and 2.79% respectively, while the accuracy range was within ±9.65%. The method was successfully applied to evaluate the pharmacokinetics of compound 12 in mouse plasma with two formulations (20% Cremophor EL or sesame oil) and drug administration routes (oral and intraperitoneal injection). We observed a better drug serum concentration with the Cremophor formulation, and the two different drug administration routes did not show significant differences from the drug distribution.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Cody M Orahoske
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Raina Dano
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Wenjing Zhang
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Bibo Li
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| |
Collapse
|
50
|
Barbosa da Silva E, Rocha DA, Fortes IS, Yang W, Monti L, Siqueira-Neto JL, Caffrey CR, McKerrow J, Andrade SF, Ferreira RS. Structure-Based Optimization of Quinazolines as Cruzain and TbrCATL Inhibitors. J Med Chem 2021; 64:13054-13071. [PMID: 34461718 DOI: 10.1021/acs.jmedchem.1c01151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cysteine proteases, cruzain and TbrCATL (rhodesain), are therapeutic targets for Chagas disease and Human African Trypanosomiasis, respectively. Among the known inhibitors for these proteases, we have described N4-benzyl-N2-phenylquinazoline-2,4-diamine (compound 7 in the original publication, 1a in this study), as a competitive cruzain inhibitor (Ki = 1.4 μM). Here, we describe the synthesis and biological evaluation of 22 analogs of 1a, containing modifications in the quinazoline core, and in the substituents in positions 2 and 4 of this ring. The analogs demonstrate low micromolar inhibition of the target proteases and cidal activity against Trypanosoma cruzi with up to two log selectivity indices in counterscreens with myoblasts. Fourteen compounds were active against Trypanosoma brucei at low to mid micromolar concentrations. During the optimization of 1a, structure-based design and prediction of physicochemical properties were employed to maintain potency against the enzymes while removing colloidal aggregator characteristics observed for some molecules in this series.
Collapse
Affiliation(s)
- Elany Barbosa da Silva
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil.,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Débora A Rocha
- Pharmaceutical Synthesis Group (PHARSG), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Wenqian Yang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Ludovica Monti
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Jair L Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - James McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Graduate Program in Agricultural and Environmental Microbiology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Rafaela S Ferreira
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|