1
|
Martinez VO, Dos Santos NR, Bah HAF, Gomes EA, Costa DO, Souza MISS, de Carvalho CF, Andrade NC, Menezes-Filho JA. Impact of chronic toxoplasmosis in pregnancy: Association between maternal IgG antibodies against T. gondii and neurocognitive development effects. Neurotoxicology 2025; 106:10-16. [PMID: 39638154 DOI: 10.1016/j.neuro.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Toxoplasmosis presents notable hazards in the context of pregnancy, impacting the health of the mother and the neurodevelopment of the fetus via immune reactions and possible vertical transmission. The maternal immune response from chronic Toxoplasma gondii (T. gondii) infection may negatively influence fetal neurodevelopment. This research evaluated the association between the seroprevalence of chronic T. gondii and cytomegalovirus infection in pregnant women and the neuropsychological development of their children at 12 months of age. A follow-up study evaluated women during the gestational period and their respective infants. The pregnant women were tested for the presence of antibodies to infectious agents: T. gondii, cytomegalovirus (CMV), syphilis, human immunodeficiency virus (HIV), hepatitis B and C. Detailed information about the newborns was extracted from medical records. At 12 ± 3 months of age, the infant's neurodevelopment was assessed using the Bayley-III Scales of Infant and Toddler Development by a trained specialist under the supervision of a neuropsychologist. A statistically significant association was found between maternal IgG anti-T. gondii levels and lower scores on the Bayley-III cognition scale, with a non-standardized β-coefficient of -0.078 (95 %-CI: -0.144 to -0.013), accounting for 35.1 % of the variation in this outcome. These results suggest that chronic maternal T. gondii infection, even without vertical transmission, may be associated with subtle changes in the child's cognitive development. Therefore, monitoring and early intervention are essential to identify and address possible delays in childhood neurodevelopment related to chronic maternal toxoplasmosis.
Collapse
Affiliation(s)
- Victor Otero Martinez
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil.
| | - Nathália Ribeiro Dos Santos
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil; Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Homègnon Antonin Ferréol Bah
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil; Graduate Program in Public Health, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Erival Amorim Gomes
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Daisy Oliveira Costa
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil; Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | | | - José Antônio Menezes-Filho
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil; Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil; Graduate Program in Public Health, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
2
|
Liu T, Long W, Cao Z, Wang Y, He CH, Zhang L, Strittmatter SM, Zhao H. CosGeneGate selects multi-functional and credible biomarkers for single-cell analysis. Brief Bioinform 2024; 26:bbae626. [PMID: 39592241 PMCID: PMC11596696 DOI: 10.1093/bib/bbae626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
MOTIVATION Selecting representative genes or marker genes to distinguish cell types is an important task in single-cell sequencing analysis. Although many methods have been proposed to select marker genes, the genes selected may have redundancy and/or do not show cell-type-specific expression patterns to distinguish cell types. RESULTS Here, we present a novel model, named CosGeneGate, to select marker genes for more effective marker selections. CosGeneGate is inspired by combining the advantages of selecting marker genes based on both cell-type classification accuracy and marker gene specific expression patterns. We demonstrate the better performance of the marker genes selected by CosGeneGate for various downstream analyses than the existing methods with both public datasets and newly sequenced datasets. The non-redundant marker genes identified by CosGeneGate for major cell types and tissues in human can be found at the website as follows: https://github.com/VivLon/CosGeneGate/blob/main/marker gene list.xlsx.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Biostatistics, Yale University, New Haven, CT, 06520, United States
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, United States
| | - Wenxin Long
- Department of Biostatistics, Yale University, New Haven, CT, 06520, United States
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16820, United States
| | - Zhiyuan Cao
- Department of Biostatistics, Yale University, New Haven, CT, 06520, United States
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, United States
- Program of Health Informatics, Yale University, New Haven, CT, 06520, United States
| | - Yuge Wang
- Department of Biostatistics, Yale University, New Haven, CT, 06520, United States
| | - Chuan Hua He
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Le Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Stephen M Strittmatter
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, United States
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, 06520, United States
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, United States
| |
Collapse
|
3
|
Moghaddami R, Mahdipour M, Ahmadpour E. Inflammatory pathways of Toxoplasmagondii infection in pregnancy. Travel Med Infect Dis 2024; 62:102760. [PMID: 39293589 DOI: 10.1016/j.tmaid.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Toxoplasma gondii (T. gondii), an obligate intracellular parasite, is considered as an opportunistic infection and causes toxoplasmosis in humans and animals. Congenital toxoplasmosis can influence pregnancy and cause mild to severe consequences for the fetal and neonatal. During early T. gondii infection, neutrophils as the most abundant white blood cells provide a front line of defense mechanism against infection. The activated dendritic cells are then responsible for initiating an inflammatory response via T-helper 1 (Th1) cells. As part of its robust immune response, the infected host cells produce interferon (IFN-γ). IFN-γ inhibits T. gondii replication and promotes its transformation from an active form to tissue cysts. Although anti- T. gondii antibodies play an important role in infection control, T-helper 2 (Th2) immune response, can facilitate the growth and proliferation of T. gondii in the host cell. In pregnant women infected with T. gondii, the expression of cytokines may vary and in response diverse outcomes are expected. Cytokine profiles serve as valuable indicators for estimating the patho-immunological effects of T. gondii infection. This demonstrates the intricate relationship between pro-inflammatory and anti-inflammatory cytokines, as well as their influence on the various pregnancy outcomes in T. gondii infection.
Collapse
Affiliation(s)
- Reyhaneh Moghaddami
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Blandon KOE, Travençolo BAN, Martínez AFF, Rojas YDP, Martins MC, Fontoura KA, Mineo TWP, Beletti ME. The quality and characteristics of bovine sperm are compromised by Toxoplasma gondii antigens, impacting in in vitro bull fertility. Vet Parasitol 2024; 331:110297. [PMID: 39236398 DOI: 10.1016/j.vetpar.2024.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Studies in various species have demonstrated different results on the effects of T. gondii infection on sperm quality. It has also been demonstrated that in some stages of the disease, there is elimination of cellular debris or even the intact parasite in the semen. The present work aimed to evaluate the in vitro effects of the presence of soluble T. gondii antigens in bovine semen on sperm integrity. The spermatozoa were treated with T. gondii antigens in double serial dilutions classified as high, medium and low doses (8, 4, 2 µg/ml) in "TALP-Sperm" and "TALP-Fert" media. The results showed that T. gondii antigens affect sperm motility and mitochondrial activity, and cause changes in sperm chromatin integrity, as well as damage to the sperm membrane and acrosome. Finally, spermatozoa treated with T. gondii antigens were evaluated in the in vitro production of embryos (IVEP). The use of semen contaminated with antigens in IVEP routines did not lead to a decrease in the fertilization of oocytes, as sperm undergo selection before in vitro fertilization, which eliminates the most altered sperm. However, early embryonic development was affected, probably by structural changes that were not eliminated in the selection process. The results demonstrated that the presence of soluble T. gondii antigens in bovine semen alters sperm integrity and vital characteristics for the fertilization process and embryonic development and therefore causes fertility problems in males.
Collapse
Affiliation(s)
- Kelvin Orlando Espinoza Blandon
- Biology of Reproduction Laboratory, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Yulizabeth Daniela Pinto Rojas
- Biology of Reproduction Laboratory, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Muller Carrara Martins
- Biology of Reproduction Laboratory, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Kamila Alves Fontoura
- Biology of Reproduction Laboratory, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Marcelo Emílio Beletti
- Biology of Reproduction Laboratory, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
5
|
Meza-Sosa KF, Valle-Garcia D, González-Conchillos H, Blanco-Ayala T, Salazar A, Flores I, Gómez-Manzo S, González Esquivel DF, Pérez de la Cruz G, Pineda B, Pérez de la Cruz V. Molecular Mimicry between Toxoplasma gondii B-Cell Epitopes and Neurodevelopmental Proteins: An Immunoinformatic Approach. Biomolecules 2024; 14:933. [PMID: 39199321 PMCID: PMC11352964 DOI: 10.3390/biom14080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
Epidemiological studies and meta-analyses have shown a strong association between high seroprevalence of Toxoplasma gondii (T. gondii) and schizophrenia. Schizophrenic patients showed higher levels of anti-Toxoplasma immunoglobulins M and G (IgM and IgG) when compared to healthy controls. Previously, in a rat model, we demonstrated that the progeny of mothers immunized with T. gondii lysates before gestation had behavioral and social impairments during adulthood. Therefore, we suggested that T. gondii infection can trigger autoreactivity by molecularly mimicking host brain proteins. Here, we aimed to identify the occurrence of antigenic mimicry between T. gondii epitopes and host brain proteins. Using a bioinformatic approach, we predicted T. gondii RH-88 B cell epitopes and compared them to human cell-surface proteins involved in brain development and differentiation (BrainS). Five different algorithms for B-cell-epitope prediction were used and compared, resulting in 8584 T. gondii epitopes. We then compared T. gondii predicted epitopes to BrainS proteins by local sequence alignments using BLASTP. T. gondii immunogenic epitopes significantly overlapped with 42 BrainS proteins. Among these overlapping proteins essential for brain development and differentiation, we identified HSP90 and NOTCH receptors as the proteins most likely to be targeted by the maternally generated pathogenic antibodies due to their topological overlap at the extracellular region of their sequence. This analysis highlights the relevance of pregestational clinical surveillance and screening for potential pathogenic anti-T. gondii antibodies. It also identifies potential targets for the design of vaccines that could prevent behavioral and cognitive impairments associated with pre-gestational T. gondii exposure.
Collapse
Affiliation(s)
- Karla F. Meza-Sosa
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - David Valle-Garcia
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Hugo González-Conchillos
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Tonali Blanco-Ayala
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Mexico City 11350, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Dinora Fabiola González Esquivel
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - Gonzalo Pérez de la Cruz
- Department of Mathematics, Faculty of Sciences, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City 04510, Mexico;
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| |
Collapse
|
6
|
Deng ML, Chen JR, Yang JF, Ma J, Shu FF, Zou FC, He JJ. Transcriptomic analysis of reproductive organs of pregnant mice post toxoplasma gondii infection reveals the potential factors that contribute to poor prognosis. Front Microbiol 2024; 15:1431183. [PMID: 39006750 PMCID: PMC11239361 DOI: 10.3389/fmicb.2024.1431183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite of phylum Apicomplexa that poses a huge threat to pregnant hosts, and induces tragic outcomes for pregnant hosts, fetuses and newborns. However, the molecular mechanism underlying the tragic consequences caused by T. gondii remains to be revealed. In the present study, we applied RNA-seq to study the transcriptomic landscape of the whole reproductive organ of pregnant mice post T. gondii infection, aiming to reveal the key altered biological characters of reproductive organs of pregnant mice that could contribute to the tragic outcomes caused by T. gondii infection. The results of the present study showed that the transcriptome of reproductive organs of pregnant mice was significantly altered by T. gondii infection. A total of 2,598 differentially expressed genes (DEGs) were identified, including 1,449 upregulated genes and 1,149 downregulated genes. Enrichment analysis of the DEGs showed that the significantly altered features of reproductive organs of pregnant mice were excessive inflammatory responses, downregulated metabolism processes, and congenital diseases. The chemotaxis of immune cells in the reproductive organs of infected pregnant mice could also be reshaped by 19 differentially expressed chemokines and 6 differentially expressed chemokine receptors that could contribute to the damages of reproductive organ in pregnant mice. Overall, the findings of present study may help to understand the pathogenic mechanism of the acute T. gondii infection in reproductive organs of pregnant mice, and it could also help to improve toxoplasmosis therapeutics for pregnant individuals.
Collapse
Affiliation(s)
- Meng-Ling Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jun-Rong Chen
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jian-Fa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jun Ma
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Fan-Fan Shu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Feng-Cai Zou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Essomba RG, Mbe RM, Ngogang MP, Ekono CB, Bitoungui VJN, Seni N, Nguwoh PS, Ateba PT, Kamdem SD, Nono JK, Ambomo MS, Assoumou MCO, Mbopi-Kéou FX. Plasma IL-33 levels and immune activation in HIV-TB coinfection: a cross-sectional study in Yaoundé, Cameroon. Pan Afr Med J 2023; 46:13. [PMID: 38035159 PMCID: PMC10683167 DOI: 10.11604/pamj.2023.46.13.41152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction HIV-1 and Mtb are characterized by immune activation and unbalances production of cytokines, but the expression of IL33 in HIV/TB coinfection remain understudied. This study aimed to evaluate the level of IL-33 in plasma of HIV and M. tuberculosis (HIV/TB) coinfected patients compared to patients with respective mono infections in Yaoundé. Methods a cross-sectional study was conducted among patients attending the pneumology service and HIV treatment center of the Yaoundé Jamot Hospital. Plasma samples of 157 HIV/TB coinfected patients (n =26, 50% males and 50% females, mean age 39), HIV-1 monoinfected patients (n = 41, 41% males and 59% females, mean age 35), TB monoinfected patients (n = 48, 56% males and 44% females, mean age 37) and healthy controls (n = 42, 29% males and 71% females, mean age 32) were examined by enzyme-linked immunoassay (ELISA) to detect the levels of IL-33 cytokine. Results plasma level of IL-33 were higher in HIV/TB coinfected (33.1±30.9 pg/ml) and TB monoinfected individuals (15.1±2.9 pg/ml) compared to healthy controls (14.0±3.4 pg/ml) and could not be detected in most of the HIV-1 monoinfected individuals (12.6±8.7 pg/ml). Interestingly, the increased plasma level of IL-33 in HIV/TB coinfected patients showed a statistically significant difference between healthy controls (33.1±30.9 pg/ml vs 14.0±3.4 pg/ml, P<0.0001) and HIV-1 monoinfected patients (33.1±30.9 pg/ml vs 12.6±8.7 pg/ml, P=0.0002). We further found that IL-33 was higher in patients with high viral load group (40.6±59.7 pg/ml vs 12.6±1.8 pg/ml), P= 0.47) whereas patients under highly active antiretroviral therapy (HAART) showed decreased level of IL-33 concentration as the number of years under ART increased. Our data showed a positive association between plasma IL-33 and viral load in the context of HIV/TB coinfection in our study population with a positive Pearson coefficient of r=0.21. Conclusion this study indicates that plasma level of IL-33 differs among HIV/TB coinfected patients and respective monoinfections patients. The increased level of plasma IL-33 reveals that IL-33 measurement in HIV-1 monoinfected patients may represent an early predictor of development of tuberculosis.
Collapse
Affiliation(s)
- René Ghislain Essomba
- National Public Health Laboratory (NPHL), Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaoundé I, Yaoundé, Cameroon
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Rostand Munkam Mbe
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Marie Paule Ngogang
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaoundé I, Yaoundé, Cameroon
| | - Claire Bitchong Ekono
- Faculty of Medicine and Pharmaceutical Sciences (FMPS), University of Douala, Douala, Cameroon
- Pneumology Service, Jamot Hospital of Yaoundé, Yaoundé, Cameroon
| | | | - Nassif Seni
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | | | | | - Severin Donald Kamdem
- Faculty of Medicine and Pharmaceutical Sciences (FMPS), University of Dschang, Dschang, Cameroon
- Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Justin Komguep Nono
- Faculty of Medicine and Pharmaceutical Sciences (FMPS), University of Dschang, Dschang, Cameroon
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Myriam Sylvie Ambomo
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Marie Claire Okomo Assoumou
- National Public Health Laboratory (NPHL), Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences (FMBS), University of Yaoundé I, Yaoundé, Cameroon
| | | |
Collapse
|
8
|
Gómez-Chávez F, Murrieta-Coxca JM, Caballero-Ortega H, Morales-Prieto DM, Markert UR. Host-pathogen interactions mediated by extracellular vesicles in Toxoplasma gondii infection during pregnancy. J Reprod Immunol 2023; 158:103957. [PMID: 37253287 DOI: 10.1016/j.jri.2023.103957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Molecular communication between a pathogen and its host is crucial for a successful interplay. Extracellular vesicles (EVs) act as mediators for the delivery of molecular signals among pathogens or between pathogens and the host. Toxoplasma gondii (T. gondii), an intracellular parasite with a worldwide presence, produces EVs itself, or induces the secretion of EVs from infected host cells potentially having capacities to modulate the host immune response. T. gondii infection is particularly important during pregnancy. Depending on the gestational age at the time of infection, the parasite can be transmitted through the placenta to the fetus, causing clinical complications such as jaundice, hepatosplenomegaly, chorioretinitis, cranioencephalic abnormalities, or even death. T. gondii infection is related to a pro-inflammatory immune response in both mother and fetus, which may enhance parasite transmission, but the implication of EV signaling in this process remains unclear. In this review, we summarize the current knowledge on EV release from T. gondii and its human host cells in regard to the immunological consequences and the passage through the placenta.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico; Programa de Posgrado en Ciencia y Tecnología de Vacunas y Bioterapéuticos, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Heriberto Caballero-Ortega
- Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
9
|
Cañedo-Solares I, Correa D, Luna-Pastén H, Ortiz-Alegría LB, Gómez-Chávez F, Xicoténcatl-García L, García LD, Canfield-Rivera CE. Maternal anti-Toxoplasma gondii antibodies IgG2, IgG3 and IgG1 are markers of vertical transmission and clinical evolution of toxoplasmosis in the offspring. Acta Trop 2023; 243:106943. [PMID: 37172708 DOI: 10.1016/j.actatropica.2023.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Toxoplasma gondii can be transmitted vertically during pregnancy and may cause neurological, ocular, and even systemic damage to the offspring. Congenital toxoplasmosis (CT) can be diagnosed during gestation and/or after birth in the postnatal period. The timely diagnosis is highly relevant for efficient clinical management. The most common laboratory methods for diagnosing CT are based on Toxoplasma-specific humoral immune responses. However, these methods are of low sensitivity or specificity. In a previous study with a small number of cases, the comparison of anti-T. gondii IgG subclasses between mothers and their offspring showed promising results for CT diagnosis and prognosis. Thus, in this work, we analyzed specific IgG subclasses and IgA in 40 T. gondii-infected mothers and their children, of which 27 were congenitally infected and 13 uninfected. A higher frequency of anti-Toxoplasma IgG2, IgG3, IgG4, and IgA antibodies was observed in mothers and congenitally infected offspring. Of these, IgG2 or IgG3 were statistically the most conspicuous. In the CT group, maternal IgG3 antibodies were significantly associated with severe disease of the infants and IgG1 and IgG3 with disseminated disease. The results support that maternal anti-T. gondii IgG3, IgG2 and IgG1 are markers of congenital transmission and severity/spread of disease in the offspring.
Collapse
Affiliation(s)
- Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, México.
| | - Dolores Correa
- Dirección de Investigación / Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac, México.
| | - Hector Luna-Pastén
- Laboratorio de Inmunología Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, México
| | - Luz Belinda Ortiz-Alegría
- Laboratorio de Inmunología Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, México
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, México; Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Sección de Estudios de Posgrado e Investigación, ENMyH - IPN, México
| | - Lizbeth Xicoténcatl-García
- Laboratorio de Inmunología Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, México
| | - Luisa Díaz- García
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Secretaría de Salud, México
| | | |
Collapse
|
10
|
dos Santos PV, de Toledo DNM, de Souza DMS, Menezes TP, Perucci LO, Silva ZM, Teixeira DC, Vieira EWR, de Andrade-Neto VF, Guimarães NS, Talvani A. The imbalance in the relationship between inflammatory and regulatory cytokines during gestational toxoplasmosis can be harmful to fetuses: A systematic review. Front Immunol 2023; 14:1074760. [PMID: 36742306 PMCID: PMC9889920 DOI: 10.3389/fimmu.2023.1074760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Objective To evaluate the available information on inflammatory and regulatory plasma mediators in pregnant women (PW) diagnosed with toxoplasmosis. Source: The PubMed, Embase, Scopus, and Lilacs databases were evaluated until October 2022. Study eligibility criteria: This review was carried out following the PRISMA and registered on the PROSPERO platform (CRD42020203951). Studies that reported inflammatory mediators in PW with toxoplasmosis were considered. Evaluation methods After excluding duplicate articles, two authors independently carried out the process of title and abstract exclusion, and a third resolved disagreements when necessary. The full text was evaluated to detect related articles. The extraction table was built from the following data: Author, year of publication, journal name and impact factors, country, study design, number of gestations and maternal age (years), gestational period, diagnosis of toxoplasmosis, levels of inflammatory markers, laboratory tests, and clinical significance. Methodological quality was assessed using Joanna Briggs Institute tools. Results Of the 1,024 studies reported, only eight were included. Of the 868 PW included in this review, 20.2% were IgM+/IgG- and 50.8% were IgM-/IgG+ to T. gondii, and 29.0% uninfected. Infected PW presented higher plasma levels ofIL-5, IL-6, IL-8, IL-17, CCL5, and IL-10. Regarding the methodological quality, four studies obtained high quality. Data from this review pointed out the maintenance of the inflammatory pattern during pregnancy with a closely related to the parasite. Conclusion Immune status in PW defined the course of the T. gondii infection, where the equilibrium between inflammatory and regulatory cytokines mitigated the harmful placenta and fetus effects. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD420203951.
Collapse
Affiliation(s)
- Priscilla Vilela dos Santos
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Débora Nonato Miranda de Toledo
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Tatiana Prata Menezes
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Luiza Oliveira Perucci
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Zolder Marinho Silva
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Ed Wilson Rodrigues Vieira
- Department of Maternal and Child Nursing and Public Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of the Rio Grande do Norte, Natal, RN, Brazil
| | - Nathalia Sernizon Guimarães
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program of Health Science, Infectiology and Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Menzies FM. Immunology of Pregnancy and Systemic Consequences. Curr Top Microbiol Immunol 2023; 441:253-280. [PMID: 37695432 DOI: 10.1007/978-3-031-35139-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Pregnancy is an immunological paradox, with renowned Nobel Prize winning transplantation biologist Sir Peter Brian Medawar being the first to introduce this concept back in 1953. This concept considers how the maternal immune system can tolerate the developing fetus, which is 50% antigenically foreign to the uterus. There have been significant advances in our understanding of the immune system in regulating fertility, pregnancy and in complications of these, and what was once considered a paradox can be seen as a highly evolved system. Indeed, the complexity of the maternal-fetal interface along with our ever-advancing knowledge of immune cells and mediators means that we have a better understanding of these interactions, with gaps still present. This chapter will summarise the key aspects of the role of the immune system at each stage of pregnancy and highlight the recent advances in our knowledge.
Collapse
Affiliation(s)
- Fiona M Menzies
- School of Health and Life Sciences, University of the West of Scotland, Lanarkshire, UK.
| |
Collapse
|
12
|
Oliveira-Scussel ACDM, Ferreira PTM, Resende RDS, Ratkevicius-Andrade CM, Gomes ADO, Paschoini MC, De Vito FB, Farnesi-de-Assunção TS, da Silva MV, Mineo JR, Rodrigues DBR, Rodrigues V. Association of gestational diabetes mellitus and negative modulation of the specific humoral and cellular immune response against Toxoplasma gondii. Front Immunol 2022; 13:925762. [PMID: 36203592 PMCID: PMC9531261 DOI: 10.3389/fimmu.2022.925762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
In order to evaluate and compare the specific immune response of pregnant women (PW) chronically infected with Toxoplasma gondii, with and without gestational diabetes mellitus (GDM), and the humoral response of their respective newborns (NB), the study was carried out on 81 PW (34 GDM and 47 controls) from whose medical records the results of the oral glucose tolerance test (OGTT) were obtained, and blood samples were collected at the third trimester of pregnancy; also, on 45 NBs (20 GDM and 25 controls) from whom umbilical cord blood samples were obtained. Humoral immunity was analyzed by measuring anti-T. gondii total IgG, IgG subclasses and IgG avidity. To evaluate cellular immunity, peripheral blood mononuclear cells (PBMC) from 32 PW (16 GDM and 16 controls) were cultured, supernatant cytokines were determined, and flow cytometry was performed to analyze the expression at lymphocytes of surface molecules, cytokines and transcription factors. All PW and NBs were positive for total IgG, and the prevalent subclass was IgG1. There was a negative correlation between the OGTT glycemia of PW and the levels of total IgG, IgG1 and IgG avidity. The IgG avidity of the GDM group was significantly lower than the control group. Patients from the GDM group had a higher number of T lymphocytes expressing markers of cell activation and exhaustion (CD28 and PD-1). In the presence of T. gondii soluble antigen (STAg) the amount of CD4+ T cells producing IFN-γ, IL-10 and IL-17 was significantly lower in the GDM group, while there was no difference between groups in the number of CD4+ CD25HighFOXP3+LAP+ functional Treg cells. Additionally, under STAg stimulus, the secretion of IL-17, IL-4, TNF and IL-2 cytokines at PBMCs culture supernatant was lower in the GDM group. In conclusion, there was a correlation between the increase in blood glucose and the decrease in levels of anti-T. gondii antibodies, associated with the decreased IgG avidity in patients who develop GDM. Also, the GDM group had decreased immune responses in Th1, Th2 and Th17 profiles, suggesting an association between GDM and the negative modulation of the humoral and cellular immune responses against T. gondii.
Collapse
Affiliation(s)
- Ana Carolina de Morais Oliveira-Scussel
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Paula Tatiana Mutão Ferreira
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Renata de Souza Resende
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Cristhianne Molinero Ratkevicius-Andrade
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Angelica de Oliveira Gomes
- Laboratory of Cellular Interactions, Institute of Biological and Natural Sciences, Department of Structural Biology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marina Carvalho Paschoini
- Institute of Health Sciences, Department of Obstetricy, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Fernanda Bernadelli De Vito
- Laboratory of Hematology and Hemotherapy, Institute of Health Sciences, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Thaís Soares Farnesi-de-Assunção
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius da Silva
- Laboratory of Parasitology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - José Roberto Mineo
- Laboratory of Immunology “Dr. Mário Endsfeldz Camargo”, Institute of Biomedical Sciences, Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
13
|
Vargas-Villavicencio JA, Cañedo-Solares I, Correa D. Anti-Toxoplasma gondii IgM Long Persistence: What Are the Underlying Mechanisms? Microorganisms 2022; 10:microorganisms10081659. [PMID: 36014077 PMCID: PMC9415799 DOI: 10.3390/microorganisms10081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Diagnosis of Toxoplasma gondii acute infection was first attempted by detection of specific IgM antibodies, as for other infectious diseases. However, it was noted that this immunoglobulin declines slowly and may last for months or even years. Apart from the diagnostic problem imposed on clinical management, this phenomenon called our attention due to the underlying phenomena that may be causing it. We performed a systematic comparison of reports studying IgM antibody kinetics, and the data from the papers were used to construct comparative plots and other graph types. It became clear that this phenomenon is quite generalized, and it may also occur in animals. Moreover, this is not a technical issue, although some tests make more evident the prolonged IgM decay than others. We further investigated biological reasons for its occurrence, i.e., infection dynamics (micro-reactivation–encystment, reinfection and reactivation), parasite strain relevance, as well as host innate, natural B cell responses and Ig class-switch problems inflicted by the parasite. The outcomes of these inquiries are presented and discussed herein.
Collapse
Affiliation(s)
| | - Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Dolores Correa
- Dirección de Investigación/Centro de Investigación en Ciencias de la Salud, FCS, Universidad Anáhuac México Campus Norte, Av Universidad Anáhuc 46, Lomas Anáhuac, Huixquilucan 52786, Mexico
- Correspondence: ; Tel.: +52-(55)-5627-0210-7637
| |
Collapse
|
14
|
Bonifácio LG, Melo M, Ayo CM, Assoni LCP, Olímpio LM, Nogueira MR, Spegiorin LCJF, Barbosa DMU, de Mattos LC, Pereira-Chioccola VL, Brandão CC. TNFα rs1799964 TT genotype may be a susceptibility factor for vertical transmission of Toxoplasma gondii and clinical signs in newborns from pregnant women with acute toxoplasmosis. Mol Biol Rep 2022; 49:4759-4768. [PMID: 35332413 DOI: 10.1007/s11033-022-07327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND One of the main impacts of Toxoplasma gondii infection occurs during pregnancy and is related to the vertical transmission of the parasite (congenital toxoplasmosis), which can cause severe clinical outcomes and fetal death. During acute infection, in order to control the rapid replication of tachyzoites, different host immune response genes are activated, and these include cytokine-encoding genes. Considering that polymorphisms in cytokine genes may increase susceptibility to vertical transmission of T. gondii by determining the immune status of the pregnant woman, this study evaluated the influence of polymorphisms of tumor necrosis factor alpha (TNFα) rs1799964 (- 1031) and interleukin 1 beta (IL1β) rs16944 (- 511) genes on gestational toxoplasmosis and on the vertical transmission of the parasite and verified the allele and genotype frequency of these polymorphisms in pregnant patients whose respective newborn did or did not present clinical abnormalities suggestive of congenital toxoplasmosis. METHODS AND RESULTS A total of 204 pregnant patients with (n = 114) or without (n = 90) infection by T. gondii were enrolled. No associations were found involving the polymorphisms rs1799964 (- 1031) of the TNFα gene and rs16944 (- 511) of the IL1β gene with the increased chance of T. gondii infection during pregnancy. However, it was observed that the maternal TT genotype referring to the polymorphism of the TNFα gene seems to influence the vertical transmission of the parasite (P = 0.01; χ2 = 6.05) and the presence of clinical manifestation in newborns from pregnancies with acute toxoplasmosis (P = 0.007; χ2 = 9.68). CONCLUSION The TNFα rs1799964 TT genotype may act as a susceptibility factor for the vertical transmission of parasite and for the presence of clinical signs in newborns from pregnant women with acute toxoplasmosis.
Collapse
Affiliation(s)
- Lillian Gonzalez Bonifácio
- Laboratory of Immunogenetics, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil
| | - Mirele Melo
- Laboratory of Immunogenetics, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil
| | - Christiane Maria Ayo
- Laboratory of Immunogenetics, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil
| | - Letícia Carolina Paraboli Assoni
- Laboratory of Immunogenetics, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil
| | - Larissa Martins Olímpio
- Laboratory of Immunogenetics, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil
| | - Mariana Reis Nogueira
- Laboratory of Immunogenetics, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil
| | - Lígia Cosentino Junqueira Franco Spegiorin
- Laboratory of Immunogenetics, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil.,High Risk Pregnancy Outpatient Clinic of Hospital de Base, Regional Medical Faculty Foundation of São José do Rio Preto (HB-FUNFARME), São José do Rio Preto, SP, Brazil
| | - Deusenia Machado Ulisses Barbosa
- Laboratory of Immunogenetics, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil.,Pediatric Outpatient Clinic of Hospital de Base, Regional Medical Faculty Foundation of São José do Rio Preto (HB-FUNFARME), São José do Rio Preto, SP, Brazil
| | - Luiz Carlos de Mattos
- Laboratory of Immunogenetics, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil
| | | | - Cinara Cássia Brandão
- Laboratory of Immunogenetics, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto, SP, 15090-000, Brazil.
| |
Collapse
|
15
|
Rojas-Pirela M, Medina L, Rojas MV, Liempi AI, Castillo C, Pérez-Pérez E, Guerrero-Muñoz J, Araneda S, Kemmerling U. Congenital Transmission of Apicomplexan Parasites: A Review. Front Microbiol 2021; 12:751648. [PMID: 34659187 PMCID: PMC8519608 DOI: 10.3389/fmicb.2021.751648] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Apicomplexans are a group of pathogenic protists that cause various diseases in humans and animals that cause economic losses worldwide. These unicellular eukaryotes are characterized by having a complex life cycle and the ability to evade the immune system of their host organism. Infections caused by some of these parasites affect millions of pregnant women worldwide, leading to various adverse maternal and fetal/placental effects. Unfortunately, the exact pathogenesis of congenital apicomplexan diseases is far from being understood, including the mechanisms of how they cross the placental barrier. In this review, we highlight important aspects of the diseases caused by species of Plasmodium, Babesia, Toxoplasma, and Neospora, their infection during pregnancy, emphasizing the possible role played by the placenta in the host-pathogen interaction.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Isabel Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | | | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Shmeleva EV, Colucci F. Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunol 2021; 14:991-1005. [PMID: 33903735 PMCID: PMC8071844 DOI: 10.1038/s41385-020-00374-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Many maternal immune cells populate the decidua, which is the mucosal lining of the uterus transformed during pregnancy. Here, abundant natural killer (NK) cells and macrophages help the uterine vasculature adapt to fetal demands for gas and nutrients, thereby supporting fetal growth. Fetal trophoblast cells budding off the forming placenta and invading deep into maternal tissues come into contact with these and other immune cells. Besides their homeostatic functions, decidual NK cells can respond to pathogens during infection, but in doing so, they may become conflicted between destroying the invader and sustaining fetoplacental growth. We review how maternal NK cells balance their double duty both in the local microenvironment of the uterus and systemically, during toxoplasmosis, influenza, cytomegalovirus, malaria and other infections that threat pregnancy. We also discuss recent developments in the understanding of NK-cell responses to SARS-Cov-2 infection and the possible dangers of COVID-19 during pregnancy.
Collapse
Affiliation(s)
- Evgeniya V Shmeleva
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Krull E, Taraschi G, El Amari EB, Pellegrinelli JM, Martinez de Tejada B. Congenital toxoplasmosis after adalimumab treatment before pregnancy. J Obstet Gynaecol Res 2021; 47:4055-4059. [PMID: 34382299 PMCID: PMC9292430 DOI: 10.1111/jog.14973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/11/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
We present a case of congenital toxoplasmosis (TXP) in a woman with Toxoplasma gondii infection more than 6 months before conception. The woman has been treated with adalimumab for ankylosing spondylitis for 4 years until 5 months before conception. TXP serology at the first trimester was compatible with infection prior pregnancy. An ultrasound performed at 26 weeks gestation (WG) showed cerebral echogenic lesions compatible with intrauterine infection. Amniocentesis was performed which confirmed TXP fetal infection. Termination of the pregnancy was performed upon parent's requests and the fetal autopsy confirmed the diagnosis. Here, we discuss the potential role of immunosuppressive treatments, such as adalimumab, in the risk of congenital toxoplasmosis and the importance of counseling before pregnancy.
Collapse
Affiliation(s)
- Eloïse Krull
- Obstetrics Service, Department of Pediatrics, Gynecology, and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Gianmarco Taraschi
- Obstetrics Service, Department of Pediatrics, Gynecology, and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | | | - Jean-Marie Pellegrinelli
- Obstetrics Service, Department of Pediatrics, Gynecology, and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Begoña Martinez de Tejada
- Obstetrics Service, Department of Pediatrics, Gynecology, and Obstetrics Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Kalogeropoulos D, Kalogeropoulos C, Sakkas H, Mohammed B, Vartholomatos G, Malamos K, Sreekantam S, Kanavaros P, de-la-Torre A. Pathophysiological Aspects of Ocular Toxoplasmosis: Host-parasite Interactions. Ocul Immunol Inflamm 2021; 30:560-569. [PMID: 34242103 DOI: 10.1080/09273948.2021.1922706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Purpose: This review aims to present the state of the art to understand the pathophysiology of ocular toxoplasmosis (OT), providing further foundations that would help to improve the future treatment and prognosis of this potentially blinding disease.Methods: A thorough literature search was performed in PubMed database. An additional search was made in Google Scholar to complete the collected items.Results: Toxoplasma gondii ocular infection is one of the most frequent causes of posterior uveitis. Despite the ocular barriers, the parasite reaches the eye through different mechanisms. Once inside, it remains encysted livelong within the retina, and recurrences cannot be completely avoided. The complexity of host-parasite interactions, leading to the success of this parasite, encompasses host factors such as genetic predisposition, immune status, and age; and parasite factors such as strain diversity, virulence, phylogenetic origin, and geographical distribution. These factors influence the clinical presentation, course, and progression of the disease. Additional elements, such as pregnancy, eating behavior, and environmental, social, and cultural factors may also contribute to this complex balance.Conclusions: The host-parasite interaction in OT is a complex and multifactorial relationship, with the parasite always on the driving edge of the game. There are still multiple incompletely understood fields to be investigated. Future research would permit further insight into the immune-biology of the parasite and recognition of the host-parasite interplay to improve the diagnostic and management performance.
Collapse
Affiliation(s)
- Dimitrios Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece
| | - Chris Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece
| | - Hercules Sakkas
- Microbiology Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Bashar Mohammed
- Department of Ophthalmology, Birmingham and Midland Eye Centre, Birmingham, UK
| | - Georgios Vartholomatos
- Hematology Laboratory, Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, Greece
| | - Konstantinos Malamos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece
| | | | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Alejandra de-la-Torre
- Immunology Unit, NeURos Research Group, NeuroVitae Research Center, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
19
|
Gómez-Chávez F, Correa D, Navarrete-Meneses P, Cancino-Diaz JC, Cancino-Diaz ME, Rodríguez-Martínez S. NF-κB and Its Regulators During Pregnancy. Front Immunol 2021; 12:679106. [PMID: 34025678 PMCID: PMC8131829 DOI: 10.3389/fimmu.2021.679106] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional factor NF-κB is a nuclear factor involved in both physiological and pathological processes. This factor can control the transcription of more than 400 genes, including cytokines, chemokines, and their modulators, immune and non-immune receptors, proteins involved in antigen presentation and cell adhesion, acute phase and stress response proteins, regulators of apoptosis, growth factors, other transcription factors and their regulators, as well as different enzymes; all these molecules control several biological processes. NF-κB is a tightly regulated molecule that has also been related to apoptosis, cell proliferation, inflammation, and the control of innate and adaptive immune responses during onset of labor, in which it has a crucial role; thus, early activation of this factor may have an adverse effect, by inducing premature termination of pregnancy, with bad outcomes for the mother and the fetus, including product loss. Reviews compiling the different activities of NF-κB have been reported. However, an update regarding NF-κB regulation during pregnancy is lacking. In this work, we aimed to describe the state of the art around NF-κB activity, its regulatory role in pregnancy, and the effect of its dysregulation due to invasion by pathogens like Trichomonas vaginalis and Toxoplasma gondii as examples.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Secretaría de Salud, Cátedras CONACyT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Correa
- Dirección de Investigación, Universidad Anáhuac, Huixquilucan, Mexico
| | - Pilar Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Secretaría de Salud Mexico City, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario Eugenio Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
20
|
Arranz-Solís D, Mukhopadhyay D, Saeij JJP. Toxoplasma Effectors that Affect Pregnancy Outcome. Trends Parasitol 2021; 37:283-295. [PMID: 33234405 PMCID: PMC7954850 DOI: 10.1016/j.pt.2020.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
As an immune-privileged organ, the placenta can tolerate the introduction of antigens without inducing a strong inflammatory response that would lead to abortion. However, for the control of intracellular pathogens, a strong Th1 response characterized by the production of interferon-γ is needed. Thus, invasion of the placenta by intracellular parasites puts the maternal immune system in a quandary: The proinflammatory response needed to eliminate the pathogen can also lead to abortion. Toxoplasma is a highly successful parasite that causes lifelong chronic infections and is a major cause of abortions in humans and livestock. Here, we discuss how Toxoplasma strain type and parasite effectors influence host cell signaling pathways, and we speculate about how this might affect the outcome of gestation.
Collapse
Affiliation(s)
- David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Jeroen J P Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
21
|
Dehydroepiandrosterone Effect on Toxoplasma gondii: Molecular Mechanisms Associated to Parasite Death. Microorganisms 2021; 9:microorganisms9030513. [PMID: 33801356 PMCID: PMC8000356 DOI: 10.3390/microorganisms9030513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
Toxoplasmosis is a zoonotic disease caused by the apicomplexa protozoan parasite Toxoplasma gondii. This disease is a health burden, mainly in pregnant women and immunocompromised individuals. Dehydroepiandrosterone (DHEA) has proved to be an important molecule that could drive resistance against a variety of infections, including intracellular parasites such as Plasmodium falciparum and Trypanozoma cruzi, among others. However, to date, the role of DHEA on T. gondii has not been explored. Here, we demonstrated for the first time the toxoplasmicidal effect of DHEA on extracellular tachyzoites. Ultrastructural analysis of treated parasites showed that DHEA alters the cytoskeleton structures, leading to the loss of the organelle structure and organization as well as the loss of the cellular shape. In vitro treatment with DHEA reduces the viability of extracellular tachyzoites and the passive invasion process. Two-dimensional (2D) SDS-PAGE analysis revealed that in the presence of the hormone, a progesterone receptor membrane component (PGRMC) with a cytochrome b5 family heme/steroid binding domain-containing protein was expressed, while the expression of proteins that are essential for motility and virulence was highly reduced. Finally, in vivo DHEA treatment induced a reduction of parasitic load in male, but not in female mice.
Collapse
|
22
|
Zhao S, Xie T, Shen L, Liu H, Wang L, Ma X, Wu J, Yuan S, Mor G, Liao A. An Immunological Perspective: What Happened to Pregnant Women After Recovering From COVID-19? Front Immunol 2021; 12:631044. [PMID: 33613576 PMCID: PMC7886989 DOI: 10.3389/fimmu.2021.631044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/07/2021] [Indexed: 01/25/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been raging around the world since January 2020. Pregnancy places the women in a unique immune scenario which may allow severe COVID-19 disease. In this regard, the potential unknown effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on mothers and fetuses have attracted considerable attention. There is no clear consistent evidence of the changes in the immune status of pregnant women after recovery from COVID-19. In this study, we use multiparameter flow cytometry and Luminex assay to determine the immune cell subsets and cytokines, respectively, in the peripheral blood and umbilical cord blood from pregnant women recovering from COVID-19 about 3 months (n=5). Our results showed decreased percentages of Tc2, Tfh17, memory B cells, virus-specific NK cells, and increased percentages of naive B cells in the peripheral blood. Serum levels of IL-1ra and MCP-1 showed a decreased tendency in late recovery stage (LRS) patients. Meanwhile, there was no significant difference in immune cell subsets in the umbilical cord blood. The placentas from LRS patients showed increased CD68+ macrophages infiltration and mild hypoxic features. The inflammatory damage of the placenta may be related to the antiviral response. Since the receptors, ACE2 and TMPRSS2, utilized by SARS-CoV-2 are not co-expressed in the placenta, so it is extremely rare for SARS-CoV-2 to cause infection through this route and the impact on the fetus is negligible.
Collapse
Affiliation(s)
- Sijia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Xie
- Department of Women’s Health Care, Maternal & Child Health Hospital of Hubei Province, Wuhan, China
| | - Li Shen
- Department of Obstetrics and Gynecology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixiang Ma
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianli Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, United States
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Andrade JMDA, de Oliveira CBS, Meurer YDSR, Santana JE, de Almeida YGB, Vilela Dos Santos P, de Souza DMS, Costa GDP, Talvani A, Palomino GM, Freitas JCDOC, de Andrade-Neto VF. Genetic polymorphism in IL17RA induces susceptibility to Toxoplasma gondii infection in Brazilian pregnant women. Acta Trop 2020; 211:105594. [PMID: 32598917 DOI: 10.1016/j.actatropica.2020.105594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
Congenital toxoplasmosis is a parasitic disease caused by Toxoplasma gondii, an obligate intracellular parasite which can cause fetal death/abortion and can induce damage in the brain and eyes of the infected babies. The environmental and genetic factors associated with T. gondii and the maternal immune response, drive part of the pathogenesis of congenital toxoplasmosis. Thus, in this study, we aimed to investigate the allelic and genotypic frequencies of specific single nucleotide polymorphisms (SNPs) in the IL17A and IL17RA genes, as well as the production of IL-17A, IL-33, and CCL2 in pregnant women, from the State of Rio Grande do Norte, Brazil, further relating these along with the clinical parameters, to the toxoplasmosis infection. Through PCR-RFLP techniques, two SNPs implicated in Th17 immune response, IL17A rs2275913 (G> A) and IL17RA rs4819554 (A> G) modulation were evaluated in pregnant women, either infected or not infected by T. gondii. These women were also evaluated in terms of plasma release of CCL2, IL-33, and IL-17A which relate to hypertension, number of abortions, and ethnic pattern. The results showed that the G-allele of the SNP rs2275913 (IL17A) appeared to be protective in this population, while the rs4819554 (IL17RA) SNP G allele was associated with greater susceptibility to T. gondii infection [ρ value = 0.025; OR = 2.815 (1.118-7.089); CI = 95%]. None of the cytokines had any influence on the analyzed parameters (abortion and hypertension). In conclusion, our data suggest an immunogenic evidence of susceptibility to T. gondii infection driven by the rs4819554 (IL17RA) SNP G allele in Brazilian pregnant women. Further studies are needed to reinforce this trial marker in populations from distinct geographical areas as well as to confirm the protective pattern related to the G-allele of the SNP rs2275913 (IL17A) in pregnant women.
Collapse
Affiliation(s)
- Joelma Maria de Araujo Andrade
- Laboratory of Malaria and Toxoplasmosis Biology/LABMAT, Department of Microbiology and Parasitology, Bioscience Center, Federal University of the Rio Grande do Norte. Natal, Rio Grande do Norte, Brazil; Postgraduate Program of Biological Science, Bioscience Center, Federal University of the Rio Grande do Norte. Natal, Rio Grande do Norte, Brazil
| | - Claudio Bruno Silva de Oliveira
- Laboratory of Malaria and Toxoplasmosis Biology/LABMAT, Department of Microbiology and Parasitology, Bioscience Center, Federal University of the Rio Grande do Norte. Natal, Rio Grande do Norte, Brazil
| | | | | | | | - Priscilla Vilela Dos Santos
- Laboratory of Immunobiology of Inflammation, DECBI/ICEB and Post-graduate Program of Health and Nutrition, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, DECBI/ICEB and Post-graduate Program of Health and Nutrition, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation, DECBI/ICEB and Post-graduate Program of Health and Nutrition, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, DECBI/ICEB and Post-graduate Program of Health and Nutrition, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Gustavo Martelli Palomino
- Department of Clinical Analysis, School of Pharmacy, Federal University of the Rio Grande do Norte. Natal, Rio Grande do Norte, Brazil
| | | | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology/LABMAT, Department of Microbiology and Parasitology, Bioscience Center, Federal University of the Rio Grande do Norte. Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
24
|
Macedo-da-Silva J, Marinho CRF, Palmisano G, Rosa-Fernandes L. Lights and Shadows of TORCH Infection Proteomics. Genes (Basel) 2020; 11:E894. [PMID: 32764347 PMCID: PMC7464470 DOI: 10.3390/genes11080894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Congenital abnormalities cause serious fetal consequences. The term TORCH is used to designate the most common perinatal infections, where: (T) refers to toxoplasmosis, (O) means "others" and includes syphilis, varicella-zoster, parvovirus B19, zika virus (ZIKV), and malaria among others, (R) refers to rubella, (C) relates to cytomegalovirus infection, and (H) to herpes simplex virus infections. Among the main abnormalities identified in neonates exposed to congenital infections are central nervous system (CNS) damage, microcephaly, hearing loss, and ophthalmological impairment, all requiring regular follow-up to monitor its progression. Protein changes such as mutations, post-translational modifications, abundance, structure, and function may indicate a pathological condition before the onset of the first symptoms, allowing early diagnosis and understanding of a particular disease or infection. The term "proteomics" is defined as the science that studies the proteome, which consists of the total protein content of a cell, tissue or organism in a given space and time, including post-translational modifications (PTMs) and interactions between proteins. Currently, quantitative bottom-up proteomic strategies allow rapid and high throughput characterization of complex biological mixtures. Investigating proteome modulation during host-pathogen interaction helps in elucidating the mechanisms of infection and in predicting disease progression. This "molecular battle" between host and pathogen is a key to identify drug targets and diagnostic markers. Here, we conducted a survey on proteomic techniques applied to congenital diseases classified in the terminology "TORCH", including toxoplasmosis, ZIKV, malaria, syphilis, human immunodeficiency virus (HIV), herpes simplex virus (HSV) and human cytomegalovirus (HCVM). We have highlighted proteins and/or protein complexes actively involved in the infection. Most of the proteomic studies reported have been performed in cell line models, and the evaluation of tissues (brain, muscle, and placenta) and biofluids (plasma, serum and urine) in animal models is still underexplored. Moreover, there are a plethora of studies focusing on the pathogen or the host without considering the triad mother-fetus-pathogen as a dynamic and interconnected system.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- Glycoproteomics Laboratory, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Claudio Romero Farias Marinho
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Giuseppe Palmisano
- Glycoproteomics Laboratory, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Livia Rosa-Fernandes
- Glycoproteomics Laboratory, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| |
Collapse
|
25
|
Gómez-Chávez F, Cañedo-Solares I, Ortiz-Alegría LB, Flores-García Y, Figueroa-Damián R, Luna-Pastén H, Gómez-Toscano V, López-Candiani C, Arce-Estrada GE, Bonilla-Ríos CA, Mora-González JC, García-Ruiz R, Correa D. A Proinflammatory Immune Response Might Determine Toxoplasma gondii Vertical Transmission and Severity of Clinical Features in Congenitally Infected Newborns. Front Immunol 2020; 11:390. [PMID: 32231666 PMCID: PMC7082359 DOI: 10.3389/fimmu.2020.00390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii is the etiological agent of toxoplasmosis. Mother-to-child transmission of this parasite can occur during pregnancy. Newborns with congenital toxoplasmosis may develop central nervous system impairment, with severity ranging from subclinical manifestations to death. A proinflammatory/regulated specific immune profile is crucial in the defense against the parasite; nevertheless, its role in the infected pregnant women and the congenitally infected offspring has been poorly explored, and there is still no consensus about its relation to parasite vertical transmission or to severity and dissemination in the congenitally infected newborns. This work aimed to characterize these relations by means of principal component and principal factor analyses. For this purpose, we determined the specific production of the four immunoglobulin G antibody subclasses, cytokines, and lymphocyte proliferation in the T. gondii–infected pregnant women−10 who transmitted the infection to their offspring and seven who did not—as well as in 11 newborns congenitally infected and grouped according to disease severity (five mild and six moderate/severe) and dissemination (four local and seven disseminated). We found that the immune response of nontransmitter women differed from that of the transmitters, the latter having a stronger proinflammatory response, supporting a previous report. We also found that newborns who developed moderate/severe disease presented higher levels of lymphocyte proliferation, particularly of CD8+ and CD19+ cells, a high proportion of tumor necrosis factor α producers, and reduced expression of the immune modulator transforming growth factor β, as opposed to children who developed mild clinical complications. Our results suggest that a distinctive, not regulated, proinflammatory immune response might favor T. gondii vertical transmission and the development of severe clinical manifestations in congenitally infected newborns.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico.,Cátedras CONACyT-Instituto Nacional de Pediatría, Mexico City, Mexico.,Departamento de Formación Básica Disciplinaria, ENMyH-IPN, Mexico City, Mexico
| | | | | | | | | | - Héctor Luna-Pastén
- Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | | | | | | | | | | | - Ricardo García-Ruiz
- Laboratorio de Cannabinoides, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Dolores Correa
- Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|