1
|
Tien NTN, Anh TT, Yen NTH, Anh NK, Nguyen HT, Kim HS, Oh JH, Kim DH, Long NP. Time-course cross-species transcriptomics reveals conserved hepatotoxicity pathways induced by repeated administration of cyclosporine A. Toxicol Mech Methods 2024; 34:1010-1021. [PMID: 38937256 DOI: 10.1080/15376516.2024.2371894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Cyclosporine A (CsA) has shown efficacy against immunity-related diseases despite its toxicity in various organs, including the liver, emphasizing the need to elucidate its underlying hepatotoxicity mechanism. This study aimed to capture the alterations in genome-wide expression over time and the subsequent perturbations of corresponding pathways across species. Six data from humans, mice, and rats, including animal liver tissue, human liver microtissues, and two liver cell lines exposed to CsA toxic dose, were used. The microtissue exposed to CsA for 10 d was analyzed to obtain dynamically differentially expressed genes (DEGs). Single-time points data at 1, 3, 5, 7, and 28 d of different species were used to provide additional evidence. Using liver microtissue-based longitudinal design, DEGs that were consistently up- or down-regulated over time were captured, and the well-known mechanism involved in CsA toxicity was elucidated. Thirty DEGs that consistently changed in longitudinal data were also altered in 28-d rat in-house data with concordant expression. Some genes (e.g. TUBB2A, PLIN2, APOB) showed good concordance with identified DEGs in 1-d and 7-d mouse data. Pathway analysis revealed up-regulations of protein processing, asparagine N-linked glycosylation, and cargo concentration in the endoplasmic reticulum. Furthermore, the down-regulations of pathways related to biological oxidations and metabolite and lipid metabolism were elucidated. These pathways were also enriched in single-time-point data and conserved across species, implying their biological significance and generalizability. Overall, the human organoids-based longitudinal design coupled with cross-species validation provides temporal molecular change tracking, aiding mechanistic elucidation and biologically relevant biomarker discovery.
Collapse
Affiliation(s)
- Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Trinh Tam Anh
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ho-Sook Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Dong-Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
2
|
Wang Y, Wang Y, Xu P. Cyclosporine-induced alopecia:a case report, FDA adverse event reporting system analysis and literature assessment. Front Pharmacol 2024; 15:1453034. [PMID: 39263573 PMCID: PMC11387167 DOI: 10.3389/fphar.2024.1453034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Cyclosporine is a potent immunosuppressive drug for various immune-mediated diseases in children. Cyclosporine's expected therapeutic effect also carries a wide range of side effects. One of the most common and intriguing dermatological side effects is hypertrichosis. However, recent reports have recognized alopecia as a potential adverse effect of cyclosporine. Here, we report a case of a 29-month-old boy diagnosed with aplastic anemia. During cyclosporine therapy, the patient presented with hair loss on the scalp, which and subsequently spread to the eyebrows and eyelashes. The alopecic symptoms were not relieved following topical minoxidil liniment interventions. When the cyclosporine was discontinued, a remarkable improvement was observed in the scalp, with complete hair regrowth. Data concerning cyclosporine from the FDA Adverse Event Reporting System (FAERS) database were extracted from January 2004 to January 2023. Within FAERS, our post-marketing pharmacovigilance analysis detected the reporting association of cyclosporine and alopecia. In monotherapy, cyclosporine-induced alopecia was observed in 118 cases, and tacrolimus-induced alopecia signals were detected in 197 cases. Although the potential mechanism of medication-induced hair loss is unclear, we identified a potential correlation between alopecia and cyclosporine, and it is still necessary to adequately recognize and clinically monitor this paradoxical reaction.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Youhong Wang
- Department of Pharmacy, Xiamen Children's Hospital (Children's Hospital of Fudan University at Xiamen), Xiamen, China
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital (Children's Hospital of Fudan University at Xiamen), Xiamen, China
| | - Ping Xu
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
3
|
Cardeira-da-Silva J, Wang Q, Sagvekar P, Mintcheva J, Latting S, Günther S, Ramadass R, Yekelchyk M, Preussner J, Looso M, Junker JP, Stainier DYR. Antigen presentation plays positive roles in the regenerative response to cardiac injury in zebrafish. Nat Commun 2024; 15:3637. [PMID: 38684665 PMCID: PMC11058276 DOI: 10.1038/s41467-024-47430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.
Collapse
Affiliation(s)
- João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Qianchen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Pooja Sagvekar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Humboldt University of Berlin, Berlin, Germany
| | - Stephan Latting
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michail Yekelchyk
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jens Preussner
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
4
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
de Raffele D, Ilie IM. Unlocking novel therapies: cyclic peptide design for amyloidogenic targets through synergies of experiments, simulations, and machine learning. Chem Commun (Camb) 2024; 60:632-645. [PMID: 38131333 DOI: 10.1039/d3cc04630c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Existing therapies for neurodegenerative diseases like Parkinson's and Alzheimer's address only their symptoms and do not prevent disease onset. Common therapeutic agents, such as small molecules and antibodies struggle with insufficient selectivity, stability and bioavailability, leading to poor performance in clinical trials. Peptide-based therapeutics are emerging as promising candidates, with successful applications for cardiovascular diseases and cancers due to their high bioavailability, good efficacy and specificity. In particular, cyclic peptides have a long in vivo stability, while maintaining a robust antibody-like binding affinity. However, the de novo design of cyclic peptides is challenging due to the lack of long-lived druggable pockets of the target polypeptide, absence of exhaustive conformational distributions of the target and/or the binder, unknown binding site, methodological limitations, associated constraints (failed trials, time, money) and the vast combinatorial sequence space. Hence, efficient alignment and cooperation between disciplines, and synergies between experiments and simulations complemented by popular techniques like machine-learning can significantly speed up the therapeutic cyclic-peptide development for neurodegenerative diseases. We review the latest advancements in cyclic peptide design against amyloidogenic targets from a computational perspective in light of recent advancements and potential of machine learning to optimize the design process. We discuss the difficulties encountered when designing novel peptide-based inhibitors and we propose new strategies incorporating experiments, simulations and machine learning to design cyclic peptides to inhibit the toxic propagation of amyloidogenic polypeptides. Importantly, these strategies extend beyond the mere design of cyclic peptides and serve as template for the de novo generation of (bio)materials with programmable properties.
Collapse
Affiliation(s)
- Daria de Raffele
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Ioana M Ilie
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
6
|
Han HH, Rui M, Yang Y, Cui JF, Huang XT, Zhang SJ, He SM, Wang DD, Chen X. The Impact of Spironolactone Co-administration on Cyclosporin Initial Dosage Optimization for Pediatric Refractory Nephrotic Syndrome. Curr Pharm Des 2024; 30:1419-1432. [PMID: 38639271 DOI: 10.2174/0113816128307797240416053723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES Cyclosporin has been used for the treatment of pediatric refractory nephrotic syndrome (PRNS). However, the narrow therapeutic window and large pharmacokinetic variability make it difficult to individualize cyclosporin administration. Meanwhile, spironolactone has been reported to affect cyclosporin metabolism in PRNS patients. This study aims to explore the initial dosage optimization of cyclosporin in PRNS based on the impact of spironolactone co-administration. METHODS Monte Carlo simulation based on a previously established cyclosporin population pharmacokinetic model for PRNS was used to design cyclosporin dosing regimen. RESULTS In this study, the probability of drug concentration reaching the target and the convenience of times of administration were considered comprehensively. The optimal administration regimen in PRNS without spironolactone was 6, 5, 4 and 3 mg/kg cyclosporin split into two doses for the body weight of 5-8, 8-18, 18-46 and 46-70 kg, respectively. The optimal administration regimen in PRNS with spironolactone was 4, 3, 2 mg/kg cyclosporin split into two doses for body weight of 5-14, 14-65, and 65-70 kg, respectively. CONCLUSION The cyclosporin dosing regimen for PRNS based on Monte Carlo simulation was systematically developed and the initial dosage optimization of cyclosporin in PRNS was recommended for the first time.
Collapse
Affiliation(s)
- Huan-Huan Han
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222000, China
| | - Min Rui
- Department of Orthopaedics, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu 214400, China
| | - Yang Yang
- Department of Pharmacy, The Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu 213003, China
| | - Jia-Fang Cui
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xue-Ting Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shi-Jia Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, China
| | - Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiao Chen
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
7
|
Xu C, Ye Z, Jiang W, Wang S, Zhang H. Cyclosporine A alleviates colitis by inhibiting the formation of neutrophil extracellular traps via the regulating pentose phosphate pathway. Mol Med 2023; 29:169. [PMID: 38093197 PMCID: PMC10720086 DOI: 10.1186/s10020-023-00758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The aberrant formation of neutrophil extracellular traps (NETs) has been implicated in ulcerative colitis (UC), a chronic recurrent intestinal inflammation. Cyclosporine A (CsA) is now applied as rescue therapy for acute severe UC. In addition, it has been certained that CsA inhibits the formation of NETs in vitro and the mechanism of which was still vague. The study aimed to explore the mechanism CsA inhibits the NETs formation of colitis in vivo and in vitro. METHODS NETs enrichment in clinical samples was analyzed using databases from Gene Expression Omnibus and verified in our center. Dextran sulfate sodium (DSS)-induced acute colitis mice model was used to investigate the effect of CsA on NETs of colonic tissue expression. To clarify the mechanism, intracellular energy metabolites were examined by Liquid Chromatograph Mass Spectrometer, and reactive oxygen species (ROS) levels were examined by fluorescence intensity in neutrophils treated with CsA after LPS stimulation. The transcriptional level and activity of G6PD of neutrophils were also assessed using qRT-PCR and WST-8. RNA Sequencing was used to detect differentially expressed genes of neutrophils stimulated by LPS with or without CsA. The expression levels of related proteins were detected by western blot. RESULTS NETs enrichment was especially elevated in moderate-to-severe UC patients compared to HC. NETs expression in the colon from DSS colitis was decreased after CsA treatment. Compared with neutrophils stimulated by LPS, NETs formation and cellular ROS levels were decreased in LPS + CsA group. Cellular ribulose 5-phosphate and NADPH/NADP + related to the pentose phosphate pathway (PPP) were reduced in LPS + CsA group. In addition, CsA could decrease G6PD activity in neutrophils stimulated with LPS, and the results were further verified by inhibiting G6PD activity. At last, P53 protein was highly expressed in LPS + CsA group compared with the LPS group. Intracellular G6PD activity, ROS level and NETs formation, which were downregulated by CsA, could be reversed by a P53 inhibitor. CONCLUSION Our results indicated CsA could alleviate the severity of colitis by decreasing the formation of NETs in vivo. In vitro, CsA reduced ROS-dependent NETs release via downregulating PPP and cellular ROS levels by decreasing G6PD activity directly by activating the P53 protein.
Collapse
Affiliation(s)
- Chenjing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ziping Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenyu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongjie Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Lee DY, Lee S, Kim YS, Park S, Bae SM, Cho EA, Park EJ, Park HH, Kim SY, So I, Chun JN, Jeon JH. Cyclosporin A inhibits prostate cancer growth through suppression of E2F8 transcription factor in a MELK‑dependent manner. Oncol Rep 2023; 50:218. [PMID: 37888771 PMCID: PMC10636720 DOI: 10.3892/or.2023.8655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
The treatment of advanced prostate cancer remains a formidable challenge due to the limited availability of effective treatment options. Therefore, it is imperative to identify promising druggable targets that provide substantial clinical benefits and to develop effective treatment strategies to overcome therapeutic resistance. Cyclosporin A (CsA) showed an anticancer effect on prostate cancer in cultured cell and xenograft models. E2F8 was identified as a master transcription factor that regulated a clinically significant CsA specific gene signature. The expression of E2F8 increased during prostate cancer progression and high levels of E2F8 expression are associated with a poor prognosis in patients with prostate cancer. MELK was identified as a crucial upstream regulator of E2F8 expression through the transcriptional regulatory network and Bayesian network analyses. Knockdown of E2F8 or MELK inhibited cell growth and colony formation in prostate cancer cells. High expression levels of E2F8 and androgen receptor (AR) are associated with a worse prognosis in patients with prostate cancer compared with low levels of both genes. The inhibition of E2F8 improved the response to AR blockade therapy. These results suggested that CsA has potential as an effective anticancer treatment for prostate cancer, while also revealing the oncogenic role of E2F8 and its association with clinical outcomes in prostate cancer. These results provided valuable insight into the development of therapeutic and diagnostic approaches for prostate cancer.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sanghoon Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Sik Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Soonbum Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang-Mun Bae
- ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05535, Republic of Korea
| | - Eun A Cho
- ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05535, Republic of Korea
- Department of Medical Science, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05535, Republic of Korea
| | - Eun-Jung Park
- Department of Food and Nutrition, Gachon University College of BioNano Technology, Gyeonggi-do 13120, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sang-Yeob Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05535, Republic of Korea
- Department of Medical Science, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05535, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
9
|
Castelo-Soccio L, Kim H, Gadina M, Schwartzberg PL, Laurence A, O'Shea JJ. Protein kinases: drug targets for immunological disorders. Nat Rev Immunol 2023; 23:787-806. [PMID: 37188939 PMCID: PMC10184645 DOI: 10.1038/s41577-023-00877-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Protein kinases play a major role in cellular activation processes, including signal transduction by diverse immunoreceptors. Given their roles in cell growth and death and in the production of inflammatory mediators, targeting kinases has proven to be an effective treatment strategy, initially as anticancer therapies, but shortly thereafter in immune-mediated diseases. Herein, we provide an overview of the status of small molecule inhibitors specifically generated to target protein kinases relevant to immune cell function, with an emphasis on those approved for the treatment of immune-mediated diseases. The development of inhibitors of Janus kinases that target cytokine receptor signalling has been a particularly active area, with Janus kinase inhibitors being approved for the treatment of multiple autoimmune and allergic diseases as well as COVID-19. In addition, TEC family kinase inhibitors (including Bruton's tyrosine kinase inhibitors) targeting antigen receptor signalling have been approved for haematological malignancies and graft versus host disease. This experience provides multiple important lessons regarding the importance (or not) of selectivity and the limits to which genetic information informs efficacy and safety. Many new agents are being generated, along with new approaches for targeting kinases.
Collapse
Affiliation(s)
- Leslie Castelo-Soccio
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Kim
- Juvenile Myositis Pathogenesis and Therapeutics Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arian Laurence
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK.
- University College London Hospitals NHS Foundation Trust, London, UK.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Kale A, Shelke V, Lei Y, Gaikwad AB, Anders HJ. Voclosporin: Unique Chemistry, Pharmacology and Toxicity Profile, and Possible Options for Implementation into the Management of Lupus Nephritis. Cells 2023; 12:2440. [PMID: 37887284 PMCID: PMC10605893 DOI: 10.3390/cells12202440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Calcineurin inhibitors (CNI) can suppress allo- and autoimmunity by suppressing T cell function but also have anti-proteinuric effects by stabilizing the cellular components of the kidney's filtration barrier. Therefore, CNI are used in autoimmune kidney diseases with proteinuria. However, the traditional CNI, cyclosporine A and tacrolimus, have a narrow therapeutic range, need monitoring of drug levels, and their use is associated with nephrotoxicity and metabolic alterations. Voclosporin (VOC), a novel CNI, no longer requires drug level monitoring and seems to lack these adverse effects, although hypertension and drug-drug interactions still occur. VOC demonstrated efficacy superior to standard-of-care in controlling active lupus nephritis in the phase 2 AURA-LV and the phase 3 AURORA-1 trials and was approved for the treatment of active lupus nephritis. However, how to implement VOC into the current and changing treatment landscape of lupus nephritis is still debated. Here, we review the unique chemistry, pharmacology, and toxicity profile of VOC, summarize the efficacy and safety data from the AURA-LV and AURORA-1 trials, and discuss the following four possible options to implement VOC into the management of lupus nephritis, namely regarding B cell-targeting therapy with belimumab (BEL). These include: 1. patient stratification to either VOC or BEL, 2. VOC/BEL combination therapy, 3. VOC-BEL sequential therapy, or 4. alternative options for the rapid antiproteinuric effect of VOC.
Collapse
Affiliation(s)
- Ajinath Kale
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India; (A.K.); (V.S.); (A.B.G.)
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India; (A.K.); (V.S.); (A.B.G.)
| | - Yutian Lei
- Division of Diabetology, Department of Internal Medicine IV, Hospital of the Ludwig Maximilians University Munich, 333031 Munich, Germany;
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India; (A.K.); (V.S.); (A.B.G.)
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, Hospital of the Ludwig Maximilians University Munich, 80336 Munich, Germany
| |
Collapse
|
11
|
Liu X, Han W, Hu X. Post-transcriptional regulation of myeloid cell-mediated inflammatory responses. Adv Immunol 2023; 160:59-82. [PMID: 38042586 DOI: 10.1016/bs.ai.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Myeloid cells, particularly macrophages, act as the frontline responders to infectious agents and initiate inflammation. While the molecular mechanisms driving inflammatory responses have primarily focused on pattern recognition by myeloid cells and subsequent transcriptional events, it is crucial to note that post-transcriptional regulation plays a pivotal role in this process. In addition to the transcriptional regulation of innate immune responses, additional layers of intricate network of post-transcriptional mechanisms critically determine the quantity and duration of key inflammatory products and thus the outcome of immune responses. A multitude of mechanisms governing post-transcriptional regulation in innate immunity have been uncovered, encompassing RNA alternative splicing, mRNA stability, and translational regulation. This review encapsulates the current insights into the post-transcriptional regulation of inflammatory genes within myeloid cells, with particular emphasis on translational regulation during inflammation. While acknowledging the advancements, we also shed light on the existing gaps in immunological research pertaining to post-transcriptional levels and propose perspectives that controlling post-transcriptional process may serve as potential targets for therapeutic interventions in inflammatory diseases.
Collapse
Affiliation(s)
- Xingxian Liu
- Institute for Immunology, Tsinghua University, Beijing, P.R. China; Department of Basic Medical Sciences, Tsinghua University, Beijing, P.R. China; Tsinghua-Peking Center for Life Sciences, Beijing, P.R. China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, P.R. China
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing, P.R. China; Department of Basic Medical Sciences, Tsinghua University, Beijing, P.R. China; Tsinghua-Peking Center for Life Sciences, Beijing, P.R. China; The State Key Laboratory of Membrane Biology, Beijing, P.R. China.
| |
Collapse
|
12
|
Kuppan P, Wong J, Kelly S, Lin J, Worton J, Castro C, Paramor J, Seeberger K, Cuesta-Gomez N, Anderson CC, Korbutt GS, Pepper AR. Long-Term Survival and Induction of Operational Tolerance to Murine Islet Allografts by Co-Transplanting Cyclosporine A Microparticles and CTLA4-Ig. Pharmaceutics 2023; 15:2201. [PMID: 37765170 PMCID: PMC10537425 DOI: 10.3390/pharmaceutics15092201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
One strategy to prevent islet rejection is to create a favorable immune-protective local environment at the transplant site. Herein, we utilize localized cyclosporine A (CsA) delivery to islet grafts via poly(lactic-co-glycolic acid) (PLGA) microparticles to attenuate allograft rejection. CsA-eluting PLGA microparticles were prepared using a single emulsion (oil-in-water) solvent evaporation technique. CsA microparticles alone significantly delayed islet allograft rejection compared to islets alone (p < 0.05). Over 50% (6/11) of recipients receiving CsA microparticles and short-term cytotoxic T lymphocyte-associated antigen 4-Ig (CTLA4-Ig) therapy displayed prolonged allograft survival for 214 days, compared to 25% (2/8) receiving CTLA4-Ig alone. CsA microparticles alone and CsA microparticles + CTLA4-Ig islet allografts exhibited reduced T-cell (CD4+ and CD8+ cells, p < 0.001) and macrophage (CD68+ cells, p < 0.001) infiltration compared to islets alone. We observed the reduced mRNA expression of proinflammatory cytokines (IL-6, IL-10, INF-γ, and TNF-α; p < 0.05) and chemokines (CCL2, CCL5, CCL22, and CXCL10; p < 0.05) in CsA microparticles + CTLA4-Ig allografts compared to islets alone. Long-term islet allografts contained insulin+ and intra-graft FoxP3+ T regulatory cells. The rapid rejection of third-party skin grafts (C3H) in islet allograft recipients suggests that CsA microparticles + CTLA4-Ig therapy induced operational tolerance. This study demonstrates that localized CsA drug delivery plus short-course systemic immunosuppression promotes an immune protective transplant niche for allogeneic islets.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Jordan Wong
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Jiaxin Lin
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Jessica Worton
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Chelsea Castro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Joy Paramor
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Karen Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Nerea Cuesta-Gomez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Colin C. Anderson
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| |
Collapse
|
13
|
Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. BIOLOGY 2023; 12:1008. [PMID: 37508437 PMCID: PMC10376262 DOI: 10.3390/biology12071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.
Collapse
Affiliation(s)
- Deepti Gurung
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Afsara Tasnim
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| |
Collapse
|
14
|
Siddiqui SS, Hodeify R, Mathew S, Alsawaf S, Alghfeli A, Matar R, Merheb M, Marton J, Al Zouabi HA, Sethuvel DPM, Ragupathi NKD, Vazhappilly CG. Differential dose-response effect of cyclosporine A in regulating apoptosis and autophagy markers in MCF-7 cells. Inflammopharmacology 2023:10.1007/s10787-023-01247-4. [PMID: 37204695 DOI: 10.1007/s10787-023-01247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Cyclosporine A (CsA) is an immunosuppressant primarily used at a higher dosage in transplant medicine and autoimmune diseases with a higher success rate. At lower doses, CsA exhibits immunomodulatory properties. CsA has also been reported to inhibit breast cancer cell growth by downregulating the expression of pyruvate kinase. However, differential dose-response effects of CsA in cell growth, colonization, apoptosis, and autophagy remain largely unidentified in breast cancer cells. Herein, we showed the cell growth-inhibiting effects of CsA by preventing cell colonization and enhancing DNA damage and apoptotic index at a relatively lower concentration of 2 µM in MCF-7 breast cancer cells. However, at a higher concentration of 20 µM, CsA leads to differential expression of autophagy-related genes ATG1, ATG8, and ATG9 and apoptosis-associated markers, such as Bcl-2, Bcl-XL, Bad, and Bax, indicating a dose-response effect on differential cell death mechanisms in MCF-7 cells. This was confirmed in the protein-protein interaction network of COX-2 (PTGS2), a prime target of CsA, which had close interactions with Bcl-2, p53, EGFR, and STAT3. Furthermore, we investigated the combined effect of CsA with SHP2/PI3K-AKT inhibitors showing significant MCF-7 cell growth reduction, suggesting its potential to use as an adjuvant during breast cancer therapy.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, UK
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Shimy Mathew
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Anood Alghfeli
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Rachel Matar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Maxime Merheb
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - John Marton
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Hussain AbdulKarim Al Zouabi
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | | | - Naveen Kumar Devanga Ragupathi
- Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore, India
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| |
Collapse
|
15
|
Agarwal P, Korward J, Krösser S, Rupenthal ID. Preclinical characterization of water-free cyclosporine eye drops - factors impacting ocular penetration ex vivo and in vivo. Eur J Pharm Biopharm 2023:S0939-6411(23)00119-4. [PMID: 37178940 DOI: 10.1016/j.ejpb.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Although the efficacy of Cyclosporine A (CsA) in the management of ocular inflammation is well-demonstrated, ocular delivery remains challenging due to its hydrophobic nature. The semifluorinated alkane, perfluorobutylpentane (F4H5) has previously been suggested as an efficient vehicle for preparation of CsA eyedrops. Here we evaluated the influence of drop volume and the formulation aid, ethanol (EtOH), on ocular penetration of CsA and compared it to that of the commercial eyedrop, Ikervis, ex vivo and in vivo. Moreover, conjunctival and corneal tolerability after EtOH addition were evaluated ex vivo. The F4H5/EtOH vehicle was well tolerated and resulted in better corneal CsA penetration (AUC(0 - 4h): 63,008 ± 3,946 ng.h.g-1) than Ikervis (AUC(0 - 4h): 10,328 ± 1,462 ng.h.g-1) or F4H5 alone (AUC(0 - 4h): 50,734 ± 3,472 ng.h.g-1) ex vivo. Interestingly, in vivo the CsA concentration in cornea, conjunctiva and lacrimal glands observed after administration of the F4H5 formulation (AUC(0.133-24 h): 7,741 ± 1,334 ng.h.g-1, 1,313 ± 291 ng.h.g-1, 48.2 ± 26.3 ng.h.g-1) and F4H5/EtOH both at a reduced dose of 11 µl (AUC(0.133-24 h): 9,552 ± 1,738 ng.h.g-1, 1,679 ± 285 ng.h.g-1, 50.3 ± 21.1 ng.h.g-1) was similar or even greater than what was observed on administration of 50 µl Ikervis (AUC(0.133-24 h): 9,943 ± 1,413 ng.h.g-1, 2,069 ± 263 ng.h.g-1, 30.6 ± 18.4 ng.h.g-1). Thus, F4H5-based eyedrops were shown to deliver CsA more efficiently to anterior ocular tissues at a reduced dose in comparison to Ikervis, reducing dose wastage and minimizing any potential systemic side effects.
Collapse
Affiliation(s)
- Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | | | | | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
16
|
Hellinger R, Sigurdsson A, Wu W, Romanova EV, Li L, Sweedler JV, Süssmuth RD, Gruber CW. Peptidomics. NATURE REVIEWS. METHODS PRIMERS 2023; 3:25. [PMID: 37250919 PMCID: PMC7614574 DOI: 10.1038/s43586-023-00205-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 05/31/2023]
Abstract
Peptides are biopolymers, typically consisting of 2-50 amino acids. They are biologically produced by the cellular ribosomal machinery or by non-ribosomal enzymes and, sometimes, other dedicated ligases. Peptides are arranged as linear chains or cycles, and include post-translational modifications, unusual amino acids and stabilizing motifs. Their structure and molecular size render them a unique chemical space, between small molecules and larger proteins. Peptides have important physiological functions as intrinsic signalling molecules, such as neuropeptides and peptide hormones, for cellular or interspecies communication, as toxins to catch prey or as defence molecules to fend off enemies and microorganisms. Clinically, they are gaining popularity as biomarkers or innovative therapeutics; to date there are more than 60 peptide drugs approved and more than 150 in clinical development. The emerging field of peptidomics comprises the comprehensive qualitative and quantitative analysis of the suite of peptides in a biological sample (endogenously produced, or exogenously administered as drugs). Peptidomics employs techniques of genomics, modern proteomics, state-of-the-art analytical chemistry and innovative computational biology, with a specialized set of tools. The complex biological matrices and often low abundance of analytes typically examined in peptidomics experiments require optimized sample preparation and isolation, including in silico analysis. This Primer covers the combination of techniques and workflows needed for peptide discovery and characterization and provides an overview of various biological and clinical applications of peptidomics.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnar Sigurdsson
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Wenxin Wu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Hsieh TS, Tsai TF. Combination Therapy for Psoriasis with Methotrexate and Other Oral Disease-Modifying Antirheumatic Drugs: A Systematic Review. Dermatol Ther (Heidelb) 2023; 13:891-909. [PMID: 36943580 DOI: 10.1007/s13555-023-00903-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Although the introduction of biologics and targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs) has reshaped the treatment paradigm for immune-mediated inflammatory diseases (IMIDs) such as psoriasis, oral conventional synthetic DMARDs (csDMARDs) remain the cornerstone in their treatment. Combinational use of DMARDs is common in rheumatological practice, but for the treatment of many skin diseases, dermatologists typically use a single oral DMARD, with methotrexate (MTX) being the most commonly prescribed csDMARD for psoriasis. METHODS To better understand the potential benefits of MTX combination therapy in psoriasis, a literature review was conducted using Medline (PubMed), Embase, Web of Science, and the Cochrane Library, covering articles published from inception until October 2022. Randomized controlled trials, cohort, open-label, and observational studies, and case reports with efficacy and safety results for combination therapy with MTX, csDMARDs, and tsDMARDs or comparisons between MTX monotherapy and combination therapy with other oral DMARDs in psoriasis were included. Studies involving MTX monotherapy alone or sequential treatment with MTX and other oral DMARDs were excluded, as were non-English articles. The results are presented as a systematic review, and the risk of bias was assessed by the corresponding author using the Cochrane Handbook for Systematic Reviews of Interventions, version 6.3, and confirmed by an independent assessor. RESULTS Eleven studies comprising 494 participants were included in the review. Overall, combination treatment with MTX and other oral DMARDs exhibited good efficacy and tolerability in psoriasis. However, the included studies were primarily small scale or retrospective, and larger prospective randomized trials are needed to provide stronger evidence. CONCLUSION This literature review suggests that combination therapy with MTX and csDMARDs may serve as an efficacious treatment for psoriasis patients with an inadequate response to oral DMARD monotherapy.
Collapse
Affiliation(s)
- Tyng-Shiuan Hsieh
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei, Taiwan.
| |
Collapse
|
18
|
Yi J, Hsieh CS. How decreasing T cell signaling unexpectedly results in autoimmunity. J Exp Med 2023; 220:e20221886. [PMID: 36520516 PMCID: PMC9757847 DOI: 10.1084/jem.20221886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this issue of JEM, Tanaka et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20220386) advance our understanding of how genetic mutants that decrease T cell recognition of antigen, a critical event for immune activation to invading microbes and virus, paradoxically results in autoimmunity.
Collapse
Affiliation(s)
- Jaeu Yi
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Dumbali SP, Wenzel PL. Mitochondrial Permeability Transition in Stem Cells, Development, and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:1-22. [PMID: 35739412 DOI: 10.1007/5584_2022_720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The mitochondrial permeability transition (mPT) is a process that permits rapid exchange of small molecules across the inner mitochondrial membrane (IMM) and thus plays a vital role in mitochondrial function and cellular signaling. Formation of the pore that mediates this flux is well-documented in injury and disease but its regulation has also emerged as critical to the fate of stem cells during embryonic development. The precise molecular composition of the mPTP has been enigmatic, with far more genetic studies eliminating molecular candidates than confirming them. Rigorous studies in the recent decade have implicated central involvement of the F1Fo ATP synthase, or complex V of the electron transport chain, and continue to confirm a regulatory role for Cyclophilin D (CypD), encoded by Ppif, in modulating the sensitivity of the pore to opening. A host of endogenous molecules have been shown to trigger flux characteristic of mPT, including positive regulators such as calcium ions, reactive oxygen species, inorganic phosphate, and fatty acids. Conductance of the pore has been described as low or high, and reversibility of pore opening appears to correspond with the relative abundance of negative regulators of mPT such as adenine nucleotides, hydrogen ion, and divalent cations that compete for calcium-binding sites in the mPTP. Current models suggest that distinct pores could be responsible for differing reversibility and conductance depending upon cellular context. Indeed, irreversible propagation of mPT inevitably leads to collapse of transmembrane potential, arrest of ATP synthesis, mitochondrial swelling, and cell death. Future studies should clarify ambiguities in mPTP structure and reveal new roles for mPT in dictating specialized cellular functions beyond cell survival that are tied to mitochondrial fitness including stem cell self-renewal and fate. The focus of this review is to describe contemporary models of the mPTP and highlight how pore activity impacts stem cells and development.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
20
|
Techiryan G, Weil BR, Young RF, Canty JM. Widespread intracoronary allogeneic cardiosphere-derived cell therapy with and without cyclosporine in reperfused myocardial infarction. Am J Physiol Heart Circ Physiol 2022; 323:H904-H916. [PMID: 36083793 PMCID: PMC9602689 DOI: 10.1152/ajpheart.00373.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
Allogeneic cardiosphere-derived cell (CDC) therapy has been demonstrated to improve myocardial function when administered to reperfused myocardial infarcts. We previously pretreated animals with low-dose cyclosporine immunosuppression to limit allogeneic CDC rejection, but whether it is necessary and, if so, can be initiated at the time of reperfusion remains uncertain. Closed-chest swine (n = 29 animals) were subjected to a 90-min left anterior descending (LAD) coronary artery occlusion. Using a three-way blinded design, we randomized two groups to receive global intracoronary infusions of 20 × 106 CDCs 30 min after reperfusion. A third control group was treated with saline. One CDC group received cyclosporine 10 min before reperfusion (2.5 mg/kg iv and 100 mg/day po), whereas the other groups received placebos. After 1 mo, neither chronic infarct size relative to area at risk (saline control, 46.2 ± 4.0%; CDCs, 46.4 ± 2.1%; and CDCs + cyclosporine, 49.2 ± 3.1%; P = 0.79) nor ejection fraction (saline control, 51 ± 2%; CDCs, 51 ± 2%; and CDC + cyclosporine, 48 ± 2%; P = 0.42) were different among treatment groups. Multiple histological measures of cellular remodeling, myocyte proliferation, and apoptosis were also not different among treatment groups. In contrast to previous studies, we were unable to reproduce the cardioprotective effects demonstrated by allogeneic CDCs without cyclosporine. Furthermore, initiation of intravenous cyclosporine at the time of reperfusion followed by oral therapy was not sufficient to elicit the functional improvement observed in studies where cyclosporine was started 72 h before CDC therapy. This suggests that oral cyclosporine pretreatment may be necessary to effect cardiac repair with allogeneic CDCs.NEW & NOTEWORTHY In a three-way blinded, randomized design, we determined whether allogeneic CDCs administered at reperfusion improved myocardial function and whether intravenous cyclosporine enhanced their efficacy. In contrast to prior studies using oral cyclosporine, CDCs with or without intravenous cyclosporine had no effect on function or infarct size. This indicates that CDCs may be most efficacious for treating chronic LV dysfunction where cyclosporine can be initiated at least 72 h before cell therapy.
Collapse
Affiliation(s)
- George Techiryan
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York
- The Clinical and Translational Research Center, University at Buffalo, Buffalo, New York
| | - Brian R Weil
- Veterans Affairs Western New York Health Care System, University at Buffalo, Buffalo, New York
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
- The Clinical and Translational Research Center, University at Buffalo, Buffalo, New York
| | - Rebeccah F Young
- Department of Medicine, University at Buffalo, Buffalo, New York
- The Clinical and Translational Research Center, University at Buffalo, Buffalo, New York
| | - John M Canty
- Veterans Affairs Western New York Health Care System, University at Buffalo, Buffalo, New York
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
- Department of Medicine, University at Buffalo, Buffalo, New York
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
- The Clinical and Translational Research Center, University at Buffalo, Buffalo, New York
| |
Collapse
|
21
|
Wu PJ, Hsin IL, Hung WL, Lee MS, Wang PH, Ko JL. Combination treatment with cyclosporin A and arsenic trioxide induce synergistic cell death via non-apoptotic pathway in uterine cervical cancer cells. Chem Biol Interact 2022; 368:110177. [PMID: 36100036 DOI: 10.1016/j.cbi.2022.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Cyclosporin A is an immunosuppressive drug with anti-cancer effect. Arsenic trioxide (As2O3), a well-known cancer-inhibiting drug, induced cytotoxicity via apoptosis and autophagy. The aim of this study is to evaluate the effect of combinational treatment with cyclosporin A and arsenic trioxide on cell viability inhibition in cervical cancer cells. Using MTT assay and combination index, combinational treatment with cyclosporin A and arsenic trioxide induced a synergistic cytotoxic effect in Caski and SiHa cells. Cyclosporin A and arsenic trioxide triggered cell death via non-apoptotic pathway by using annexin V/propidium iodide (PI) assay. Cyclosporin A and arsenic trioxide combined treatment decreased mitochondrial membrane potential and increase reactive oxygen species (ROS) generation. This co-treatment increased LC3B-II expression and autophagosome formation in cervical cancer cells. This study first demonstrated that combinational treatment with cyclosporin A and As2O3 trigger synergistic cytotoxic effect via autophagy in cervical cancer cells.
Collapse
Affiliation(s)
- Pei-Ju Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
| | - I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Wei-Li Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Neurosurgery Department, Everan Hospital, Taichung, Taiwan
| | - Maw-Sheng Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Division of Medical Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
22
|
2-Methoxyestradiol TPGS Micelles Attenuate Cyclosporine A-Induced Nephrotoxicity in Rats through Inhibition of TGF-β1 and p-ERK1/2 Axis. Antioxidants (Basel) 2022; 11:antiox11081499. [PMID: 36009218 PMCID: PMC9405159 DOI: 10.3390/antiox11081499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
The immunosuppressant cyclosporine A (CSA) has been linked to serious renal toxic effects. Although 2-methoxyestradiol (2ME) possesses a wide range of pharmacological abilities, it suffers poor bioavailability after oral administration. The purpose of this study was to evaluate the potential of 2ME loaded D-ɑ-tocopheryl polyethylene glycol succinate (TPGS) micelles to prevent CSA-induced nephrotoxicity in rats. A 2ME-TPGS was prepared and showed particle size of 44.3 ± 3.5 nm with good entrapment efficiency and spherical structures. Male Wistar rats were divided into 5 groups, namely: Control, Vehicle, CSA, CSA + 2ME-Raw, and CSA + 2ME-Nano. CSA was injected daily at a SC dose of 20 mg/kg. Both 2ME-Raw and 2ME-Nano were given daily at oral doses of 5 mg/kg. Treatments continued for three successive weeks. 2ME-TPGS exerted significant protective effects against CSA nephrotoxicity. This was evidenced in ameliorating deterioration of renal functions, attenuation of pathological changes in kidney tissues, exerting significant anti-fibrotic, antioxidant, and anti-inflammatory effects together with significant anti-apoptotic effects. Western blot analyses showed both 2ME-Raw and 2ME-Nano significantly inhibited protein expression of TGF-β1 and phospho-ERK (p-ERK). It was observed that 2ME-TPGS, in almost all experiments, exerted superior protective effects as compared with 2ME-Raw. In conclusion, 2ME loaded in a TPGS nanocarrier possesses significant protective activities against CSA-induced kidney injury in rats. This is attributable to 2ME anti-fibrotic, antioxidant, anti-inflammatory, and anti-apoptotic activities which are mediated at least partly by inhibition of TGF-β1/p-ERK axis.
Collapse
|
23
|
Wu J, Zhang X, Bashir MH, Ali S. Lethal and Sublethal Toxicity Assessment of Cyclosporin C (a Fungal Toxin) against Plutella xylostella (L.). Toxins (Basel) 2022; 14:toxins14080514. [PMID: 36006176 PMCID: PMC9414777 DOI: 10.3390/toxins14080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Secondary metabolites/toxins produced by Purpeocillium lilacinum (Hypocreales; Phiocordycipitaceae), a well-known insect pathogen, can be used for the management of different insect pests. We report the lethal and sublethal effects of cyclosporin C (a toxin produced by P. lilacinum) against a major vegetable pest, Plutella xylostella, at specific organismal (feeding rate, larval growth, adult emergence, fecundity, and adult longevity) and sub-organismal levels (changes in antioxidant and neurophysiological enzyme activities). The toxicity of cyclosporin C against different larval instars of P. xylostella increased with increasing concentrations of the toxin and the maximum percent mortality rates for different P. xylostella larval instars at different times were observed for the 300 µg/mL cyclosporin C treatment, with an average mortality rate of 100% for all larval instars. The median lethal concentrations (LC50) of cyclosporin C against the first, second, third, and fourth larval instars of P. xylostella 72 h post-treatment were 78.05, 60.42, 50.83, and 83.05 μg/mL, respectively. Different concentrations of cyclosporin C caused a reduction in the average leaf consumption and average larval weight. Different life history parameters, such as the pupation rate (%), adult emergence (%), female fecundity, and female longevity were also inhibited when different concentrations of cyclosporin C were applied topically. The cyclosporin C concentrations inhibited the activities of different detoxifying (glutathione S-transferase, carboxylesterase, and acetylcholinesterase) and antioxidant enzyme (superoxide dismutase, catalase, and peroxidase) activities of P. xylostella when compared to the control. These findings can serve as baseline information for the development of cyclosporin C as an insect control agent, although further work on mass production, formulation, and field application is still required.
Collapse
Affiliation(s)
- Jianhui Wu
- Key Laboratory of Bio-Pesticide Innovation and Application, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (X.Z.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Xiaochen Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (X.Z.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Hamid Bashir
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (X.Z.)
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
24
|
Cipriano M, Schlünder K, Probst C, Linke K, Weiss M, Fischer MJ, Mesch L, Achberger K, Liebau S, Mesquida M, Nicolini V, Schneider A, Giusti AM, Kustermann S, Loskill P. Human immunocompetent choroid-on-chip: a novel tool for studying ocular effects of biological drugs. Commun Biol 2022; 5:52. [PMID: 35027657 PMCID: PMC8758775 DOI: 10.1038/s42003-021-02977-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
Disorders of the eye leading to visual impairment are a major issue that affects millions of people. On the other side ocular toxicities were described for e.g. molecularly targeted therapies in oncology and may hamper their development. Current ocular model systems feature a number of limitations affecting human-relevance and availability. To find new options for pharmacological treatment and assess mechanisms of toxicity, hence, novel complex model systems that are human-relevant and readily available are urgently required. Here, we report the development of a human immunocompetent Choroid-on-Chip (CoC), a human cell-based in vitro model of the choroid layer of the eye integrating melanocytes and microvascular endothelial cells, covered by a layer of retinal pigmented epithelial cells. Immunocompetence is achieved by perfusion of peripheral immune cells. We demonstrate controlled immune cell recruitment into the stromal compartments through a vascular monolayer and in vivo-like cytokine release profiles. To investigate applicability for both efficacy testing of immunosuppressive compounds as well as safety profiling of immunoactivating antibodies, we exposed the CoCs to cyclosporine and tested CD3 bispecific antibodies.
Collapse
Affiliation(s)
- Madalena Cipriano
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katharina Schlünder
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Christopher Probst
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Kirstin Linke
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Martin Weiss
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Mona Julia Fischer
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Lena Mesch
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marina Mesquida
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Valeria Nicolini
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Anneliese Schneider
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Zurich, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Anna Maria Giusti
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Zurich, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefan Kustermann
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - Peter Loskill
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.
| |
Collapse
|
25
|
Pınar SG, Canpınar H, Tan Ç, Çelebi N. A new nanosuspension prepared with wet milling method for oral delivery of highly variable drug Cyclosporine A: Development, optimization and in vivo evaluation. Eur J Pharm Sci 2022; 171:106123. [PMID: 35017012 DOI: 10.1016/j.ejps.2022.106123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/03/2022]
Abstract
Cyclosporine A (CsA) is a cyclic polypeptide, that has been widely used for immunosuppression. This study aims to develop nanosuspension for oral administration of CsA using the wet milling (WM) method one of the top-down technologies. The WM method was optimized by studying the effects of critical process parameters for WM on the particle size (PS), particle size distribution (PDI), and zeta potential (ZP) of nanosuspensions using the Design of Experiment (DoE) approach. Nanosuspension was developed using hydroxypropyl methylcellulose (HPMC) and sodium dodecyl sulfate (SDS) and in vitro characterization studies were performed. In vitro dissolution and in vivo pharmacokinetic studies were conducted with biorelevant media (fasted and fed state simulated fluids) and fasted and fed states in rats, respectively. In vivo immunological studies were also performed. PS, PDI, and ZP values for nanosuspension were approximately 600 nm, 0.4, -25 mV, respectively. The solubility of CsA was increased by 4.5-folds by nanosuspensions. Dissolution studies showed that nanosuspension had higher dissolution than the commercial product in the FeSSIF medium. The pharmacokinetic study indicated that AUC0-24 values of CsA nanosuspension were to be 2.09 and 5.51-fold higher than coarse powder in fasted and fed conditions, respectively. Immunological studies were carried out after oral administration of nanosuspension for 21 days, the ratio of CD4+/CD8+ was found to be more acceptable than the commercial product. These results demonstrated that nanosuspension is a promising approach for increasing the bioavailability and avoiding the food effect on absorption of CsA which one of the highly variable drugs.
Collapse
Affiliation(s)
- Sıla Gülbağ Pınar
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Etiler, 06330, Yenimahalle, Ankara, Turkey; Süleyman Demirel University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 32260, Çünür, Isparta, Turkey
| | - Hande Canpınar
- Hacettepe University, Cancer Institute, Department of Basic Oncology, 06100, Sıhhiye, Ankara, Turkey
| | - Çağman Tan
- Hacettepe University, Faculty of Medicine, Institute of Child Health, 06100, Sıhhiye, Ankara, Turkey
| | - Nevin Çelebi
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Etiler, 06330, Yenimahalle, Ankara, Turkey; Başkent University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06790, Etimesgut, Ankara, Turkey.
| |
Collapse
|
26
|
Motiee M, Zavaran Hosseini A, Soudi S. Evaluating the effects of Cyclosporine A immunosuppression on Mycobacterial infection by inhaling of Cyclosporine A administrated BALB/c mice with live Bacillus Calmette Guérin. Tuberculosis (Edinb) 2021; 132:102163. [PMID: 34999486 DOI: 10.1016/j.tube.2021.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/30/2022]
Abstract
Cyclosporine A (CsA) is an immunosuppressive drug used in organ transplantation and treatment of autoimmune diseases. Effects of CsA on determining the direction of the immune response and pathogenesis of infections by altering immune responses particulary T cells functions have always been questionable. We evaluated the effect of different doses of CsA on course of infection in BALB/c mice infected with live Bacillus Calmette Guérin (BCG) (as an example of Mycobacterial infections). Four groups of mice (n = 5) receiving 5, 25, 125, and 0 mg/kg of CsA, three times a week, were infected with BCG aerosolly. Before BCG inhalation and 40-/60- days post-infection, cell proliferation and CD4+CD25+ cell percentage were evaluated in splenocytes of mice after culture and stimulation with PHA or BCG lysate. The histopathological alterations and bacterial burden were assessed in lung tissue. Cells showed a dose-dependent decrease in proliferation and the percentage of CD4+ CD25+ cells. After BCG infection, in presence of dose 125 mg/kg, there were some exceptions. The number of bacteria and histopathological lesions and inflammation in lung tissues increased in a dose-dependent manner. CsA immunosuppressed BCG infected mice can be used as a safe model for studying Mycobacterium species pathogenesis and related cellular immune responses.
Collapse
Affiliation(s)
- Mahdieh Motiee
- Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad Zavaran Hosseini
- Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sara Soudi
- Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
27
|
Mieczkowska IK, Pantelaiou-Prokaki G, Prokakis E, Schmidt GE, Müller-Kirschbaum LC, Werner M, Sen M, Velychko T, Jannasch K, Dullin C, Napp J, Pantel K, Wikman H, Wiese M, Kramm CM, Alves F, Wegwitz F. Decreased PRC2 activity supports the survival of basal-like breast cancer cells to cytotoxic treatments. Cell Death Dis 2021; 12:1118. [PMID: 34845197 PMCID: PMC8630036 DOI: 10.1038/s41419-021-04407-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is the most common cancer occurring in women but also rarely develops in men. Recent advances in early diagnosis and development of targeted therapies have greatly improved the survival rate of BC patients. However, the basal-like BC subtype (BLBC), largely overlapping with the triple-negative BC subtype (TNBC), lacks such drug targets and conventional cytotoxic chemotherapies often remain the only treatment option. Thus, the development of resistance to cytotoxic therapies has fatal consequences. To assess the involvement of epigenetic mechanisms and their therapeutic potential increasing cytotoxic drug efficiency, we combined high-throughput RNA- and ChIP-sequencing analyses in BLBC cells. Tumor cells surviving chemotherapy upregulated transcriptional programs of epithelial-to-mesenchymal transition (EMT) and stemness. To our surprise, the same cells showed a pronounced reduction of polycomb repressive complex 2 (PRC2) activity via downregulation of its subunits Ezh2, Suz12, Rbbp7 and Mtf2. Mechanistically, loss of PRC2 activity leads to the de-repression of a set of genes through an epigenetic switch from repressive H3K27me3 to activating H3K27ac mark at regulatory regions. We identified Nfatc1 as an upregulated gene upon loss of PRC2 activity and directly implicated in the transcriptional changes happening upon survival to chemotherapy. Blocking NFATc1 activation reduced epithelial-to-mesenchymal transition, aggressiveness, and therapy resistance of BLBC cells. Our data demonstrate a previously unknown function of PRC2 maintaining low Nfatc1 expression levels and thereby repressing aggressiveness and therapy resistance in BLBC.
Collapse
Affiliation(s)
- Iga K. Mieczkowska
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Garyfallia Pantelaiou-Prokaki
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany ,grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Evangelos Prokakis
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Geske E. Schmidt
- grid.411984.10000 0001 0482 5331Department of Gastroenterology, GI-Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas C. Müller-Kirschbaum
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Marcel Werner
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Madhobi Sen
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Taras Velychko
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Jannasch
- grid.411984.10000 0001 0482 5331Clinic for Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Dullin
- grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Clinic for Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Joanna Napp
- grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Klaus Pantel
- grid.13648.380000 0001 2180 3484Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- grid.13648.380000 0001 2180 3484Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Wiese
- grid.411984.10000 0001 0482 5331Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christof M. Kramm
- grid.411984.10000 0001 0482 5331Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Frauke Alves
- grid.419522.90000 0001 0668 6902Translational Molecular Imaging, Max Planck Institute for Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Clinic for Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany. .,Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
28
|
Smith PL, Piadel K, Dalgleish AG. Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy. Vaccines (Basel) 2021; 9:1392. [PMID: 34960140 PMCID: PMC8708201 DOI: 10.3390/vaccines9121392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer vaccination and immunotherapy revolutionised the treatment of cancer, a result of decades of research into the immune system in health and disease. However, despite recent breakthroughs in treating otherwise terminal cancer, only a minority of patients respond to cancer immunotherapy and some cancers are largely refractive to immunotherapy treatment. This is due to numerous issues intrinsic to the tumour, its microenvironment, or the immune system. CD4+ and CD8+ αβ T-cells emerged as the primary effector cells of the anti-tumour immune response but their function in cancer patients is often compromised. This review details the mechanisms by which T-cell responses are hindered in the setting of cancer and refractive to immunotherapy, and details many of the approaches under investigation to direct T-cell function and improve the efficacy of cancer vaccination and immunotherapy.
Collapse
Affiliation(s)
- Peter Lawrence Smith
- Institute of Infection and Immunity, St. Georges University of London, London SW17 0RE, UK; (K.P.); (A.G.D.)
| | | | | |
Collapse
|
29
|
Karl F, Hudecek M, Berberich-Siebelt F, Mackensen A, Mougiakakos D. T-Cell Metabolism in Graft Versus Host Disease. Front Immunol 2021; 12:760008. [PMID: 34777373 PMCID: PMC8586445 DOI: 10.3389/fimmu.2021.760008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 01/23/2023] Open
Abstract
Allogeneic-hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment option for numerous hematological malignancies. Elimination of malignant cells depends on the T-cells' Graft-versus-Tumor (GvT) effect. However, Graft-versus-Host-Disease (GvHD), often co-occurring with GvT, remains an obstacle for therapeutic efficacy. Hence, approaches, which selectively alleviate GvHD without compromising GvT activity, are needed. As already explored for autoimmune and inflammatory disorders, immuno-metabolic interventions pose a promising option to address this unmet challenge. Being embedded in a complex regulatory framework, immunological and metabolic pathways are closely intertwined, which is demonstrated by metabolic reprograming of T-cells upon activation or differentiation. In this review, current knowledge on the immuno-metabolic signature of GvHD-driving T-cells is summarized and approaches to metabolically interfere are outlined. Furthermore, we address the metabolic impact of standard medications for GvHD treatment and prophylaxis, which, in conjunction with the immuno-metabolic profile of alloreactive T-cells, could allow more targeted interventions in the future.
Collapse
Affiliation(s)
- Franziska Karl
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | | | - Andreas Mackensen
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
30
|
Park I, Phan TM, Fang J. Novel Molecular Mechanism of Lenalidomide in Myeloid Malignancies Independent of Deletion of Chromosome 5q. Cancers (Basel) 2021; 13:5084. [PMID: 34680233 PMCID: PMC8534127 DOI: 10.3390/cancers13205084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Lenalidomide as well as other immunomodulatory drugs (IMiDs) have achieved clinical efficacies in certain sub-types of hematologic malignancies, such as multiple myeloma, lower-risk myelodysplastic syndromes (MDS) with a single deletion of chromosome 5q (del(5q)) and others. Despite superior clinical response to lenalidomide in hematologic malignancies, relapse and resistance remains a problem in IMiD-based therapy. The last ten years have witnessed the discovery of novel molecular mechanism of IMiD-based anti-tumor therapy. IMiDs bind human cereblon (CRBN), the substrate receptor of the CRL4 E3 ubiquitin ligase complex. Binding of CRBN with IMiDs leads to degradation of the Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3) and casein kinase 1 alpha. We have found that lenalidomide-mediated degradation of IKZF1 leads to activation of the G protein-coupled receptor 68 (GPR68)/calcium/calpain pro-apoptotic pathway and inhibition of the regulator of calcineurin 1 (RCAN1)/calcineurin pro-survival pathway in MDS and acute myeloid leukemia (AML). Calcineurin inhibitor Cyclosporin-A potentiates the anti-leukemia activity of lenalidomide in MDS/AML with or without del(5q). These findings broaden the therapeutic potential of IMiDs. This review summarizes novel molecular mechanism of lenalidomide in myeloid malignancies, especially without del(5q), in the hope to highlight novel therapeutic targets.
Collapse
Affiliation(s)
| | | | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA; (I.P.); (T.M.P.)
| |
Collapse
|
31
|
The Effect of Cyclosporine A on Proteins Controlling Intracellular Calcium Concentration in Breast Cancer Cells. J Membr Biol 2021; 255:33-39. [PMID: 34580765 DOI: 10.1007/s00232-021-00201-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Cyclosporine A (CsA) is an immunosuppressive drug commonly used to prevent autoimmune diseases. At the same time, CsA is a calcineurin (CaN) inhibitor. It affects the intracellular calcium signaling pathway. The effect of CsA on breast cancer cells, MDA-MB-231, plasma membrane calcium pump 1 (PMCA1), calmodulin (CaM), calcineurin (CaN), and cMyc, which are proteins that affect calcium signaling, were investigated. CsA inhibited the proliferation of MDA-MB-231 cells but did not affect the migration of the cells. After 24 h of incubation, CsA suppressed the PMCA1 protein, which pumps intracellular calcium out of the cell. At the same time, calcium started to accumulate inside the cell and CaM protein was expressed, while PMCA1 was suppressed. The CaN protein was suppressed 72 h after the administration of CsA, but the cMyc protein was expressed. Interestingly, 24 h incubation when the PMCA1 protein is down-regulated after the duration of time, the cMyc protein is also down-regulated. Although the indirect effect of CaN and cMyc is known, this relationship between PMCA1 and cMyc was not known. As a result, it has been shown that CsA affects the PMCA pump by disrupting the intracellular calcium pathway in breast cancer cells.
Collapse
|
32
|
Devaux CA, Melenotte C, Piercecchi-Marti MD, Delteil C, Raoult D. Cyclosporin A: A Repurposable Drug in the Treatment of COVID-19? Front Med (Lausanne) 2021; 8:663708. [PMID: 34552938 PMCID: PMC8450353 DOI: 10.3389/fmed.2021.663708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is now at the forefront of major health challenge faced globally, creating an urgent need for safe and efficient therapeutic strategies. Given the high attrition rates, high costs, and quite slow development of drug discovery, repurposing of known FDA-approved molecules is increasingly becoming an attractive issue in order to quickly find molecules capable of preventing and/or curing COVID-19 patients. Cyclosporin A (CsA), a common anti-rejection drug widely used in transplantation, has recently been shown to exhibit substantial anti-SARS-CoV-2 antiviral activity and anti-COVID-19 effect. Here, we review the molecular mechanisms of action of CsA in order to highlight why this molecule seems to be an interesting candidate for the therapeutic management of COVID-19 patients. We conclude that CsA could have at least three major targets in COVID-19 patients: (i) an anti-inflammatory effect reducing the production of proinflammatory cytokines, (ii) an antiviral effect preventing the formation of the viral RNA synthesis complex, and (iii) an effect on tissue damage and thrombosis by acting against the deleterious action of angiotensin II. Several preliminary CsA clinical trials performed on COVID-19 patients report lower incidence of death and suggest that this strategy should be investigated further in order to assess in which context the benefit/risk ratio of repurposing CsA as first-line therapy in COVID-19 is the most favorable.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Cléa Melenotte
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Marie-Dominique Piercecchi-Marti
- Department of Legal Medicine, Hôpital de la Timone, Marseille University Hospital Center, Marseille, France
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Clémence Delteil
- Department of Legal Medicine, Hôpital de la Timone, Marseille University Hospital Center, Marseille, France
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
33
|
Batiha GES, Alqarni M, Awad DAB, Algammal AM, Nyamota R, Wahed MII, Shah MA, Amin MN, Adetuyi BO, Hetta HF, Cruz-Martins N, Koirala N, Ghosh A, Echeverría J, Pagnossa JP, Sabatier JM. Dairy-Derived and Egg White Proteins in Enhancing Immune System Against COVID-19. Front Nutr 2021; 8:629440. [PMID: 34322507 PMCID: PMC8310913 DOI: 10.3389/fnut.2021.629440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/09/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19) is a global health challenge, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) triggers a plethora of respiratory disturbances and even multiple organs failure that can be fatal. Nutritional intervention is one of the key components toward to a proper management of COVID-19 patients, especially in those requiring medication, and should thus be considered the first-line treatment. Immuno-modulation and -stimulation are currently being explored in COVID-19 management and are gaining interest by food and pharmaceutical industries. Various dietary combinations, bioactive components, nutrients and fortified foods have been reported to modulate inflammation during disease progression. Dietary combinations of dairy-derived products and eggs are gaining an increasing attention given the huge immunomodulatory and anti-inflammatory properties attributed to some of their chemical constituents. Eggs are complex dietary components containing many essential nutrients and bioactive compounds as well as a high-quality proteins. Similarly, yogurts can replenish beneficial bacteria and contains macronutrients capable of stimulating immunity by enhancing cell immunity, reducing oxidative stress, neutralizing inflammation and regulating the intestinal barriers and gut microbiome. Thus, this review highlights the impact of nutritional intervention on COVID-19 management, focusing on the immunomodulatory and inflammatory effects of immune-enhancing nutrients.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Dina A B Awad
- Department of Food Hygiene, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Richard Nyamota
- Department of Biochemistry and Molecular Biology, Faculty of Science, Egerton University, Njoro, Kenya
| | - Mir I I Wahed
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Mohammad N Amin
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, Bangladesh.,Pratyasha Health Biomedical Research Center, Dhaka, Bangladesh
| | - Babatunde O Adetuyi
- Department of Natural Sciences, Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, Nepal.,Laboratory of Biotechnology, Faculty of Science and Technology, University of Macau, Taipa, Macau
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Jean-Marc Sabatier
- Université Aix-Marseille, Institut de Neuro-Physiopathologie (INP), UMR 7051, Faculté de Pharmacie, Marseille, France
| |
Collapse
|
34
|
Isolation of primary human B lymphocytes from tonsils compared to blood as alternative source for ex vivo application. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122853. [PMID: 34325309 DOI: 10.1016/j.jchromb.2021.122853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/18/2023]
Abstract
B lymphocytes ('B cells') are components of the human immune system with obvious potential for medical and biotechnological applications. Here, we discuss the isolation of primary human B cells from both juvenile and adult tonsillar material using a two-step procedure based on gradient centrifugation followed by separation on a nylon wool column as alternative to the current gold standard, i.e., negative immunosorting from buffy coats by antibody-coated magnetic beads. We show that the nylon wool separation is a low-cost method well suited to the isolation of large amounts of primary B cells reaching purities ≥ 80%. More importantly, this method allows the preservation of all B cell subsets, while MACS sorting seems to be biased against a certain B cell subtype, namely the CD27+ B cells. Importantly, compared to blood, the excellent recovery yield during purification of tonsillar B cells provides high number of cells, hence increases the number of subsequent experiments feasible with identical cell material, consequently improving comparability of results. The cultivability of the isolated B cells was demonstrated using pokeweed mitogen (PWM) as a stimulatory substance. Our results showed for the first time that the proliferative response of tonsillar B cells to mitogens declines with the age of the donor. Furthermore, we observed that PWM treatment stimulates the proliferation of a dedicated subpopulation and induces some terminal differentiation with ASCs signatures. Taken together this indicates that the proposed isolation procedure preserves the proliferative capability as well as the differentiation capacity of the B cells.
Collapse
|
35
|
Shiee MR, Kia EB, Zahabiun F, Naderi M, Motevaseli E, Nekoeian S, Fasihi Harandi M, Dehpour AR. In vitro effects of tropisetron and granisetron against Echinococcus granulosus (s.s.) protoscoleces by involvement of calcineurin and calmodulin. Parasit Vectors 2021; 14:197. [PMID: 33845889 PMCID: PMC8042905 DOI: 10.1186/s13071-021-04691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cystic echinococcosis (CE) is a disease caused by the larval stage of Echinococcus granulosus sensu lato (s.l.). The treatment of CE mainly relies on the use of benzimidazoles, which can commonly cause adverse side effects. Therefore, more efficient treatment options are needed. Drug repurposing is a useful approach for advancing drug development. We have evaluated the in vitro protoscolicidal effects of tropisetron and granisetron in E. granulosus sensu stricto (s.s.) and assessed the expression of the calcineurin (CaN) and calmodulin (CaM) genes, both of which have been linked to cellular signaling activities and thus are potentially promising targets for the development of drugs. Methods Protoscoleces (PSC) of E. granulosus (s.s.) (genotype G1) obtained from sheep hepatic hydatid cysts were exposed to tropisetron and granisetron at concentrations of 50, 150 and 250 µM for various periods of time up to 10 days. Cyclosporine A (CsA) and albendazole sulfoxide were used for comparison. Changes in the morphology of PSC were investigated by light microscopy and scanning electron microscopy. Gene expression was assessed using real-time PCR at the mRNA level for E. granulosus calcineurin subunit A (Eg-CaN-A), calcineurin subunit B (Eg-CaN-B) and calmodulin (Eg-CaM) after a 24-h exposure at 50 and 250 µM, respectively. Results At 150 and 250 µM, tropisetron had the highest protoscolicidal effect, whereas CsA was most effective at 50 µM. Granisetron, however, was less effective than tropisetron at all three concentrations. Examination of morphological alterations revealed that the rate at which PSC were killed increased with increasing rate of PSC evagination, as observed in PSC exposed to tropisetron. Gene expression analysis revealed that tropisetron at 50 μM significantly upregulated Eg-CaN-B and Eg-CaM expression while at 250 μM it significantly downregulated both Eg-CaN-B and Eg-CaM expressions; in comparison, granisetron decreased the expression of all three genes at both concentrations. Conclusions Tropisetron exhibited a higher efficacy than granisetron against E. granulosus (s.s.) PSC, which is probably due to the different mechanisms of action of the two drugs. The concentration-dependent effect of tropisetron on calcineurin gene expression might reflect its dual functions, which should stimulate future research into its mechanism of action and evaluation of its potential therapeutical effect in the treatment of CE. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Mohammad Reza Shiee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Eshrat Beigom Kia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farzaneh Zahabiun
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Nekoeian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Olwenyi OA, Asingura B, Naluyima P, Anywar GU, Nalunga J, Nakabuye M, Semwogerere M, Bagaya B, Cham F, Tindikahwa A, Kiweewa F, Lichter EZ, Podany AT, Fletcher CV, Byrareddy SN, Kibuuka H. In-vitro Immunomodulatory activity of Azadirachta indica A.Juss. Ethanol: water mixture against HIV associated chronic CD4 + T-cell activation/ exhaustion. BMC Complement Med Ther 2021; 21:114. [PMID: 33836748 PMCID: PMC8034071 DOI: 10.1186/s12906-021-03288-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In Sub-Saharan Africa, herbal therapy continues to be utilized for HIV-1 disease management. However, the therapeutic benefits of these substances remain ambiguous. To date, little is known about the effects of these plant extracts on chronic CD4 + T-cell activation and exhaustion which is partly driven by HIV-1 associated microbial translocation. METHODS Effects of Azadirachta indica, Momordica foetida and Moringa oleifera ethanol: water mixtures on cell viability were evaluated using the Guava PCA system. Then, an in-vitro cell culture model was developed to mimic CD4+ T cell exposures to antigens following HIV-1 microbial translocation. In this, peripheral blood mononuclear cells (PBMCs) isolated from HIV negative (n = 13), viral load < 1000 copies per mL (n = 10) and viral load > 1000 copies per mL (n = 6) study participants from rural Uganda were treated with Staphylococcus enterotoxin B (SEB). Then, the candidate plant extract (A. indica) was added to test the potential to inhibit corresponding CD4+ T cell activation. Following BD Facs Canto II event acquisition, variations in %CD38, %CD69, Human Leukocyte Antigen -DR (HLA-DR), Programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3), interferon gamma (IFN γ) and interleukin 2 (IL-2) CD4 + T cell expression were evaluated. RESULTS Following exposure to SEB, only A. indica demonstrated a concentration-dependent ability to downregulate the levels of CD4 + T cell activation. At the final concentration of 0.500 μg/mL of A. indica, a significant downregulation of CD4 + CD38 + HLA-DR+ expression was observed in HIV negative (p < 0.0001) and both HIV infected groups (P = 0.0313). This plant extract also significantly lowered SEB induced % CD4+ T cell HLADR, PD-1 and Tim-3 levels. PD-1 and CD69 markers were only significantly downmodulated in only the HIV negative ((p = 0.0001 and p = 0.0078 respectively) and viral load< 1000 copies per ml (p = 0.0078) groups. CONCLUSION A. indica exhibited the in-vitro immunomodulatory potential to inhibit the continuum of SEB induced CD4+ T-cell activation/ exhaustion without impacting general T-cell specific functions such as cytokine secretion. Additional studies are needed to confirm A. indica as a source of natural products for targeting persistent immune activation and inflammation during ART.
Collapse
Affiliation(s)
- Omalla A Olwenyi
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Bannet Asingura
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Prossy Naluyima
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| | - Godwin Upoki Anywar
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Justine Nalunga
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| | - Mariam Nakabuye
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| | | | - Bernard Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Fatim Cham
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| | - Allan Tindikahwa
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| | - Francis Kiweewa
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| | - Eliezer Z Lichter
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anthony T Podany
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE, USA
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hannah Kibuuka
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| |
Collapse
|
37
|
Matsubara (松原裕) Y, Kiwan G, Liu (刘佳) J, Gonzalez L, Langford J, Gao (高明杰) M, Gao (高喜翔) X, Taniguchi (谷口良輔) R, Yatsula B, Furuyama (古山正) T, Matsumoto (松本拓也) T, Komori (古森公浩) K, Dardik A. Inhibition of T-Cells by Cyclosporine A Reduces Macrophage Accumulation to Regulate Venous Adaptive Remodeling and Increase Arteriovenous Fistula Maturation. Arterioscler Thromb Vasc Biol 2021; 41:e160-e174. [PMID: 33472405 PMCID: PMC7904667 DOI: 10.1161/atvbaha.120.315875] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Arteriovenous fistulae (AVF) are the preferred vascular access for hemodialysis, but the primary success rate of AVF remains poor. Successful AVF maturation requires vascular wall thickening and outward remodeling. A key factor determining successful AVF maturation is inflammation that is characterized by accumulation of both T-cells and macrophages. We have previously shown that anti-inflammatory (M2) macrophages are critically important for vascular wall thickening during venous remodeling; therefore, regulation of macrophage accumulation may be an important mechanism promoting AVF maturation. Since CD4+ T-cells such as T-helper type 1 cells, T-helper type 2 cells, and regulatory T-cells can induce macrophage migration, proliferation, and polarization, we hypothesized that CD4+ T-cells regulate macrophage accumulation to promote AVF maturation. Approach and Results: In a mouse aortocaval fistula model, T-cells temporally precede macrophages in the remodeling AVF wall. CsA (cyclosporine A; 5 mg/kg, sq, daily) or vehicle (5% dimethyl sulfoxide) was administered to inhibit T-cell function during venous remodeling. CsA reduced the numbers of T-helper type 1 cells, T-helper type 2, and regulatory T-cells, as well as M1- and M2-macrophage accumulation in the wall of the remodeling fistula; these effects were associated with reduced vascular wall thickening and increased outward remodeling in wild-type mice. However, these effects were eliminated in nude mice, showing that the effects of CsA on macrophage accumulation and adaptive venous remodeling are T-cell-dependent. CONCLUSIONS T-cells regulate macrophage accumulation in the maturing venous wall to control adaptive remodeling. Regulation of T-cells during AVF maturation may be a strategy that can improve AVF maturation. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Yutaka Matsubara (松原裕)
- Vascular Biology and Therapeutics Program (Y.M., G.K., J. Liu, L.G., J. Langford, M.G., X.G., R.T., B.Y., A.D.), Yale School of Medicine, New Haven, CT
- Department of Surgery and Sciences, Kyushu University, Fukuoka, Japan (Y.M., T.F.)
| | - Gathe Kiwan
- Vascular Biology and Therapeutics Program (Y.M., G.K., J. Liu, L.G., J. Langford, M.G., X.G., R.T., B.Y., A.D.), Yale School of Medicine, New Haven, CT
| | - Jia Liu (刘佳)
- Vascular Biology and Therapeutics Program (Y.M., G.K., J. Liu, L.G., J. Langford, M.G., X.G., R.T., B.Y., A.D.), Yale School of Medicine, New Haven, CT
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program (Y.M., G.K., J. Liu, L.G., J. Langford, M.G., X.G., R.T., B.Y., A.D.), Yale School of Medicine, New Haven, CT
| | - John Langford
- Vascular Biology and Therapeutics Program (Y.M., G.K., J. Liu, L.G., J. Langford, M.G., X.G., R.T., B.Y., A.D.), Yale School of Medicine, New Haven, CT
| | - Mingjie Gao (高明杰)
- Vascular Biology and Therapeutics Program (Y.M., G.K., J. Liu, L.G., J. Langford, M.G., X.G., R.T., B.Y., A.D.), Yale School of Medicine, New Haven, CT
| | - Xixiang Gao (高喜翔)
- Vascular Biology and Therapeutics Program (Y.M., G.K., J. Liu, L.G., J. Langford, M.G., X.G., R.T., B.Y., A.D.), Yale School of Medicine, New Haven, CT
| | - Ryosuke Taniguchi (谷口良輔)
- Vascular Biology and Therapeutics Program (Y.M., G.K., J. Liu, L.G., J. Langford, M.G., X.G., R.T., B.Y., A.D.), Yale School of Medicine, New Haven, CT
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program (Y.M., G.K., J. Liu, L.G., J. Langford, M.G., X.G., R.T., B.Y., A.D.), Yale School of Medicine, New Haven, CT
| | | | | | - Kimihiro Komori (古森公浩)
- Division of Vascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Japan (K.K.)
| | - Alan Dardik
- Vascular Biology and Therapeutics Program (Y.M., G.K., J. Liu, L.G., J. Langford, M.G., X.G., R.T., B.Y., A.D.), Yale School of Medicine, New Haven, CT
- Division of Vascular and Endovascular Surgery, Department of Surgery (A.D.), Yale School of Medicine, New Haven, CT
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT (A.D.)
| |
Collapse
|
38
|
El Seedy GM, El-Shafey ES, Elsherbiny ES. Fortification of biscuit with sidr leaf and flaxseed mitigates immunosuppression and nephrotoxicity induced by cyclosporine A. J Food Biochem 2021; 45:e13655. [PMID: 33616983 DOI: 10.1111/jfbc.13655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/26/2022]
Abstract
The focus of consumers in healthy food turned to the possible health benefits of particular foods and food ingredients. This study aimed to evaluate the newly fortified biscuits supplemented with sidr leaves and flaxseed and to highlight their nutritional quality and health benefits against cyclosporine A-induced dexterous effects. Sidr leaves (SL), and flaxseed (FS) were used in the preparation of fortified biscuits. Proximate analysis and sensory evaluation were carried out on the biscuits. In in vivo study, 15 male albino mice were used for each group. Groups were divided into control, CsA, SL, FS, and SL+FS-treated groups. Hematological analysis, kidney function tests, oxidative stress, and anti-oxidant status were estimated. Flow cytometry was utilized to detect apoptosis and autophagy levels. The enzyme-linked immunosorbent assay (ELISA) was used for detection of interleukin-2 (IL-2), interferon-γ (IFN-γ), and transforming growth factor β1 (TGF-β1) levels. The composition of biscuits complemented by SL and FS demonstrated significant improvement in the nutritional value represented by the increase in overall protein, crude fat, crude fiber, ash, and carbohydrate contents. Treatment with SL and FS restored the disturbance in hematological, kidney function, oxidative, and antioxidant biomarkers. CsA-induced apoptotic and autophagic renal cell death was suppressed. Cytokines and pro-inflammatory markers were ameliorated. The use of SL and FS in dietary products can be recommended as a functional food. Moreover, they showed renal-protective, antioxidant, anti-inflammatory, and immune-enhancing activities. PRACTICAL APPLICATIONS: Sidr leaves (SL) and flaxseed (FS) were used in the preparation of fortified biscuits. The composition of biscuits complemented by SL and FS demonstrated a significant improvement in the nutritional values represented by the increase in overall protein, crude fat, crude fiber, ash, and carbohydrate contents. SL and FS showed a potential therapeutic activity in reversing CsA-induced dexterous side effects by acting as an antioxidant, antiapoptotic, antiautophagic, anti-inflammatory, renal-protective, and immune-enhancing agents. The use of sidr leaves and flaxseed in dietary products can be recommended as a functional food. Supplementation of SL and/or FS to the diet is recommended to ensure a good health. Moreover, introducing awareness for the patients utilizing CsA to use SL and FS in their diets.
Collapse
Affiliation(s)
- Ghada Mosad El Seedy
- Home Economics Department, Faculty of Specific Education, Damietta University, Damietta, Egypt
| | - Eman Salah El-Shafey
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | | |
Collapse
|
39
|
Jeitany M, Prabhu A, Dakle P, Pathak E, Madan V, Kanojia D, Mukundan V, Jiang YY, Landesman Y, Tam WL, Kappei D, Koeffler HP. Novel carfilzomib-based combinations as potential therapeutic strategies for liposarcomas. Cell Mol Life Sci 2021; 78:1837-1851. [PMID: 32851475 PMCID: PMC7904719 DOI: 10.1007/s00018-020-03620-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023]
Abstract
Proteasome inhibitors, such as bortezomib and carfilzomib, have shown efficacy in anti-cancer therapy in hematological diseases but not in solid cancers. Here, we found that liposarcomas (LPS) are susceptible to proteasome inhibition, and identified drugs that synergize with carfilzomib, such as selinexor, an inhibitor of XPO1-mediated nuclear export. Through quantitative nuclear protein profiling and phospho-kinase arrays, we identified potential mode of actions of this combination, including interference with ribosome biogenesis and inhibition of pro-survival kinase PRAS40. Furthermore, by assessing global protein levels changes, FADS2, a key enzyme regulating fatty acids synthesis, was found down-regulated after proteasome inhibition. Interestingly, SC26196, an inhibitor of FADS2, synergized with carfilzomib. Finally, to identify further combinational options, we performed high-throughput drug screening and uncovered novel drug interactions with carfilzomib. For instance, cyclosporin A, a known immunosuppressive agent, enhanced carfilzomib's efficacy in vitro and in vivo. Altogether, these results demonstrate that carfilzomib and its combinations could be repurposed for LPS clinical management.
Collapse
Affiliation(s)
- Maya Jeitany
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Aishvaryaa Prabhu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Elina Pathak
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Deepika Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vineeth Mukundan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yan Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Wai Leong Tam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital, Singapore, Singapore
| |
Collapse
|
40
|
Wu HCG, Cheng CN, Chen JS, Chiou YY. Rhabdomyosarcoma in a child with nephrotic syndrome treated with cyclosporine: a case report with literature review. BMC Nephrol 2020; 21:490. [PMID: 33203378 PMCID: PMC7673093 DOI: 10.1186/s12882-020-02136-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In patients with frequently relapsing nephrotic syndrome, immunosuppressive therapy such as cyclosporine are often required to maintain remission. Cyclosporine has been noted to have tumorgenesis effects. In this case report, we present a child with relapsing nephrotic syndrom developed a rhabdomyosarcoma on her tongue after adout 4 years of continual immunosuppressive therapy.
Case presentation
A 2-year-old female child had nephrotic syndrome (urine protein-creatinine ratio 749.1 mg/mg; blood urea nitrogen 11 mg/dL; serum creatinine 0.3 mg/dL; and serum albumin 1.8 g/dL.) Proteinuria resolved on treatment with daily prednisolone for 4 weeks at the dose of 45 mg (2.5 mg/kg/day) but recurred with taper from 25 mg/day to 10 mg/day. At least five more episodes of relapse occurred within about a 3-year period. After the third relapse, she was treated with prednisolone and cyclosporine (at initial dose of 50 mg/day [1.7 mg/kg/day]) for immunosuppression. About 4 years after the diagnosis of nephrotic syndrome had been made, an embryonal rhabdomyosarcoma developed on her tongue. The cancer was treated with TPOG-RMS-LR protocol, with vincristine, actinomycin, and cyclophosphamide. Magnetic resonance imaging scan, performed about 3 years after the start of TPOG-RMS-LR therapy, revealed complete remission of the cancer.
Conclusions
Although treatment with cyclosporine cannot be conclusively implicated as the cause the rhabdomyosarcoma in this patient, the association should prompt consideration of its use in the treatment of frequently relapsing nephrotic syndrome in children.
Collapse
|
41
|
Favretto F, Flores D, Baker JD, Strohäker T, Andreas LB, Blair LJ, Becker S, Zweckstetter M. Catalysis of proline isomerization and molecular chaperone activity in a tug-of-war. Nat Commun 2020; 11:6046. [PMID: 33247146 PMCID: PMC7695863 DOI: 10.1038/s41467-020-19844-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Catalysis of cis/trans isomerization of prolines is important for the activity and misfolding of intrinsically disordered proteins. Catalysis is achieved by peptidylprolyl isomerases, a superfamily of molecular chaperones. Here, we provide atomic insight into a tug-of-war between cis/trans isomerization and molecular chaperone activity. Catalysis of proline isomerization by cyclophilin A lowers the energy barrier for α-synuclein misfolding, while isomerase-binding to a separate, disease-associated protein region opposes aggregation. We further show that cis/trans isomerization outpowers the holding activity of cyclophilin A. Removal of the proline isomerization barrier through posttranslational truncation of α-synuclein reverses the action of the proline isomerase and turns it into a potent molecular chaperone that inhibits protein misfolding. The data reveal a conserved mechanism of dual functionality in cis/trans isomerases and define its molecular determinants acting on intrinsically disordered proteins. Cyclophilin A (CypA) is a peptidylprolyl isomerase that also has chaperone activity and interacts with the intrinsically disordered protein α-Synuclein (aSyn). Here, the authors combine NMR measurements and biochemical experiments to characterise the interplay between the catalysis of proline isomerization and molecular chaperone activity of CypA and find that both activities have opposing effects on aSyn and further show that the that cis/trans isomerization outpowers the holding activity of CypA.
Collapse
Affiliation(s)
- Filippo Favretto
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - David Flores
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Jeremy D Baker
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Timo Strohäker
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Loren B Andreas
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Laura J Blair
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany. .,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
42
|
He B, Li QY, Wu YY, Ruan JL, Teng XM, Li DJ, Tang CL. Cyclosporin A protects JEG-3 cells against oxidative stress-induced apoptosis by inhibiting the p53 and JNK/p38 signaling pathways. Reprod Biol Endocrinol 2020; 18:100. [PMID: 33046085 PMCID: PMC7549196 DOI: 10.1186/s12958-020-00658-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Trophoblast cells are required for the establishment of pregnancy and fetal development. Apoptosis is an essential feature for trophoblast invasion. Uncontrolled trophoblast apoptosis is related to some complicate pregnancies. Oxidative stress (OS) is an important inducer of trophoblast apoptosis. Cyclosporin A (CsA) has been shown to promote the activity of trophoblast cells and reduce OS-induced oxidative injury. We investigated the role and mechanism of CsA in oxidative stress-induced trophoblast cell apoptosis. METHODS JEG-3 cells were cocultured with H2O2 and CsA. Cell viability and morphology were measured by MTT assay and DAPI staining. Cell apoptosis was tested with annexin V/PI staining. The expression of Bcl-2-associated X protein (Bax), B-cell lymphoma/leukemia-2 (Bcl-2), cleaved poly (ADP-ribose) polymerase (PARP) and pro-caspase-3 was assayed by western blotting. The protein expression and phosphorylation of p53 and mitogen-activated protein kinase (MAPK) kinases (JNK, ERK1/2 and p38) were examined by western blotting. RESULTS CsA increased the viability, alleviated morphological injury and reduced cell apoptosis of the H2O2-treated JEG-3 cells. CsA also attenuated the activation of p53, decreased the expression of Bax and cleavage of PARP, and increased the expression of Bcl-2 and pro-caspase-3 in the JEG-3 treated with H2O2. Furthermore, CsA reduced the activation of JNK and P38 but had no significant effect on the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the H2O2-treated JEG-3 cells. Promoting the activation of JNK and p38 impaired the protective effect of CsA on OS-induced trophoblast apoptosis. CONCLUSIONS These results suggested that CsA protected trophoblast cells from OS-induced apoptosis via the inhibition of the p53 and JNK/p38 signaling pathways.
Collapse
Affiliation(s)
- Bin He
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Qi Yue Li
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Yuan Yuan Wu
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Jing Ling Ruan
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Xiao Ming Teng
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Da Jin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200011, China
| | - Chuan Ling Tang
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| |
Collapse
|
43
|
Lapcik P, Pospisilova A, Janacova L, Grell P, Fabian P, Bouchal P. How Different Are the Molecular Mechanisms of Nodal and Distant Metastasis in Luminal A Breast Cancer? Cancers (Basel) 2020; 12:E2638. [PMID: 32947901 PMCID: PMC7563588 DOI: 10.3390/cancers12092638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
Lymph node status is one of the best prognostic factors in breast cancer, however, its association with distant metastasis is not straightforward. Here we compare molecular mechanisms of nodal and distant metastasis in molecular subtypes of breast cancer, with major focus on luminal A patients. We analyze a new cohort of 706 patients (MMCI_706) as well as an independent cohort of 836 primary tumors with full gene expression information (SUPERTAM_HGU133A). We evaluate the risk of distant metastasis, analyze targetable molecular mechanisms in Gene Set Enrichment Analysis and identify relevant inhibitors. Lymph node positivity is generally associated with NF-κB and Src pathways and is related to high risk (OR: 5.062 and 2.401 in MMCI_706 and SUPERTAM_HGU133A, respectively, p < 0.05) of distant metastasis in luminal A patients. However, a part (≤15%) of lymph node negative tumors at the diagnosis develop the distant metastasis which is related to cell proliferation control and thrombolysis. Distant metastasis of lymph node positive patients is mostly associated with immune response. These pro-metastatic mechanisms further vary in other molecular subtypes. Our data indicate that the management of breast cancer and prevention of distant metastasis requires stratified approach based on targeted strategies.
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| | - Anna Pospisilova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| | - Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| | - Peter Grell
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic;
| | - Pavel Fabian
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic;
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| |
Collapse
|
44
|
The calcium pump PMCA4 prevents epithelial-mesenchymal transition by inhibiting NFATc1-ZEB1 pathway in gastric cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118833. [PMID: 32860837 DOI: 10.1016/j.bbamcr.2020.118833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is considered as the key mechanism involved in cancer metastasis. Several studies showed that various cell membrane calcium channels play different roles in cancer metastasis. In the present study, the potential role of ATPase plasma membrane Ca2+ transporting 4 (PMCA4) in regulating EMT in gastric cancer (GC) was investigated. GC patients who underwent radical surgery were enrolled in this study. In vitro human GC cell lines MKN45 and NCI-N87 were used, and MKN45 cells were injected in nude mice to evaluate tumor development. Our results showed that low PMCA4 expression was associated with advanced TNM stage and poor prognosis in GC patients. Knockdown of PMCA4 suppressed E-cadherin, grainyhead like 2 (GRHL2) and ovo-like 1 (OVOL1) expression, up-regulated vimentin expression, increased migration and invasion ability, and promoted the resistance to cytotoxic drug. Furthermore, GC cells displayed an elongated fibroblastoid morphology when PMCA4 was knockdown. PMCA4 overexpression resulted in an up-regulated E-cadherin expression and decreased migration and invasion ability. In vivo metastasis assay showed that PMCA4 overexpression resulted in a decreased incidence of lung metastasis. PMCA4 inhibition increased ZEB1 expression and nuclear accumulation of nuclear factor of activated T-cell isoform c1 (NFATc1). EMT induced by PMCA4 inhibition could be prevented by the knockdown of NFATc1 or ZEB1. In addition, cyclosporine A prevented EMT induced by PMCA4 inhibition by suppressing the NFATc1-ZEB1 pathway. Our data identified a novel mechanism in the regulation of EMT in GC, and provided a novel target in the treatment of EMT subtype in GC.
Collapse
|
45
|
Deng H, Zhang S, Ge H, Liu L, Liu L, Feng H, Chen L. The effect of cyclosporin a on ischemia-reperfusion damage in a mouse model of ischemic stroke. Neurol Res 2020; 42:721-729. [PMID: 32529968 DOI: 10.1080/01616412.2020.1762353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES We aimed to investigate the protective effects of cyclosporin A (CsA) against ischemia-reperfusion (I/R) damage in a mouse ischemia model and the possible underlying mechanism. METHODS Mice were divided equally into five groups: Sham, I/R, Vehicle, I/R plus CsA (10 mg/kg), and I/R plus CsA (20 mg/kg). Nerve function scores, infarct volume, brain water content, and Evans blue (EB) leakage were evaluated, and western blotting was performed to analyze the changes in CypA, p-Akt, NF-κB, MMP-9, and Claudin-5 expression. RESULTS CsA can attenuate I/R damage in a mouse ischemic stroke model, as indicated by improved neurological function scores and decreased infarct volume, brain water content, and EB leakage. Additionally, high-dose CsA showed better protective effects than low-dose. The molecular mechanisms underlying the effects of CsA were explored, and it was found that CsA could inhibit the increase in CypA, p-Akt, NF-κB, and MMP-9 protein expression after middle cerebral artery occlusion, while Claudin-5 expression was decreased. DISCUSSION CsA showed potential as a neuroprotective drug for the treatment of ischemic stroke patients; besides interfering with the typical NF-κB signaling pathway, the Akt pathway may also be involved in the effects of CsA.
Collapse
Affiliation(s)
- Huajiang Deng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University , Luzhou City, Sichuan Province, China
| | - Shuang Zhang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University , Luzhou City, Sichuan Province, China
| | - Hongfei Ge
- Department of Neurosurgery, Southwest Hospital , Shapingba District, Chongqing City, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University , Luzhou City, Sichuan Province, China
| | - Luotong Liu
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University , Luzhou City, Sichuan Province, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital , Shapingba District, Chongqing City, China
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University , Luzhou City, Sichuan Province, China
| |
Collapse
|
46
|
Ganugula R, Arora M, Zou D, Agarwal SK, Mohan C, Kumar MNVR. A highly potent lymphatic system-targeting nanoparticle cyclosporine prevents glomerulonephritis in mouse model of lupus. SCIENCE ADVANCES 2020; 6:eabb3900. [PMID: 32582860 PMCID: PMC7292630 DOI: 10.1126/sciadv.abb3900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 05/02/2023]
Abstract
Cyclosporine A (CsA) is a powerful immunosuppressant, but it is an ineffective stand-alone treatment for systemic lupus erythematosus (SLE) due to poor target tissue distribution and renal toxicity. We hypothesized that CD71 (transferrin receptor 1)-directed delivery of CsA to the lymphatic system would improve SLE outcomes in a murine model. We synthesized biodegradable, ligand-conjugated nanoparticles [P2Ns-gambogic acid (GA)] targeting CD71. GA conjugation substantially increased nanoparticle association with CD3+ or CD20+ lymphocytes and with intestinal lymphoid tissues. In orally dosed MRL-lpr mice, P2Ns-GA-encapsulated CsA increased lymphatic drug delivery 4- to 18-fold over the ligand-free formulation and a commercial CsA capsule, respectively. Improved lymphatic bioavailability of CsA was paralleled by normalization of anti-double-stranded DNA immunoglobulin G titer, plasma cytokines, and glomerulonephritis. Thus, this study demonstrates the translational potential of nanoparticles that enhance the targeting of lymphatic tissues, transforming CsA into a potent single therapeutic for SLE.
Collapse
Affiliation(s)
- Raghu Ganugula
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA
| | - Dianxiong Zou
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA
| | - Sandeep K. Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | | |
Collapse
|
47
|
Noble M, Lin QT, Sirko C, Houpt JA, Novello MJ, Stathopulos PB. Structural Mechanisms of Store-Operated and Mitochondrial Calcium Regulation: Initiation Points for Drug Discovery. Int J Mol Sci 2020; 21:E3642. [PMID: 32455637 PMCID: PMC7279490 DOI: 10.3390/ijms21103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022] Open
Abstract
Calcium (Ca2+) is a universal signaling ion that is essential for the life and death processes of all eukaryotes. In humans, numerous cell stimulation pathways lead to the mobilization of sarco/endoplasmic reticulum (S/ER) stored Ca2+, resulting in the propagation of Ca2+ signals through the activation of processes, such as store-operated Ca2+ entry (SOCE). SOCE provides a sustained Ca2+ entry into the cytosol; moreover, the uptake of SOCE-mediated Ca2+ by mitochondria can shape cytosolic Ca2+ signals, function as a feedback signal for the SOCE molecular machinery, and drive numerous mitochondrial processes, including adenosine triphosphate (ATP) production and distinct cell death pathways. In recent years, tremendous progress has been made in identifying the proteins mediating these signaling pathways and elucidating molecular structures, invaluable for understanding the underlying mechanisms of function. Nevertheless, there remains a disconnect between using this accumulating protein structural knowledge and the design of new research tools and therapies. In this review, we provide an overview of the Ca2+ signaling pathways that are involved in mediating S/ER stored Ca2+ release, SOCE, and mitochondrial Ca2+ uptake, as well as pinpoint multiple levels of crosstalk between these pathways. Further, we highlight the significant protein structures elucidated in recent years controlling these Ca2+ signaling pathways. Finally, we describe a simple strategy that aimed at applying the protein structural data to initiating drug design.
Collapse
Affiliation(s)
- Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Christian Sirko
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Jacob A. Houpt
- Department of Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada;
| | - Matthew J. Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| |
Collapse
|
48
|
Schmidt S, Hogardt M, Demir A, Röger F, Lehrnbecher T. Immunosuppressive Compounds Affect the Fungal Growth and Viability of Defined Aspergillus Species. Pathogens 2019; 8:pathogens8040273. [PMID: 31795350 PMCID: PMC6963520 DOI: 10.3390/pathogens8040273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Immunosuppressive drugs are administered to a number of patients; e.g., to allogeneic hematopoietic stem cell transplant recipients. Immunosuppressive drugs impair the immune system and thus increase the risk of invasive fungal disease, but may exhibit antifungal activity at the same time. We investigated the impact of various concentrations of three commonly used immunosuppressive compounds—cyclosporin A (CsA), methylprednisolone (mPRED), and mycophenolic acid (MPA)—on the growth and viability of five clinically important Aspergillus species. Methods included disc diffusion, optical density of mycelium, and viability assays such as XTT. MPA and CsA had a species-specific and dose-dependent inhibitory effect on the growth of all Aspergillus spp. tested, although growth inhibition by MPA was highest in A. niger,A. flavus and A. brasiliensis. Both agents exhibited species-specific hyphal damage, which was higher when the immunosuppressants were added to growing conidia than to mycelium. In contrast, mPRED increased the growth of A. niger, but had no major impact on the growth and viability of any of the other Aspergillus species tested. Our findings may help to better understand the interaction of drugs with Aspergillus species and ultimately may have an impact on individualizing immunosuppressive therapy.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.); (F.R.)
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany;
| | - Asuman Demir
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.); (F.R.)
| | - Frauke Röger
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.); (F.R.)
| | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.); (F.R.)
- Correspondence:
| |
Collapse
|
49
|
Kang HK, Lee HH, Seo CH, Park Y. Antimicrobial and Immunomodulatory Properties and Applications of Marine-Derived Proteins and Peptides. Mar Drugs 2019; 17:md17060350. [PMID: 31212723 PMCID: PMC6628016 DOI: 10.3390/md17060350] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Marine organisms provide an abundant source of potential medicines. Many of the marine-derived biomaterials have been shown to act as different mechanisms in immune responses, and in each case they can significantly control the immune system to produce effective reactions. Marine-derived proteins, peptides, and protein hydrolysates exhibit various physiologic functions, such as antimicrobial, anticancer, antioxidant, antihypertensive, and anti-inflammatory activities. Recently, the immunomodulatory properties of several antimicrobial peptides have been demonstrated. Some of these peptides directly kill bacteria and exhibit a variety of immunomodulatory activities that improve the host innate immune response and effectively eliminate infection. The properties of immunomodulatory proteins and peptides correlate with their amino acid composition, sequence, and length. Proteins and peptides with immunomodulatory properties have been tested in vitro and in vivo, and some of them have undergone different clinical and preclinical trials. This review provides a comprehensive overview of marine immunomodulatory proteins, peptides, and protein hydrolysates as well as their production, mechanisms of action, and applications in human therapy.
Collapse
Affiliation(s)
- Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
- Department of Convergences, Kongju National University, Kongju 314-701, Korea.
| | - Hyung Ho Lee
- Department of Convergences, Kongju National University, Kongju 314-701, Korea.
| | - Chang Ho Seo
- Department of Convergences, Kongju National University, Kongju 314-701, Korea.
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea.
| |
Collapse
|