1
|
Maggs X. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2024. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- X Maggs
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Gatto M, Esposito M, Morelli M, De Rose S, Gizurarson S, Meiri H, Mandalà M. Placental Protein 13: Vasomodulatory Effects on Human Uterine Arteries and Potential Implications for Preeclampsia. Int J Mol Sci 2024; 25:7522. [PMID: 39062763 PMCID: PMC11276665 DOI: 10.3390/ijms25147522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Placental protein 13 (PP13) exhibits a plasma concentration that increases gradually during normal gestation, a process that is disrupted in preeclampsia, which is characterized by elevated vascular resistance, reduced utero-placental blood flow, and intrauterine growth restriction. This study investigated PP13's role in vascular tone regulation and its molecular mechanisms. Uterine and subcutaneous arteries, isolated from both pregnant and non-pregnant women, were precontracted with the thromboxane analogue U46619 and exposed to PP13 using pressurized myography. The molecular mechanisms were further investigated, using specific inhibitors for nitric oxide synthase (L-NAME+LNNA at 10-4 M) and guanylate cyclase (ODQ at 10-5 M). The results showed that PP13 induced vasodilation in uterine arteries, but not in subcutaneous arteries. Additionally, PP13 counteracted U46619-induced vasoconstriction, which is particularly pronounced in pregnancy. Further investigation revealed that PP13's mechanism of action is dependent on the activation of the nitric oxide-cGMP pathway. This study provides novel insights into the vasomodulatory effects of PP13 on human uterine arteries, underscoring its potential role in regulating utero-placental blood flow. These findings suggest that PP13 may be a promising candidate for improving utero-placental blood flow in conditions such as preeclampsia. Further research and clinical studies are warranted to validate PP13's efficacy and safety as a therapeutic agent for managing preeclampsia.
Collapse
Affiliation(s)
- Mariacarmela Gatto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.G.); (M.E.)
| | - Milena Esposito
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.G.); (M.E.)
| | - Michele Morelli
- Department of Gynecology and Obstetrics, Hospital SS Annunziata, 87100 Cosenza, Italy; (M.M.); (S.D.R.)
| | - Silvia De Rose
- Department of Gynecology and Obstetrics, Hospital SS Annunziata, 87100 Cosenza, Italy; (M.M.); (S.D.R.)
| | | | - Hamutal Meiri
- Hylabs Ltd., Rehovot 7670606, Israel;
- TeleMarpe Ltd., Tel Aviv 6908742, Israel
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.G.); (M.E.)
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT 05401, USA
| |
Collapse
|
3
|
Vincze M, Sikovanyecz J, Földesi I, Surányi A, Várbíró S, Németh G, Sikovanyecz J, Kozinszky Z. Galectin-13 and Laeverin Levels Interfere with Human Fetoplacental Growth. Int J Mol Sci 2024; 25:6347. [PMID: 38928055 PMCID: PMC11203466 DOI: 10.3390/ijms25126347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Galectin-13 (Gal-13) is predominantly produced by the syncytiotrophoblast, while laeverin is expressed on the outgrowing extravillous trophoblast, and both are thought to be biomarkers of preeclampsia. The aim of this study was to assess the correlation between concentrations of Gal-13 and laeverin measured in maternal serum and amniotic fluid at 16-22 weeks of gestation and the sonographic assessment of the fetoplacental measurements. Fetal biometric data and placental volume and perfusion indices were measured in 62 singleton pregnancies. Serum and amniotic levels of Gal-13 and laeverin levels were measured using a sandwich ELISA. Both amniotic fluid and serum Gal-13 levels expressed a negative correlation to the plasma laeverin level in mid-pregnancy. Serum laeverin level correlated positively with the gestational length at delivery (β = 0.39, p < 0.05), while the amniotic laeverin level correlated well with the abdominal circumference of the fetus (β = 0.44, p < 0.05). Furthermore, laeverin level in the amnion correlated positively with the estimated fetal weight (β = 0.48, p < 0.05) and with the placental volume (β = 0.32, p < 0.05). Logistic regression analyses revealed that a higher circulating Gal-13 level represents a slightly significant risk factor (OR: 1.01) for hypertension-related diseases during pregnancy. It is a novelty that laeverin can be detected in the amniotic fluid, and amnion laeverin concentration represents a potential biomarker of fetoplacental growth.
Collapse
Affiliation(s)
- Márió Vincze
- Department of Obstetrics and Gynecology, University of Szeged, H-6725 Szeged, Hungary; (M.V.); (J.S.J.); (A.S.); (S.V.); (G.N.); (J.S.)
| | - János Sikovanyecz
- Department of Obstetrics and Gynecology, University of Szeged, H-6725 Szeged, Hungary; (M.V.); (J.S.J.); (A.S.); (S.V.); (G.N.); (J.S.)
| | - Imre Földesi
- Department of Laboratory Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | - Andrea Surányi
- Department of Obstetrics and Gynecology, University of Szeged, H-6725 Szeged, Hungary; (M.V.); (J.S.J.); (A.S.); (S.V.); (G.N.); (J.S.)
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, University of Szeged, H-6725 Szeged, Hungary; (M.V.); (J.S.J.); (A.S.); (S.V.); (G.N.); (J.S.)
| | - Gábor Németh
- Department of Obstetrics and Gynecology, University of Szeged, H-6725 Szeged, Hungary; (M.V.); (J.S.J.); (A.S.); (S.V.); (G.N.); (J.S.)
| | - János Sikovanyecz
- Department of Obstetrics and Gynecology, University of Szeged, H-6725 Szeged, Hungary; (M.V.); (J.S.J.); (A.S.); (S.V.); (G.N.); (J.S.)
| | - Zoltan Kozinszky
- Capio Specialized Center for Gynecology, Solna, 182 88 Stockholm, Sweden
| |
Collapse
|
4
|
Buschmann C, Unverdorben L, Knabl J, Hutter S, Meister S, Beyer S, Burgmann M, Zati Zehni A, Schmoeckel E, Kessler M, Jeschke U, Eggersmann TK, Mahner S, Kolben T, Ganster F. Placental expression of inflammatory Galectin-12 is associated with gestational diabetes. J Reprod Immunol 2024; 163:104240. [PMID: 38492532 DOI: 10.1016/j.jri.2024.104240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES Gestational diabetes mellitus (GDM) is a growing health concern. Since members of the galectin-family are identified to play a role in the pathogenesis of GDM, we determined galectin-12 as an essential protein due to its influence in lipolysis and inflammation processes. This study investigates the expression of galectin-12 in the placentas of women with GDM. STUDY DESIGN The study population includes 40 expectant women suffering from GDM and 40 healthy controls. The expression of galectin-12 in the syncytiotrophoblast (SCT) and the extra villous trophoblast (EVT) of the placenta was analyzed by immunohistological staining and double immunofluorescence. Immunoreactivity Score (IRS) was used for evaluation. RESULTS The results demonstrate a significant overexpression of galectin-12 in the nucleus of the SCT and the EVT of placentas with GDM compared to the healthy control group. Additionally, double immunofluorescence visualizes corresponding results with an overexpression of galectin-12 in the extra villous trophoblast of GDM placentas representing maternal cells. CONCLUSION This study identifies galectin-12 to be associated with the process of gestational diabetes mellitus. These findings are in correspondence with the involvement of galectin-12 in inflammatory processes. Maternal BMI and male sex seem to be confounder for the expression of galectin-12 in the nuclear syncytiotrophoblast, but not in other parts of the investigated placental areas. Further investigations are necessary to verify the correlation between gestational diabetes mellitus and the expression of galectin-12 in the placenta and to further elucidate its distinct role.
Collapse
Affiliation(s)
- Christina Buschmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Laura Unverdorben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Julia Knabl
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Hutter
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Maximiliane Burgmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Alaleh Zati Zehni
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Elisa Schmoeckel
- Department of Pathology, University Hospital, LMU Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany; Department of Obstetrics and Gynecology, University Hospital Augsburg, Germany.
| | - Tanja K Eggersmann
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Franziska Ganster
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Tóth E, Györffy D, Posta M, Hupuczi P, Balogh A, Szalai G, Orosz G, Orosz L, Szilágyi A, Oravecz O, Veress L, Nagy S, Török O, Murthi P, Erez O, Papp Z, Ács N, Than NG. Decreased Expression of Placental Proteins in Recurrent Pregnancy Loss: Functional Relevance and Diagnostic Value. Int J Mol Sci 2024; 25:1865. [PMID: 38339143 PMCID: PMC10855863 DOI: 10.3390/ijms25031865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Miscarriages affect 50-70% of all conceptions and 15-20% of clinically recognized pregnancies. Recurrent pregnancy loss (RPL, ≥2 miscarriages) affects 1-5% of recognized pregnancies. Nevertheless, our knowledge about the etiologies and pathophysiology of RPL is incomplete, and thus, reliable diagnostic/preventive tools are not yet available. Here, we aimed to define the diagnostic value of three placental proteins for RPL: human chorionic gonadotropin free beta-subunit (free-β-hCG), pregnancy-associated plasma protein-A (PAPP-A), and placental growth factor (PlGF). Blood samples were collected from women with RPL (n = 14) and controls undergoing elective termination of pregnancy (n = 30) at the time of surgery. Maternal serum protein concentrations were measured by BRAHMS KRYPTOR Analyzer. Daily multiple of median (dMoM) values were calculated for gestational age-specific normalization. To obtain classifiers, logistic regression analysis was performed, and ROC curves were calculated. There were differences in changes of maternal serum protein concentrations with advancing healthy gestation. Between 6 and 13 weeks, women with RPL had lower concentrations and dMoMs of free β-hCG, PAPP-A, and PlGF than controls. PAPP-A dMoM had the best discriminative properties (AUC = 0.880). Between 9 and 13 weeks, discriminative properties of all protein dMoMs were excellent (free β-hCG: AUC = 0.975; PAPP-A: AUC = 0.998; PlGF: AUC = 0.924). In conclusion, free-β-hCG and PAPP-A are valuable biomarkers for RPL, especially between 9 and 13 weeks. Their decreased concentrations indicate the deterioration of placental functions, while lower PlGF levels indicate problems with placental angiogenesis after 9 weeks.
Collapse
Affiliation(s)
- Eszter Tóth
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Dániel Györffy
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Doctoral School, Semmelweis University, H-1085 Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Gábor Szalai
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Department of Surgery, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Gergő Orosz
- Department of Obstetrics and Gynecology, Medical School, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Orosz
- Department of Obstetrics and Gynecology, Medical School, University of Debrecen, H-4032 Debrecen, Hungary
| | - András Szilágyi
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Lajos Veress
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sándor Nagy
- Faculty of Health and Sport Sciences, Széchenyi István University, H-9026 Győr, Hungary
| | - Olga Török
- Department of Obstetrics and Gynecology, Medical School, University of Debrecen, H-4032 Debrecen, Hungary
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Clayton 3168, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville 3052, Australia
| | - Offer Erez
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Be’er Sheva 8410501, Israel
- Department of Obstetrics and Gynecology, Medical School, Wayne State University, Detroit, MI 48201, USA
| | - Zoltán Papp
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary
- Department of Obstetrics and Gynecology, Medical School, Semmelweis University, 27 Baross Street, H-1088 Budapest, Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Medical School, Semmelweis University, 27 Baross Street, H-1088 Budapest, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary
- Department of Obstetrics and Gynecology, Medical School, Semmelweis University, 27 Baross Street, H-1088 Budapest, Hungary
| |
Collapse
|
7
|
Pei X, Zhu J, Wang Y, Zhang F, He Y, Li Y, Si Y. Placental galectins: a subfamily of galectins lose the ability to bind β-galactosides with new structural features†. Biol Reprod 2023; 109:799-811. [PMID: 37672213 DOI: 10.1093/biolre/ioad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023] Open
Abstract
Galectins are a phylogenetically conserved family of soluble β-galactoside binding proteins. There are 16 different of galectins, each with a specific function determined by its distinct distribution and spatial structure. Galectin-13, galectin-14, and galectin-16 are distinct from other galectin members in that they are primarily found in placental tissue. These galectins, also referred to as placental galectins, play critical roles in regulating pregnancy-associated processes, such as placenta formation and maternal immune tolerance to the embedded embryo. The unique structural characteristics and the inability to bind lactose of placental galectins have recently received significant attention. This review primarily examines the novel structural features of placental galectins, which distinguish them from the classic galectins. Furthermore, it explores the correlation between these structural features and the loss of β-galactoside binding ability. In addition, the newly discovered functions of placental galectins in recent years are also summarized in our review. A detailed understanding of the roles of placental galectins may contribute to the discovery of new mechanisms causing numerous pregnancy diseases and enable the development of new diagnostic and therapeutic strategies for the treatment of these diseases, ultimately benefiting the health of mothers and offspring.
Collapse
Affiliation(s)
- Xuejing Pei
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Xuzhou Tongshan Maocun High School, Xuzhou 221135, China
| | - Jiahui Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuchen Wang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Fali Zhang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yufeng He
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yuchun Li
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yunlong Si
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
8
|
Zhang Y, Ai H, Wang Y, Zhang P, Du L, Wang J, Wang S, Gao H, Li B. A pattern recognition receptor C-type lectin TcCTL14 contributes to immune response and development in the red flour beetle, Tribolium castaneum. INSECT SCIENCE 2023; 30:1363-1377. [PMID: 36518010 DOI: 10.1111/1744-7917.13161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Evidence is accumulating that pattern recognition receptor (PRR) C-type lectins (CTL) play essential roles in recognition of pathogens. TcCTL14 (accession no. TC00871) contains the most domains among all CTL of Tribolium castaneum. Yet the biological function of TcCTL14 remains unclear. In this study, TcCTL14 exhibiting typical motif and domain of CTL was cloned from T. castaneum. The expression pattern analysis showed that TcCTL14 was highly expressed in late pupae and central nervous system, and was upregulated after treatment with Escherichia coli and Staphylococcus aureus, respectively. Analysis of binding affinity revealed that recombinant TcCTL14 not only could bind to lipopolysaccharide and peptidoglycan in a dose-dependent fashion, but possibly could bind to and agglutinate different bacteria in a Ca2+ -dependent fashion. Knockdown of TcCTL14 before injection with bacteria led to the downregulation of nuclear factor-κB transcription factors of Toll/IMD and 4 antimicrobial peptides. Knockdown of TcCTL14 also caused suppressed metamorphosis, reduced fecundity, and delayed embryogenesis of T. castaneum. Further observation discovered that knockdown of TcCTL14 inhibited the development of ovaries and embryos. The detection of signaling pathways revealed that TcCTL14 may be involved in metamorphosis and fecundity by impacting 20-hydroxyecdysone and vitellogenin, respectively. Overall, these results indicate that TcCTL14 may contribute to immune response by agglutination or regulating the expression of antimicrobial peptides by the Toll/IMD pathway, and is required for T. castaneum development including metamorphosis, fecundity, and embryogenesis. These findings will improve the functional cognition of PRR CTL in insects and provide the new strategy for pest control.
Collapse
Affiliation(s)
- Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huayi Ai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yihan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ping Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Liheng Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiatao Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Suisui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Bhati T, Ray A, Arora R, Siraj F, Parvez S, Rastogi S. Intronic variants of LGALS13 gene encoding placental protein (PP13) are linked with increased risk of infection-associated spontaneous preterm birth. Am J Reprod Immunol 2023; 90:e13759. [PMID: 37641375 DOI: 10.1111/aji.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023] Open
Abstract
PROBLEM Spontaneous preterm birth (sPTB) is a global health issue. Studies suggest infection and infection-based inflammatory responses are major risk factors for sPTB. Considering the important role of anti-inflammatory proteins in pregnancy, the study aimed to find the association between anti-inflammatory LGALS13 gene variants IVS2-22 A/G (rs2233706) and IVS3+72 T/A (rs2233708) and the risk of sPTB during Chlamydia trachomatis, Mycoplasma hominis and Ureaplasma urealyticum infection in Indian population. METHOD OF STUDY Placental samples of 160 sPTB and 160 term women were collected. Pathogens were detected by PCR. The genotyping of LGALS13 gene variants IVS2-22 A/G (rs2233706) and IVS3+72 T/A (rs2233708) was done by qualitative real-time PCR using allelic discrimination method (VIC- and FAM-labeled). RESULTS The frequency of AG or GG genotype of LGALS13 IVS2-22A/G polymorphism (rs2233706) was 75.5% in infected sPTB cases and 14.4% in uninfected sPTB cases and 7.3% in term birth controls (p < .0001), while the frequency of TA or AA genotype of LGALS13 IVS3+72T/A polymorphism (rs2233708) was 83.6% in infected sPTB cases and 18% in uninfected sPTB cases and 12.7% in term birth controls (p < .0001). The genotypic frequencies for both the variants of LGALS13 were statistically significant (p < .0001) in the infected sPTB versus uninfected sPTB and term birth controls. CONCLUSIONS Study reveals strong association between the presence of immunological gene variants LGALS13 IVS2-22 A/G (rs2233706) and LGALS13 IVS3+72 T/A (rs2233708) and risk of sPTB during C. trachomatis, M. hominis and U. urealyticum infection.
Collapse
Affiliation(s)
- Tanu Bhati
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| | - Ankita Ray
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| | - Renu Arora
- Department of Obstetrics and Gynaecology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Fouzia Siraj
- Pathology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Sangita Rastogi
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
10
|
Wang F, Zha Z, He Y, Li J, Zhong Z, Xiao Q, Tan Z. Genome-Wide Re-Sequencing Data Reveals the Population Structure and Selection Signatures of Tunchang Pigs in China. Animals (Basel) 2023; 13:1835. [PMID: 37889708 PMCID: PMC10252034 DOI: 10.3390/ani13111835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 09/29/2023] Open
Abstract
Tunchang pig is one population of Hainan pig in the Hainan Province of China, with the characteristics of delicious meat, strong adaptability, and high resistance to diseases. To explore the genetic diversity and population structure of Tunchang pigs and uncover their germplasm characteristics, 10 unrelated Tunchang pigs were re-sequenced using the Illumina NovaSeq 150 bp paired-end platform with an average depth of 10×. Sequencing data from 36 individuals of 7 other pig breeds (including 4 local Chinese pig breeds (5 Jinhua, 5 Meishan, 5 Rongchang, and 6 Wuzhishan), and 3 commonly used commercial pig breeds (5 Duorc, 5 Landrace, and 5 Large White)) were downloaded from the NCBI public database. After analysis of genetic diversity and population structure, it has been found that compared to commercial pigs, Tunchang pigs have higher genetic diversity and are genetically close to native Chinese breeds. Three methods, FST, θπ, and XP-EHH, were used to detect selection signals for three breeds of pigs: Tunchang, Duroc, and Landrace. A total of 2117 significantly selected regions and 201 candidate genes were screened. Gene enrichment analysis showed that candidate genes were mainly associated with good adaptability, disease resistance, and lipid metabolism traits. Finally, further screening was conducted to identify potential candidate genes related to phenotypic traits, including meat quality (SELENOV, CBR4, TNNT1, TNNT3, VPS13A, PLD3, SRFBP1, and SSPN), immune regulation (CD48, FBL, PTPRH, GNA14, LOX, SLAMF6, CALCOCO1, IRGC, and ZNF667), growth and development (SYT5, PRX, PPP1R12C, and SMG9), reproduction (LGALS13 and EPG5), vision (SLC9A8 and KCNV2), energy metabolism (ATP5G2), cell migration (EPS8L1), and olfaction (GRK3). In summary, our research results provide a genomic overview of the genetic variation, genetic diversity, and population structure of the Tunchang pig population, which will be valuable for breeding and conservation of Tunchang pigs in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qian Xiao
- School of Animal Science and Technology, Hainan University, Haikou 570228, China; (F.W.)
| | - Zhen Tan
- School of Animal Science and Technology, Hainan University, Haikou 570228, China; (F.W.)
| |
Collapse
|
11
|
Ko FCF, Yan S, Lee KW, Lam SK, Ho JCM. Chimera and Tandem-Repeat Type Galectins: The New Targets for Cancer Immunotherapy. Biomolecules 2023; 13:902. [PMID: 37371482 DOI: 10.3390/biom13060902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
In humans, a total of 12 galectins have been identified. Their intracellular and extracellular biological functions are explored and discussed in this review. These galectins play important roles in controlling immune responses within the tumour microenvironment (TME) and the infiltration of immune cells, including different subsets of T cells, macrophages, and neutrophils, to fight against cancer cells. However, these infiltrating cells also have repair roles and are hijacked by cancer cells for pro-tumorigenic activities. Upon a better understanding of the immunomodulating functions of galectin-3 and -9, their inhibitors, namely, GB1211 and LYT-200, have been selected as candidates for clinical trials. The use of these galectin inhibitors as combined treatments with current immune checkpoint inhibitors (ICIs) is also undergoing clinical trial investigations. Through their network of binding partners, inhibition of galectin have broad downstream effects acting on CD8+ cytotoxic T cells, regulatory T cells (Tregs), Natural Killer (NK) cells, and macrophages as well as playing pro-inflammatory roles, inhibiting T-cell exhaustion to support the fight against cancer cells. Other galectin members are also included in this review to provide insight into potential candidates for future treatment(s). The pitfalls and limitations of using galectins and their inhibitors are also discussed to cognise their clinical application.
Collapse
Affiliation(s)
- Frankie Chi Fat Ko
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Sheng Yan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Ka Wai Lee
- Pathology Department, Baptist Hospital, Waterloo Road, Kowloon, Hong Kong, China
| | - Sze Kwan Lam
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - James Chung Man Ho
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| |
Collapse
|
12
|
Erez O, Gotsch F, Jung E, Chaiworapongsa T, Gudicha DW, Suksai M, Gallo DM, Chaemsaithong P, Bosco M, Al Qasem M, Meyyazhagan A, Than NG, Romero R. Perturbations in kinetics of the thrombin generation assay identify women at risk of preeclampsia in the first trimester and provide the rationale for a preventive approach. Am J Obstet Gynecol 2023; 228:580.e1-580.e17. [PMID: 36368431 PMCID: PMC10149548 DOI: 10.1016/j.ajog.2022.11.1276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Activation of the coagulation system and increased thrombin generation have been implicated in the pathophysiology of preeclampsia, and this rationale supports the administration of low-molecular-weight heparin to prevent this syndrome in patients at risk. Yet, randomized trials of this prophylactic measure have yielded contradictory results. A possible explanation is that only a subset of patients with preeclampsia have excessive thrombin generation and would benefit from the administration of low-molecular-weight heparin. Therefore, the key questions are whether and when patients who subsequently develop preeclampsia present evidence of abnormal thrombin generation. OBJECTIVE This study aimed to determine (1) the kinetics of thrombin generation throughout gestation in women with a normal pregnancy and in those with early and late preeclampsia, and (2) the diagnostic performance of in vivo thrombin generation parameters to predict the development of preeclampsia. STUDY DESIGN This retrospective, nested case-control study was based on a prospective longitudinal cohort of singleton gestations. Cases comprised women who developed preeclampsia (n=49), and controls consisted of patients with a normal pregnancy (n=45). Preeclampsia was classified into early-onset (n=24) and late-onset (n=25). Longitudinal changes in the parameters of the thrombin generation assay (lag time, time to peak thrombin concentration, peak thrombin concentration, endogenous thrombin generation, and velocity index) throughout gestation were compared between the study groups, and normal pregnancy percentiles were derived from the control group. We tested whether a single parameter or a combination of parameters, derived from the kinetics of thrombin generation, could identify patients who subsequently developed preeclampsia. Time-related parameters <10th percentile were considered short, and concentration-related parameters >90th percentile were considered high. RESULTS (1) Patients who developed preeclampsia (early- and late-onset) had abnormal thrombin generation kinetics as early as 8 to 16 weeks of pregnancy; (2) patients with a combination of a short lag time and high peak thrombin concentration at 8 to 16 weeks of pregnancy had an odds ratio of 43.87 for the subsequent development of preeclampsia (area under the curve, 0.79; sensitivity, 56.8%; specificity, 92.7%; positive likelihood ratio, 7.76); (3) at 16 to 22 weeks of gestation, patients with a combination of a short lag time and a high velocity index had an odds ratio of 16 for the subsequent development of preeclampsia (area under the curve, 0.78; sensitivity, 62.2%; specificity, 92.5%; positive likelihood ratio, 8.29). CONCLUSION During early pregnancy, the thrombin generation assay can identify the subset of patients at a greater risk for the development of preeclampsia owing to accelerated and enhanced production of thrombin. This observation provides a rationale for testing the efficacy of low-molecular-weight heparin in this subset of patients. We propose that future research on the efficacy of low-molecular-weight heparin and other interventions targeting the coagulation system to prevent preeclampsia should be focused on patients with abnormal kinetics of thrombin generation.
Collapse
Affiliation(s)
- Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Emek Medical Center, Afula, Israel
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Piya Chaemsaithong
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Malek Al Qasem
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Arun Meyyazhagan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Nandor Gabor Than
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Maternity Private Clinic, Budapest, Hungary; First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI; Detroit Medical Center, Detroit, MI.
| |
Collapse
|
13
|
Bhati T, Ray A, Arora R, Siraj F, Parvez S, Rastogi S. Galectins are critical regulators of cytokine signalling at feto-maternal interface in infection-associated spontaneous preterm birth. Placenta 2023; 138:10-19. [PMID: 37146535 DOI: 10.1016/j.placenta.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
INTRODUCTION Spontaneous preterm birth (sPTB) is a global health issue. Studies suggest infections are chiefly associated with sPTB and galectins (gals) play a role in regulation of innate and adaptive maternal immune response against pathogens during sPTB. The aim of this study was to describe the gene expression of gal -1, -3, -8, -9, -13 in relation to gene expression of cyclooxygenase-2 (COX-2) and the cytokines IL-8, IL-10, TNF-α, IFN-ϒ in the setting of sPTB and confirmed infection with Chlamydia trachomatis, Mycoplasma hominis, and Ureaplasma urealyticum. METHODS Placental samples were collected from 120 term control and 120 sPTB pregnancies. PCR was used to detect specific pathogens. Gene expression of galectins, cytokines, and COX-2 was performed using real time qPCR. RESULTS Fold-change expression of gal -1, -3, -8, -9, -13 was 5.13, 6.11, 1.14, 5.23 and 7.16 (p<0.001), respectively; while IL-10, IL-8, TNF-α, IFN-ϒ and COX-2 was 6.29, 6.55, 6.35, 6.36 and 2.73-fold upregulated (p<0.05), respectively in infected sPTB. Gal-1 was positively correlated with IL-10 (r=0.49, p=0.003) while gal-3 showed significant correlation with IL-8 (r=0.42, p=0.0113), TNF-α (r=0.65, p=< 0.001) and COX-2 (r=0.72, p=0.001). However, gal-8 was not significantly correlated with any cytokine. Gal-9, -13 were negatively correlated with IFN-ϒ (r=-0.45, p=0.006) and IL-8 (r=-0.39, p=0.018). DISCUSSION Gal-1, -9, -13 are anti-inflammatory and might play role in immune-tolerance while gal-3 is pro-inflammatory and possibly responsible for immunogenic response, having potential to anticipate the clinical beginning of preterm labour during infection.
Collapse
Affiliation(s)
- Tanu Bhati
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| | - Ankita Ray
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| | - Renu Arora
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, New Delhi, 110029, India.
| | - Fouzia Siraj
- Pathology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, 110062, India.
| | - Sangita Rastogi
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box No. 4909, New Delhi, 110029, India.
| |
Collapse
|
14
|
Roles of N-linked glycosylation and glycan-binding proteins in placentation: trophoblast infiltration, immunomodulation, angiogenesis, and pathophysiology. Biochem Soc Trans 2023; 51:639-653. [PMID: 36929183 DOI: 10.1042/bst20221406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Protein N-linked glycosylation is a structurally diverse post-translational modification that stores biological information in a larger order of magnitude than other post-translational modifications such as phosphorylation, ubiquitination and acetylation. This gives N-glycosylated proteins a diverse range of properties and allows glyco-codes (glycan-related information) to be deciphered by glycan-binding proteins (GBPs). The intervillous space of the placenta is richly populated with membrane-bound and secreted glycoproteins. Evidence exists to suggest that altering the structural nature of their N-glycans can impact several trophoblast functions, which include those related to interactions with decidual cells. This review summarizes trophoblast-related activities influenced by N-glycan-GBP recognition, exploring how different subtypes of trophoblasts actively adapt to characteristics of the decidualized endometrium through cell-specific expression of N-glycosylated proteins, and how these cells receive decidua-derived signals via N-glycan-GBP interactions. We highlight work on how changes in N-glycosylation relates to the success of trophoblast infiltration, interactions of immunomodulators, and uterine angiogenesis. We also discuss studies that suggest aberrant N-glycosylation of trophoblasts may contribute to the pathogenesis of pregnancy complications (e.g. pre-eclampsia, early spontaneous miscarriages and hydatidiform mole). We propose that a more in-depth understanding of how N-glycosylation shapes trophoblast phenotype during early pregnancy has the potential to improve our approach to predicting, diagnosing and alleviating poor maternal/fetal outcomes associated with placental dysfunction.
Collapse
|
15
|
Zhang Y, Zhang P, Yu R, Li B. A C-type lectin TcCTL1 is required for embryogenesis in Tribolium castaneum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104560. [PMID: 36191687 DOI: 10.1016/j.dci.2022.104560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
C-type lectin S group (CTL-S) plays a variety of roles in invertebrate including pathogen recognition and activation of immune responses. Previous studies have shown that CTL-S subfamily of Tribolium castaneum is mainly divided into two clades, of which only TcCTL1 was separately located in one clade. However, it remains unclear whether TcCTL1 occurs the differentiation of function. Therefore, the CTL-S TcCTL1 gene was cloned and characterized from T. castaneum. Functional analysis revealed that TcCTL1 could recognize and agglutinate pathogens, as well as activate immune signaling pathways to participate in immune response, which was consistent with our previously reported for TcCTL5 and TcCTL6. Differently, RNAi of TcCTL1 discovered that the egg produced by dsTcCTL1-treated adult could not hatch into larvae. Further DAPI-straining embryo indicated that the process of embryogenesis in dsTcCTL1-treated beetle was defeated, implying that TcCTL1 is required for embryogenesis in T. castaneum except for immune response. These results will aid implications for the understanding of CTL-S in invertebrate.
Collapse
Affiliation(s)
- Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ping Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
16
|
Placental Galectins in Cancer: Why We Should Pay More Attention. Cells 2023; 12:cells12030437. [PMID: 36766779 PMCID: PMC9914345 DOI: 10.3390/cells12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The first studies suggesting that abnormal expression of galectins is associated with cancer were published more than 30 years ago. Today, the role of galectins in cancer is relatively well established. We know that galectins play an active role in many types of cancer by regulating cell growth, conferring cell death resistance, or inducing local and systemic immunosuppression, allowing tumor cells to escape the host immune response. However, most of these studies have focused on very few galectins, most notably galectin-1 and galectin-3, and more recently, galectin-7 and galectin-9. Whether other galectins play a role in cancer remains unclear. This is particularly true for placental galectins, a subgroup that includes galectin-13, -14, and -16. The role of these galectins in placental development has been well described, and excellent reviews on their role during pregnancy have been published. At first sight, it was considered unlikely that placental galectins were involved in cancer. Yet, placentation and cancer progression share several cellular and molecular features, including cell invasion, immune tolerance and vascular remodeling. The development of new research tools and the concomitant increase in database repositories for high throughput gene expression data of normal and cancer tissues provide a new opportunity to examine the potential involvement of placental galectins in cancer. In this review, we discuss the possible roles of placental galectins in cancer progression and why they should be considered in cancer studies. We also address challenges associated with developing novel research tools to investigate their protumorigenic functions and design highly specific therapeutic drugs.
Collapse
|
17
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
18
|
Oravecz O, Romero R, Tóth E, Kapitány J, Posta M, Gallo DM, Rossi SW, Tarca AL, Erez O, Papp Z, Matkó J, Than NG, Balogh A. Placental galectins regulate innate and adaptive immune responses in pregnancy. Front Immunol 2022; 13:1088024. [PMID: 36643922 PMCID: PMC9832025 DOI: 10.3389/fimmu.2022.1088024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Galectins are master regulators of maternal immune responses and placentation in pregnancy. Galectin-13 (gal-13) and galectin-14 (gal-14) are expressed solely by the placenta and contribute to maternal-fetal immune tolerance by inducing the apoptosis of activated T lymphocytes and the polarization of neutrophils toward an immune-regulatory phenotype.Furthermore, their decreased placental expression is associated with pregnancy complications, such as preeclampsia and miscarriage. Yet, our knowledge of the immunoregulatory role of placental galectins is incomplete. Methods This study aimed to investigate the effects of recombinant gal-13 and gal-14 on cell viability, apoptosis, and cytokine production of peripheral blood mononuclear cells (PBMCs) and the signaling pathways involved. Results Herein, we show that gal-13 and gal-14 bind to the surface of non-activated PBMCs (monocytes, natural killer cells, B cells, and T cells) and increase their viability while decreasing the rate of their apoptosis without promoting cell proliferation. We also demonstrate that gal-13 and gal-14 induce the production of interleukin (IL)-8, IL-10, and interferon-gamma cytokines in a concentration-dependent manner in PBMCs. The parallel activation of Erk1/2, p38, and NF-ĸB signaling evidenced by kinase phosphorylation in PBMCs suggests the involvement of these pathways in the regulation of the galectin-affected immune cell functions. Discussion These findings provide further evidence on how placenta-specific galectins assist in the establishment and maintenance of a proper immune environment during a healthy pregnancy.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Detroit Medical Center, Detroit, MI, United States
| | - Eszter Tóth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Kapitány
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Dahiana M. Gallo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | | | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | - Zoltán Papp
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - János Matkó
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary,*Correspondence: Nándor Gábor Than,
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
19
|
Chen M, Shi JL, Zheng ZM, Lin Z, Li MQ, Shao J. Galectins: Important Regulators in Normal and Pathologic Pregnancies. Int J Mol Sci 2022; 23:ijms231710110. [PMID: 36077508 PMCID: PMC9456357 DOI: 10.3390/ijms231710110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Galectins (Gal) are characterized by their affinity for galactoside structures on glycoconjugates. This relationship is mediated by carbohydrate recognition domains, which are multifunctional regulators of basic cellular biological processes with high structural similarity among family members. They participate in both innate and adaptive immune responses, as well as in reproductive immunology. Recently, the discovery that galectins are highly expressed at the maternal–fetal interface has garnerd the interest of experts in human reproduction. Galectins are involved in a variety of functions such as maternal–fetal immune tolerance, angiogenesis, trophoblast invasion and placental development and are considered to be important mediators of successful embryo implantation and during pregnancy. Dysregulation of these galectins is associated with abnormal and pathological pregnancies (e.g., preeclampsia, gestational diabetes mellitus, fetal growth restriction, preterm birth). Our work reviews the regulatory mechanisms of galectins in normal and pathological pregnancies and has implications for clinicians in the prevention, diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jia-Lu Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zi-Meng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Correspondence: (M.-Q.L.); (J.S.)
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
- Correspondence: (M.-Q.L.); (J.S.)
| |
Collapse
|
20
|
Olejnik B, Ferens-Sieczkowska M. Seminal Plasma Glycoproteins as Potential Ligands of Lectins Engaged in Immunity Regulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10489. [PMID: 36078205 PMCID: PMC9518496 DOI: 10.3390/ijerph191710489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution, chronic stress, and unhealthy lifestyle are factors that negatively affect reproductive potential. Currently, 15-20% of couples in industrialized countries face the problem of infertility. This growing health and social problem prompts researchers to explore the regulatory mechanisms that may be important for successful fertilization. In recent years, more attention has been paid to male infertility factors, including the impact of seminal plasma components on regulation of the female immune response to allogenic sperm, embryo and fetal antigens. Directing this response to the tolerogenic pathway is crucial to achieve a healthy pregnancy. According to the fetoembryonic defense hypothesis, the regulatory mechanism may be associated with the interaction of lectins and immunomodulatory glycoepitopes. Such interactions may involve lectins of dendritic cells and macrophages, recruited to the cervical region immediately after intercourse. Carbohydrate binding receptors include C type lectins, such as DC-SIGN and MGL, as well as galectins and siglecs among others. In this article we discuss the expression of the possible lectin ligands, highly fucosylated and high mannose structures, which may be recognized by DC-SIGN, glycans of varying degrees of sialylation, which may differ in their interaction with siglecs, as well as T and Tn antigens in O-glycans.
Collapse
|
21
|
Chen JL, Chen Y, Xu DX, Chen DZ. Possible important roles of galectins in the healing of human fetal membranes. Front Endocrinol (Lausanne) 2022; 13:941029. [PMID: 36017312 PMCID: PMC9395672 DOI: 10.3389/fendo.2022.941029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The fetal membranes healing is a complex and dynamic process of replacing devitalized and missing cellular structures and tissue layers. Multiple cells and extracellular matrices, and cell differentiation, migration and proliferation may participate in restoring the integrity of damaged tissue, however this process still remains unclear. Therefore, there is a need to identify and integrate new ideas and methods to design a more effective dressing to accelerate fetal membrane healing. This review explores the function and role of galectins in the inflammatory, epithelial mesenchymal transition, proliferative migration, and remodeling phases of fetal membrane healing. In conclusion, the preliminary findings are promising. Research on amnion regeneration is expected to provide insight into potential treatment strategies for premature rupture of membranes.
Collapse
Affiliation(s)
- Jia-Le Chen
- The School of Public Health, Anhui Medical University, Hefei, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - De-Xiang Xu
- The School of Public Health, Anhui Medical University, Hefei, China
| | - Dao-Zhen Chen
- The School of Public Health, Anhui Medical University, Hefei, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Department of Laboratory, Haidong No.2 People’s Hospital, Haidong, China
| |
Collapse
|
22
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
23
|
Mariacarmela G, Milena E, Sveinbjorn G, Daniel H, Maurizio M. Placental protein 13 dilation of pregnant rat uterine vein is endothelium dependent and involves nitric oxide/calcium activated potassium channels signals. Placenta 2022; 126:233-238. [PMID: 35872513 DOI: 10.1016/j.placenta.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Accumulating evidence demonstrates the importance of the galectin protein Placental Protein 13 (PP13) in predicting Preeclampsia (PE), a gestational disorder that has no cure and is associated with a compromised uterine vascular adaptation to pregnancy. Uterine vasculature undergoes significant remodeling (growth in length and in circumference) during normal pregnancy to accommodate the increased blood volume to the feto-placental unit. The aim of this study was to demonstrate the role of PP13 on the uterine veins (UVs). METHODS PP13 was tested on UVs isolated from rat by using a pressurized myograph. The PP13 investigation was carried out in the presence of: a) nitric oxide synthases inhibitors (l-NAME + L-NNA, 2 x 10-4 M); b) small conductance Ca2+-activated K+ channels (SKca) inhibitor (Apamin, 10-7 M); c) intermediate conductance Ca2+-activated K+ channels (IKca) inhibitor (TRAM-34, 10-5 M); d) big conductance Ca2+-activated K+ channels (BKca) inhibitor (Paxilline, 10-5 M) and in the absence of endothelium. RESULTS Our results showed that in late pregnancy, PP13 induced a significant dilation of UVs that is endothelium dependent. Further, PP13-dilation is mediated by the SKca - NO - BKca pathway. DISCUSSION For the first time, this study provides evidence that in pregnancy, the UVs are dilated by PP13 and suggests SKCa as a potential target for treatments aimed at restoring pregnancy complication associated with deficiency in uterine adaptation.
Collapse
Affiliation(s)
- Gatto Mariacarmela
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Esposito Milena
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Gizurarson Sveinbjorn
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107, Reykjavik, Iceland
| | - Henrion Daniel
- MitoVasc Institute, UMR CNRS 6015-INSERM U1083, University of Angers, France
| | - Mandalà Maurizio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
24
|
Chromosomal Copy Number Variation Analysis in Pregnancy Products from Recurrent and Sporadic Miscarriage Using Next-Generation Sequencing. Reprod Sci 2022; 29:2927-2936. [PMID: 35578104 DOI: 10.1007/s43032-022-00969-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
Chromosomal abnormality is one of the causes of fetal miscarriage. The potential differences of fetal chromosomal abnormalities in sporadic miscarriage (SM) and recurrent miscarriage (RM) remain unclear. The purpose of this study was to investigate copy number variations (CNVs) in SM and RM to provide useful genetic guidance for pregnancy and prenatal diagnosis. Four hundred eight samples of aborted fetuses were analyzed by CNV sequencing, and further functional enrichment analysis was performed. Chromosomal abnormalities were identified in 218 (53.4%) fetuses. There were 62 cases (15.2%) with structural chromosomal abnormalities, including 41 with VUS CNVs, 8 with pathogenic CNVs (pCNVs), and 5 with likely pCNVs. Duplications or deletions of 7p22, 8p22, 8p23, and Xp22.31 were significantly more common in RM cases and therefore believed to be related to RM. A total of 289 genes were identified, and 29 different functions were enriched as potential RM candidate genes and functions, which were mainly concentrated in 4 functional categories: chemokines and chemotaxis, protease activity and protein modification, defense response to bacterial and fungal infections, and immune response. The results of this study may improve our understanding of the etiology of RM and contribute to the establishment of a population-based genetic marker information for RM.
Collapse
|
25
|
Reed JM, Spinelli P, Falcone S, He M, Goeke CM, Susiarjo M. Evaluating the Effects of BPA and TBBPA Exposure on Pregnancy Loss and Maternal-Fetal Immune Cells in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37010. [PMID: 35343813 PMCID: PMC8959013 DOI: 10.1289/ehp10640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to miscarriages and pregnancy complications in humans. In contrast, the potential reproductive toxicity of BPA analogs, including tetrabromobisphenol A (TBBPA), is understudied. Furthermore, although environmental exposure has been linked to altered immune mediators, the effects of BPA and TBBPA on maternal-fetal immune tolerance during pregnancy have not been studied. The present study investigated whether exposure resulted in higher rates of pregnancy loss in mice, lower number of regulatory T cells (Tregs), and lower indoleamine 2,3 deoxygenase 1 (Ido1) expression, which provided evidence for mechanisms related to immune tolerance in pregnancy. OBJECTIVES The purpose of this investigation was to characterize the effects of BPA and TBBPA exposure on pregnancy loss in mice and to study the percentage and number of Tregs and Ido1 expression and DNA methylation. METHODS Analysis of fetal resorption and quantification of maternal and fetal immune cells by flow cytometry were performed in allogeneic and syngeneic pregnancies. Ido1 mRNA and protein expression, and DNA methylation in placentas from control and BPA- and TBBPA-exposed mice were analyzed using real-time quantitative polymerase chain reaction, immunofluorescence, and bisulfite sequencing analyses. RESULTS BPA and TBBPA exposure resulted in higher rates of hemorrhaging in early allogeneic, but not syngeneic, conceptuses. In allogeneic pregnancies, BPA and TBBPA exposure was associated with higher fetal resorption rates and lower maternal Treg number. Importantly, these differences were associated with lower IDO1 protein expression in trophoblast giant cells and higher mean percentage Ido1 DNA methylation in embryonic day 9.5 placentas from BPA- and TBBPA-exposed mice. DISCUSSION BPA- and TBBPA-induced pregnancy loss in mice was associated with perturbed IDO1-dependent maternal immune tolerance. https://doi.org/10.1289/EHP10640.
Collapse
Affiliation(s)
- Jasmine M. Reed
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sierra Falcone
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Calla M. Goeke
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
26
|
Menkhorst E, Than NG, Jeschke U, Barrientos G, Szereday L, Dveksler G, Blois SM. Medawar's PostEra: Galectins Emerged as Key Players During Fetal-Maternal Glycoimmune Adaptation. Front Immunol 2022; 12:784473. [PMID: 34975875 PMCID: PMC8715898 DOI: 10.3389/fimmu.2021.784473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lectin-glycan interactions, in particular those mediated by the galectin family, regulate many processes required for a successful pregnancy. Over the past decades, increasing evidence gathered from in vitro and in vivo experiments indicate that members of the galectin family specifically bind to both intracellular and membrane bound carbohydrate ligands regulating angiogenesis, immune-cell adaptations required to tolerate the fetal semi-allograft and mammalian embryogenesis. Therefore, galectins play important roles in fetal development and placentation contributing to maternal and fetal health. This review discusses the expression and role of galectins during the course of pregnancy, with an emphasis on maternal immune adaptions and galectin-glycan interactions uncovered in the recent years. In addition, we summarize the galectin fingerprints associated with pathological gestation with particular focus on preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Gynaecological Research Centre, The Women's Hospital, Melbourne, VIC, Australia
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enyzmology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laszlo Szereday
- Medical School, Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, MD, United States
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Jovanović Krivokuća M, Vilotić A, Nacka-Aleksić M, Pirković A, Ćujić D, Legner J, Dekanski D, Bojić-Trbojević Ž. Galectins in Early Pregnancy and Pregnancy-Associated Pathologies. Int J Mol Sci 2021; 23:69. [PMID: 35008499 PMCID: PMC8744741 DOI: 10.3390/ijms23010069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Galectins are a family of conserved soluble proteins defined by an affinity for β-galactoside structures present on various glycoconjugates. Over the past few decades, galectins have been recognized as important factors for successful implantation and maintenance of pregnancy. An increasing number of studies have demonstrated their involvement in trophoblast cell function and placental development. In addition, several lines of evidence suggest their important roles in feto-maternal immune tolerance regulation and angiogenesis. Changed or dysregulated galectin expression is also described in pregnancy-related disorders. Although the data regarding galectins' clinical relevance are still at an early stage, evidence suggests that some galectin family members are promising candidates for better understanding pregnancy-related pathologies, as well as predicting biomarkers. In this review, we aim to summarize current knowledge of galectins in early pregnancy as well as in pregnancy-related pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Žanka Bojić-Trbojević
- Institute for Application of Nuclear Energy Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (M.J.K.); (A.V.); (M.N.-A.); (A.P.); (D.Ć.); (J.L.); (D.D.)
| |
Collapse
|
28
|
Wu Y, Liu Y, Ding Y. Predictive Performance of Placental Protein 13 for Screening Preeclampsia in the First Trimester: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:756383. [PMID: 34869456 PMCID: PMC8640131 DOI: 10.3389/fmed.2021.756383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Preeclampsia is a pregnancy-specific syndrome that affects maternal and neonatal mortality. Several serum biomarkers can be used to predict preeclampsia. Among these proteins, placental protein 13 (PP13) has received progressively more interest in recent studies. The decrease in PP13 expression is one of the earliest signs for the development of preeclampsia and has shown its predictive performance for preeclampsia. In this meta-analysis, we collected 17 observational studies with 40,474 pregnant women. The overall sensitivity of PP13 to predict preeclampsia was 0.62 [95% confidence interval (CI) = 0.49–0.74], the specificity was 0.84 (95%CI = 0.81–0.86), and the diagnostic odds ratio was nine (95%CI = 5–15). The area under the curve for summary receiver operating characteristic was 0.84. We then chose the early-onset preeclampsia as a subgroup. The sensitivity of early-onset subgroup was 0.63 (95%CI = 0.58–0.76), the specificity was 0.85 (95%CI = 0.82–0.88), and the diagnostic odds ratio was 10 (95%CI = 6–18). The findings of our meta-analysis indicate that PP13 may be an effective serum biomarker for the predictive screening of preeclampsia. Nonetheless, large prospective cohort studies and randomized controlled trials are expected to uncover its application in clinical practice. The heterogeneity of the original trials may limit the clinical application of PP13. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=188948 The meta-analysis was registered in PROSPERO (CRD42020188948).
Collapse
Affiliation(s)
- Yifan Wu
- Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Liu
- Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiling Ding
- Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Bert S, Ward EJ, Nadkarni S. Neutrophils in pregnancy: New insights into innate and adaptive immune regulation. Immunology 2021; 164:665-676. [PMID: 34287859 PMCID: PMC8561097 DOI: 10.1111/imm.13392] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
The immunology of pregnancy has been the focus of many studies to better understand how the mother is able to tolerate the presence of a semi-allogeneic fetus. Far from the initial view of pregnancy as a state of immunosuppression, successful fetal development from implantation to birth is now known to be under the control of an intricate balance of immune cells. The balance between pro-inflammatory functions used to promote embryo implantation and placental development and immunosuppressive activity to maintain maternal tolerance of the fetus is an immunological phenotype unique to pregnancy, which is dependent on the time of gestation. Neutrophils are one of a host of innate immune cells detected at the maternal-fetal interface, but very little is known of their function. In this review, we explore the emerging functions of neutrophils during pregnancy and their interactions with and regulation of T cells, a key adaptive immune cell population essential for the establishment of fetal-maternal tolerance.
Collapse
Affiliation(s)
- Serena Bert
- William Harvey Research InstituteBarts and the London School of MedicineQueen Mary UniversityLondonUK
| | - Eleanor J. Ward
- William Harvey Research InstituteBarts and the London School of MedicineQueen Mary UniversityLondonUK
| | - Suchita Nadkarni
- William Harvey Research InstituteBarts and the London School of MedicineQueen Mary UniversityLondonUK
| |
Collapse
|
30
|
van Bentem K, Bos M, van der Keur C, Kapsenberg H, Lashley E, Eikmans M, van der Hoorn ML. Different immunoregulatory components at the decidua basalis of oocyte donation pregnancies. Hum Immunol 2021; 83:319-327. [PMID: 34785097 DOI: 10.1016/j.humimm.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/31/2021] [Indexed: 11/04/2022]
Abstract
Oocyte donation (OD) pregnancies are characterized by more fetal-maternal human leukocyte antigen (HLA) mismatches compared with naturally conceived (NC) and in vitro fertilization (IVF) pregnancies. The maternal immune system has to cope with greater immunogenetic dissimilarity, but involved immunoregulation remains poorly understood. We examined whether the amount of regulatory T cells (Tregs) and immunoregulatory cytokines in decidua basalis of OD pregnancies differs from NC and IVF pregnancies. The cohort included 25 OD, 11 IVF and 16 NC placentas, maternal peripheral blood, and umbilical cord blood of uncomplicated pregnancies. Placenta slides were stained for FOXP3, IL-10, IL-6, gal-1, TGF-β and Flt-1. Semi-quantitative (FOXP3+ Tregs) and computerized analysis (cytokines) were executed. The blood samples were typed for HLA class I and II to calculate fetal-maternal HLA mismatches. The percentage of Tregs was significantly higher in pregnancies with 4-6 HLA class I mismatches (n = 17), compared to 0-3 mismatches (n = 35; p = 0.04). Cytokine analysis showed significant differences between OD, IVF and NC pregnancies. Flt-1 was significantly lower in pregnancies with 4-6 HLA class I mismatches (p = 0.004), and in pregnancies with 6-10 HLA mismatches in total (p = 0.024). This study suggests that immunoregulation at the fetal-maternal interface in OD pregnancies with more fetal-maternal HLA mismatches is altered.
Collapse
Affiliation(s)
- Kim van Bentem
- Department of Obstetrics and Gynecology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| | - Manon Bos
- Department of Obstetrics and Gynecology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Carin van der Keur
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Hanneke Kapsenberg
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Eileen Lashley
- Department of Obstetrics and Gynecology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Marie-Louise van der Hoorn
- Department of Obstetrics and Gynecology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
31
|
Dang Y, Souchet C, Moresi F, Jeljeli M, Raquillet B, Nicco C, Chouzenoux S, Lagoutte I, Marcellin L, Batteux F, Doridot L. BCG-trained innate immunity leads to fetal growth restriction by altering immune cell profile in the mouse developing placenta. J Leukoc Biol 2021; 111:1009-1020. [PMID: 34533228 DOI: 10.1002/jlb.4a0720-458rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Trained immunity is a new concept illustrating that innate immune cells are able to undergo a long-term metabolic and epigenetic reprogramming after infection or vaccination, thus displaying either a pro- or an anti-inflammatory phenotype during a sequential unrelated challenge. Innate immune cells such as natural killer (NK) cells and macrophages constitute a large part of the decidual leukocyte population at the maternal-fetal interface, playing an important role in placental development and as such in fetal growth and development. In this study, we hypothesized that training the innate immune cells before pregnancy could have an impact on pregnancy. To test this hypothesis, we used CBA/J x DBA/2 mouse model to investigate pregnancy outcomes and leukocyte population at the maternal-fetal interface. Although we were not able to show a beneficial effect of LPS-tolerogenic training on fetal resorption, Bacillus Calmette-Guérin (BCG) training, known to prime innate immune cells to be proinflammatory, led to fetal growth restriction, without aggravating the fetal resorption rate. We also found that BCG training led to less NK cells and macrophages at the maternal-fetal interface at the early stage of placentation (E9.5), associated with a down-regulation of Ccr3 and Lif mRNA expression. This induced altered leucocyte population profile can be an explanation for the subsequent fetal growth restriction. These data suggest that preconceptional infections-induced trained immunity could influence pregnancy outcomes.
Collapse
Affiliation(s)
- Yipu Dang
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France, Paris, France
| | - Camille Souchet
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France, Paris, France
| | - Fabiana Moresi
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France, Paris, France
| | - Mohamed Jeljeli
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France, Paris, France.,Service d'immunologie Biologique, AP-HP, Hôpital Universitaire Paris Centre, F-75014 Paris, France, Paris, France
| | - Bruno Raquillet
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France, Paris, France
| | - Carole Nicco
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France, Paris, France
| | - Sandrine Chouzenoux
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France, Paris, France
| | - Isabelle Lagoutte
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France, Paris, France
| | - Louis Marcellin
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France, Paris, France.,Département de Gynécologie Obstétrique II et Médecine de la Reproduction, AP-HP, Hôpital Universitaire Paris Centre, F-75014 Paris, France, Paris, France
| | - Frederic Batteux
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France, Paris, France.,Service d'immunologie Biologique, AP-HP, Hôpital Universitaire Paris Centre, F-75014 Paris, France, Paris, France
| | - Ludivine Doridot
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France, Paris, France
| |
Collapse
|
32
|
Sammar M, Siwetz M, Meiri H, Sharabi-Nov A, Altevogt P, Huppertz B. Reduced Placental CD24 in Preterm Preeclampsia Is an Indicator for a Failure of Immune Tolerance. Int J Mol Sci 2021; 22:ijms22158045. [PMID: 34360811 PMCID: PMC8348750 DOI: 10.3390/ijms22158045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION CD24 is a mucin-like glycoprotein expressed at the surface of hematopoietic and tumor cells and was recently shown to be expressed in the first trimester placenta. As it was postulated as an immune suppressor, CD24 may contribute to maternal immune tolerance to the growing fetus. Preeclampsia (PE), a major pregnancy complication, is linked to reduced immune tolerance. Here, we explored the expression of CD24 in PE placenta in preterm and term cases. METHODS Placentas were derived from first and early second trimester social terminations (N = 43), and third trimester normal term delivery (N = 67), preterm PE (N = 18), and preterm delivery (PTD) (N = 6). CD24 expression was determined by quantitative polymerase chain reaction (qPCR) and Western blotting. A smaller cohort included 3-5 subjects each of term and early PE, and term and preterm delivery controls analyzed by immunohistochemistry. RESULTS A higher expression (2.27-fold) of CD24 mRNA was determined in the normal term delivery compared to first and early second trimester cases. The mRNA of preterm PE cases was only higher by 1.31-fold compared to first and early second trimester, while in the age-matched PTD group had a fold increase of 5.72, four times higher compared to preterm PE. The delta cycle threshold (ΔCt) of CD24 mRNA expression in the preterm PE group was inversely correlated with gestational age (r = 0.737) and fetal size (r = 0.623), while correlation of any other group with these parameters was negligible. Western blot analysis revealed that the presence of CD24 protein in placental lysate of preterm PE was significantly reduced compared to term delivery controls (p = 0.026). In immunohistochemistry, there was a reduction of CD24 staining in villous trophoblast in preterm PE cases compared to gestational age-matched PTD cases (p = 0.042). Staining of PE cases at term was approximately twice higher compared to preterm PE cases (p = 0.025) but not different from normal term delivery controls. CONCLUSION While higher CD24 mRNA expression levels were determined for normal term delivery compared to earlier pregnancy stages, this expression level was found to be lower in preterm PE cases, and could be said to be linked to reduced immune tolerance in preeclampsia.
Collapse
Affiliation(s)
- Marei Sammar
- Prof. Ephraim Katzir’s Department of Biotechnology Engineering, ORT Braude College, 51 Snunit St, Karmiel 2161002, Israel
- Correspondence: ; Tel.: +972-(04)-9901769; Fax: +972-(04)990171
| | - Monika Siwetz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6/II, 8010 Graz, Austria; (M.S.); (B.H.)
| | - Hamutal Meiri
- Hylabs, Rehovot and TeleMarpe, 21 Beit El St., Tel Aviv 6908742, Israel;
| | - Adi Sharabi-Nov
- Ziv Medical Center, Safed, and Tel Hai College, Tel Hai 1220800, Israel;
| | - Peter Altevogt
- Skin Cancer Unit, DKFZ and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany;
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6/II, 8010 Graz, Austria; (M.S.); (B.H.)
| |
Collapse
|
33
|
Aplin JD, Jones CJP. Cell dynamics in human villous trophoblast. Hum Reprod Update 2021; 27:904-922. [PMID: 34125187 DOI: 10.1093/humupd/dmab015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Villous cytotrophoblast (vCTB) is a precursor cell population that supports the development of syncytiotrophoblast (vSTB), the high surface area barrier epithelium of the placental villus, and the primary interface between maternal and fetal tissue. In light of increasing evidence that the placenta can adapt to changing maternal environments or, under stress, can trigger maternal disease, we consider what properties of these cells empower them to exert a controlling influence on pregnancy progression and outcome. OBJECTIVE AND RATIONALE How are cytotrophoblast proliferation and differentiation regulated in the human placental villus to allow for the increasing demands of the fetal and environmental challenges and stresses that may arise during pregnancy? SEARCH METHODS PubMed was interrogated using relevant keywords and word roots combining trophoblast, villus/villous, syncytio/syncytium, placenta, stem, transcription factor (and the individual genes), signalling, apoptosis, autophagy (and the respective genes) from 1960 to the present. Since removal of trophoblast from its tissue environment is known to fundamentally change cell growth and differentiation kinetics, research that relied exclusively on cell culture has not been the main focus of this review, though it is mentioned where appropriate. Work on non-human placenta is not systematically covered, though mention is made where relevant hypotheses have emerged. OUTCOMES The synthesis of data from the literature has led to a new hypothesis for vCTB dynamics. We propose that a reversible transition can occur from a reserve population in G0 to a mitotically active state. Cells from the in-cycle population can then differentiate irreversibly to intermediate cells that leave the cycle and turn on genes that confer the capacity to fuse with the overlying vSTB as well as other functions associated with syncytial barrier and transport function. We speculate that alterations in the rate of entry to the cell cycle, or return of cells in the mitotic fraction to G0, can occur in response to environmental challenge. We also review evidence on the life cycle of trophoblast from the time that fusion occurs, and point to gaps in knowledge of how large quantities of fetal DNA arrive in maternal circulation. We critique historical methodology and make a case for research to re-address questions about trophoblast lifecycle and dynamics in normal pregnancy and the common diseases of pre-eclampsia and fetal growth restriction, where altered trophoblast kinetics have long been postulated. WIDER IMPLICATIONS The hypothesis requires experimental testing, moving research away from currently accepted methodology towards a new standard that includes representative cell and tissue sampling, assessment of cell cycle and differentiation parameters, and robust classification of cell subpopulations in villous trophoblast, with due attention to gestational age, maternal and fetal phenotype, disease and outcome.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Carolyn J P Jones
- Maternal and Fetal Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| |
Collapse
|
34
|
Yi L, Zhang S, Feng Y, Wu W, Chang C, Chen D, Chen S, Zhao J, Zhen G. Increased epithelial galectin-13 expression associates with eosinophilic airway inflammation in asthma. Clin Exp Allergy 2021; 51:1566-1576. [PMID: 34075657 DOI: 10.1111/cea.13961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Airway eosinophilic inflammation is a central feature in asthma which is mainly driven by type 2 response. The expression of galectin-13 was up-regulated in a parasitic infection model which is also characterized by type 2 immune response. We hypothesized that galectin-13 may be involved in airway eosinophilic inflammation in asthma. OBJECTIVE To unveil the role of galectin-13 in asthma airway inflammation. METHODS We measured galectin-13 expressions in bronchial brushings, sputum, and plasma of asthma patients (n = 54) and healthy controls (n = 15), and analysed the correlations between galectin-13 expression and airway eosinophilia. We used human bronchial epithelial cell line 16HBE to investigate the possible mechanism by which galectin-13 participates in eosinophilic inflammation. RESULTS The expression of galectin-13 was markedly increased in subjects with asthma compared to controls. Epithelial galectin-13 mRNA levels in asthmatic subjects were strongly correlated with eosinophilic airway inflammation (the percentage of sputum eosinophils, the number of eosinophils in bronchial submucosa and FeNO) and the expression of Th2 signature genes (CLCA1, POSTN and SERPINB2). Inhaled corticosteroid (ICS) treatment reduced plasma galectin-13 levels, and baseline plasma galectin-13 levels reflect the response to ICS treatment. In cultured 16HBE cells, knockdown of galectin-13 suppressed IL-13-stimulated MCP-1 and eotaxin-1 expression by inhibiting the activation of EGFR and ERK. CONCLUSIONS & CLINICAL RELEVANCE Galectin-13 is a novel marker for airway eosinophilia in asthma, and may contribute to allergic airway eosinophilic inflammation by up-regulating the expression of MCP-1 and eotaxin-1. Plasma galectin-13 levels may be useful for predicting responses to ICS treatment.
Collapse
Affiliation(s)
- Lingling Yi
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Shuchen Zhang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Feng
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Wenliang Wu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Chenli Chang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Dian Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Shengchong Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Jianping Zhao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| |
Collapse
|
35
|
Pankiewicz K, Fijałkowska A, Issat T, Maciejewski TM. Insight into the Key Points of Preeclampsia Pathophysiology: Uterine Artery Remodeling and the Role of MicroRNAs. Int J Mol Sci 2021; 22:3132. [PMID: 33808559 PMCID: PMC8003365 DOI: 10.3390/ijms22063132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia affects about 3-8% of all pregnancies. It represents a complex and multifaceted syndrome with at least several potential pathways leading to the development of disease. The main dogma in preeclampsia is the two-stage model of disease. Stage 1 (placental stage) takes place in early pregnancy and is thought to be impaired placentation due to inadequate trophoblastic invasion of the maternal spiral arteries that leads to reduced placental perfusion and release of numerous biological factors causing endothelial damage and development of acute maternal syndrome with systemic multiorgan failure (stage 2-the onset of maternal clinical symptoms, maternal stage). Recently, in the light of the vast body of evidence, two-stage model of preeclampsia has been updated with a few novel pathways leading to clinical manifestation in the second part of pregnancy. This paper reviews current state of knowledge about pathophysiology of preeclampsia and places particular focus on the recent advances in understanding of uterine artery remodeling alterations, as well as the role of microRNAs in preeclampsia.
Collapse
Affiliation(s)
- Katarzyna Pankiewicz
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (T.I.); (T.M.M.)
| | - Anna Fijałkowska
- Department of Cardiology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland;
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (T.I.); (T.M.M.)
| | - Tomasz M. Maciejewski
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (T.I.); (T.M.M.)
| |
Collapse
|
36
|
Wang M, Xu Y, Wang P, Xu Y, Jin P, Wu Z, Qian Y, Bai L, Dong M. Galectin-14 Promotes Trophoblast Migration and Invasion by Upregulating the Expression of MMP-9 and N-Cadherin. Front Cell Dev Biol 2021; 9:645658. [PMID: 33796532 PMCID: PMC8007908 DOI: 10.3389/fcell.2021.645658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/05/2023] Open
Abstract
Galectin-14 is specifically expressed in placental trophoblasts, and its expression is reduced in trophoblasts retrieved from the cervix of women destined to develop early pregnancy loss. However, the roles of galectin-14 in regulating trophoblasts and in the pathogenesis of pregnancy complication have never been investigated. In the current research, we aimed to investigate the roles of galectin-14 in the regulation of trophoblasts. Tissues of the placenta and villi were collected. Primary trophoblasts and human trophoblast cell line HTR-8/SVneo were used. Western blotting and RT-PCR were used to quantify gene expression. The siRNA-mediated galectin-14 knockdown and lentivirus-mediated overexpression were performed to manipulate the gene expression in trophoblasts. Transwell migration and invasion assays were used to evaluate cell migration and invasion capacity. Gelatin zymography was used to determine the gelatinase activity. Galectin-14 was significantly decreased in the villi of early pregnancy loss and the placenta of preeclampsia. Knockdown of galectin-14 in primary trophoblasts inhibited cell migration and invasion, downregulated the expression of matrix metalloproteinase (MMP)-9 and N-cadherin, the activity of MMP-9, and decreased the phosphorylation of Akt. Meanwhile, the overexpression of galectin-14 in HTR-8/SVneo promoted cell migration and invasion, upregulated the expression of MMP-9 and N-cadherin, the activity of MMP-9, and increased the phosphorylation of Akt. Increased Akt phosphorylation promoted cell migration and invasion and upregulated the expression and activity of MMP-9, while decreased Akt phosphorylation inhibited cell migration and invasion and downregulated the expression and activity of MMP-9. Thus, galectin-14 promotes trophoblast migration and invasion by enhancing the expression of MMP-9 and N-cadherin through Akt phosphorylation. The dysregulation of galectin-14 is involved in the pathogenesis of early pregnancy loss and preeclampsia.
Collapse
Affiliation(s)
- Miaomiao Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuqing Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengzhen Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zaigui Wu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeqing Qian
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Long Bai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Jiang W, Chetry M, Pan S, Wang L, Zhu X. Overexpression of Galectin10 Predicts a Better Prognosis in Human Ovarian Cancer. J Cancer 2021; 12:2654-2664. [PMID: 33854625 PMCID: PMC8040711 DOI: 10.7150/jca.54595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
To explore the prognosis of Galectins (LGALS) expression on patients with ovarian cancer, the prognosis of LGALS members in ovarian cancer was retrieved and analyzed by using 'Kaplan-Meier plotter' database. The relation of LGALS to overall survival (OS) was evaluated according to histological subtypes, clinical stages and pathological grade. Quantitative real-time polymerase chain reaction and western blot were used to detect the mRNA and protein expression of LGALS in ovarian cancer and normal ovarian cells. Immunohistochemistry was applied to evaluate the different expression of LGALS between cancer and normal tissues. In total patients with ovarian cancer, LGALS4, LGALS8, LGALS10 and LGALS13 mRNA levels were related to a better OS, and LGALS1 to a worse OS. LGALS1 predicted a worse OS in women with serous, stages III+IV or grade II ovarian cancer. LGALS4 predicted a better OS in patients with endometrioid, stages I+II or grade III ovarian cancer. LGALS10 predicted a longer OS in females with serous, all stages, or grade III cancer. LGALS8 overexpression was related to a better OS in all stages. Notably, mRNA and protein expressions of LGALS4, LGALS10 and LGALS13 were decreased in cancer cells than those in normal cells (P<0.05). Additionally, the immunostaining score of LGALS8, LGALS10 and LGALS13 expression were lower but LGALS1 was higher in caner tissues than those in normal tissues (P<0.001). In conclusion, LGALS10 possibly is a valuable biomarker for predicting a favorable prognosis in patients with ovarian cancer, especially with serous, all stages and grade III cancer.
Collapse
Affiliation(s)
- Wenxiao Jiang
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Mandika Chetry
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shuya Pan
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Longyi Wang
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
38
|
Examining Sex Differences in the Human Placental Transcriptome During the First Fetal Androgen Peak. Reprod Sci 2020; 28:801-818. [PMID: 33150487 DOI: 10.1007/s43032-020-00355-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/11/2020] [Indexed: 01/10/2023]
Abstract
Sex differences in human placenta exist from early pregnancy to term, however, it is unclear whether these differences are driven solely by sex chromosome complement or are subject to differential sex hormonal regulation. Here, we survey the human chorionic villus (CV) transcriptome for sex-linked signatures from 11 to 16 gestational weeks, corresponding to the first window of increasing testis-derived androgen production in male fetuses. Illumina HiSeq RNA sequencing was performed on Lexogen Quantseq 3' libraries derived from CV biopsies (n = 11 females, n = 12 males). Differential expression (DE) was performed to identify sex-linked transcriptional signatures, followed by chromosome mapping, pathway analysis, predicted protein interaction, and post-hoc linear regressions to identify transcripts that trend over time. We observe 322 transcripts DE between male and female CV from 11 to 16 weeks, with 22 transcripts logFC > 1. Contrary to our predictions, the difference between male and female expression of DE autosomal genes was more pronounced at the earlier gestational ages. In females, we found selective upregulation of extracellular matrix components, along with a number of X-linked genes. In males, DE transcripts centered on chromosome 19, with mitochondrial, immune, and pregnancy maintenance-related transcripts upregulated. Among the highest differentially expressed autosomal genes were CCRL2, LGALS13, and LGALS14, which are known to regulate immune cell interactions. Our results provide insight into sex-linked gene expression in late first and early second trimester developing human placenta and lay the groundwork to understand the mechanistic origins of sex differences in prenatal development.
Collapse
|
39
|
Si Y, Yao Y, Jaramillo Ayala G, Li X, Han Q, Zhang W, Xu X, Tai G, Mayo KH, Zhou Y, Su J. Human galectin-16 has a pseudo ligand binding site and plays a role in regulating c-Rel-mediated lymphocyte activity. Biochim Biophys Acta Gen Subj 2020; 1865:129755. [PMID: 33011338 DOI: 10.1016/j.bbagen.2020.129755] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/13/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The structure of human galectin-16 (Gal-16) has yet to be solved, and its function has remained elusive. METHODS X-ray crystallography was used to determine the atomic structures of Gal-16 and two of its mutants. The Gal-16 oligomer state was investigated by gel filtration, its hemagglutination activity was determined along with its ability to bind lactose using ITC. The cellular distribution of EGFP-tagged Gal-16 in various cell lines was also investigated, and the interaction between Gal-16 and c-Rel was assessed by pull-down studies, microscale thermophoresis and immunofluorescence. RESULTS Unlike other galectins, Gal-16 lacks the ability to bind the β-galactoside lactose. Lactose binding could be regained by replacing an arginine (Arg55) with asparagine, as shown in the crystal structures of two lactose-loaded Gal-16 mutants (R55N and R55N/H57R). Gal-16 was also shown to be monomeric by gel filtration, as well as in crystal structures. Thus, this galectin could not induce erythrocyte agglutination. EGFP-tagged Gal-16 was found to be localized mostly in the nucleus of various cell types, and can interact with c-Rel, a member of NF-κB family. CONCLUSIONS Gal-16 exists as a monomer and its ligand binding is significantly different from that of other prototype galectins, suggesting that it has a novel function(s). The interaction between Gal-16 and c-Rel indicates that Gal-16 may regulate signal transduction pathways via the c-Rel hub in B or T cells at the maternal-fetal interface. GENERAL SIGNIFICANCE The present study lays the foundation for further studies into the cellular and physiological functions of Gal-16.
Collapse
Affiliation(s)
- Yunlong Si
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuan Yao
- Media Academy, Jilin Engineering Normal University, Changchun, China
| | - Gabriela Jaramillo Ayala
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xumin Li
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Qiuyu Han
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Wenlu Zhang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
40
|
Szabo S, Karaszi K, Romero R, Toth E, Szilagyi A, Gelencser Z, Xu Y, Balogh A, Szalai G, Hupuczi P, Hargitai B, Krenacs T, Hunyadi-Gulyas E, Darula Z, Kekesi KA, Tarca AL, Erez O, Juhasz G, Kovalszky I, Papp Z, Than NG. Proteomic identification of Placental Protein 1 (PP1), PP8, and PP22 and characterization of their placental expression in healthy pregnancies and in preeclampsia. Placenta 2020; 99:197-207. [PMID: 32747003 PMCID: PMC8314955 DOI: 10.1016/j.placenta.2020.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Placental Protein 1 (PP1), PP8, and PP22 were isolated from the placenta. Herein, we aimed to identify PP1, PP8, and PP22 proteins and their placental and trophoblastic expression patterns to reveal potential involvement in pregnancy complications. METHODS We analyzed PP1, PP8, and PP22 proteins with LC-MS. We compared the placental behaviors of PP1, PP8, and PP22 to the predominantly placenta-expressed PP5/TFPI-2. Placenta-specificity scores were generated from microarray data. Trophoblasts were isolated from healthy placentas and differentiated; total RNA was isolated and subjected to microarray analysis. We assigned the placentas to the following groups: preterm controls, early-onset preeclampsia, early-onset preeclampsia with HELLP syndrome, term controls, and late-onset preeclampsia. After histopathologic examination, placentas were used for tissue microarray construction, immunostaining with anti-PP1, anti-PP5, anti-PP8, or anti-PP22 antibodies, and immunoscoring. RESULTS PP1, PP8, and PP22 were identified as 'nicotinate-nucleotide pyrophosphorylase', 'serpin B6', and 'protein disulfide-isomerase', respectively. Genes encoding PP1, PP8, and PP22 are not predominantly placenta-expressed, in contrast with PP5. PP1, PP8, and PP22 mRNA expression levels did not increase during trophoblast differentiation, in contrast with PP5. PP1, PP8, and PP22 immunostaining were detected primarily in trophoblasts, while PP5 expression was restricted to the syncytiotrophoblast. The PP1 immunoscore was higher in late-onset preeclampsia, while the PP5 immunoscore was higher in early-onset preeclampsia. DISCUSSION PP1, PP8, and PP22 are expressed primarily in trophoblasts but do not have trophoblast-specific regulation or functions. The distinct dysregulation of PP1 and PP5 expression in either late-onset or early-onset preeclampsia reflects different pathophysiological pathways in these preeclampsia subsets.
Collapse
Affiliation(s)
- Szilvia Szabo
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary.
| | - Katalin Karaszi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Detroit Medical Center, Detroit, MI, USA; Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Eszter Toth
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andras Szilagyi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrea Balogh
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gabor Szalai
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Beata Hargitai
- West Midlands Perinatal Pathology Centre, Cellular Pathology Department, Birmingham Women's and Children's NHS FT, Birmingham, United Kingdom
| | - Tibor Krenacs
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Zsuzsanna Darula
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Katalin A Kekesi
- Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary; Laboratory of Proteomics, Institute of Biology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Maternity Department "D," Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Gabor Juhasz
- Laboratory of Proteomics, Institute of Biology, ELTE Eotvos Lorand University, Budapest, Hungary; CRU Hungary Ltd., God, Hungary
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.
| |
Collapse
|
41
|
Terstappen F, Lely AT. Galectin Family in Placental Insufficiency Syndromes: Overcoming Translational Hurdles Towards a Therapy? Hypertension 2020; 76:1087-1089. [PMID: 32903108 DOI: 10.1161/hypertensionaha.120.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Fieke Terstappen
- From the University Medical Center Utrecht, Wilhelmina Children's Hospital, Department of Obstetrics and the Department for Developmental Origins of Disease (DDOD), Utrecht, the Netherlands
| | - A Titia Lely
- From the University Medical Center Utrecht, Wilhelmina Children's Hospital, Department of Obstetrics and the Department for Developmental Origins of Disease (DDOD), Utrecht, the Netherlands
| |
Collapse
|
42
|
Idelson A, Meiri H, Wertheimer A, Sammar M, Tenenbaum-Gavish K, Shufaro Y, Ben-Haroush A. New predictors of early impaired placentation preceding miscarriage before 10 weeks of gestation in IVF pregnancies: A prospective study. Placenta 2020; 100:30-34. [PMID: 32814235 DOI: 10.1016/j.placenta.2020.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION In a recent study of 10,011 pregnant women, 95% of miscarriages occurred before routine ultrasound scan at 11-14 weeks. Our study aimed to identify early first trimester parameters which may predict miscarriage before 10 weeks of gestation for in vitro fertilization (IVF) pregnancies. METHODS A cohort of 115 healthy IVF patients with a singleton viable embryo in early first trimester were studied in a tertiary university-affiliated medical center (April 2017-June 2018). Calculations included gestational age (GA); ultrasound evaluation of crown-rump length (CRL), mean gestational sac diameter (GSD) and volume (GSV), mean yolk sac diameter (YSD) and volume (YSV); fetal heart rate (FHR), mean uterine arteries pulsatility index (UtA-PI); and maternal blood placental protein 13 (PP13) levels. Patients were divided into three groups by GA; and early miscarriage versus ongoing pregnancy after GA 10 weeks. RESULTS Early fetal loss occurred in 14.8% of patients; miscarriage group had higher discrepancy between calculated and measured GA (P < 0.001), lower GSD and GSV (P = 0.005 and P = 0.02, respectively), significantly different YSD and YSV, and lower GSD/YSD and GSV/YSV ratios (P = 0.001 and P = 0.003, respectively). UtA-PI/CRL ratio was higher in patients with miscarriage at GA 46-48 days and GA >48 days (P = 0.034 and P = 0.026, respectively). PP13/CRL ratio was higher in patients with miscarriage at GA >48 days (P = 0.041). DISCUSSION In IVF pregnancies with live embryo at first ultrasound scan, high UtA-PI/CRL and maternal blood PP13/CRL ratios may indicate impaired placentation preceded early pregnancy loss. A larger cohort is needed to further verify these predictions.
Collapse
Affiliation(s)
- Ana Idelson
- Obstetrics and Gynecology Ultrasound Unit, Helen Schneider Hospital for Women, Rabin Medical Center-Beilinson Hospital, Petach Tikva, 4941492, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | | | - Avital Wertheimer
- IVF and Infertility Unit, Helen Schneider Hospital for Women, Rabin Medical Center-Beilinson Hospital, Petach Tikva, 4941492, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Marei Sammar
- Ephraim Katzir Department of Biotechnology, ORT Braude College, Karmiel, 21982, Israel.
| | - Kineret Tenenbaum-Gavish
- Obstetrics and Gynecology Ultrasound Unit, Helen Schneider Hospital for Women, Rabin Medical Center-Beilinson Hospital, Petach Tikva, 4941492, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Yoel Shufaro
- IVF and Infertility Unit, Helen Schneider Hospital for Women, Rabin Medical Center-Beilinson Hospital, Petach Tikva, 4941492, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Avi Ben-Haroush
- IVF and Infertility Unit, Helen Schneider Hospital for Women, Rabin Medical Center-Beilinson Hospital, Petach Tikva, 4941492, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
43
|
Tazhitdinova R, Timoshenko AV. The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells 2020; 9:cells9081792. [PMID: 32731422 PMCID: PMC7465113 DOI: 10.3390/cells9081792] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Galectins are a family of soluble β-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. Human cells express twelve out of sixteen recognized mammalian galectin genes and their expression profiles are very different between cell types and tissues. In this review, we summarize the current knowledge on the changes in the expression of individual galectins at mRNA and protein levels in different types of differentiating cells and the effects of recombinant galectins on cellular differentiation. A new model of galectin regulation is proposed considering the change in O-GlcNAc homeostasis between progenitor/stem cells and mature differentiated cells. The recognition of galectins as regulatory factors controlling cell differentiation and self-renewal is essential for developmental and cancer biology to develop innovative strategies for prevention and targeted treatment of proliferative diseases, tissue regeneration, and stem-cell therapy.
Collapse
|
44
|
Ji X, Liu X, Li X, Zhou S, Xiu Y. Characterization and functional study of Galectin3 from Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2020; 102:73-81. [PMID: 32272257 DOI: 10.1016/j.fsi.2020.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Galectins belong to the β-galactoside binding protein family and participate in both innate and acquired immunity. In this study, we described the molecular characteristics of Galectin3 gene from Japanese flounder (Paralichthys olivaceus), designed as PoGalectin3. Its open reading frame was 1128 bp, encoding a protein composed of 375 amino acids. PoGalectin3 belongs to chimeric galactose agglutinin, which contains a C-terminal carbohydrate recognition domain (CRD) (L250-P372), and its N-terminal is rich in proline (P) and glycine (G). Multiple sequence alignment and phylogenetic tree showed that PoGalectin3 was conservative in different aquatic animals. Tissue distribution confirmed that PoGalectin3 showed significantly highest expression in brain, moderate expression in liver, intestine and muscle. PoGalectin3 was significantly increased post infection with Edwardsiella tarda from intestine tissue of P. olivaceus. In order to investigate the binding ability of PoGalectin3 to pathogen-associated molecular patterns, the recombinant PoGalectin3 protein (rPoGalectin3) was successfully expressed and purified, and an Enzyme linked immunosorbent assay (ELISA) experiment was performed. ELISA refers to the qualitative and quantitative detection method of immune response by combining soluble antigen or antibody with solid-phase carrier. It was confirmed that rPoGalectin3 exhibited high affinity to lipopolysaccharide and peptidoglycan. The rPoGalectin3 also exhibited a concentration dependent binding capacity with Gram-positive bacteria (Bacillus pumilus, Bacillus subtilis, Bacillus cereus) and Gram-negative bacteria (Aeromonas salmonicida, E. tarda, Vibrio vulnificus). In addition, the results of microbial agglutination experiment showed that rPoGalectin3 could agglutinate Gram-positive bacteria (B. pumilus, B. subtilis) and Gram-negative bacteria (A. salmonicida, E. tarda) in the presence of Ca2+. In conclusion, this research laid an important foundation for the specific function analysis of PoGalectin3, which provide theoretical basis for the prevention and control of aquatic diseases.
Collapse
Affiliation(s)
- Xinxin Ji
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiaofei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xiaojing Li
- Department of Implantology, Affiliated Hospital of Qingdao University, College of Stomatology, Qingdao University, Qingdao, 266071, China
| | - Shun Zhou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
45
|
Blois SM, Verlohren S, Wu G, Clark G, Dell A, Haslam SM, Barrientos G. Role of galectin-glycan circuits in reproduction: from healthy pregnancy to preterm birth (PTB). Semin Immunopathol 2020; 42:469-486. [PMID: 32601855 PMCID: PMC7508936 DOI: 10.1007/s00281-020-00801-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Growing evidence suggests that galectins, an evolutionarily conserved family of glycan-binding proteins, fulfill key roles in pregnancy including blastocyst implantation, maternal-fetal immune tolerance, placental development, and maternal vascular expansion, thereby establishing a healthy environment for the growing fetus. In this review, we comprehensively present the function of galectins in shaping cellular circuits that characterize a healthy pregnancy. We describe the current understanding of galectins in term and preterm labor and discuss how the galectin-glycan circuits contribute to key immunological pathways sustaining maternal tolerance and preventing microbial infections. A deeper understanding of the glycoimmune pathways regulating early events in preterm birth could offer the broader translational potential for the treatment of this devastating syndrome.
Collapse
Affiliation(s)
- Sandra M Blois
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, AG GlycoImmunology, Berlin, Germany. .,Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stefan Verlohren
- Department of Obstetrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gang Wu
- Department of Life Sciences, Imperial College London, London, UK
| | - Gary Clark
- Department of Obstetrics, Gynaecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
46
|
Krop J, Heidt S, Claas FHJ, Eikmans M. Regulatory T Cells in Pregnancy: It Is Not All About FoxP3. Front Immunol 2020; 11:1182. [PMID: 32655556 PMCID: PMC7324675 DOI: 10.3389/fimmu.2020.01182] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
In pregnancy, the semi-allogeneic fetus needs to be tolerated by the mother's immune system. Regulatory T cells (Tregs) play a prominent role in this process. Novel technologies allow for in-depth phenotyping of previously unidentified immune cell subsets, which has resulted in the appreciation of a vast heterogeneity of Treg subsets. Similar to other immunological events, there appears to be great diversity within the Treg population during pregnancy, both at the maternal-fetal interface as in the peripheral blood. Different Treg subsets have distinct phenotypes and various ways of functioning. Furthermore, the frequency of individual Treg subsets varies throughout gestation and is altered in aberrant pregnancies. This suggests that distinct Treg subsets play a role at different time points of gestation and that their role in maintaining healthy pregnancy is crucial, as reflected for instance by their reduced frequency in women with recurrent pregnancy loss. Since pregnancy is essential for the existence of mankind, multiple immune regulatory mechanisms and cell types are likely at play to assure successful pregnancy. Therefore, it is important to understand the complete microenvironment of the decidua, preferably in the context of the whole immune cell repertoire of the pregnant woman. So far, most studies have focused on a single mechanism or cell type, which often is the FoxP3 positive regulatory T cell when studying immune regulation. In this review, we instead focus on the contribution of FoxP3 negative Treg subsets to the decidual microenvironment and their possible role in pregnancy complications. Their phenotype, function, and effect in pregnancy are discussed.
Collapse
Affiliation(s)
- Juliette Krop
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Eikmans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
47
|
Mohme M, Maire CL, Schliffke S, Joosse SA, Alawi M, Matschke J, Schüller U, Dierlamm J, Martens T, Pantel K, Riethdorf S, Lamszus K, Westphal M. Molecular profiling of an osseous metastasis in glioblastoma during checkpoint inhibition: potential mechanisms of immune escape. Acta Neuropathol Commun 2020; 8:28. [PMID: 32151286 PMCID: PMC7063778 DOI: 10.1186/s40478-020-00906-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022] Open
Abstract
Peripheral metastases of glioblastoma (GBM) are very rare despite the ability of GBM cells to pass through the blood-brain barrier and be disseminated through the peripheral blood. Here, we describe a detailed genetic and immunological characterization of a GBM metastasis in the skeleton, which occurred during anti-PD-1 immune checkpoint therapy. We performed whole genome sequencing (WGS) and 850 K methylation profiling of the primary and recurrent intracranial GBM as well as one of the bone metastases. Copy number alterations (CNA) and mutational profiles were compared to known genomic alterations in the TCGA data base. In addition, immunophenotyping of the peripheral blood was performed. The patient who was primarily diagnosed with IDH-wildtype GBM. After the resection of the first recurrence, progressive intracranial re-growth was again detected, and chemotherapy was replaced by PD-1 checkpoint inhibition, which led to a complete intracranial remission. Two months later MR-imaging revealed multiple osseous lesions. Biopsy confirmed the GBM origin of the skeleton metastases. Immunophenotyping reflected the effective activation of a peripheral T-cell response, with, however, increase of regulatory T cells during disease progression. WGS sequencing demonstrated distinct genomic alterations of the GBM metastasis, with gains along chromosomes 3 and 9 and losses along chromosome 4, 10, and 11. Mutational analysis showed mutations in potentially immunologically relevant regions. Additionally, we correlated tumour-infiltrating lymphocyte and microglia presence to the occurrence of circulating tumour cells (CTCs) in a larger cohort and found a decreased infiltration of cytotoxic T cells in patients positive for CTCs. This study exemplifies that the tumour microenvironment may dictate the response to immune checkpoint therapy. In addition, our study highlights the fact that despite an effective control of intracranial GBM, certain tumour clones have the ability to evade the tumour-specific T-cell response and cause progression even outside of the CNS.
Collapse
|
48
|
Identification of Structural Variation in Chimpanzees Using Optical Mapping and Nanopore Sequencing. Genes (Basel) 2020; 11:genes11030276. [PMID: 32143403 PMCID: PMC7140787 DOI: 10.3390/genes11030276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts to comprehensively characterize great ape genetic diversity using short-read sequencing and single-nucleotide variants have led to important discoveries related to selection within species, demographic history, and lineage-specific traits. Structural variants (SVs), including deletions and inversions, comprise a larger proportion of genetic differences between and within species, making them an important yet understudied source of trait divergence. Here, we used a combination of long-read and -range sequencing approaches to characterize the structural variant landscape of two additional Pan troglodytes verus individuals, one of whom carries 13% admixture from Pan troglodytes troglodytes. We performed optical mapping of both individuals followed by nanopore sequencing of one individual. Filtering for larger variants (>10 kbp) and combined with genotyping of SVs using short-read data from the Great Ape Genome Project, we identified 425 deletions and 59 inversions, of which 88 and 36, respectively, were novel. Compared with gene expression in humans, we found a significant enrichment of chimpanzee genes with differential expression in lymphoblastoid cell lines and induced pluripotent stem cells, both within deletions and near inversion breakpoints. We examined chromatin-conformation maps from human and chimpanzee using these same cell types and observed alterations in genomic interactions at SV breakpoints. Finally, we focused on 56 genes impacted by SVs in >90% of chimpanzees and absent in humans and gorillas, which may contribute to chimpanzee-specific features. Sequencing a greater set of individuals from diverse subspecies will be critical to establish the complete landscape of genetic variation in chimpanzees.
Collapse
|
49
|
Vokalova L, Balogh A, Toth E, Van Breda SV, Schäfer G, Hoesli I, Lapaire O, Hahn S, Than NG, Rossi SW. Placental Protein 13 (Galectin-13) Polarizes Neutrophils Toward an Immune Regulatory Phenotype. Front Immunol 2020; 11:145. [PMID: 32117288 PMCID: PMC7028707 DOI: 10.3389/fimmu.2020.00145] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Termed as galectin-13, placental protein 13 (PP13) is exclusively expressed in the placenta of anthropoid primates. Research on PP13 in normal and pathologic pregnancies show alteration of PP13 concentrations in pregnancy affected by preeclampsia or gestational diabetes. Galectins are also described as potent immunomodulators, and PP13 regulates T cell function in the placenta. Therefore, this study aims to investigate the effects of PP13 on neutrophils; a cell type often ignored in pregnancy, but present in the uterus and placenta from the early stages of pregnancy. Since neutrophil function is dysregulated during pathologic pregnancies, a link between PP13 and neutrophil activity is possible. We determined that PP13 reduces the apoptosis rate in neutrophils. Also, PP13 increases the expression of PD-L1 and production of HGF, TNF-α, reactive oxygen species (ROS), and MMP-9 in these cells. This phenotype resembles one observed in permissive tumor neutrophils; able to sustain tissue and vessel growth, and inhibit T cell activation. At the same time, PP13 does not alter all neutrophil functions, i.e., extrusion of neutrophil extracellular traps, degranulation, phagocytosis, and ROS production following bacterial exposure. PP13 seems to play an essential role in regulating the activity of neutrophils in the placenta by polarizing them toward a placental-growth-permissive phenotype.
Collapse
Affiliation(s)
- Lenka Vokalova
- Prenatal Medicine, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Shane V Van Breda
- Prenatal Medicine, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Günther Schäfer
- Prenatal Medicine, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Irene Hoesli
- Department of Antenatal Care, University Women's Hospital Basel, Basel, Switzerland
| | - Olav Lapaire
- Department of Antenatal Care, University Women's Hospital Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Prenatal Medicine, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Simona W Rossi
- Prenatal Medicine, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
50
|
Zhao L, Sun L, Zheng X, Liu J, Zheng R, Yang R, Wang Y. In vitro fertilization and embryo transfer alter human placental function through trophoblasts in early pregnancy. Mol Med Rep 2020; 21:1897-1909. [PMID: 32319609 PMCID: PMC7057775 DOI: 10.3892/mmr.2020.10971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022] Open
Abstract
The mechanism underlying the potential risk associated with in vitro fertilization and embryo transfer (IVF‑ET) has been previously investigated but remains to be fully elucidated. As the placenta is a critical organ that sustains and protects the fetus, this is an important area of research. The aim of the present study was to determine the difference in trophoblast cell function in the first trimester between naturally conceived pregnancies and pregnancies achieved via IVF‑ET therapy. A total of 20 placental villi in first trimester samples were obtained through fetal bud aspiration from patients undergoing IVF‑ET due to oviductal factors between January 2016 and August 2018. In addition, a further 20 placental villi were obtained from those who naturally conceived and had normal pregnancies but were undergoing artificial abortion; these patients were recruited as the controls. Reverse transcription‑quantitative (RT‑q)PCR and semi‑quantitative immunohistochemical methods were used to detect the mRNA and protein expression of α‑fetoprotein (AFP), vascular endothelial growth factor (VEGF), transferrin (TF), tubulin β1 class VI (TUBB1), metallothionein 1G (MT1G), BCL2, glial cells missing transcription factor 1 (GCM1), epidermal growth factor (EGF) receptor (EGFR), PTEN and leukocyte associated immunoglobulin like receptor 2 (LAIR2) in villi from both groups. Differentially expressed genes were analyzed using Search Tool for the Retrieval of Interacting Genes, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted. The RT‑qPCR data revealed that the mRNA expression levels of AFP, VEGF and TF were significantly higher in the IVF‑ET group than in the control group (P<0.05), and those of TUBB1, MT1G, BCL2, GCM1, EGFR, PTEN and LAIR2 were significantly lower (P<0.05). These gene products were expressed in the placental villus tissues, either in the cytoplasm, or in the membrane of syncytiotrophoblast and cytotrophoblast cells. The immunohistochemistry results were in line with those observed using RT‑qPCR. KEGG pathway analysis indicated that the trophoblast cell function of the IVF‑ET group in the first trimester was different from naturally conceived pregnancies with regard to proliferation, invasion, apoptosis and vascular development. The IVF‑ET process may trigger adaptive placental responses, and these compensatory mechanisms could be a risk for certain diseases later in life.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Lifang Sun
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Xiuli Zheng
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Jingfang Liu
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Rong Zheng
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Rui Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|