1
|
Mandaric S, Friberg H, Saez-Llorens X, Borja-Tabora C, Biswal S, Escudero I, Faccin A, Gottardo R, Brose M, Roubinis N, Fladager D, DeAntonio R, Dimero JAL, Montenegro N, Folschweiller N, Currier JR, Sharma M, Tricou V. Long term T cell response and safety of a tetravalent dengue vaccine in healthy children. NPJ Vaccines 2024; 9:192. [PMID: 39420169 PMCID: PMC11487277 DOI: 10.1038/s41541-024-00967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
As robust cellular responses are important for protection against dengue, this phase 2 study evaluated the kinetics and phenotype of T cell responses induced by TAK-003, a live-attenuated tetravalent dengue vaccine, in 4-16-year-old living in dengue-endemic countries (NCT02948829). Two hundred participants received TAK-003 on Days 1 and 90. Interferon-gamma (IFN-γ) enzyme-linked immunospot assay [ELISPOT] and intracellular cytokine staining were used to analyze T cell response and functionality, using peptide pools representing non-structural (NS) proteins NS3 and NS5 matching DENV-1, -2, -3, and -4 and DENV-2 NS1. One month after the second TAK-003 dose (Day 120), IFN-γ ELISPOT T cell response rates against any peptide pool were 97.1% (95% CI: 93.4% to 99.1%), and similar for baseline dengue seropositive (96.0%) and seronegative (98.6%) participants. IFN-γ ELISPOT T cell response rates at Day 120 were 79.8%, 90.2%, 77.3%, and 74.0%, against DENV-1, -2, -3, and -4, respectively, and remained elevated through 3 years post-vaccination. Multifunctional CD4 and CD8 T cell responses against DENV-2 NS peptides were observed, independent of baseline serostatus: CD8 T cells typically secreted IFN-γ and TNF-α whereas CD4 T cells secreted ≥ 2 of IFN-γ, IL-2 and TNF-α cytokines. NAb titers and seropositivity rates remained substantially elevated through 3 years post-vaccination. Overall, TAK-003 was well tolerated and elicited durable T cell responses against all four DENV serotypes irrespective of baseline serostatus in children and adolescents aged 4-16 years living in dengue-endemic countries. TAK-003-elicited CD4 and CD8 T cells were multifunctional and persisted up to 3 years post-vaccination.
Collapse
Affiliation(s)
- Sanja Mandaric
- Takeda Pharmaceuticals International AG, Zurich, Switzerland.
| | - Heather Friberg
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Xavier Saez-Llorens
- Hospital del Niño Dr. José Renán Esquivel, Panama City, Panama
- Centro de Vacunación Internacional Cevaxin, Panama City, Panama
- Sistema Nacional de Investigación SENACYT, Panama City, Panama
| | | | | | | | - Alice Faccin
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Raphael Gottardo
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Manja Brose
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | - Vianney Tricou
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| |
Collapse
|
2
|
Chawla YM, Bajpai P, Saini K, Reddy ES, Patel AK, Murali-Krishna K, Chandele A. Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates. Viruses 2024; 16:730. [PMID: 38793612 PMCID: PMC11126086 DOI: 10.3390/v16050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation.
Collapse
Affiliation(s)
- Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| |
Collapse
|
3
|
Daniels RR, Taylor RS, Robledo D, Macqueen DJ. Single cell genomics as a transformative approach for aquaculture research and innovation. REVIEWS IN AQUACULTURE 2023; 15:1618-1637. [PMID: 38505116 PMCID: PMC10946576 DOI: 10.1111/raq.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/21/2024]
Abstract
Single cell genomics encompasses a suite of rapidly maturing technologies that measure the molecular profiles of individual cells within target samples. These approaches provide a large up-step in biological information compared to long-established 'bulk' methods that profile the average molecular profiles of all cells in a sample, and have led to transformative advances in understanding of cellular biology, particularly in humans and model organisms. The application of single cell genomics is fast expanding to non-model taxa, including aquaculture species, where numerous research applications are underway with many more envisaged. In this review, we highlight the potential transformative applications of single cell genomics in aquaculture research, considering barriers and potential solutions to the broad uptake of these technologies. Focusing on single cell transcriptomics, we outline considerations for experimental design, including the essential requirement to obtain high quality cells/nuclei for sequencing in ectothermic aquatic species. We further outline data analysis and bioinformatics considerations, tailored to studies with the under-characterized genomes of aquaculture species, where our knowledge of cellular heterogeneity and cell marker genes is immature. Overall, this review offers a useful source of knowledge for researchers aiming to apply single cell genomics to address biological challenges faced by the global aquaculture sector though an improved understanding of cell biology.
Collapse
Affiliation(s)
- Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Richard S. Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| |
Collapse
|
4
|
Nemirov K, Authié P, Souque P, Moncoq F, Noirat A, Blanc C, Bourgine M, Majlessi L, Charneau P. Preclinical proof of concept of a tetravalent lentiviral T-cell vaccine against dengue viruses. Front Immunol 2023; 14:1208041. [PMID: 37654495 PMCID: PMC10466046 DOI: 10.3389/fimmu.2023.1208041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Dengue virus (DENV) is responsible for approximately 100 million cases of dengue fever annually, including severe forms such as hemorrhagic dengue and dengue shock syndrome. Despite intensive vaccine research and development spanning several decades, a universally accepted and approved vaccine against dengue fever has not yet been developed. The major challenge associated with the development of such a vaccine is that it should induce simultaneous and equal protection against the four DENV serotypes, because past infection with one serotype may greatly increase the severity of secondary infection with a distinct serotype, a phenomenon known as antibody-dependent enhancement (ADE). Using a lentiviral vector platform that is particularly suitable for the induction of cellular immune responses, we designed a tetravalent T-cell vaccine candidate against DENV ("LV-DEN"). This vaccine candidate has a strong CD8+ T-cell immunogenicity against the targeted non-structural DENV proteins, without inducing antibody response against surface antigens. Evaluation of its protective potential in the preclinical flavivirus infection model, i.e., mice knockout for the receptor to the type I IFN, demonstrated its significant protective effect against four distinct DENV serotypes, based on reduced weight loss, viremia, and viral loads in peripheral organs of the challenged mice. These results provide proof of concept for the use of lentiviral vectors for the development of efficient polyvalent T-cell vaccine candidates against all DENV serotypes.
Collapse
Affiliation(s)
- Kirill Nemirov
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pintado Silva J, Fernandez-Sesma A. Challenges on the development of a dengue vaccine: a comprehensive review of the state of the art. J Gen Virol 2023; 104:001831. [PMID: 36857199 PMCID: PMC10228381 DOI: 10.1099/jgv.0.001831] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Dengue virus (DENV) is the mosquito-borne virus of greatest human health concern. There are four serotypes of DENV (1-4) that co-circulate in endemic areas. Each serotype of DENV is individually capable of causing the full spectrum of disease, ranging from self-resolving dengue fever to the more severe dengue haemorrhagic fever (DHF) or dengue shock syndrome (DSS). Based on data published by the CDC, one in four people who become infected with dengue will become ill. Of those that do develop symptomology, the symptoms can range from mild to severe. Symptoms can vary from rash, ocular aches and pains to more intense symptoms in the manifestation of severe dengue. Roughly, 1 in 20 people who become ill will develop severe dengue, which can result in shock, internal bleeding and death. There is currently no specific treatment for dengue and only one licensed vaccine (Dengvaxia) for children 9 through 16 years of age in just a few countries. Despite its licensure for clinical use, Dengvaxia has performed with low efficacy in children and dengue naïve individuals and critically has resulted in increased risk of developing severe dengue in young, vaccinated recipients. Currently, there are various novel strategies for the development of a dengue vaccine. In this review we have conducted a detailed overview of the DENV vaccine landscape, focusing on nine vaccines in the pipeline to provide a comprehensive overview of the most state-of-the-art developments in strategies for vaccines against DENV.
Collapse
Affiliation(s)
- Jessica Pintado Silva
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
| |
Collapse
|
6
|
DeMaso C, Sharma M. Reply to de Silva and White. J Infect Dis 2022; 227:165-166. [PMID: 36285767 PMCID: PMC9796160 DOI: 10.1093/infdis/jiac425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Christina DeMaso
- Correspondence: Christina DeMaso, MSc., Takeda Vaccines, 40 Landsdowne Street, Boston, MA 02139 ()
| | | |
Collapse
|
7
|
Waickman AT, Lu JQ, Fang H, Waldran MJ, Gebo C, Currier JR, Ware L, Van Wesenbeeck L, Verpoorten N, Lenz O, Tambuyzer L, Herrera-Taracena G, Van Loock M, Endy TP, Thomas SJ. Evolution of inflammation and immunity in a dengue virus 1 human infection model. Sci Transl Med 2022; 14:eabo5019. [DOI: 10.1126/scitranslmed.abo5019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dengue virus (DENV) infections are major causes of morbidity and mortality throughout the tropics and subtropics. More than 400 million infections are estimated to occur every year, resulting in nearly 100 million symptomatic infections and more than 20,000 deaths. Early immune response kinetics to infection remain unclear, in large part due to the variable incubation period exhibited by the DENVs after introduction into a susceptible host. To fill this knowledge gap, we performed a comprehensive virologic and immunologic analysis of individuals experimentally infected with the underattenuated DENV-1 strain 45AZ5. This analysis captured both the kinetics and composition of the innate, humoral, and cellular immune responses elicited by experimental DENV-1 infection, as well as virologic and clinical features. We observed a robust DENV-specific immunoglobulin A (IgA) antibody response that manifested between the appearance of DENV-specific IgM and IgG in all challenged individuals, as well as the presence of a non-neutralizing/NS1-specific antibody response that was delayed relative to the appearance of DENV virion–specific humoral immunity. RNA sequencing analysis revealed discrete and temporally restricted gene modules that correlated with acute viremia and the induction of adaptive immunity. Our analysis provides a detailed description, in time and space, of the evolving matrix of DENV-elicited human inflammation and immunity and reveals several previously unappreciated immunological aspects of primary DENV-1 infection that can inform countermeasure development and evaluation.
Collapse
Affiliation(s)
- Adam T. Waickman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Joseph Q. Lu
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - HengSheng Fang
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Mitchell J. Waldran
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Chad Gebo
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey R. Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Lisa Ware
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | - Timothy P. Endy
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Stephen J. Thomas
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
8
|
Odio CD, Katzelnick LC. 'Mix and Match' vaccination: Is dengue next? Vaccine 2022; 40:6455-6462. [PMID: 36195473 PMCID: PMC9526515 DOI: 10.1016/j.vaccine.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/27/2023]
Abstract
The severity of the COVID-19 pandemic and the development of multiple SARS-CoV-2 vaccines expedited vaccine 'mix and match' trials in humans and demonstrated the benefits of mixing vaccines that vary in formulation, strength, and immunogenicity. Heterologous sequential vaccination may be an effective approach for protecting against dengue, as this strategy would mimic the natural route to broad dengue protection and may overcome the imbalances in efficacy of the individual leading live attenuated dengue vaccines. Here we review 'mix and match' vaccination trials against SARS-CoV-2, HIV, and dengue virus and discuss the possible advantages and concerns of future heterologous immunization with the leading dengue vaccines. COVID-19 trials suggest that priming with a vaccine that induces strong cellular responses, such as an adenoviral vectored product, followed by heterologous boost may optimize T cell immunity. Moreover, heterologous vaccination may induce superior humoral immunity compared to homologous vaccination when the priming vaccine induces a narrower response than the boost. The HIV trials reported that heterologous vaccination was associated with broadened antigen responses and that the sequence of the vaccines significantly impacts the regimen's immunogenicity and efficacy. In heterologous dengue immunization trials, where at least one dose was with a live attenuated vaccine, all reported equivalent or increased immunogenicity compared to homologous boost, although one study reported increased reactogenicity. The three leading dengue vaccines have been evaluated for safety and efficacy in thousands of study participants but not in combination in heterologous dengue vaccine trials. Various heterologous regimens including different combinations and sequences should be trialed to optimize cellular and humoral immunity and the breadth of the response while limiting reactogenicity. A blossoming field dedicated to more accurate correlates of protection and enhancement will help confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Camila D Odio
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States.
| |
Collapse
|
9
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
10
|
Ura T, Takeuchi M, Kawagoe T, Mizuki N, Okuda K, Shimada M. Current Vaccine Platforms in Enhancing T-Cell Response. Vaccines (Basel) 2022; 10:1367. [PMID: 36016254 PMCID: PMC9413345 DOI: 10.3390/vaccines10081367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
The induction of T cell-mediated immunity is crucial in vaccine development. The most effective vaccine is likely to employ both cellular and humoral immune responses. The efficacy of a vaccine depends on T cells activated by antigen-presenting cells. T cells also play a critical role in the duration and cross-reactivity of vaccines. Moreover, pre-existing T-cell immunity is associated with a decreased severity of infectious diseases. Many technical and delivery platforms have been designed to induce T cell-mediated vaccine immunity. The immunogenicity of vaccines is enhanced by controlling the kinetics and targeted delivery. Viral vectors are attractive tools that enable the intracellular expression of foreign antigens and induce robust immunity. However, it is necessary to select an appropriate viral vector considering the existing anti-vector immunity that impairs vaccine efficacy. mRNA vaccines have the advantage of rapid and low-cost manufacturing and have been approved for clinical use as COVID-19 vaccines for the first time. mRNA modification and nanomaterial encapsulation can help address mRNA instability and translation efficacy. This review summarizes the T cell responses of vaccines against various infectious diseases based on vaccine technologies and delivery platforms and discusses the future directions of these cutting-edge platforms.
Collapse
Affiliation(s)
- Takehiro Ura
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Tatsukata Kawagoe
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Department of Ophthalmology and Visual Science, School of Medicine, St. Marianna University, Kawazaki 216-8511, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
11
|
Tricou V, Gottardo R, Egan MA, Clement F, Leroux-Roels G, Sáez-Llorens X, Borkowski A, Wallace D, Dean HJ. Characterization of the cell-mediated immune response to Takeda’s live-attenuated tetravalent dengue vaccine in adolescents participating in a phase 2 randomized controlled trial conducted in a dengue-endemic setting. Vaccine 2022; 40:1143-1151. [DOI: 10.1016/j.vaccine.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/25/2022]
|
12
|
Single dose of chimeric dengue-2/Zika vaccine candidate protects mice and non-human primates against Zika virus. Nat Commun 2021; 12:7320. [PMID: 34916486 PMCID: PMC8677809 DOI: 10.1038/s41467-021-27578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
The development of a safe and effective Zika virus (ZIKV) vaccine has become a global health priority since the widespread epidemic in 2015-2016. Based on previous experience in using the well-characterized and clinically proven dengue virus serotype-2 (DENV-2) PDK-53 vaccine backbone for live-attenuated chimeric flavivirus vaccine development, we developed chimeric DENV-2/ZIKV vaccine candidates optimized for growth and genetic stability in Vero cells. These vaccine candidates retain all previously characterized attenuation phenotypes of the PDK-53 vaccine virus, including attenuation of neurovirulence for 1-day-old CD-1 mice, absence of virulence in interferon receptor-deficient mice, and lack of transmissibility in the main mosquito vectors. A single DENV-2/ZIKV dose provides protection against ZIKV challenge in mice and rhesus macaques. Overall, these data indicate that the ZIKV live-attenuated vaccine candidates are safe, immunogenic and effective at preventing ZIKV infection in multiple animal models, warranting continued development.
Collapse
|
13
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights Into the Molecular Mechanism of Toll-Like Receptor Response to Dengue Virus Infection. Front Microbiol 2021; 12:744233. [PMID: 34603272 PMCID: PMC8483762 DOI: 10.3389/fmicb.2021.744233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue is the most prevalent and rapidly spreading mosquito-borne viral disease caused by dengue virus (DENV). Recently, DENV has been affecting humans within an expanding geographic range due to the warming of the earth. Innate immune responses play a significant role in antiviral defense, and Toll-like receptors (TLRs) are key regulators of innate immunity. Therefore, a detailed understanding of TLR and DENV interactions is important for devising therapeutic and preventive strategies. Several studies have indicated the ability of DENV to modulate the TLR signaling pathway and host immune response. Vaccination is considered one of the most successful medical interventions for preventing viral infections. However, only a partially protective dengue vaccine, the first licensed dengue vaccine CYD-TDV, is available in some dengue-endemic countries to protect against DENV infection. Therefore, the development of a fully protective, durable, and safe DENV vaccine is a priority for global health. Here, we demonstrate the progress made in our understanding of the host response to DENV infection, with a particular focus on TLR response and how DENV avoids the response toward establishing infection. We also discuss dengue vaccine candidates in late-stage development and the issues that must be overcome to enable their success.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
14
|
Lebeau G, Lagrave A, Ogire E, Grondin L, Seriacaroupin S, Moutoussamy C, Mavingui P, Hoarau JJ, Roche M, Krejbich-Trotot P, Desprès P, Viranaicken W. Viral Toxin NS1 Implication in Dengue Pathogenesis Making It a Pivotal Target in Development of Efficient Vaccine. Vaccines (Basel) 2021; 9:vaccines9090946. [PMID: 34579183 PMCID: PMC8471935 DOI: 10.3390/vaccines9090946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
The mosquito-borne viral disease dengue is a global public health problem causing a wide spectrum of clinical manifestations ranging from mild dengue fever to severe dengue with plasma leakage and bleeding which are often fatal. To date, there are no specific medications to treat dengue and prevent the risk of hemorrhage. Dengue is caused by one of four genetically related but antigenically distinct serotypes DENV-1–DENV-4. The growing burden of the four DENV serotypes has intensified both basic and applied research to better understand dengue physiopathology. Research has shown that the secreted soluble hexameric form of DENV nonstructural protein-1 (sNS1) plays a significant role in the pathogenesis of severe dengue. Here, we provide an overview of the current knowledge about the role of sNS1 in the immunopathogenesis of dengue disease. We discuss the potential use of sNS1 in future vaccine development and its potential to improve dengue vaccine efficiency, particularly against severe dengue illness.
Collapse
|
15
|
Lien TS, Chan H, Sun DS, Wu JC, Lin YY, Lin GL, Chang HH. Exposure of Platelets to Dengue Virus and Envelope Protein Domain III Induces Nlrp3 Inflammasome-Dependent Platelet Cell Death and Thrombocytopenia in Mice. Front Immunol 2021; 12:616394. [PMID: 33995345 PMCID: PMC8118162 DOI: 10.3389/fimmu.2021.616394] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
In tropical and subtropical regions, mosquito-borne dengue virus (DENV) infections can lead to severe dengue, also known as dengue hemorrhage fever, which causes bleeding, thrombocytopenia, and blood plasma leakage and increases mortality. Although DENV-induced platelet cell death was linked to disease severity, the role of responsible viral factors and the elicitation mechanism of abnormal platelet activation and cell death remain unclear. DENV and virion-surface envelope protein domain III (EIII), a cellular binding moiety of the virus particle, highly increase during the viremia stage. Our previous report suggested that exposure to such viremia EIII levels can lead to cell death of endothelial cells, neutrophils, and megakaryocytes. Here we found that both DENV and EIII could induce abnormal platelet activation and predominantly necrotic cell death pyroptosis. Blockages of EIII-induced platelet signaling using the competitive inhibitor chondroitin sulfate B or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK markedly ameliorated DENV- and EIII-induced thrombocytopenia, platelet activation, and cell death. These results suggest that EIII could be considered as a virulence factor of DENV, and that Nlrp3 inflammasome is a feasible target for developing therapeutic approaches against dengue-induced platelet defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
16
|
Lien TS, Sun DS, Hung SC, Wu WS, Chang HH. Dengue Virus Envelope Protein Domain III Induces Nlrp3 Inflammasome-Dependent NETosis-Mediated Inflammation in Mice. Front Immunol 2021; 12:618577. [PMID: 33815373 PMCID: PMC8009969 DOI: 10.3389/fimmu.2021.618577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Abnormal immune responses and cytokine storm are involved in the development of severe dengue, a life-threatening disease with high mortality. Dengue virus-induced neutrophil NETosis response is associated with cytokine storm; while the role of viral factors on the elicitation of excessive inflammation mains unclear. Here we found that treatments of dengue virus envelope protein domain III (EIII), cellular binding moiety of virion, is sufficient to induce neutrophil NETosis processes in vitro and in vivo. Challenges of EIII in inflammasome Nlrp3-/- and Casp1-/- mutant mice resulted in less inflammation and NETosis responses, as compared to the wild type controls. Blockages of EIII-neutrophil interaction using cell-binding competitive inhibitor or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK can suppress EIII-induced NETosis response. These results collectively suggest that Nlrp3 inflammsome is a molecular target for treating dengue-elicited inflammatory pathogenesis.
Collapse
Affiliation(s)
- Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
17
|
Conserved epitopes with high HLA-I population coverage are targets of CD8 + T cells associated with high IFN-γ responses against all dengue virus serotypes. Sci Rep 2020; 10:20497. [PMID: 33235334 PMCID: PMC7687909 DOI: 10.1038/s41598-020-77565-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cytotoxic CD8+ T cells are key for immune protection against viral infections. The breadth and cross-reactivity of these responses are important against rapidly mutating RNA viruses, such as dengue (DENV), yet how viral diversity affect T cell responses and their cross-reactivity against multiple variants of the virus remains poorly defined. In this study, an integrated analysis was performed to map experimentally validated CD8+ T cell epitopes onto the distribution of DENV genome sequences across the 4 serotypes worldwide. Despite the higher viral diversity observed within HLA-I restricted epitopes, mapping of 609 experimentally validated epitopes sequences on 3985 full-length viral genomes revealed 19 highly conserved epitopes across the four serotypes within the immunogenic regions of NS3, NS4B and NS5. These conserved epitopes were associated with a higher magnitude of IFN-γ response when compared to non-conserved epitopes and were restricted to 13 HLA class I genotypes, hence providing high coverage among human populations. Phylogeographic analyses showed that these epitopes are largely conserved in most of the endemic regions of the world, and with only some of these epitopes presenting distinct mutated variants circulating in South America and Asia.This study provides evidence for the existence of highly immunogenic and conserved epitopes across serotypes, which may impact design of new universal T-cell-inducing vaccine candidates that minimise detrimental effects of viral diversification and at the same time induce responses to a broad human population.
Collapse
|
18
|
Lin L, Koren MA, Paolino KM, Eckels KH, De La Barrera R, Friberg H, Currier JR, Gromowski GD, Aronson NE, Keiser PB, Sklar MJ, Sondergaard EL, Jasper LE, Endy TP, Jarman RG, Thomas SJ. Immunogenicity of a Live-Attenuated Dengue Vaccine Using a Heterologous Prime-Boost Strategy in a Phase 1 Randomized Clinical Trial. J Infect Dis 2020; 223:1707-1716. [PMID: 32966573 DOI: 10.1093/infdis/jiaa603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Dengue is a global health problem and the development of a tetravalent dengue vaccine with durable protection is a high priority. A heterologous prime-boost strategy has the advantage of eliciting immune responses through different mechanisms and therefore may be superior to homologous prime-boost strategies for generating durable tetravalent immunity. METHODS In this phase 1 first-in-human heterologous prime-boost study, 80 volunteers were assigned to 4 groups and received a tetravalent dengue virus (DENV-1-4) purified inactivated vaccine (TDENV-PIV) with alum adjuvant and a tetravalent dengue virus (DENV-1-4) live attenuated vaccine (TDENV-LAV) in different orders and dosing schedules (28 or 180 days apart). RESULTS All vaccination regimens had acceptable safety profiles and there were no vaccine-related serious adverse events. TDEN-PIV followed by TDEN-LAV induced higher neutralizing antibody titers and a higher rate of tetravalent seroconversions compared to TDEN-LAV followed by TDEN-PIV. Both TDEN-PIV followed by TDEN-LAV groups demonstrated 100% tetravalent seroconversion 28 days following the booster dose, which was maintained for most of these subjects through the day 180 measurement. CONCLUSIONS A heterologous prime-boost vaccination strategy for dengue merits additional evaluation for safety, immunogenicity, and potential for clinical benefit. CLINICAL TRIALS REGISTRATION NCT02239614.
Collapse
Affiliation(s)
- Leyi Lin
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Michael A Koren
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kristopher M Paolino
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kenneth H Eckels
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Rafael De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Naomi E Aronson
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Paul B Keiser
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Marvin J Sklar
- Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Erica L Sondergaard
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Louis E Jasper
- US Army Medical Materiel Development Activity, Frederick, Maryland, USA
| | - Timothy P Endy
- SUNY Upstate Medical University, Institute for Global Health and Translational Sciences, Syracuse, New York, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Stephen J Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
19
|
Ahmed SF, Quadeer AA, Barton JP, McKay MR. Cross-serotypically conserved epitope recommendations for a universal T cell-based dengue vaccine. PLoS Negl Trop Dis 2020; 14:e0008676. [PMID: 32956362 PMCID: PMC7529213 DOI: 10.1371/journal.pntd.0008676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 10/01/2020] [Accepted: 08/04/2020] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV)-associated disease is a growing threat to public health across the globe. Co-circulating as four different serotypes, DENV poses a unique challenge for vaccine design as immunity to one serotype predisposes a person to severe and potentially lethal disease upon infection from other serotypes. Recent experimental studies suggest that an effective vaccine against DENV should elicit a strong T cell response against all serotypes, which could be achieved by directing T cell responses toward cross-serotypically conserved epitopes while avoiding serotype-specific ones. Here, we used experimentally-determined DENV T cell epitopes and patient-derived DENV sequences to assess the cross-serotypic variability of the epitopes. We reveal a distinct near-binary pattern of epitope conservation across serotypes for a large number of DENV epitopes. Based on the conservation profile, we identify a set of 55 epitopes that are highly conserved in at least 3 serotypes. Most of the highly conserved epitopes lie in functionally important regions of DENV non-structural proteins. By considering the global distribution of human leukocyte antigen (HLA) alleles associated with these DENV epitopes, we identify a potentially robust subset of HLA class I and class II restricted epitopes that can serve as targets for a universal T cell-based vaccine against DENV while covering ~99% of the global population.
Collapse
Affiliation(s)
- Syed Faraz Ahmed
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ahmed A. Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - John P. Barton
- Department of Physics and Astronomy, University of California, Riverside, California, United States of America
| | - Matthew R. McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
20
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|
21
|
Grifoni A, Voic H, Dhanda SK, Kidd CK, Brien JD, Buus S, Stryhn A, Durbin AP, Whitehead S, Diehl SA, De Silva AD, Balmaseda A, Harris E, Weiskopf D, Sette A. T Cell Responses Induced by Attenuated Flavivirus Vaccination Are Specific and Show Limited Cross-Reactivity with Other Flavivirus Species. J Virol 2020; 94:e00089-20. [PMID: 32132233 PMCID: PMC7199411 DOI: 10.1128/jvi.00089-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Members of the flavivirus genus share a high level of sequence similarity and often circulate in the same geographical regions. However, whether T cells induced by one viral species cross-react with other related flaviviruses has not been globally addressed. In this study, we tested pools of epitopes derived from dengue (DENV), Zika (ZIKV), Japanese encephalitis (JEV), West Nile (WNV), and yellow fever (YFV) viruses by intracellular cytokine staining (ICS) using peripheral blood mononuclear cells (PBMCs) of individuals naturally exposed to DENV or immunized with DENV (TV005) or YF17D vaccine. CD8 T cell responses recognized epitopes from multiple flaviviruses; however, the magnitude of cross-reactive responses was consistently severalfold lower than those to the autologous epitope pools and was associated with lower expression of activation markers such as CD40L, CD69, and CD137. Next, we characterized the antigen sensitivity of short-term T cell lines (TCL) representing 29 different individual epitope/donor combinations. TCL derived from DENV monovalent vaccinees induced CD8 and CD4 T cells that cross-reacted within the DENV serocomplex but were consistently associated with >100-fold-lower antigen sensitivity for most other flaviviruses, with no cross-recognition of YFV-derived peptides. CD8 and CD4 TCL from YF17D vaccinees were associated with very limited cross-reactivity with any other flaviviruses and in five out of eight cases >1,000-fold-lower antigen sensitivity. Overall, our data suggest limited cross-reactivity for both CD4 and CD8 T cell responses between flaviviruses and have implications for understanding immunity elicited by natural infection and strategies to develop live attenuated vaccines against flaviviral species.IMPORTANCE The envelope (E) protein is the dominant target of neutralizing antibodies for dengue virus (DENV) and yellow fever virus (YFV). Accordingly, several DENV vaccine constructs use the E protein in a live attenuated vaccine format, utilizing a backbone derived from a heterologous flavivirus (such as YF) as a delivery vector. This backbone comprises the nonstructural (NS) and capsid (C) antigens, which are dominant targets of T cell responses. Here, we demonstrate that cross-reactivity at the level of T cell responses among different flaviviruses is very limited, despite high levels of sequence homology. Thus, the use of heterologous flavivirus species as a live attenuated vaccine vector is not likely to generate optimal T cell responses and might thus impair vaccine performance.
Collapse
Affiliation(s)
- Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Hannah Voic
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Conner K Kidd
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Stryhn
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna P Durbin
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stephen Whitehead
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sean A Diehl
- University of Vermont School of Medicine, Burlington, Vermont, USA
| | - Aruna D De Silva
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Paraclinical Sciences, General Sir John Kotelawala Defense University, Ratmalana, Sri Lanka
| | - Angel Balmaseda
- National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Biswal S, Borja-Tabora C, Martinez Vargas L, Velásquez H, Theresa Alera M, Sierra V, Johana Rodriguez-Arenales E, Yu D, Wickramasinghe VP, Duarte Moreira E, Fernando AD, Gunasekera D, Kosalaraksa P, Espinoza F, López-Medina E, Bravo L, Tuboi S, Hutagalung Y, Garbes P, Escudero I, Rauscher M, Bizjajeva S, LeFevre I, Borkowski A, Saez-Llorens X, Wallace D. Efficacy of a tetravalent dengue vaccine in healthy children aged 4-16 years: a randomised, placebo-controlled, phase 3 trial. Lancet 2020; 395:1423-1433. [PMID: 32197105 DOI: 10.1016/s0140-6736(20)30414-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND A substantial unmet need remains for safe and effective vaccines against dengue virus disease, particularly for individuals who are dengue-naive and those younger than 9 years. We aimed to assess the efficacy, safety, and immunogenicity of a live attenuated tetravalent dengue vaccine (TAK-003) in healthy children aged 4-16 years. METHODS We present data up to 18 months post-vaccination from an ongoing phase 3, randomised, double-blind trial of TAK-003 in endemic regions of Asia and Latin America (26 medical and research centres across Brazil, Colombia, Dominican Republic, Nicaragua, Panama, Philippines, Sri Lanka, and Thailand). Healthy children aged 4-16 years were randomly assigned 2:1 (stratified by age and region) to receive two doses of TAK-003 or two doses of placebo, 3 months apart. Investigators, participants and their parents or guardians, and sponsor representatives advising on trial conduct were masked to trial group assignments. Participants presenting with febrile illness were tested for virologically confirmed dengue (VCD) by serotype-specific RT-PCR. In timeframes beginning 30 days post-second dose, the primary endpoint (overall vaccine efficacy) was assessed in the first 11 months, and the secondary endpoints (efficacy by baseline serostatus, serotype, hospitalised dengue, and severe dengue) in the first 17 months. This study is registered with ClinicalTrials.gov, NCT02747927. FINDINGS 20 099 participants were randomly assigned and vaccinated between Sept 7, 2016, and Aug 18, 2017; 19 021 (94·6%) were included in the per protocol analysis, and 20 071 (99·9%) in the safety set. The primary endpoint was achieved with an overall vaccine efficacy of 80·2% (95% CI 73·3 to 85·3; 61 cases of VCD in the TAK-003 group vs 149 cases of VCD in the placebo group). In the secondary endpoint assessment timeframe, an overall vaccine efficacy of 73·3% (95% CI 66·5 to 78·8) was observed. Analysis of secondary endpoints showed efficacies of 76·1% (95% CI 68·5 to 81·9) in individuals who were seropositive at baseline, 66·2% (49·1 to 77·5) in individuals who were seronegative at baseline, 90·4% (82·6 to 94·7) against hospitalised dengue, and 85·9% (31·9 to 97·1) against dengue haemorrhagic fever. Efficacy varied by individual serotypes (DENV 1, 69·8% [95% CI 54·8 to 79·9]; DENV 2, 95·1% [89·9 to 97·6]; DENV 3, 48·9% [27·2 to 64·1]; DENV 4, 51·0% [-69·4 to 85·8]). Cumulative rates of serious adverse events were similar in TAK-003 (4·0%) and placebo (4·8%) recipients, and were consistent with expected medical disorders in the study population. Infection was the most frequent reason leading to serious adverse events. 20 participants (<0·1% of the safety set) were withdrawn from the trial due to 21 adverse events by the end of part two; 14 of these participants received TAK-003 and six received placebo. INTERPRETATION TAK-003 was well tolerated and efficacious against symptomatic dengue in children regardless of serostatus before immunisation. Vaccine efficacy varied by serotype, warranting continued follow-up to assess longer-term vaccine performance. FUNDING Takeda Vaccines.
Collapse
Affiliation(s)
| | | | - Luis Martinez Vargas
- Centro de Atención e Investigación Médica, Dominicana, Santo Domingo, Dominican Republic
| | | | - Maria Theresa Alera
- Philippines-Armed Forces Research Institute of Medical Sciences Virology Research Unit, Cebu City, Philippines
| | - Victor Sierra
- Centro de Atención e Investigación Médica, Yopal, Colombia
| | | | - Delia Yu
- De La Salle Medical and Health Sciences Institute, Dasmariñas, Philippines
| | | | - Edson Duarte Moreira
- Associação Obras Sociais Irmã Dulce Hospital Santo Antônio and Oswaldo Cruz Foundation, Bahia, Brazil
| | | | - Dulanie Gunasekera
- Faculty of Medical Sciences, University of Sri Jayawardenenpura, Gangodawila, Sri Lanka
| | | | - Felix Espinoza
- National Autonomous University of Nicaragua, León, Nicaragua
| | - Eduardo López-Medina
- Centro de Estudios en Infectología Pediátrica, Universidad del Valle and Centro Médico Imbanaco, Cali, Colombia
| | - Lulu Bravo
- University of the Philippines Manila, Ermita, Philippines
| | | | | | | | | | | | | | - Inge LeFevre
- Takeda Pharmaceuticals International, Zurich, Switzerland
| | | | - Xavier Saez-Llorens
- Hospital del Niño Dr José Renán Esquivel, Sistema Nacional de Investigación at Secretaría Nacional de Ciencia y Tecnología, Centro de Vacunación Internacional (Cevaxin), Panama City, Panama
| | | |
Collapse
|
23
|
Graham N, Eisenhauer P, Diehl SA, Pierce KK, Whitehead SS, Durbin AP, Kirkpatrick BD, Sette A, Weiskopf D, Boyson JE, Botten JW. Rapid Induction and Maintenance of Virus-Specific CD8 + T EMRA and CD4 + T EM Cells Following Protective Vaccination Against Dengue Virus Challenge in Humans. Front Immunol 2020; 11:479. [PMID: 32265929 PMCID: PMC7105617 DOI: 10.3389/fimmu.2020.00479] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease. The current lack of an effective vaccine to simultaneously protect against the four serotypes of DENV in seronegative individuals is a major unmet medical need. Further, the immunological basis for protective immunity in the setting of DENV infection or vaccination is not fully understood. Our team has developed a live attenuated tetravalent dengue virus vaccine that provides complete protection in a human model of dengue virus challenge. The goal of this study was to define, in the context of protective human vaccination, the quality of vaccine-induced DENV-specific CD8+ and CD4+ T cells and the temporal dynamics associated with their formation and maintenance. Multifunctional, DENV-specific CD8+ and CD4+ T cells developed 8-14 days after vaccination and were maintained for at least 6 months. Virus-specific CD8 T+ cells were a mixture of effector memory T cells (TEM) and effector memory T cells re-expressing CD45RA (TEMRA), with TEM cells predominating until day 21 post-vaccination and TEMRA cells thereafter. The majority of virus-specific CD4+ T cells were TEM with a small fraction being TEMRA. The frequency of virus-specific CD8+ and CD4+ T cells were further skewed to the TEMRA phenotype following either a second dose of the tetravalent vaccine or challenge with a single serotype of DENV. Collectively, our study has defined the phenotypic profile of antiviral CD8+ and CD4+ T cells associated with protective immunity to DENV infection and the kinetics of their formation and maintenance.
Collapse
Affiliation(s)
- Nancy Graham
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Phil Eisenhauer
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Sean A. Diehl
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Kristen K. Pierce
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Anna P. Durbin
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Beth D. Kirkpatrick
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Jonathan E. Boyson
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Jason W. Botten
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|