1
|
Rao S, Reghu N, Nair BG, Vanuopadath M. The Role of Snake Venom Proteins in Inducing Inflammation Post-Envenomation: An Overview on Mechanistic Insights and Treatment Strategies. Toxins (Basel) 2024; 16:519. [PMID: 39728777 DOI: 10.3390/toxins16120519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 12/28/2024] Open
Abstract
The intricate combination of organic and inorganic compounds found in snake venom includes proteins, peptides, lipids, carbohydrates, nucleotides, and metal ions. These components work together to immobilise and consume prey through processes such as paralysis and hypotension. Proteins, both enzymatic and non-enzymatic, form the primary components of the venom. Based on the effects they produce, venom can be classified as neurotoxic, hemotoxic, and cytotoxic. Studies have shown that, after envenomation, proteins in snake venom also contribute significantly to the induction of inflammatory responses which can either have systemic or localized consequences. This review delves into the mechanisms by which snake venom proteins trigger inflammatory responses, focusing on key families such as phospholipase A2, metalloproteinases, serine proteases, C-type lectins, cysteine-rich secretory proteins, and L-amino acid oxidase. In addition, the role of venom proteins in activating various inflammatory pathways, including the complement system, inflammasomes, and sterile inflammation are also summarized. The available therapeutic options are examined, with a focus on antivenom therapy and its side effects. In general, this review offers a comprehensive understanding of the inflammatory mechanisms that are triggered by snake venom proteins and the side effects of antivenom treatment. All these emphasize the need for effective strategies to mitigate these detrimental effects.
Collapse
Affiliation(s)
- Sudharshan Rao
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
- Systems Biology Ireland, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Nisha Reghu
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
| | | | | |
Collapse
|
2
|
Cavalcante JS, Arruda SST, Riciopo PM, Pucca M, Ferreira Junior RS. Diagnosis of human envenoming by terrestrial venomous animals: Routine, advances, and perspectives. Toxicon X 2024; 24:100211. [PMID: 39507426 PMCID: PMC11539352 DOI: 10.1016/j.toxcx.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Despite the development of new and advanced diagnostic approaches, monitoring the clinical evolution of accidents caused by venomous animals is still a challenge for science. In this review, we present the state of the art of laboratory tests that are routinely used for the diagnosis and monitoring of envenomings by venomous animals, as well as the use of new tools for more accurate and specific diagnoses. While a comprehensive range of tools is outlined, comprising hematological, biochemical, immunoassays, and diagnostic imaging tools, it is important to acknowledge their limitations in predicting the onset of clinical complications, since they provide an overview of organic damage after its development. Thus, the need for discovery, validation, and use of biomarkers that have greater predictive power, sensitivity and specificity is evident. This will help in the diagnosis, monitoring, and treatment of patients envenomated by venomous animals, consequently reducing the global burden of morbidity and mortality.
Collapse
Affiliation(s)
- Joeliton S. Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18618-687, São Paulo, Brazil
| | - Sabrina Santana Toledo Arruda
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18618-687, São Paulo, Brazil
| | - Pedro Marques Riciopo
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18618-687, São Paulo, Brazil
| | - Manuela Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University UNESP—Univ Estadual Paulista, Araraquara, 14800-903, Brazil
| | - Rui Seabra Ferreira Junior
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18618-687, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18610-307, São Paulo, Brazil
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP-UNESP, Botucatu, 18610-307, São Paulo, Brazil
| |
Collapse
|
3
|
Rucavado A, Camacho E, Escalante T, Lomonte B, Fernández J, Solano D, Quirós-Gutiérrez I, Ramírez-Vargas G, Vargas K, Argüello I, Navarro A, Abarca C, Segura Á, Florentin J, Kallel H, Resiere D, Neviere R, Gutiérrez JM. A murine experimental model of the pulmonary thrombotic effect induced by the venom of the snake Bothrops lanceolatus. PLoS Negl Trop Dis 2024; 18:e0012335. [PMID: 39356725 PMCID: PMC11472959 DOI: 10.1371/journal.pntd.0012335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/14/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The venom of Bothrops lanceolatus, a viperid species endemic to the Lesser Antillean Island of Martinique, induces thrombosis in a number of patients. Previous clinical observations indicate that thrombotic events are more common in patients bitten by juvenile specimens. There is a need to develop an experimental model of this effect in order to study the mechanisms involved. METHODOLOGY/PRINCIPAL FINDINGS The venoms of juvenile and adult specimens of B. lanceolatus were compared by (a) describing their proteome, (b) assessing their ability to induce thrombosis in a mouse model, and (c) evaluating their in vitro procoagulant activity and in vivo hemostasis alterations. Venom proteomes of juvenile and adult specimens were highly similar, albeit showing some differences. When injected by the intraperitoneal (i.p.) route, the venom of juvenile specimens induced the formation of abundant thrombi in the pulmonary vasculature, whereas this effect was less frequent in the case of adult venom. Thrombosis was not abrogated by the metalloproteinase inhibitor Batimastat. Both venoms showed a weak in vitro procoagulant effect on citrated mouse plasma and bovine fibrinogen. When administered intravenously (i.v.) venoms did not affect classical clotting tests (prothrombin time and activated partial thromboplastin time) but caused a partial drop in fibrinogen concentration. The venom of juvenile specimens induced partial alterations in some rotational thromboelastometry parameters after i.v. injection. When venoms were administered i.p., only minor alterations in classical clotting tests were observed with juvenile venom, and no changes occurred for either venom in rotational thromboelastometry parameters. Both juvenile and adult venoms induced a marked thrombocytopenia after i.p. injection. CONCLUSIONS/SIGNIFICANCE An experimental model of the thrombotic effect induced by B. lanceolatus venom was developed. This effect is more pronounced in the case of venom of juvenile specimens, despite the observation that juvenile and adult venom proteomes are similar. Adult and juvenile venoms do not induce a consumption coagulopathy characteristic of other Bothrops sp venoms. Both venoms induce a conspicuous thrombocytopenia. This experimental model reproduces the main clinical findings described in these envenomings and should be useful to understand the mechanisms of the thrombotic effect.
Collapse
Affiliation(s)
- Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Erika Camacho
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Isabel Quirós-Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriel Ramírez-Vargas
- Laboratorio de Hematología, Hospital Nacional de Niños ‘Dr Carlos Sáenz Herrera’, Caja Costarricense del Seguro Social, San José, Costa Rica
| | - Karol Vargas
- Laboratorio de Hematología, Hospital Nacional de Niños ‘Dr Carlos Sáenz Herrera’, Caja Costarricense del Seguro Social, San José, Costa Rica
| | - Ivette Argüello
- Laboratorio de Hematología, Hospital Nacional de Niños ‘Dr Carlos Sáenz Herrera’, Caja Costarricense del Seguro Social, San José, Costa Rica
| | - Alejandro Navarro
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Abarca
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Jonathan Florentin
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), Fort-de-France, France
| | - Hatem Kallel
- Intensive Care Unit, Cayenne General Hospital, Cayenne, French Guiana
- Tropical Biome and immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne, French Guiana
| | - Dabor Resiere
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), Fort-de-France, France
| | - Remi Neviere
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), Fort de France, France
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
4
|
Mahmoud Shokhba AS, El-Deen A Omran MA, Abdel-Rahman MA, El-Shenawy NS. Effect of Egyptian spitting cobra Naja nubiae crude venom on immunogenic activity of rats. Toxicon 2024; 247:107834. [PMID: 38950737 DOI: 10.1016/j.toxicon.2024.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Snakes show defensive activities, often counting visual or auditory displays against an aggressor. The study observed what happens to rats administered subcutaneously sub-lethal doses of crude venom Naja nubiae. The pro-inflammatory cytokines, such as tumor necrosis alpha (TNF-α) and interleukin-6 (IL-6), as well as the anti-inflammatory cytokines such as interleukin-10 (IL-10), and inflammatory mediator's prostaglandin E-2 (PG-E2), were evaluated. Vascular permeability (VP) was employed to assess how leaky or permeable blood vessels are in various tissues and organs, including the rat peritoneal cavity and lymphoid organs. Lymphoid organs' histological alterations brought on by Nubiae venom. The study found that the two venom doses-1/4 and 1/2 LD50-induced high levels of inflammatory activity as evidenced by the production of inflammatory cytokines. These findings demonstrated that venom enhanced innate immunity through specifically increased T helper cells, IL-6, TNF-α, IL-10, and PG-E2. The results reveal whether the venom has an immunomodulatory effect and promotes inflammation. The data have a substantial impact on the development of new drugs and treatments for inflammatory conditions.
Collapse
|
5
|
Lin CC, Wang CC, Ou Yang CH, Liu CC, Yu JS, Fann WC, Chen YC, Shih CP. The changes and the potential clinical applications of cytokines in Taiwan's major venomous snakebites patients. Toxicon 2024; 247:107843. [PMID: 38964621 DOI: 10.1016/j.toxicon.2024.107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Taiwan habu (Protobothrops mucrosquamatus), green bamboo viper (Viridovipera stejnegeri), and Taiwan cobra (Naja atra) are the most venomous snakebites in Taiwan. Patients commonly present with limb swelling but misdiagnosis rates are high, and currently available diagnostic tools are limited. This study explores the immune responses in snakebite patients to aid in differential diagnosis. METHODS This prospective observational study investigated the changes in cytokines in snakebite patients and their potential for diagnosis. RESULTS Elevated pro-inflammatory cytokines IL-6 and TNF-α were observed in all snakebite patients compared to the healthy control group. While no significant disparities were observed in humoral immune response cytokines, there were significant differences in IFN-γ levels, with significantly higher IL-10 levels in patients bitten by cobras. Patients with TNF-α levels exceeding 3.02 pg/mL were more likely to have been bitten by a cobra. CONCLUSION This study sheds light on the immune responses triggered by various venomous snakebites, emphasizing the potential of cytokine patterns for snakebite-type differentiation. Larger studies are needed to validate these findings for clinical use, ultimately improving snakebite diagnosis and treatment.
Collapse
Affiliation(s)
- Chih-Chuan Lin
- Department of Emergency Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Cheng Wang
- Department of Traumatology and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taiwan
| | - Chun-Hsiang Ou Yang
- Department of Traumatology and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taiwan
| | - Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan; Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Wen-Chih Fann
- Department of Emergency Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yen-Chia Chen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Pang Shih
- Department of Healthcare Management, Yuanpei University of Medical Technology, HsinChu, Taiwan.
| |
Collapse
|
6
|
Dias DA, Souza de Souza KF, Moslaves ISB, Buri MV, Basilio DCLS, Espinoça IT, Parisotto EB, Silva-Filho SE, Migliolo L, Jaques JAO, Franco DG, Chudzinski-Tavassi AM, Rita PHS, da Silva DB, Carollo CA, Toffoli-Kadri MC, Paredes-Gamero EJ. Identification of purinergic system components in the venom of Bothrops mattogrossensis and the inhibitory effect of specioside extracted from Tabebuia aurea. Purinergic Signal 2024:10.1007/s11302-024-10032-z. [PMID: 38958820 DOI: 10.1007/s11302-024-10032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
Snake bites are a severe problem in the countryside of Brazil and are usually attributed to snakes of the genera Bothrops, Crotalus, and Lachesis. Snake venom can release ectoenzymes and nucleotidases that modulate the purinergic system. In addition to serum therapy against snake poisoning, medicinal plants with anti-inflammatory activities, such as Tabebuia aurea, is empirically applied in accidents that occur in difficult-to-access areas. This study aimed was to verify the presence and activity of nucleotidases in the crude venom of Bothrops mattogrossensis (BmtV) in vitro and characterize the modulation of purinergic components, myeloid differentiation, and inflammatory/oxidative stress markers by BmtV in vivo and in vitro. Moreover, our study assessed the inhibitory activities of specioside, an iridoid isolated from Tabebuia aurea, against the effects of BmtV. Proteomic analysis of venom content and nucleotidase activity confirm the presence of ectonucleotidase-like enzymes in BmtV. In in vivo experiments, BmtV altered purinergic component expression (P2X7 receptor, CD39 and CD73), increased neutrophil numbers in peripheral blood, and elevated oxidative stress/inflammatory parameters such as lipid peroxidation and myeloperoxidase activity. BmtV also decreased viability and increased spreading index and phagocytic activity on macrophages. Specioside inhibited nucleotidase activity, restored neutrophil numbers, and mediate the oxidative/inflammatory effects produced by BmtV. We highlight the effects produced by BmtV in purinergic system components, myeloid differentiation, and inflammatory/oxidative stress parameters, while specioside reduced the main BmtV-dependent effects.
Collapse
Affiliation(s)
- Dhébora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | | | - Iluska Senna Bonfá Moslaves
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Marcus Vinicius Buri
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, SP, Brazil
| | - Denise Caroline Luiz Soares Basilio
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Isabelly Teixeira Espinoça
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Saulo Euclides Silva-Filho
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Ludovico Migliolo
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | | | - Daniel Guerra Franco
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, SP, Brazil
- Development and Innovation Centre, Butantan Institute, São Paulo, SP, Brazil
| | | | - Denise Brentan da Silva
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Carlos Alexandre Carollo
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Mônica Cristina Toffoli-Kadri
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil
| | - Edgar Julian Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n. Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
- Biochemistry Department, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Saaiman Engelbrecht EL, Naidoo V, Botha CJ. Naja nigricincta nigricincta venom, a murine model. Evaluation of skeletal and cardio-myonecrosis, kidney injury and inflammatory response along with neutralisation efficacy by the SAIMR/SAVP - And EchiTAb-Plus-ICP polyvalent antivenoms. Toxicon 2024; 243:107719. [PMID: 38631492 DOI: 10.1016/j.toxicon.2024.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
African spitting cobra, Naja nigricincta nigricincta (Zebra snake), envenomation is an important cause of snakebite morbidity and mortality in Namibia. The snake is endemic to central and northern Namibia as well as southern Angola. The venom is mainly cytotoxic, resulting in aggressive dermo-necrosis and often accompanied by severe systemic complications. No specific antivenom exists. Rhabdomyolysis, systemic inflammatory response, haemostatic abnormalities, infective necrotising fasciitis as well as acute kidney failure have been documented. Based on murine models, this study assessed SAVP/SAIMR - and EchiTAb-Plus-ICP polyvalent antivenom neutralisation as well as subdermal necrosis. Additional muscle, cardiac, kidney and lung histology, creatine kinase measurements and post-mortems were performed. An intravenous median lethal dose (LD50) of Naja nigricincta nigricincta venom was determined at 18.4 (CI: 16.3; 20.52) μg and a subdermal lethal dose at 15.3(CI: 12.96; 17.74)μg. The SAIMR/SAVP polyvalent antivenom median effective dose (ED50) was 1.2 ml antivenom/1 mg venom equating to a potency (WHO) of 1 ml antivenom neutralising 0.63 mg venom and approximately 240 ml (24 vials) needed for initial treatment. The ED50 of the EchiTAb-Plus-ICP was 1 ml antivenom/1 mg venom and a potency of 65 mg venom/ml antivenom (3.3 x LD50), estimating 230 ml (23 vials) for treatment. Histology and serology (creatine kinase) evidenced venom induced skeletal myotoxicity, which was not prevented by the antivenoms tested. Cardiac myonecrosis, an inflammatory response, direct venom kidney tubular necrosis and cardio-pulmonary failure were documented.
Collapse
Affiliation(s)
- Esta L Saaiman Engelbrecht
- Faculty of Veterinary Science, University of Pretoria, South Africa; Namibian Snakebite Interest Group, Namibia.
| | - Vinny Naidoo
- Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Christo J Botha
- Faculty of Veterinary Science, University of Pretoria, South Africa
| |
Collapse
|
8
|
Alvarez-Flores MP, Correia Batista IDF, Villas Boas IM, Bufalo MC, de Souza JG, Oliveira DS, Bonfá G, Fernandes CM, Marques Porto R, Lichtenstein F, Picolo G, Tambourgi DV, Chudzinski-Tavassi AM, Ibañez OCM, Teixeira C. Snake and arthropod venoms: Search for inflammatory activity in human cells involved in joint diseases. Toxicon 2024; 238:107568. [PMID: 38110040 DOI: 10.1016/j.toxicon.2023.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1β, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and β-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Isadora Maria Villas Boas
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunochemistry, Instituto Butantan, Sao Paulo, Brazil
| | | | - Jean Gabriel de Souza
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunogenetics, Instituto Butantan, Sao Paulo, Brazil
| | | | - Giuliano Bonfá
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunochemistry, Instituto Butantan, Sao Paulo, Brazil
| | - Cristina Maria Fernandes
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pharmacology, Instituto Butantan, Sao Paulo, Brazil
| | - Rafael Marques Porto
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil
| | - Flavio Lichtenstein
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil
| | - Gisele Picolo
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pain and Signaling, Instituto Butantan, Sao Paulo, Brazil
| | | | | | - Olga Célia Martinez Ibañez
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunogenetics, Instituto Butantan, Sao Paulo, Brazil.
| | - Catarina Teixeira
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pharmacology, Instituto Butantan, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Abd El-Azim MM, Mousa MK, Abdelmaaboud RM, Rezq NN, Mohammed SS. Evaluation of the role of neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR) and mean platelet volume (MPV) time series as predictors of diagnosis and prognosis of hemotoxic snakebite. Biomarkers 2023; 28:652-662. [PMID: 37902066 DOI: 10.1080/1354750x.2023.2277668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/22/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND This study aimed to assess the predictive value of NLR, PLR, and MPV time series for diagnosis and prognosis of hemotoxic snakebite envenomation. METHODS This is a prospective study among snakebite patients admitted to the Poison Control Center of Ain Shams University Hospitals and Assiut University Hospitals from the beginning of July 2019 to the end of October 2021. Patients were classified according to their clinical severity into three groups: mild, moderate, and severe. RESULTS The maximum incidence of snakebite was found in males (95%) from rural areas (80%); at lower limbs (70%); at night (51%); and during the autumn season (43.3%). The admission NLR and PLR can predict hemotoxic snakebite envenomation with an AUC of 0.940 and 0.569. The combination of NLR with PLR can develop a more predominant prediction of snakebite envenomation with an area under the curve (AUC) of 0.979. Furthermore, higher admission NLR and PLR levels are associated with prolonged hospital stays. CONCLUSION While NLR and PLR levels may be helpful in the diagnosis of snakebite, MPV plays no part in the prognosis of snakebite patients. Serial NLR, PLR initially, at 24 hours, and predischarge can be used to evaluate the early treatment response.
Collapse
Affiliation(s)
- Mariam M Abd El-Azim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mona K Mousa
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ragaa M Abdelmaaboud
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nabil N Rezq
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sarah S Mohammed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Nielsen VG. Novel Toxicodynamic Model of Subcutaneous Envenomation to Characterize Snake Venom Coagulopathies and Assess the Efficacy of Site-Directed Inorganic Antivenoms. Int J Mol Sci 2023; 24:13939. [PMID: 37762243 PMCID: PMC10530349 DOI: 10.3390/ijms241813939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Venomous snake bite adversely affects millions of people yearly, but few animal models allow for the determination of toxicodynamic timelines with hemotoxic venoms to characterize the onset and severity of coagulopathy or assess novel, site-directed antivenom strategies. Thus, the goals of this investigation were to create a rabbit model of subcutaneous envenomation to assess venom toxicodynamics and efficacy of ruthenium-based antivenom administration. New Zealand White rabbits were sedated with midazolam via the ear vein and had viscoelastic measurements of whole blood and/or plasmatic coagulation kinetics obtained from ear artery samples. Venoms derived from Crotalus scutulatus scutulatus, Bothrops moojeni, or Calloselasma rhodostoma were injected subcutaneously, and changes in coagulation were determined over three hours and compared to samples obtained prior to envenomation. Other rabbits had ruthenium-based antivenoms injected five minutes after venom injection. Viscoelastic analyses demonstrated diverse toxicodynamic patterns of coagulopathy consistent with the molecular composition of the proteomes of the venoms tested. The antivenoms tested attenuated venom-mediated coagulopathy. A novel rabbit model can be used to characterize the onset and severity of envenomation by diverse proteomes and to assess site-directed antivenoms. Future investigation is planned involving other medically important venoms and antivenom development.
Collapse
Affiliation(s)
- Vance G Nielsen
- Department of Anesthesiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
11
|
Cavalcante TTA, de Souza MBS, Neves JCF, Ibiapina HNS, Barbosa FBA, Bentes KO, Alves EC, Marques HO, Colombini M, Sampaio SV, Pucca MB, da Silva IM, Ferreira LCDL, Sampaio VDS, Moura-da-Silva AM, Costa AG, Monteiro WM, Sachett JAG, Sartim MA. Inflammatory Profile Associated with Secondary Infection from Bothrops atrox Snakebites in the Brazilian Amazon. Toxins (Basel) 2023; 15:524. [PMID: 37755950 PMCID: PMC10537699 DOI: 10.3390/toxins15090524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Bothrops snakebite envenomation (SBE) is consider an important health problem in Brazil, where Bothrops atrox is mainly responsible in the Brazilian Amazon. Local effects represent a relevant clinical issue, in which inflammatory signs and symptoms in the bite site represent a potential risk for short and long-term disabilities. Among local complications, secondary infections (SIs) are a common clinical finding during Bothrops atrox SBE and are described by the appearance of signs such as abscess, cellulitis or necrotizing fasciitis in the affected site. However, the influence of SI in the local events is still poorly understood. Therefore, the present study describes for the first time the impact of SBE wound infection on local manifestations and inflammatory response from patients of Bothrops atrox SBE in the Brazilian Amazon. This was an observational study carried out at the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus (Brazil), involving victims of Bothrops SBE. Clinical and laboratorial data were collected along with blood samples for the quantification of circulating cytokines and chemokines before antivenom administrations (T0) and 24 h (T1), 48 h (T2), 72 h (T3) and 7 days after (T4). From the 94 patients included in this study, 42 presented SI (44.7%) and 52 were without SI (NSI, 55.3%). Patients classified as moderate envenoming presented an increased risk of developing SI (OR = 2.69; CI 95% = 1.08-6.66, p = 0.033), while patients with bites in hands showed a lower risk (OR = 0.20; CI 95% = 0.04-0.96, p = 0.045). During follow-up, SI patients presented a worsening of local temperature along with a sustained profile of edema and pain, while NSI patients showed a tendency to restore and were highlighted in patients where SI was diagnosed at T2. As for laboratorial parameters, leukocytes, erythrocyte sedimentation ratio, fibrinogen and C-reactive protein were found increased in patients with SI and more frequently in patients diagnosed with SI at T3. Higher levels of circulating IL-2, IL-10, IL-6, TNF, INF-γ and CXCL-10 were observed in SI patients along with marked correlations between these mediators and IL-4 and IL-17, showing a plurality in the profile with a mix of Th1/Th2/Th17 response. The present study reports for the first time the synergistic effects of local infection and envenoming on the inflammatory response represented by local manifestations, which reflected on laboratorial parameters and inflammatory mediators and thus help improve the clinical management of SI associated to Bothrops SBE.
Collapse
Affiliation(s)
- Távila Tatiane Amorim Cavalcante
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, Brazil
| | | | - Juliana Costa Ferreira Neves
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas-UEA, Manaus 69040-000, Brazil (J.A.G.S.)
| | | | | | - Karolaine Oliveira Bentes
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas-UEA, Manaus 69040-000, Brazil (J.A.G.S.)
| | - Eliane Campos Alves
- Instituto Federal de Educação, Ciência e Tecnologia do Amazonas-IFAM, Manaus 69025-010, Brazil
| | - Hedylamar Oliveira Marques
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas-HEMOAM, Manaus 69050-001, Brazil
| | - Monica Colombini
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Suely Vilela Sampaio
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP, Ribeirão Preto 14040-903, Brazil
| | - Manuela Berto Pucca
- Curso de Medicina, Universidade Federal de Roraima-UFRR, Boa Vista 69310-000, Brazil
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidaed Estadual Paulista-UNESP, Araraquara 14800-903, Brazil
| | - Iran Mendonça da Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas-UEA, Manaus 69040-000, Brazil (J.A.G.S.)
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado–FMT-HVD, Manaus 69040-000, Brazil
| | - Luiz Carlos de Lima Ferreira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas-UEA, Manaus 69040-000, Brazil (J.A.G.S.)
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado–FMT-HVD, Manaus 69040-000, Brazil
| | - Vanderson de Souza Sampaio
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas-UEA, Manaus 69040-000, Brazil (J.A.G.S.)
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado–FMT-HVD, Manaus 69040-000, Brazil
| | | | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas-UEA, Manaus 69040-000, Brazil (J.A.G.S.)
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas-HEMOAM, Manaus 69050-001, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado–FMT-HVD, Manaus 69040-000, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas-UEA, Manaus 69040-000, Brazil (J.A.G.S.)
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado–FMT-HVD, Manaus 69040-000, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas-UEA, Manaus 69040-000, Brazil (J.A.G.S.)
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado–FMT-HVD, Manaus 69040-000, Brazil
| | - Marco Aurélio Sartim
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas-UEA, Manaus 69040-000, Brazil (J.A.G.S.)
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Nilton Lins, Manaus 69058-030, Brazil
| |
Collapse
|
12
|
Cavalcante JS, de Almeida DEG, Santos-Filho NA, Sartim MA, de Almeida Baldo A, Brasileiro L, Albuquerque PL, Oliveira SS, Sachett JAG, Monteiro WM, Ferreira RS. Crosstalk of Inflammation and Coagulation in Bothrops Snakebite Envenoming: Endogenous Signaling Pathways and Pathophysiology. Int J Mol Sci 2023; 24:11508. [PMID: 37511277 PMCID: PMC10380640 DOI: 10.3390/ijms241411508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/30/2023] Open
Abstract
Snakebite envenoming represents a major health problem in tropical and subtropical countries. Considering the elevated number of accidents and high morbidity and mortality rates, the World Health Organization reclassified this disease to category A of neglected diseases. In Latin America, Bothrops genus snakes are mainly responsible for snakebites in humans, whose pathophysiology is characterized by local and systemic inflammatory and degradative processes, triggering prothrombotic and hemorrhagic events, which lead to various complications, organ damage, tissue loss, amputations, and death. The activation of the multicellular blood system, hemostatic alterations, and activation of the inflammatory response are all well-documented in Bothrops envenomings. However, the interface between inflammation and coagulation is still a neglected issue in the toxinology field. Thromboinflammatory pathways can play a significant role in some of the major complications of snakebite envenoming, such as stroke, venous thromboembolism, and acute kidney injury. In addition to exacerbating inflammation and cell interactions that trigger vaso-occlusion, ischemia-reperfusion processes, and, eventually, organic damage and necrosis. In this review, we discuss the role of inflammatory pathways in modulating coagulation and inducing platelet and leukocyte activation, as well as the inflammatory production mediators and induction of innate immune responses, among other mechanisms that are altered by Bothrops venoms.
Collapse
Affiliation(s)
- Joeliton S Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Denis Emanuel Garcia de Almeida
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Norival A Santos-Filho
- Institute of Chemistry, São Paulo State University (UNESP-Univ Estadual Paulista), Araraquara 14800-900, São Paulo, Brazil
| | - Marco Aurélio Sartim
- Laboratory of Bioprospection, University Nilton Lins, Manaus 69058-030, Amazonas, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Amanda de Almeida Baldo
- Institute of Biosciences, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Lisele Brasileiro
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Polianna L Albuquerque
- Toxicological Information and Assistance Center, Instituto Doutor Jose Frota Hospital, Fortaleza 60025-061, Ceará, Brazil
- Faculty of Medicine, University of Fortaleza, Fortaleza 60430-140, Ceará, Brazil
| | - Sâmella S Oliveira
- Research Management, Hospital Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-001, Amazonas, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP-UNESP, Botucatu 18610-307, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18610-307, São Paulo, Brazil
| |
Collapse
|
13
|
Wang R, Shi X, Li K, Bunker A, Li C. Activity and potential mechanisms of action of persimmon tannins according to their structures: A review. Int J Biol Macromol 2023; 242:125120. [PMID: 37263329 DOI: 10.1016/j.ijbiomac.2023.125120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
One distinguishing feature of the persimmon, that differentiates it from other fruits, is its high proanthocyanidins content, known as persimmon tannin (PT). Despite the poor absorption of PT in the small intestine, results from animal studies demonstrate that PT has many health benefits. Our goal in this review is to summarize the literature that elucidates the relationship between PT structure and activity. In addition, we also summarize the potential mechanisms underlying the health benefits that result from PT consumption; this includes the hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, antiradiation, antibacterial and antiviral, detoxification effects on snake venom, and the absorption of heavy metals and dyes. Studies show that PT is a structurally distinct proanthocyanidins that exhibits a high degree of polymerization. It is galloylation-rich and possesses unique A-type interflavan linkages in addition to the more common B-type interflavan bonds. Thus, PT is converted into oligomeric proanthocyanidins by depolymerization strategies, including the nucleophilic substitution reaction, acid hydrolysis, and hydrogenolysis. In addition, multiple health benefits exerted by PT mainly involve the inactivation of lipogenic and intracellular inflammatory signaling pathways, activation of the fatty acid oxidation signaling pathway, regulation of gut microbiota, and highly absorptive properties.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Alex Bunker
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
14
|
Yee KT, Macrander J, Vasieva O, Rojnuckarin P. Exploring Toxin Genes of Myanmar Russell's Viper, Daboia siamensis, through De Novo Venom Gland Transcriptomics. Toxins (Basel) 2023; 15:toxins15050309. [PMID: 37235344 DOI: 10.3390/toxins15050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Russell's viper (Daboia siamensis) is a medically important venomous snake in Myanmar. Next-generation sequencing (NGS) shows potential to investigate the venom complexity, giving deeper insights into snakebite pathogenesis and possible drug discoveries. mRNA from venom gland tissue was extracted and sequenced on the Illumina HiSeq platform and de novo assembled by Trinity. The candidate toxin genes were identified via the Venomix pipeline. Protein sequences of identified toxin candidates were compared with the previously described venom proteins using Clustal Omega to assess the positional homology among candidates. Candidate venom transcripts were classified into 23 toxin gene families including 53 unique full-length transcripts. C-type lectins (CTLs) were the most highly expressed, followed by Kunitz-type serine protease inhibitors, disintegrins and Bradykinin potentiating peptide/C-type natriuretic peptide (BPP-CNP) precursors. Phospholipase A2, snake venom serine proteases, metalloproteinases, vascular endothelial growth factors, L-amino acid oxidases and cysteine-rich secretory proteins were under-represented within the transcriptomes. Several isoforms of transcripts which had not been previously reported in this species were discovered and described. Myanmar Russell's viper venom glands displayed unique sex-specific transcriptome profiles which were correlated with clinical manifestation of envenoming. Our results show that NGS is a useful tool to comprehensively examine understudied venomous snakes.
Collapse
Affiliation(s)
- Khin Than Yee
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar
| | - Jason Macrander
- Department of Biology, Florida Southern College, Lakeland, FL 33801, USA
| | - Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- BioSynthetic Machines, Inc., Chicago, IL 60062, USA
| | - Ponlapat Rojnuckarin
- Excellence Center in Translational Hematology, Division of Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Challenges and Opportunities in Clinical Diagnostic Routine of Envenomation Using Blood Plasma Proteomics. Toxins (Basel) 2023; 15:toxins15030180. [PMID: 36977071 PMCID: PMC10056359 DOI: 10.3390/toxins15030180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Specific and sensitive tools for the diagnosis and monitoring of accidents by venomous animals are urgently needed. Several diagnostic and monitoring assays have been developed; however, they have not yet reached the clinic. This has resulted in late diagnoses, which represents one of the main causes of progression from mild to severe disease. Human blood is a protein-rich biological fluid that is routinely collected in hospital settings for diagnostic purposes, which can translate research progress from the laboratory to the clinic. Although it is a limited view, blood plasma proteins provide information about the clinical picture of envenomation. Proteome disturbances in response to envenomation by venomous animals have been identified, allowing mass spectrometry (MS)-based plasma proteomics to emerge as a tool in a range of clinical diagnostics and disease management that can be applied to cases of venomous animal envenomation. Here, we provide a review of the state of the art on routine laboratory diagnoses of envenomation by snakes, scorpions, bees, and spiders, as well as a review of the diagnostic methods and the challenges encountered. We present the state of the art on clinical proteomics as the standardization of procedures to be performed within and between research laboratories, favoring a more excellent peptide coverage of candidate proteins for biomarkers. Therefore, the selection of a sample type and method of preparation should be very specific and based on the discovery of biomarkers in specific approaches. However, the sample collection protocol (e.g., collection tube type) and the processing procedure of the sample (e.g., clotting temperature, time allowed for clotting, and anticoagulant used) are equally important to eliminate any bias.
Collapse
|
16
|
Sialic acid-containing glycans play a role in the activity of snake venom proteases. Biochimie 2023; 204:140-153. [PMID: 36210615 DOI: 10.1016/j.biochi.2022.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Structural variability is a feature of snake venom proteins, and glycosylation is a post-translational modification that contributes to the diversification of venom proteomes. Studies by our group have shown that Bothrops venoms are distinctly defined by their glycoprotein content, and that most hybrid/complex N-glycans identified in these venoms contain sialic acid. Considering that metalloproteases and serine proteases are abundant components of Bothrops venoms and essential in the envenomation process, and that these enzymes contain several glycosylation sites, the role of sialic acid in venom proteolytic activity was evaluated. Here we show that removal of sialic acid by treatment of nine Bothrops venoms with neuraminidase (i) altered the pattern of gelatinolysis in zymography of most venoms and reduced the gelatinolytic activity of all venoms, (ii) decreased the proteolytic activity of some venoms on fibrinogen and the clotting activity of human plasma of all venoms, and (iii) altered the proteolysis profile of plasma proteins by B. jararaca venom, suggesting that sialic acid may play a role in the interaction of proteases with their protein substrates. In contrast, the profile of venom amidolytic activity on Bz-Arg-pNA did not change after removal of sialic acid, indicating that this monosaccharide is not essential in N-glycans of serine proteases acting on small substrates. In summary, these results expand the knowledge about the variability of the subproteomes of Bothrops venom proteases, and for the first time point to the importance of carbohydrate chains containing sialic acid in the enzymatic activities of venom proteases relevant in human envenomation.
Collapse
|
17
|
Resiere D, Mehdaoui H, Neviere R. Inflammation and Oxidative Stress in Snakebite Envenomation: A Brief Descriptive Review and Clinical Implications. Toxins (Basel) 2022; 14:toxins14110802. [PMID: 36422976 PMCID: PMC9694585 DOI: 10.3390/toxins14110802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Snakebite envenoming is a pathological condition which may occur in response to the injection of venom. Snake venoms contain a complex mixture of biologically active molecules which are responsible for a broad spectrum of clinical manifestations, ranging from local tissue injuries to fatal complications. Snake venom administration commonly provokes local tissue injury often associated with systemic effects, including neurotoxic and cardiotoxic manifestations, bleeding, acute kidney injury, and rhabdomyolysis. An important spectrum of pathogenesis of snake envenomation is the generation of reactive oxygen species (ROS), which can directly provoke tissue damage and also potentiate the deleterious consequences of inflammation at the bite site. Snake venom components known to induce oxidative stress include phospholipases A2, metalloproteinases, three-finger toxins, and L-amino acid oxidase. Clear evidence is mounting suggesting that inflammation and oxidative stress participate in the destructive effects of envenoming, including acute renal failure, tissue necrosis, and unusual susceptibility to bleed (hemorrhage), mostly due to hypocoagulability, neuro/cardio toxicity, and myonecrosis. Impaired regulation of oxidative stress may also set the stage for secondary/long-term complications of snakebite envenomation such as musculoskeletal disabilities. Some aspects of natural antioxidant therapeutic options are discussed in this review.
Collapse
Affiliation(s)
- Dabor Resiere
- Cardiovascular Research Team EA7525, University of the French West Indies, 97157 Fort de France, France
- Department of Critical Care Medicine, Toxicology and Emergency, CHU Martinique, University Hospital of Martinique, 97200 Fort de France, France
| | - Hossein Mehdaoui
- Cardiovascular Research Team EA7525, University of the French West Indies, 97157 Fort de France, France
- Department of Critical Care Medicine, Toxicology and Emergency, CHU Martinique, University Hospital of Martinique, 97200 Fort de France, France
| | - Remi Neviere
- Cardiovascular Research Team EA7525, University of the French West Indies, 97157 Fort de France, France
- Correspondence:
| |
Collapse
|
18
|
Platelet depletion enhances lethal, hemorrhagic and myotoxic activities of Bothrops asper snake venom in a murine model. Toxicon 2022; 219:106936. [DOI: 10.1016/j.toxicon.2022.106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022]
|
19
|
Neves JCF, Ibiapina HNS, Magalhães-Gama F, Sachett JAG, Silva IM, Coelho KF, Alves EC, Tarragô AM, de Lima Ferreira LC, Malheiro A, Monteiro WM, Costa AG. CCL-2 and CXCL-8: Potential Prognostic Biomarkers of Acute Kidney Injury after a Bothrops atrox Snakebite. Mediators Inflamm 2022; 2022:8285084. [PMID: 36117588 PMCID: PMC9473908 DOI: 10.1155/2022/8285084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
In the Brazilian Amazon, the snake Bothrops atrox is the primary cause of snakebites. B. atrox (BaV) venom can cause systemic pathophysiological changes such as acute kidney injury (AKI), which leads to the production of chemokines and cytokines in response to the envenomation. These soluble immunological molecules act by modulating the inflammatory response; however, the mechanisms associated with the development of AKI are still poorly understood. Here, we characterize the profile of these soluble immunological molecules as possible predictive biomarkers of the development of AKI. The study involved 34 patients who had been victims of snakebites by Bothrops sp. These were categorized into two groups according to the development of AKI (AKI(-)/AKI(+)), using healthy donors as the control (HD). Peripheral blood samples were collected at three-time points: before antivenom administration (T0) and at 24 and 48 hours after antivenom (T1 and T2, respectively). The soluble immunological molecules (CXCL-8, CCL-5, CXCL-9, CCL-2, CXCL-10, IL-6, TNF, IL-2, IL-10, IFN-γ, IL-4, and IL-17A) were quantified using cytometric bead array. Our results demonstrated an increase in CXCL-9, CXCL-10, IL-6, IL-2, IL-10, and IL-17A molecules in the groups of patients who suffered Bothrops snakebites (AKI(-) and AKI(+)) before antivenom administration, when compared to HD. In the AKI(+) group, levels of CXCL-8 and CCL-2 molecules were elevated on admission and progressively decreased during the clinical evolution of patients after antivenom administration. In addition, in the signature analysis, these were produced exclusively by the group AKI(+) at T0. Thus, these chemokines may be related to the initiation and extension of AKI after envenomation by Bothrops and present themselves as two potential biomarkers of AKI at T0.
Collapse
Affiliation(s)
- Juliana Costa Ferreira Neves
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Hiochelson Najibe Santos Ibiapina
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Fábio Magalhães-Gama
- Post-Graduate Program in Basic and Applied Immunology, Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Post-Graduate Program in Health Sciences, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-Minas), Minas Gerais, Belo Horizonte, Brazil
- Directorate of Teaching and Research, Hematology and Hemotherapy Foundation of Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
- Department of Education and Research, Alfredo da Matta Foundation (FUAM), Manaus, AM, Brazil
| | - Iran Mendonça Silva
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Kerolaine Fonseca Coelho
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Eliane Campos Alves
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Andréa Monteiro Tarragô
- Post-Graduate Program in Basic and Applied Immunology, Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Directorate of Teaching and Research, Hematology and Hemotherapy Foundation of Amazonas (HEMOAM), Manaus, AM, Brazil
- Post-Graduate Program in Sciences Applied to Hematology, UEA, Manaus, AM, Brazil
| | - Luiz Carlos de Lima Ferreira
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Adriana Malheiro
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Directorate of Teaching and Research, Hematology and Hemotherapy Foundation of Amazonas (HEMOAM), Manaus, AM, Brazil
- Post-Graduate Program in Sciences Applied to Hematology, UEA, Manaus, AM, Brazil
| | - Wuelton Marcelo Monteiro
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Allyson Guimarães Costa
- Post-graduate Program in Tropical Medicine, Amazonas State University (UEA), Manaus, AM, Brazil
- Carlos Borborema Clinical Research Institute, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Post-Graduate Program in Health Sciences, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-Minas), Minas Gerais, Belo Horizonte, Brazil
- Directorate of Teaching and Research, Hematology and Hemotherapy Foundation of Amazonas (HEMOAM), Manaus, AM, Brazil
- Post-Graduate Program in Sciences Applied to Hematology, UEA, Manaus, AM, Brazil
- Nursing School of Manaus, UFAM, Manaus, AM, Brazil
| |
Collapse
|
20
|
Experimental Bothrops atrox Envenomation: Blood Plasma Proteome Effects after Local Tissue Damage and Perspectives on Thromboinflammation. Toxins (Basel) 2022; 14:toxins14090613. [PMID: 36136550 PMCID: PMC9503785 DOI: 10.3390/toxins14090613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 02/07/2023] Open
Abstract
The clinical manifestations of Bothrops atrox envenoming involve local and systemic changes, among which edema requires substantial attention due to its ability to progress to compartmental syndromes and sometimes cause tissue loss and amputations. However, the impact of edema on the poisoned body’s system has not been explored. Thus, the present study aimed to explore the systemic pathological and inflammatory events that are altered by intraplantar injection of B. atrox venom in a mouse model through hematologic, lipidic, and shotgun proteomics analysis. Plasma samples collected showed a greater abundance of proteins related to complement, coagulation, lipid system, platelet and neutrophil degranulation, and pathways related to cell death and ischemic tolerance. Interestingly, some proteins, in particular, Prdx2 (peroxiredoxin 2), Hba (hemoglobin subunit alpha), and F9 (Factor IX), increased according to the amount of venom injected. Our findings support that B. atrox venom activates multiple blood systems that are involved in thromboinflammation, an observation that may have implications for the pathophysiological progression of envenomations. Furthermore, we report for the first time a potential role of Prdx2, Hba, and F9 as potential markers of the severity of edema/inflammation in mice caused by B. atrox.
Collapse
|
21
|
Lee JM, Song JH, Song KH. A Retrospective Evaluation of Snake Envenomation in Dogs in South Korea (2004-2021). Toxins (Basel) 2022; 14:565. [PMID: 36006225 PMCID: PMC9415592 DOI: 10.3390/toxins14080565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Snake envenomation is a medical emergency capable of causing local and systemic complications. However, information on venomous snakebite in dogs in South Korea is scarce. In this study, fifty-nine dogs treated at a private veterinary clinic from 2004 to 2021 were retrospectively studied. The aim was to characterize the demographics, elapsed time between snakebite and veterinary clinic presentation, laboratory findings, clinical signs, treatments, adverse reactions to antivenom, and prognosis of venomous snakebite. Snakebite was mostly observed between 12 p.m. and 5 p.m. from April to October. On the days of envenomation, the weather conditions were mostly cloudy, followed by rain/precipitation, and least frequently fair weather. Grassland was the most common incident location, and leashed dog walking was the most frequent activity when snakebite occurred. The main local symptoms were edema, hemorrhagic discharge, cutaneous erythema, ulceration, and necrosis. Major systemic clinical signs were tachypnea, tachycardia, altered mentation, ptyalism, and hypotension. Based on the time interval between snakebite and presentation at the veterinary clinic, two groups were defined: <4 h (Group 1, 49.2%) and ≥4 h (Group 2, 50.8%). Systemic inflammation was more frequently observed in Group 2. The level of C-reactive protein at presentation (p = 0.036) and the highest-level during hospitalization (p = 0.023) were significantly elevated in Group 2 (≥4 h). The dogs in Group 2 displayed more frequent muscle damage (increased creatine kinase) than the dogs in Group 1, and a higher level of creatine kinase was associated with delayed (≥4 h) presentation after snakebite (p = 0.003). All of the dogs were treated symptomatically, and 34 dogs (58%) received antivenom. Treatment with antivenom showed no adverse reactions in this study. All of the treated dogs recovered. One dog was euthanized without any treatment due to respiratory distress, hypotension, and cost constraints. In conclusion, this study provides baseline information on venomous snakebite in dogs in South Korea. The prognosis was excellent, especially when the dogs were treated within 4 h.
Collapse
Affiliation(s)
| | | | - Kun-Ho Song
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
22
|
Verdes A, Taboada S, Hamilton BR, Undheim EAB, Sonoda GG, Andrade SCS, Morato E, Isabel Marina A, Cárdenas CA, Riesgo A. Evolution, expression patterns and distribution of novel ribbon worm predatory and defensive toxins. Mol Biol Evol 2022; 39:6580756. [PMID: 35512366 PMCID: PMC9132205 DOI: 10.1093/molbev/msac096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ribbon worms are active predators that use an eversible proboscis to inject venom into their prey and defend themselves with toxic epidermal secretions. Previous work on nemertean venom has largely focused on just a few species and has not investigated the different predatory and defensive secretions in detail. Consequently, our understanding of the composition and evolution of ribbon worm venoms is still very limited. Here, we present a comparative study of nemertean venom combining RNA-seq differential gene expression analyses of venom-producing tissues, tandem mass spectrometry-based proteomics of toxic secretions, and mass spectrometry imaging of proboscis sections, to shed light onto the composition and evolution of predatory and defensive toxic secretions in Antarctonemertes valida. Our analyses reveal a wide diversity of putative defensive and predatory toxins with tissue-specific gene expression patterns and restricted distributions to the mucus and proboscis proteomes respectively, suggesting that ribbon worms produce distinct toxin cocktails for predation and defense. Our results also highlight the presence of numerous lineage-specific toxins, indicating that venom evolution is highly divergent across nemerteans, producing toxin cocktails that might be finely tuned to subdue different prey. Our data also suggest that the hoplonemertean proboscis is a highly specialized predatory organ that seems to be involved in a variety of biological functions besides predation, including secretion and sensory perception. Overall, our results advance our knowledge into the diversity and evolution of nemertean venoms and highlight the importance of combining different types of data to characterize toxin composition in understudied venomous organisms.
Collapse
Affiliation(s)
- Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain.,Department of Life Sciences, Natural History Museum, London, UK
| | - Sergi Taboada
- Department of Life Sciences, Natural History Museum, London, UK.,Departament of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gabriel G Sonoda
- Departmento de Genética e Biología Evolutiva, University of Sao Paulo, Sao Paulo, Brazil
| | - Sonia C S Andrade
- Departmento de Genética e Biología Evolutiva, University of Sao Paulo, Sao Paulo, Brazil
| | - Esperanza Morato
- CBMSO Protein Chemistry Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Isabel Marina
- CBMSO Protein Chemistry Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain.,Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
23
|
Dias ÊR, de Oliveira LA, Sales Lauria PS, Bordon KDCF, Rodrigues Domênico AM, da Silva Guerreiro ML, Wiezel GA, Cardoso IA, Rossini BC, Marino CL, Pimenta DC, Arantes EC, Casais-e-Silva LL, Branco A, dos Santos LD, Biondi I. Bothrops leucurus snake venom protein profile, isolation and biological characterization of its major toxin PLA2s-likeds. Toxicon 2022; 213:27-42. [DOI: 10.1016/j.toxicon.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022]
|
24
|
Martínez-Villota VA, Mera-Martínez PF, Portillo-Miño JD. Massive acute ischemic stroke after Bothrops spp. envenomation in southwestern Colombia: Case report and literature review. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 42:9-17. [PMID: 35471166 PMCID: PMC9045098 DOI: 10.7705/biomedica.6114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/20/2021] [Indexed: 06/14/2023]
Abstract
Bothrops spp. envenomation and its relationship with ischemic stroke has complex pathogenesis. Local effects such as edema, pain, redness, necrosis, and systemic manifestations like coagulation disorders, thrombosis, renal failure, and hemorrhage have been reported. Hemorrhagic stroke is a common neurological complication but ischemic stroke is poorly understood. We present here the case of a 50-year-old male with no comorbidities referred from a rural area in southwest Colombia with a Bothrops spp. snakebite on the left hand. On admission, the patient presented with a deterioration of consciousness and required mechanical ventilation assistance. The MRI showed multiple ischemic areas in the bilateral frontaltemporal and occipital regions. Two months later, the patient had a favorable resolution, although central paresis in the III and VI cranial nerves and positive Babinski's sign persisted. As already mentioned, the pathophysiology of ischemic stroke due to snakebite is complex but the procoagulant activity of the venom components, the hypovolemic shock, the endothelial damage, and the thromboinflammation can explain it, and although it rarely occurs, it should be considered as a complication of ophidian accidents caused by Bothrops spp.
Collapse
Affiliation(s)
- Viviana Alexandra Martínez-Villota
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia; Departamento de Neurología, Hospital Universitario Departamental de Nariño, Pasto, Colombia.
| | - Paulo Francisco Mera-Martínez
- Facultad de Ciencias de la Salud, Universidad de Nariño, Pasto, Colombia; Departamento de Emergencias, Hospital Universitario Departamental de Nariño, Pasto, Colombia.
| | - José Darío Portillo-Miño
- Facultad de Ciencias de la Salud, Grupo de Investigación RIZHOME GROUP II, Fundación Universitaria San Martín, Pasto, Colombia; Grupo de Investigación en Infecciosas y Cáncer, Fundación Hospital San Pedro, Pasto, Colombia.
| |
Collapse
|
25
|
Brogna C, Cristoni S, Petrillo M, Querci M, Piazza O, Van den Eede G. Toxin-like peptides in plasma, urine and faecal samples from COVID-19 patients. F1000Res 2022; 10:550. [PMID: 35106136 PMCID: PMC8772524 DOI: 10.12688/f1000research.54306.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Background: SARS-CoV-2 that causes COVID-19 disease and led to the pandemic currently affecting the world has been broadly investigated. Different studies have been performed to understand the infection mechanism, and the involved human genes, transcripts and proteins. In parallel, numerous clinical extra-pulmonary manifestations co-occurring with COVID-19 disease have been reported and evidence of their severity and persistence is increasing. Whether these manifestations are linked to other disorders co-occurring with SARS-CoV-2 infection, is under discussion. In this work, we report the identification of toxin-like peptides in COVID-19 patients by application of the Liquid Chromatography Surface-Activated Chemical Ionization – Cloud Ion Mobility Mass Spectrometry. Methods: Plasma, urine and faecal samples from COVID-19 patients and control individuals were analysed to study peptidomic toxins’ profiles. Protein precipitation preparation procedure was used for plasma, to remove high molecular weight proteins and efficiently solubilize the peptide fraction; in the case of faeces and urine, direct peptide solubilization was employed. Results: Toxin-like peptides, almost identical to toxic components of venoms from animals, like conotoxins, phospholipases, phosphodiesterases, zinc metal proteinases, and bradykinins, were identified in samples from COVID-19 patients, but not in control samples. Conclusions: The presence of toxin-like peptides could potentially be connected to SARS-CoV-2 infection. Their presence suggests a possible association between COVID-19 disease and the release in the body of (oligo-)peptides almost identical to toxic components of venoms from animals. Their involvement in a large set of heterogeneous extra-pulmonary COVID-19 clinical manifestations, like neurological ones, cannot be excluded. Although the presence of each individual symptom is not selective of the disease, their combination might be related to COVID-19 by the coexistence of the panel of the here detected toxin-like peptides. The presence of these peptides opens new scenarios on the aetiology of the COVID-19 clinical symptoms observed up to now, including neurological manifestations.
Collapse
Affiliation(s)
| | - Simone Cristoni
- ISB Ion Source & Biotechnologies srl, Italy, Bresso, Milano, 20091, Italy
| | - Mauro Petrillo
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | - Maddalena Querci
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | - Ornella Piazza
- Department of Medicine and Surgery, University of Salerno, Baronissi, 84081, Italy
| | - Guy Van den Eede
- European Commission, Joint Research Centre (JRC), Geel, 2440, Belgium
| |
Collapse
|
26
|
Gallic Acid as a Non-Selective Inhibitor of α/β-Hydrolase Fold Enzymes Involved in the Inflammatory Process: The Two Sides of the Same Coin. Pharmaceutics 2022; 14:pharmaceutics14020368. [PMID: 35214100 PMCID: PMC8874653 DOI: 10.3390/pharmaceutics14020368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/31/2022] Open
Abstract
(1) Background: Gallic acid (GA) has been characterized as an effective anti-inflammatory, antivenom, and promising drug for therapeutic use. (2/3) Methods and Results: GA was identified from ethanolic extract of fresh pitanga (Eugenia uniflora) leaves, which was identified using commercial GA. Commercial GA neutralized the enzymatic activity of secretory PLA2 (sPLA2) by inhibiting the active site and inducing changes in the secondary structure of the enzyme. Pharmacological edema assays showed that GA strongly decreased edema when the compound was previously incubated with sPLA2. However, prior treatment of GA (30 min before) significantly increased the edema and myotoxicity induced by sPLA2. The molecular docking results of GA with platelet-acetylhydrolase (PAF-AH) and acetylcholinesterase reveal that this compound was able to interact with the active site of both molecules, inhibiting the hydrolysis of platelet-activating factor (PAF) and acetylcholine (ACh). (4) Conclusion: GA has a great potential application; however, our results show that this compound can also induce adverse effects in previously treated animals. Additionally, the increased edema and myotoxicity observed experimentally in GA-treated animals may be due to the inhibition of PAF-AH and Acetylcholinesterase.
Collapse
|
27
|
op den Brouw B, Coimbra FCP, Casewell NR, Ali SA, Vonk FJ, Fry BG. A Genus-Wide Bioactivity Analysis of Daboia (Viperinae: Viperidae) Viper Venoms Reveals Widespread Variation in Haemotoxic Properties. Int J Mol Sci 2021; 22:13486. [PMID: 34948283 PMCID: PMC8706385 DOI: 10.3390/ijms222413486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
The snake genus Daboia (Viperidae: Viperinae; Oppel, 1811) contains five species: D. deserti, D. mauritanica, and D. palaestinae, found in Afro-Arabia, and the Russell's vipers D. russelii and D. siamensis, found in Asia. Russell's vipers are responsible for a major proportion of the medically important snakebites that occur in the regions they inhabit, and their venoms are notorious for their coagulopathic effects. While widely documented, the extent of venom variation within the Russell's vipers is poorly characterised, as is the venom activity of other species within the genus. In this study we investigated variation in the haemotoxic activity of Daboia using twelve venoms from all five species, including multiple variants of D. russelii, D. siamensis, and D. palaestinae. We tested the venoms on human plasma using thromboelastography, dose-response coagulometry analyses, and calibrated automated thrombography, and on human fibrinogen by thromboelastography and fibrinogen gels. We assessed activation of blood factors X and prothrombin by the venoms using fluorometry. Variation in venom activity was evident in all experiments. The Asian species D. russelii and D. siamensis and the African species D. mauritanica possessed procoagulant venom, while D. deserti and D. palaestinae were net-anticoagulant. Of the Russell's vipers, the venom of D. siamensis from Myanmar was most toxic and D. russelli of Sri Lanka the least. Activation of both factor X and prothrombin was evident by all venoms, though at differential levels. Fibrinogenolytic activity varied extensively throughout the genus and followed no phylogenetic trends. This venom variability underpins one of the many challenges facing treatment of Daboia snakebite envenoming. Comprehensive analyses of available antivenoms in neutralising these variable venom activities are therefore of utmost importance.
Collapse
Affiliation(s)
- Bianca op den Brouw
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia 4072, Australia;
| | - Francisco C. P. Coimbra
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia 4072, Australia;
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Syed Abid Ali
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan;
| | - Freek J. Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands;
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia 4072, Australia;
| |
Collapse
|
28
|
Gutiérrez JM, Teixeira CFP, Fan HW. Instituto Butantan and Instituto Clodomiro Picado: A long-standing partnership in science, technology, and public health. Toxicon 2021; 202:75-81. [PMID: 34562498 DOI: 10.1016/j.toxicon.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
Instituto Butantan (São Paulo, Brazil) and Instituto Clodomiro Picado (San José, Costa Rica) are public institutions devoted to scientific and technological research, production of antivenoms and other immunobiologicals, and a variety of public health interventions aimed at confronting the problem of snakebite envenoming in their countries and elsewhere. In the context of the 120th anniversary of Instituto Butantan, this work describes the historical developments in the relationship between these institutions, which has evolved into a solid cooperation platform in science, technology, and public health. The relationship between Instituto Butantan and Costa Rica started early in the 20th century, with the provision of Brazilian antivenoms to Costa Rica through the coordination of Instituto Butantan and the health system of Costa Rica, with the leadership of Clodomiro Picado Twight. After the decade of 1980, a prolific collaborative network has been established between Instituto Butantan and Instituto Clodomiro Picado (founded in 1970) in the areas of scientific and technological research in pharmacology, biochemistry, experimental pathology, immunology, and public health, as well as in antivenom development, production, preclinical evaluation, and quality control. In addition, both institutions have played a key role in the integration of regional efforts in Latin America to create a network of public institutions devoted to antivenom production and quality control, in close coordination with the Pan American Health Organization (PAHO). This long-standing partnership is an example of a highly productive south-south cooperation under a frame of solidarity and public well-being.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | | | - Hui Wen Fan
- Núcleo de Produção de Soros, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
29
|
Larréché S, Chippaux JP, Chevillard L, Mathé S, Résière D, Siguret V, Mégarbane B. Bleeding and Thrombosis: Insights into Pathophysiology of Bothrops Venom-Related Hemostasis Disorders. Int J Mol Sci 2021; 22:ijms22179643. [PMID: 34502548 PMCID: PMC8431793 DOI: 10.3390/ijms22179643] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Toxins from Bothrops venoms targeting hemostasis are responsible for a broad range of clinical and biological syndromes including local and systemic bleeding, incoagulability, thrombotic microangiopathy and macrothrombosis. Beyond hemostais disorders, toxins are also involved in the pathogenesis of edema and in most complications such as hypovolemia, cardiovascular collapse, acute kidney injury, myonecrosis, compartmental syndrome and superinfection. These toxins can be classified as enzymatic proteins (snake venom metalloproteinases, snake venom serine proteases, phospholipases A2 and L-amino acid oxidases) and non-enzymatic proteins (desintegrins and C-type lectin proteins). Bleeding is due to a multifocal toxicity targeting vessels, platelets and coagulation factors. Vessel damage due to the degradation of basement membrane and the subsequent disruption of endothelial cell integrity under hydrostatic pressure and tangential shear stress is primarily responsible for bleeding. Hemorrhage is promoted by thrombocytopenia, platelet hypoaggregation, consumption coagulopathy and fibrin(ogen)olysis. Onset of thrombotic microangiopathy is probably due to the switch of endothelium to a prothrombotic phenotype with overexpression of tissue factor and other pro-aggregating biomarkers in association with activation of platelets and coagulation. Thrombosis involving large-caliber vessels in B. lanceolatus envenomation remains a unique entity, which exact pathophysiology remains poorly understood.
Collapse
Affiliation(s)
- Sébastien Larréché
- INSERM, UMRS-1144, Paris University, 75006 Paris, France; (S.L.); (L.C.); (S.M.)
- Department of Medical Biology, Bégin Military Teaching Hospital, 94160 Saint-Mandé, France
| | - Jean-Philippe Chippaux
- MERIT, IRD, Paris University, 75006 Paris, France;
- CRT, Pasteur Institute, 75015 Paris, France
| | - Lucie Chevillard
- INSERM, UMRS-1144, Paris University, 75006 Paris, France; (S.L.); (L.C.); (S.M.)
| | - Simon Mathé
- INSERM, UMRS-1144, Paris University, 75006 Paris, France; (S.L.); (L.C.); (S.M.)
| | - Dabor Résière
- Clinical Toxicology Unit, Critical Care Department, University Hospital of Martinique, Fort de France, 97200 Martinique, France;
| | - Virginie Siguret
- INSERM, UMRS-1140, Paris University, 75006 Paris, France;
- Laboratory of Hematology, Lariboisière Hospital, 75010 Paris, France
| | - Bruno Mégarbane
- INSERM, UMRS-1144, Paris University, 75006 Paris, France; (S.L.); (L.C.); (S.M.)
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, 75010 Paris, France
- Correspondence: ; Tel.: +33-(0)-143-985-299
| |
Collapse
|
30
|
Brogna C, Cristoni S, Petrillo M, Querci M, Piazza O, Van den Eede G. Toxin-like peptides in plasma, urine and faecal samples from COVID-19 patients. F1000Res 2021; 10:550. [PMID: 35106136 PMCID: PMC8772524 DOI: 10.12688/f1000research.54306.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 08/11/2023] Open
Abstract
Background: SARS-CoV-2 that causes COVID-19 disease and led to the pandemic currently affecting the world has been broadly investigated. Different studies have been performed to understand the infection mechanism, and the involved human genes, transcripts and proteins. In parallel, numerous clinical extra-pulmonary manifestations co-occurring with COVID-19 disease have been reported and evidence of their severity and persistence is increasing. Whether these manifestations are linked to other disorders co-occurring with SARS-CoV-2 infection, is under discussion. In this work, we report the identification of toxin-like peptides in COVID-19 patients by application of the Liquid Chromatography Surface-Activated Chemical Ionization - Cloud Ion Mobility Mass Spectrometry. Methods: Plasma, urine and faecal samples from COVID-19 patients and control individuals were analysed to study peptidomic toxins' profiles. Protein precipitation preparation procedure was used for plasma, to remove high molecular weight proteins and efficiently solubilize the peptide fraction; in the case of faeces and urine, direct peptide solubilization was employed. Results: Toxin-like peptides, almost identical to toxic components of venoms from animals, like conotoxins, phospholipases, phosphodiesterases, zinc metal proteinases, and bradykinins, were identified in samples from COVID-19 patients, but not in control samples. Conclusions: The presence of toxin-like peptides could potentially be connected to SARS-CoV-2 infection. Their presence suggests a possible association between COVID-19 disease and the release in the body of (oligo-)peptides almost identical to toxic components of venoms from animals. Their involvement in a large set of heterogeneous extra-pulmonary COVID-19 clinical manifestations, like neurological ones, cannot be excluded. Although the presence of each individual symptom is not selective of the disease, their combination might be related to COVID-19 by the coexistence of the panel of the here detected toxin-like peptides. The presence of these peptides opens new scenarios on the aetiology of the COVID-19 clinical symptoms observed up to now, including neurological manifestations.
Collapse
Affiliation(s)
| | - Simone Cristoni
- ISB Ion Source & Biotechnologies srl, Italy, Bresso, Milano, 20091, Italy
| | - Mauro Petrillo
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | - Maddalena Querci
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | - Ornella Piazza
- Department of Medicine and Surgery, University of Salerno, Baronissi, 84081, Italy
| | - Guy Van den Eede
- European Commission, Joint Research Centre (JRC), Geel, 2440, Belgium
| |
Collapse
|
31
|
Köse A, Akdeniz A, Babus SB, Göçmen M, Temel GO. The Usefulness of Platelet Distribution Width and Platelet Distribution Width to Lymphocyte Ratio in Predicting Severity and Outcomes in Patients with Snakebite. Wilderness Environ Med 2021; 32:284-292. [PMID: 34172373 DOI: 10.1016/j.wem.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Tissue damage, inflammatory response, and hematologic abnormalities may occur in snakebite envenomation. This study aimed to evaluate the predictive ability of platelet distribution width (PDW) and platelet distribution width to lymphocyte ratio (PDWLR) in the severity and outcome of envenomation in patients with snakebites in the emergency department (ED). METHODS All adult patients admitted to the ED after a snakebite were retrospectively evaluated. Patients were classified according to the severity of envenomation. The relationship between the PDW and PDWLR and envenomation severity and patient outcomes was analyzed. Multivariate logistic regression analysis was performed to determine the predictors of severe envenomation. Results were presented as 95% CIs with odds ratios. Statistical significance was accepted at P<0.05. RESULTS Envenomation was classified as none/minimal in 42 patients and moderate/severe in 29. PDW and PDWLR were significantly higher in the moderate/severe group (P=0.016 and P<0.001, respectively). Cut-off values of 16.5 for PDW and 6.15 for PDWLR were related to more severe envenomation (area under the curve 0.67, 95% CI 0.55-0.78 and area under the curve 0.85, 95% CI: 0.74-0.92, respectively). Blood product replacement, thrombocytopenia, hematologic abnormality, advanced local findings, compartment syndrome/fasciotomy, antivenom dosing, and moderate/severe envenomation were associated with PDWLR >6.15 (P<0.05). In multivariate analysis, PDWLR (odds ratio 1.19 [95% CI 1-1.4]; P=0.04) was an independent predictor of severe envenomation. CONCLUSIONS Higher PDW and PDWLR were associated with severe envenomation in patients with snakebites in the ED. PDWLR may be used as a predictor of severe envenomation and adverse outcomes.
Collapse
Affiliation(s)
- Ataman Köse
- Faculty of Medicine, Department of Emergency Medicine, Mersin University, Mersin, Turkey.
| | - Aydan Akdeniz
- Faculty of Medicine, Department of Hematology, Mersin University, Mersin, Turkey
| | - Seyran Bozkurt Babus
- Faculty of Medicine, Department of Emergency Medicine, Mersin University, Mersin, Turkey
| | - Mert Göçmen
- Faculty of Medicine, Department of Emergency Medicine, Mersin University, Mersin, Turkey
| | - Gülhan Orekici Temel
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Mersin University, Mersin, Turkey
| |
Collapse
|
32
|
Goncharov MD, Savchenko AA, Grinshtein YI, Gvozdev II, Kosinova AA, Mongush TS. Aspirin Resistance as a Result of Impaired Interaction of Platelets and Neutrophils in Patients with Coronary Heart Disease. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2021. [DOI: 10.20996/1819-6446-2021-01-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim. To study the relationship between the levels of synthesis of reactive oxygen species (ROS) by platelets and neutrophils in patients with coronary heart disease (CHD) before and after coronary artery bypass grafting (CABG), depending on sensitivity to acetylsalicylic acid (ASA).Material and methods. The study included 95 patients with coronary artery disease who are indicated for CABG surgery. The control group consisted of 30 healthy donors. The antiplatelet therapy was stopped for at least 5 days before CABG. In the postoperative period, from the first day, all patients were received 100 mg of an enteric form of acetylsalicylic acid (ASA). Resistance to ASA was determined at the level of platelet aggregation with arachidonic acid ≥20% by optical agregometry at least at one observation point: before CABG, on 1-3 day and on 8-10 day after surgery. We evaluated the spontaneous and induced lucigenin-dependent chemiluminescence (CL) of platelets (ADP induction) and neutrophils (zymosan induction) by the exit time to maximum intensity (Tmax), maximum intensity (Imax) and area (S) under the CL curve.Results. 70.5% sensitive (sASA) and 29.5% resistant (rASA) to ASA patients were revealed. Prior to CABG, in sASA patients, the Imax of spontaneous and zymosan-induced neutrophil CL and CL platelet activity was increased relative to control values. Tmax of spontaneous platelet CL, Imax and S under the ADP-induced platelet CL curve were lower in sASA patients, if to compare with rASA patients. On the 1st and 8-10th day after CABG in sASA patients, the CL indicators of neutrophil and platelet activity also remained elevated compared to control values. On the 1st day after CABG decreased levels of S under the spontaneous CL curve of neutrophils in rASA patients was established compared with sASA patients, and increased levels of Imax and S under the curve of induced neutrophil CL were detected in comparison with the control range. In rASA patients, the values of Tmax of spontaneous platelet CL decreased in relation to the values detected in the control group and sASA patients. On the 8–10th day after CABG, most indicators of spontaneous and zymosan-induced CL neutrophils in rASA patients were also increased compared to control values. In rASA patients a positive correlation of Imax-induced CL was found (r=0.83) on the 1st day after CABG and negative correlations of Tmax of spontaneous CL (r=- 0.75) and S under the curve induced CL (r=-0.70) on the 8-10th day were detected between platelets and neutrophils.Conclusion. In sASA patients with coronary heart disease before and after CABG, a high level of synthesis of superoxide radical by neutrophils and platelets was detected. The relationship between the levels of the synthesis of superoxide radical by neutrophils and platelets was found only after CABG in rASA patients. Increased synthesis of superoxide radical due to metabolic and regulatory relationships in neutrophils and platelets stimulates pro-inflammatory processes in coronary artery disease and determines the sensitivity of platelets to ASA.
Collapse
Affiliation(s)
- M. D. Goncharov
- Federal Center of Cardiovascular Surgery;
Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - A. A. Savchenko
- Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University;
Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of medical problems of the North
| | - Yu. I. Grinshtein
- Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University;Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - I. I. Gvozdev
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of medical problems of the North
| | - A. A. Kosinova
- Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - T. S. Mongush
- Federal Center of Cardiovascular Surgery;
Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| |
Collapse
|
33
|
Urs AP, Manjuprasanna VN, Rudresha GV, Hiremath V, Sharanappa P, Rajaiah R, Vishwanath BS. Thrombin-like serine protease, antiquorin from Euphorbia antiquorum latex induces platelet aggregation via PAR1-Akt/p38 signaling axis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118925. [PMID: 33333088 DOI: 10.1016/j.bbamcr.2020.118925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 12/28/2022]
Abstract
Plant latex proteases (PLPs) are pharmacologically essential and are integral components of traditional medicine in the management of bleeding wounds. PLPs are known to promote blood coagulation and stop bleeding by interfering at various stages of hemostasis. There are a handful of scientific reports on thrombin-like enzymes characterized from plant latices. However, the role of plant latex thrombin-like enzymes in platelet aggregation is not well known. In the present study, we attempted to purify and characterize thrombin-like protease responsible for platelet aggregation. Among tested plant latices, Euphorbia genus latex protease fractions (LPFs) induced platelet aggregation. In Euphorbia genus, E. antiquorum LPF (EaLPF) strongly induced platelet aggregation and attenuated bleeding in mice. The purified thrombin-like serine protease, antiquorin (Aqn) is a glycoprotein with platelet aggregating activities that interfere in intrinsic and common pathways of blood coagulation cascade and alleviates bleeding and enhanced excision wound healing in mice. In continuation, the pharmacological inhibitor of PAR1 inhibited Aqn-induced phosphorylation of cPLA2, Akt, and P38 in human platelets. Moreover, Aqn-induced platelet aggregation was inhibited by pharmacological inhibitors of PAR1, PI3K, and P38. These data indicate that PAR1-Akt/P38 signaling pathways are involved in Aqn-induced platelet aggregation. The findings of the present study may open up a new avenue for exploiting Aqn in the treatment of bleeding wounds.
Collapse
Affiliation(s)
- Amog P Urs
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | | | - Gotravalli V Rudresha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Vilas Hiremath
- Vijayashree Diagnostics, Specialized Coagulation Lab, Bengaluru, India
| | - P Sharanappa
- Department of Studies in Botany, University of Mysore, Hassan, Karnataka, India
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India.
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India.
| |
Collapse
|
34
|
Feola A, Marella GL, Carfora A, Della Pietra B, Zangani P, Campobasso CP. Snakebite Envenoming a Challenging Diagnosis for the Forensic Pathologist: A Systematic Review. Toxins (Basel) 2020; 12:E699. [PMID: 33153179 PMCID: PMC7693695 DOI: 10.3390/toxins12110699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Snakebite envenoming (SBE) is a public health issue in developing countries. The estimated annual global incidence of snakebites is about 5.4 million snakebites per year, resulting from 1.8 to 2.7 million cases of SBE and from 81,000 to 138,000 deaths with 400,000 survivors suffering permanent physical and psychological disabilities. There are more than 3000 species of snakes around the world: 600 are venomous and over 200 are considered to be medically important because of their clinical effects. The severity of SBE depends on several factors among which bite localization, snake's size, condition of glands and teeth, bite angle and bite duration, the microflora of the snake's mouth and victim's skin, age of the victim, weight, health status, and victim's activity after a bite. Snake venoms are mixtures of protein families, and each of these families contains many different toxins or toxin isoforms. Based on their effects, snake venoms can be classified as hemotoxic, neurotoxic, or cytotoxic and they can all act together involving multiple tissues and organs. When the bite is fatal, the mechanism of death is primarily related to the paralysis of respiratory muscles, which causes asphyxia and hypoxic-ischemic encephalopathy, but also anaphylactic shock, hemorrhagic shock, cardiomyopathy, acute tubular necrosis (ATN). The purpose of this literature review is to evaluate epidemiological and post-mortem examination findings in fatal SBEs in order to better understand the pathophysiological mechanisms, thus helping pathologists in defining the correct diagnosis.
Collapse
Affiliation(s)
- Alessandro Feola
- Department Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Luciano Armanni 5, 80138 Naples, Italy; (A.F.); (B.D.P.); (P.Z.); (C.P.C.)
| | - Gian Luca Marella
- Department of Surgical Sciences, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy;
| | - Anna Carfora
- Department Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Luciano Armanni 5, 80138 Naples, Italy; (A.F.); (B.D.P.); (P.Z.); (C.P.C.)
| | - Bruno Della Pietra
- Department Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Luciano Armanni 5, 80138 Naples, Italy; (A.F.); (B.D.P.); (P.Z.); (C.P.C.)
| | - Pierluca Zangani
- Department Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Luciano Armanni 5, 80138 Naples, Italy; (A.F.); (B.D.P.); (P.Z.); (C.P.C.)
| | - Carlo Pietro Campobasso
- Department Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Luciano Armanni 5, 80138 Naples, Italy; (A.F.); (B.D.P.); (P.Z.); (C.P.C.)
| |
Collapse
|
35
|
Jebali J, Zakraoui O, Aissaoui D, Abdelkafi-Koubaa Z, Srairi-Abid N, Marrakchi N, Essafi-Benkhadir K. Lebecetin, a snake venom C-type lectin protein, modulates LPS-induced inflammatory cytokine production in human THP-1-derived macrophages. Toxicon 2020; 187:144-150. [PMID: 32918926 DOI: 10.1016/j.toxicon.2020.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/11/2020] [Accepted: 09/07/2020] [Indexed: 10/25/2022]
Abstract
The excessive production of inflammatory mediators results in an overactive immune response leading to the worsening of various human diseases. Thus, there is a still need to identify molecules able to regulate the inflammatory response. Lebecetin, a C-type lectin protein isolated from Macrovipera lebetina snake venom, was previously characterized as a platelet aggregation inhibitor and antitumor active biomolecule. In the present work, we investigated its effect on the production of some cytokines linked to inflammatory response and the underlying mechanisms in lipopolysaccharide (LPS)-induced THP1 macrophages. Interestingly, we found that lebecetin reduced the levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-8 while it partially increased LPS-induced secretion of the immunomodulatory cytokine IL-10. Furthermore, this modulatory effect was accompanied by decreased activation of ERK1/2, p38, AKT kinases and NF-κB along with reduced expression of αvβ3 integrin. Thus, this study highlights the promising role of lebecetin as a natural biomolecule that could manage the inflammatory response involved in the development and progression of inflammatory diseases.
Collapse
Affiliation(s)
- Jed Jebali
- Institut Pasteur de Tunis, LR11IPT08/LR16IPT08 Laboratoire des Venins et Molécules Thérapeutiques, 1002, Tunis, Tunisia; Université de Tunis El Manar, 1068, Tunis, Tunisia.
| | - Ons Zakraoui
- Institut Pasteur de Tunis, LR11IPT04/LR16IPT04 Laboratoire d'Epidémiologie Moléculaire et de Pathologie Expérimentale Appliquée Aux Maladies Infectieuses, 1002, Tunis, Tunisia; Université de Tunis El Manar, 1068, Tunis, Tunisia
| | - Dorra Aissaoui
- Institut Pasteur de Tunis, LR11IPT08/LR16IPT08 Laboratoire des Venins et Molécules Thérapeutiques, 1002, Tunis, Tunisia; Université de Tunis El Manar, 1068, Tunis, Tunisia
| | - Zaineb Abdelkafi-Koubaa
- Institut Pasteur de Tunis, LR11IPT08/LR16IPT08 Laboratoire des Venins et Molécules Thérapeutiques, 1002, Tunis, Tunisia; Université de Tunis El Manar, 1068, Tunis, Tunisia
| | - Najet Srairi-Abid
- Institut Pasteur de Tunis, LR11IPT08/LR16IPT08 Laboratoire des Venins et Molécules Thérapeutiques, 1002, Tunis, Tunisia; Université de Tunis El Manar, 1068, Tunis, Tunisia
| | - Naziha Marrakchi
- Institut Pasteur de Tunis, LR11IPT08/LR16IPT08 Laboratoire des Venins et Molécules Thérapeutiques, 1002, Tunis, Tunisia; Université de Tunis El Manar, 1068, Tunis, Tunisia; Faculté de Médecine de Tunis, Tunis, Tunisia
| | - Khadija Essafi-Benkhadir
- Institut Pasteur de Tunis, LR11IPT04/LR16IPT04 Laboratoire d'Epidémiologie Moléculaire et de Pathologie Expérimentale Appliquée Aux Maladies Infectieuses, 1002, Tunis, Tunisia; Université de Tunis El Manar, 1068, Tunis, Tunisia.
| |
Collapse
|
36
|
Gamma irradiated protease from Echis pyramidum venom: A promising immunogen to improve viper bites treatment. Toxicon 2020; 188:108-116. [PMID: 33065201 DOI: 10.1016/j.toxicon.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/22/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022]
Abstract
Echis pyramidum (Epy) is a venomous snake belongs to Viperidae family; it causes fetal coagulopathy systemic effects and death. Searching for more effective and safe antivenom is mandatory for viper bites treatment. Proteases are the most lethal components in viper venom inducing hemorrhage, edema and coagulation problems. Thus, the study aims to evaluate the potency of the prepared antisera and their neutralizing properties against the biological activities induced by whole Epy venom individually. Echis pyramidum metalloprotease enzyme (60 kDa) was purified using size-exclusion followed by DEAE-ion exchange chromatography. The purified Epy metalloprotease enzyme (SVMP) was detoxified with 1.5 kGy gamma rays from cobalt60 gamma cell and used for immunization. 1.5 kGy irradiated Epy metalloprotease (SVMPi) showed less lethal activity (LD50) compared to the corresponding native immunogen. The prepared antisera boosted against whole Epy venom (WV), 1.5 kGy irradiated whole Epy venom (WVi), SVMP and SVMPi were tested for neutralization of lethality and biological activities induced by Epy venom. The antibodies elicited against WVi and SVMPi were 30,000 and 20,000 EU, respectively. The anti-SVMPi serum showed the highest neutralization of lethality (ED50) compared to the other prepared antisera. In addition, it prolonged the clotting time from 49.0 ± 2.5 to 176.2 ± 1.4 s. Furthermore, it demonstrated a highly neutralizing activity against edema induction and hemorrhage of Epy venom by 66.8% and 94.3%, respectively compared with the other prepared antisera. These findings would encourage further studies for using gamma irradiated purified fraction(s) from different snake venoms as safe antigen(s) to produce more effective antivenoms.
Collapse
|
37
|
A lipidomics approach reveals new insights into Crotalus durissus terrificus and Bothrops moojeni snake venoms. Arch Toxicol 2020; 95:345-353. [PMID: 32880718 DOI: 10.1007/s00204-020-02896-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Snakebite envenomation causes > 81,000 deaths and incapacities in another 400,000 people worldwide every year. Snake venoms are complex natural secretions comprised of hundreds of different molecules with a wide range of biological functions that after injection cause local and systemic manifestations. Although several studies have investigated snake venoms, the majority have focused on the protein portion (toxins), without significant attention paid to the lipid fraction. Therefore, an untargeted lipidomic approach based on liquid chromatography with high-resolution mass spectrometry (LC-HRMS) was applied to investigate the lipid constituents of venoms of the snake species Crotalus durissus terrificus and Bothrops moojeni. Phosphatidylcholines (PC), Lyso-PCs, phosphatidylethanolamines (PE), Lyso-PE, phosphatidylserine (PS), phosphatidylinositol (PI), ceramides (Cer), and sphingomyelin (SM) species were detected in the analyzed snake venoms. The identified lipids included bioactive compounds such as platelet-activating factor (PAF) precursor, PAF-like molecules, plasmalogens, ceramides, and sphingomyelins with long fatty acid chain lengths, which may be associated with the systemic responses triggered by C. d. terrificus and B. moojeni envenomation. These responses include platelet aggregation, activation of intercellular adhesion molecule 1 (ICAM1), apoptosis, as well as the production of pro-inflammatory lipid mediators, cytokines, and reactive species. The newly proposed lipidomics strategy provided valuable information regarding the lipid profiles of viperid venoms, which could lead to increased understanding of the complex pathology promoted by snakebite envenomation.
Collapse
|
38
|
Wellmann IAM, Ibiapina HNS, Sachett JAG, Sartim MA, Silva IM, Oliveira SS, Tarragô AM, Moura-da-Silva AM, Lacerda MVG, Ferreira LCDL, Malheiro A, Monteiro WM, Costa AG. Correlating Fibrinogen Consumption and Profiles of Inflammatory Molecules in Human Envenomation's by Bothrops atrox in the Brazilian Amazon. Front Immunol 2020; 11:1874. [PMID: 32973773 PMCID: PMC7468254 DOI: 10.3389/fimmu.2020.01874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Snakebites are considered a major public health problem worldwide. In the Amazon region of Brazil, the snake Bothrops atrox (B. atrox) is responsible for 90% of the bites. These bites may cause local and systemic signs from acute inflammatory reaction and hemostatic changes, and present common hemorrhagic disorders. These alterations occur due the action of hemostatically active and immunogenic toxins which are capable of triggering a wide range of hemostatic and inflammatory events. However, the crosstalk between coagulation disorders and inflammatory reaction still has gaps in snakebites. Thus, the goal of this study was to describe the relationship between the consumption of fibrinogen and the profile of inflammatory molecules (chemokines and cytokines) in evenomations by B. atrox snakebites. A prospective study was carried out with individuals who had suffered B. atrox snakebites and presented different levels of fibrinogen consumption (normal fibrinogen [NF] and hypofibrinogenemia [HF]). Seventeen patients with NF and 55 patients with HF were eligible for the study, in addition to 50 healthy controls (CG). The molecules CXCL-8, CCL-5, CXCL-9, CCL-2, CXCL-10, IL-6, TNF, IL-2, IL-10, IFN-γ, IL-4, and IL-17A were quantified in plasma using the CBA technique at three different times (pre-antivenom therapy [T0], 24 h [T1], and 48 h [T2] after antivenom therapy). The profile of the circulating inflammatory response is different between the groups studied, with HF patients having higher concentrations of CCL-5 and lower IFN-γ. In addition, antivenom therapy seems to have a positive effect, leading to a profile of circulating inflammatory response similar in quantification of T1 and T2 on both groups. Furthermore, these results suggest that a number of interactions of CXCL-8, CXCL-9, CCL-2, IL-6, and IFN-γ in HF patients are directly affected by fibrinogen levels, which may be related to the inflammatory response and coagulation mutual relationship induced by B. atrox venom. The present study is the first report on inflammation-coagulation crosstalk involving snakebite patients and supports the better understanding of envenomation's pathophysiology mechanisms and guides in the search for novel biomarkers and prospective therapies.
Collapse
Affiliation(s)
- Irmgardt Alicia María Wellmann
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Hiochelson Najibe Santos Ibiapina
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Marco Aurélio Sartim
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Iran Mendonça Silva
- Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Sâmella Silva Oliveira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Ana Maria Moura-da-Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Laboratório de Imunopatologia, Instituto Butantan, São Paulo, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisas Leônidas e Maria Deane, FIOCRUZ-Amazônia, Manaus, Brazil
| | - Luiz Carlos de Lima Ferreira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| |
Collapse
|
39
|
Carneiro-Goetten JOL, Rodrigues BS, Nogoceke RA, do Nascimento TG, Moreno-Amaral AN, Stuelp-Campelo PM, Elifio-Esposito S. Neutrophils activated by BJcuL, a C-type lectin isolated from Bothrops jararacussu venom, decrease the invasion potential of neuroblastoma SK-N-SH cells in vitro. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190073. [PMID: 32425992 PMCID: PMC7216824 DOI: 10.1590/1678-9199-jvatitd-2019-0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/01/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Neuroblastoma is a pediatric tumor with a mortality rate of 40% in the most aggressive cases. Tumor microenvironment components as immune cells contribute to the tumor progression; thereby, the modulation of immune cells to a pro-inflammatory and antitumoral profile could potentialize the immunotherapy, a suggested approach for high-risk patients. Preview studies showed the antitumoral potential of BJcuL, a C- type lectin isolated from Bothrops jararacussu venom. It was able to induce immunomodulatory responses, promoting the rolling and adhesion of leukocytes and the activation of neutrophils. METHODS SK-N-SH cells were incubated with conditioned media (CM) obtained during the treatment of neutrophils with BJcuL and fMLP, a bacteria-derived peptide highly effective for activating neutrophil functions. Then we evaluated the effect of the same stimulation on the co-cultivation of neutrophils and SK-N-SH cells. Tumor cells were tested for viability, migration, and invasion potential. RESULTS In the viability assay, only neutrophils treated with BJcuL (24 h) and cultivated with SK-N-SH were cytotoxic. Migration of tumor cells decreased when incubated directly (p < 0.001) or indirectly (p < 0.005) with untreated neutrophils. When invasion potential was evaluated, neutrophils incubated with BJcuL reduced the total number of colonies of SK-N-SH cells following co-cultivation for 24 h (p < 0.005). Treatment with CM resulted in decreased anchorage-free survival following 24 h of treatment (p < 0.001). CONCLUSION Data demonstrated that SK-N-SH cells maintain their migratory potential in the face of neutrophil modulation by BJcuL, but their invasive capacity was significantly reduced.
Collapse
Affiliation(s)
| | - Bruna Santos Rodrigues
- Escola de Ciências da Vida, Pontifícia Universidade Católica do
Paraná (PUCPR), Curitiba, PR, Brazil
| | - Rodrigo Amauri Nogoceke
- Escola de Ciências da Vida, Pontifícia Universidade Católica do
Paraná (PUCPR), Curitiba, PR, Brazil
| | | | - Andrea Novais Moreno-Amaral
- Programa de Pós-graduação em Ciências da Saúde, Pontifícia
Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
| | | | - Selene Elifio-Esposito
- Escola de Ciências da Vida, Pontifícia Universidade Católica do
Paraná (PUCPR), Curitiba, PR, Brazil
| |
Collapse
|
40
|
Bickler PE. Amplification of Snake Venom Toxicity by Endogenous Signaling Pathways. Toxins (Basel) 2020; 12:E68. [PMID: 31979014 PMCID: PMC7076764 DOI: 10.3390/toxins12020068] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The active components of snake venoms encompass a complex and variable mixture of proteins that produce a diverse, but largely stereotypical, range of pharmacologic effects and toxicities. Venom protein diversity and host susceptibilities determine the relative contributions of five main pathologies: neuromuscular dysfunction, inflammation, coagulopathy, cell/organ injury, and disruption of homeostatic mechanisms of normal physiology. In this review, we describe how snakebite is not only a condition mediated directly by venom, but by the amplification of signals dysregulating inflammation, coagulation, neurotransmission, and cell survival. Although venom proteins are diverse, the majority of important pathologic events following envenoming follow from a small group of enzyme-like activities and the actions of small toxic peptides. This review focuses on two of the most important enzymatic activities: snake venom phospholipases (svPLA2) and snake venom metalloproteases (svMP). These two enzyme classes are adept at enabling venom to recruit homologous endogenous signaling systems with sufficient magnitude and duration to produce and amplify cell injury beyond what would be expected from the direct impact of a whole venom dose. This magnification produces many of the most acutely important consequences of envenoming as well as chronic sequelae. Snake venom PLA2s and MPs enzymes recruit prey analogs of similar activity. The transduction mechanisms that recruit endogenous responses include arachidonic acid, intracellular calcium, cytokines, bioactive peptides, and possibly dimerization of venom and prey protein homologs. Despite years of investigation, the precise mechanism of svPLA2-induced neuromuscular paralysis remains incomplete. Based on recent studies, paralysis results from a self-amplifying cycle of endogenous PLA2 activation, arachidonic acid, increases in intracellular Ca2+ and nicotinic receptor deactivation. When prolonged, synaptic suppression supports the degeneration of the synapse. Interaction between endothelium-damaging MPs, sPLA2s and hyaluronidases enhance venom spread, accentuating venom-induced neurotoxicity, inflammation, coagulopathy and tissue injury. Improving snakebite treatment requires new tools to understand direct and indirect effects of envenoming. Homologous PLA2 and MP activities in both venoms and prey/snakebite victim provide molecular targets for non-antibody, small molecule agents for dissecting mechanisms of venom toxicity. Importantly, these tools enable the separation of venom-specific and prey-specific pathological responses to venom.
Collapse
Affiliation(s)
- Philip E. Bickler
- Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, CA 94143-0542, USA;
- California Academy of Sciences, San Francisco, CA 94118, USA
| |
Collapse
|