1
|
Peng B, Mohammed FS, Tang X, Liu J, Sheth KN, Zhou J. Nanotechnology approaches to drug delivery for the treatment of ischemic stroke. Bioact Mater 2025; 43:145-161. [PMID: 39386225 PMCID: PMC11462157 DOI: 10.1016/j.bioactmat.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Ischemic stroke is a major global public health concern that lacks effective treatment options. A significant challenge lies in delivering therapeutic agents to the brain due to the restrictive nature of the blood-brain barrier (BBB). The BBB's selectivity hampers the delivery of therapeutically relevant quantities of agents to the brain, resulting in a lack of FDA-approved pharmacotherapies for stroke. In this article, we review therapeutic agents that have been evaluated in clinical trials or are currently undergoing clinical trials. Subsequently, we survey strategies for synthesizing and engineering nanoparticles (NPs) for drug delivery to the ischemic brain. We then provide insights into the potential clinical translation of nanomedicine, offering a perspective on its transformative role in advancing stroke treatment strategies. In summary, existing literature suggests that drug delivery represents a major barrier for clinical translation of stroke pharmacotherapies. While nanotechnology has shown significant promise in addressing this challenge, further advancements aimed at improving delivery efficiency and simplifying formulations are necessary for successful clinical translation.
Collapse
Affiliation(s)
- Bin Peng
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Farrah S. Mohammed
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| | - Xiangjun Tang
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurosurgery, Taihe Hospital, Hubei, 442000, PR China
| | - Jia Liu
- Department of Neurosurgery, New Haven, CT, 06510, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| |
Collapse
|
2
|
Ge Q, Wang Z, Yu J, Feng X, Li J, Zhang X, Wang S, Wang L, Chen Y. Chuanxiong Rhizoma regulates ferroptosis and the immune microenvironment in ischemic stroke through the JAK-STAT3 pathway. Sci Rep 2024; 14:31224. [PMID: 39732743 DOI: 10.1038/s41598-024-82486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Ferroptosis is linked to various pathological conditions; however, the specific targets and mechanisms through which traditional Chinese medicine influences ischemic stroke (IS)-induced ferroptosis remain poorly understood. In this study, data from the Gene Expression Omnibus and disease target databases (OMIM, GeneCards, DisGeNet, TTD, and DrugBank) were integrated with ferroptosis-related gene datasets. To identify key molecular targets of Chuanxiong Rhizoma (CX), drug ingredient databases, including PubChem and TCMBank, were employed to map CX-related targets (CX-DEGs-FRG and CX-IS-FRG). Gene targets and relevant signaling pathways were analyzed using weighted gene co-expression network analysis, protein-protein interaction networks, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. The least absolute shrinkage and selection operator regression and support vector machine methods were utilized to identify intersecting genes, and the predictive accuracy of core targets was evaluated through receiver operating characteristic curve analysis. Immune cell infiltration in the IS microenvironment was assessed using CIBERSORT, followed by molecular docking of CX's active components with key targets. The JAK-STAT3 pathway was identified as a critical regulatory mechanism, and five key targets (ALOX5, PTGS2, STAT3, G6PD, and HIF1A) emerged as central to the IS-induced ferroptosis. Elevated infiltration of CD8 + T cells and neutrophils was significantly correlated with IS. Notably, the active components mandenol and myricanone demonstrated strong binding affinities with these five targets, which validated the results from network-based analysis. In conclusion, the JAK-STAT3 pathway, through its regulation of ALOX5, PTGS2, STAT3, G6PD, and HIF1A, could play a crucial role in modulating ferroptosis and immune responses in IS. These findings suggest that CX could serve as a potential therapeutic approach for IS, targeting the regulation of IS-induced ferroptosis and the immune microenvironment.
Collapse
Affiliation(s)
- Qianxi Ge
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Zhimin Wang
- The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, 100847, China
| | - Jiaxiang Yu
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Xiuzhi Feng
- Traditional Chinese Medicine College, Liaoning University of Traditional Chinese Medicine, Shenyang, 100847, China
| | - Jiquan Li
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Xiaoqing Zhang
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Shaohong Wang
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Lie Wang
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China.
| | - Yiran Chen
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China.
| |
Collapse
|
3
|
Belgamwar A, Sharma R, Mali Y, Agrawal YO, Nakhate KT. Nano revolutions in ischemic stroke: A critical analysis of current options and the potential of nanomedicines in diagnosis and therapeutics. Neuroscience 2024; 562:90-105. [PMID: 39433081 DOI: 10.1016/j.neuroscience.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
A stroke, also known as cerebrovascular accident, is a medical emergency that occurs when the blood supply to the brain is interrupted. This disruption can happen in two main ways: through a hemorrhagic stroke, where a blood vessel in the brain bursts, or through an ischemic stroke, where a blood clot blocks an artery. Both types of stroke cause damage to brain cells, leading to a range of health complications. Globally, stroke ranks as the second leading cause of death and disability.This review provides an overview of stroke, focusing on its early detection, current treatment options, and emerging therapies. We discuss the complex mechanisms that contribute to stroke development, including the roles of cells, biomolecules, and blood vessels. Additionally, the review explores recent advances in the use of nanoparticles to enhance the efficacy of the pharmacotherapy of stroke, particularly ischemic stroke. Ongoing clinical trials in stroke management are also highlighted. Timely diagnosis and prompt intervention are critical for improving patient outcomes.We aim to increase awareness and understanding of stroke among researchers and healthcare professionals, ultimately improving patient care.
Collapse
Affiliation(s)
- Aarti Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Rarchita Sharma
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Yogesh Mali
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Yogeeta O Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India.
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| |
Collapse
|
4
|
Lin L, Guo C, Jin H, Huang H, Luo F, Wang Y, Li D, Zhang Y, Xu Y, Zhu C, Zeng F, He H, Chen J, Zhang W, Yu W. Integrative multi-omics approach using random forest and artificial neural network models for early diagnosis and immune infiltration characterization in ischemic stroke. Front Neurol 2024; 15:1475582. [PMID: 39697434 PMCID: PMC11652371 DOI: 10.3389/fneur.2024.1475582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Background Ischemic stroke (IS) is a significant global health issue, causing high rates of morbidity, mortality, and disability. Since conventional Diagnosis methods for IS have several shortcomings. It is critical to create new Diagnosis models in order to enhance existing Diagnosis approaches. Methods We utilized gene expression data from the Gene Expression Omnibus (GEO) databases GSE16561 and GSE22255 to identify differentially expressed genes (DEGs) associated with IS. DEGs analysis using the Limma package, as well as GO and KEGG enrichment analyses, were performed. Furthermore, PPI networks were constructed using DEGs from the String database, and Random Forest models were utilized to screen key DEGs. Additionally, an artificial neural network model was developed for IS classification. Use the GSE58294 dataset to evaluate the effectiveness of the scoring model on healthy controls and ischemic stroke samples. The effectiveness of the scoring model was evaluated through AUC analysis, and CIBERSORT analysis was conducted to estimate the immune landscape and explore the correlation between gene expression and immune cell infiltration. Results A total of 26 significant DEGs associated with IS were identified. Metascape analysis revealed enriched biological processes and pathways related to IS. 10 key DEGs (ARG1, DUSP1, F13A1, NFIL3, CCR7, ADM, PTGS2, ID3, FAIM3, HLA-DQB1) were selected using Random Forest and artificial neural network models. The area under the ROC curve (AUC) for the IS classification model was found to be near 1, indicating its high accuracy. Additionally, the analysis of the immune landscape demonstrated elevated immune-related networks in IS patients compared to healthy controls. Conclusion The study uncovers the involvement of specific genes and immune cells in the pathogenesis of IS, suggesting their importance in understanding and potentially targeting the disease.
Collapse
Affiliation(s)
- Ling Lin
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Chunmao Guo
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Hanna Jin
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Haixiong Huang
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
- Clinical Laboratory, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Fan Luo
- Department of Neurology, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, Shaanxi, China
| | - Ying Wang
- Department of Geriatrics, Xi’an Baoshi Flower Changqing Hospital, Xi’an, Shaanxi, China
| | - Dongqi Li
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Yuanxin Zhang
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Yuqian Xu
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Chanyan Zhu
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Fengshan Zeng
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Huahua He
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Jie Chen
- Department of Neurology, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, Shaanxi, China
| | - Wei Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Wenlin Yu
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| |
Collapse
|
5
|
Raghani N, Postwala H, Shah Y, Chorawala M, Parekh P. From Gut to Brain: Unraveling the Intricate Link Between Microbiome and Stroke. Probiotics Antimicrob Proteins 2024; 16:2039-2053. [PMID: 38831225 DOI: 10.1007/s12602-024-10295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a neurological disorder, is intricately linked to the gut microbiota, influencing microbial composition and elevating the risk of ischemic stroke. The neuroprotective impact of short-chain fatty acids (SCFAs) derived from dietary fiber fermentation contrasts with the neuroinflammatory effects of lipopolysaccharide (LPS) from gut bacteria. The pivotal role of the gut-brain axis, facilitating bidirectional communication between the gut and the brain, is crucial in maintaining gastrointestinal equilibrium and influencing cognitive functions. An in-depth understanding of the interplay among the gut microbiota, immune system, and neurological outcomes in stroke is imperative for devising innovative preventive and therapeutic approaches. Strategies such as dietary adjustments, probiotics, prebiotics, antibiotics, or fecal transplantation offer promise in modulating stroke outcomes. Nevertheless, comprehensive research is essential to unravel the precise mechanisms governing the gut microbiota's involvement in stroke and to establish effective therapeutic interventions. The initiation of large-scale clinical trials is warranted to assess the safety and efficacy of interventions targeting the gut microbiota in stroke management. Tailored strategies that reinstate eubiosis and foster a healthy gut microbiota hold potential for both stroke prevention and treatment. This review underscores the gut microbiota as a promising therapeutic target in stroke and underscores the need for continued research to delineate its precise role and develop microbiome-based interventions effectively.
Collapse
Affiliation(s)
- Neha Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India.
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| |
Collapse
|
6
|
Xu Z, Yang F, Zheng L. Uncovering the dual roles of peripheral immune cells and their connections to brain cells in stroke and post-stroke stages through single-cell sequencing. Front Neurosci 2024; 18:1443438. [PMID: 39633897 PMCID: PMC11614781 DOI: 10.3389/fnins.2024.1443438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease that affects the blood vessels and the blood supply to the brain, making it the second leading cause of death worldwide. Studies suggest that immune cells play a dual role during the inflammatory and recovery phases of stroke. However, in-depth investigations of specific cell subtypes and their differentiation trajectories remain to be elucidated. In this review, we highlight the application of single-cell RNA sequencing (scRNA-seq) for the unbiased identification of cell heterogeneity in brain and peripheral blood mononuclear cells (PBMCs) during and after a stroke. Our goal is to explore the phenotypic landscape of cells with different roles in this context. Specifically, we provide an overview of the roles, cell surface markers, immune cell-released cytokines, and intercellular interactions identified in major immune cells during and after stroke, as identified by different technologies. Additionally, we summarize the connection between immune cells in peripheral blood and the brain via their differentiation trajectories. By synthesizing the application of scRNA-seq in the combined analysis of PBMCs and brain tissue at higher sampling frequencies, we aim to unveil the dual role of peripheral immune cells, which could facilitate the development of new treatment strategies for ischemic stroke.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Neurology, Southern University of Sciences and Technology Yantian Hospital, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fan Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lifang Zheng
- Department of Neurology, Southern University of Sciences and Technology Yantian Hospital, Shenzhen, China
| |
Collapse
|
7
|
Sato Y, Li Y, Kato Y, Kanoke A, Sun JY, Nishijima Y, Wang RK, Stryker M, Endo H, Liu J. Type 2 diabetes remodels collateral circulation and promotes leukocyte adhesion following ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619748. [PMID: 39484619 PMCID: PMC11526934 DOI: 10.1101/2024.10.23.619748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with impaired leptomeningeal collateral compensation and poor stroke outcome. Neutrophils tethering and rolling on endothelium after stroke can also independently reduce flow velocity. However, the chronology and topological changes in collateral circulation in T2DM is not yet defined. Here, we describe the spatial and temporal blood flow dynamics and vessel remodeling in pial arteries and veins and leukocyte-endothelial adhesion following middle cerebral artery (MCA) stroke using two-photon microscopy in awake control and T2DM mice. Relative to control mice prior to stroke, T2DM mice already exhibited smaller pial vessels with reduced flow velocity. Following stroke, T2DM mice displayed persistently reduced blood flow in pial arteries and veins, resulting in a poor recovery of downstream penetrating arterial flow and a sustained deficit in microvascular flow. There was also persistent increase of leukocyte adhesion to the endothelium of veins, coincided with elevated neutrophils infiltration into brain parenchyma in T2DM mice compared to control mice after stroke. Our data suggest that T2DM-induced increase in chronic inflammation may contribute to the remodeling of leptomeningeal collateral circulation and the observed hemodynamics deficiency that potentiates poor stroke outcome.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuandong Li
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yuya Kato
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Kanoke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jennifer Y Sun
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- University College London, Institute of Ophthalmology, London, UK
| | - Yasuo Nishijima
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ruikang K. Wang
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael Stryker
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jialing Liu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
| |
Collapse
|
8
|
Xie XD, Dong SS, Liu RJ, Shi LL, Zhu T. Mechanism of Efferocytosis in Determining Ischaemic Stroke Resolution-Diving into Microglia/Macrophage Functions and Therapeutic Modality. Mol Neurobiol 2024; 61:7583-7602. [PMID: 38409642 DOI: 10.1007/s12035-024-04060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
After ischaemic cerebral vascular injury, efferocytosis-a process known as the efficient clearance of apoptotic cells (ACs) by various phagocytes in both physiological and pathological states-is crucial for maintaining central nervous system (CNS) homeostasis and regaining prognosis. The mechanisms of efferocytosis in ischaemic stroke and its influence on preventing inflammation progression from secondary injury were still not fully understood, despite the fact that the fundamental process of efferocytosis has been described in a series of phases, including AC recognition, phagocyte engulfment, and subsequent degradation. The genetic reprogramming of macrophages and brain-resident microglia after an ischaemic stroke has been equated by some researchers to that of the peripheral blood and brain. Based on previous studies, some molecules, such as signal transducer and activator of transcription 6 (STAT6), peroxisome proliferator-activated receptor γ (PPARG), CD300A, and sigma non-opioid intracellular receptor 1 (SIGMAR1), were discovered to be largely associated with aspects of apoptotic cell elimination and accompanying neuroinflammation, such as inflammatory cytokine release, phenotype transformation, and suppressing of antigen presentation. Exacerbated stroke outcomes are brought on by defective efferocytosis and improper modulation of pertinent signalling pathways in blood-borne macrophages and brain microglia, which also results in subsequent tissue inflammatory damage. This review focuses on recent researches which contain a number of recently discovered mechanisms, such as studies on the relationship between benign efferocytosis and the regulation of inflammation in ischaemic stroke, the roles of some risk factors in disease progression, and current immune approaches that aim to promote efferocytosis to treat some autoimmune diseases. Understanding these pathways provides insight into novel pathophysiological processes and fresh characteristics, which can be used to build cerebral ischaemia targeting techniques.
Collapse
Affiliation(s)
- Xiao-Di Xie
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
| | - Shan-Shan Dong
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ru-Juan Liu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu-Liu Shi
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Zhu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
9
|
Wang H, Han S, Xie J, Zhao R, Li S, Li J. IL-17A exacerbates caspase-12-dependent neuronal apoptosis following ischemia through the Src-PLCγ-calpain pathway. Exp Neurol 2024; 379:114863. [PMID: 38871070 DOI: 10.1016/j.expneurol.2024.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Interleukin-17 A (IL-17 A) contributes to inflammation and causes secondary injury in post-stroke patients. However, little is known regarding the mechanisms that IL-17 A is implicated in the processes of neuronal death during ischemia. In this study, the mouse models of middle cerebral artery occlusion/reperfusion (MCAO/R)-induced ischemic stroke and oxygen-glucose deprivation/reoxygenation (OGD/R)-simulated in vitro ischemia in neurons were employed to explore the role of IL-17 A in promoting neuronal apoptosis. Mechanistically, endoplasmic reticulum stress (ERS)-induced neuronal apoptosis was accelerated by IL-17 A activation through the caspase-12-dependent pathway. Blocking calpain or phospholipase Cγ (PLCγ) inhibited IL-17 A-mediated neuronal apoptosis under ERS by inhibiting caspase-12 cleavage. Src and IL-17 A are linked, and PLCγ directly binds to activated Src. This binding causes intracellular Ca2+ flux and activates the calpain-caspase-12 cascade in neurons. The neurological scores showed that intracerebroventricular (ICV) injection of an IL-17 A neutralizing mAb decreased the severity of I/R-induced brain injury and suppressed apoptosis in MCAO mice. Our findings reveal that IL-17 A increases caspase-12-mediated neuronal apoptosis, and IL-17 A suppression may have therapeutic potential for ischemic stroke.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, PR China
| | - Song Han
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, PR China
| | - Jinjin Xie
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, PR China
| | - Ruixue Zhao
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, PR China
| | - Shujuan Li
- The Neurological Department, Fu Wai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100037, PR China.
| | - Junfa Li
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
10
|
Hainsworth AH, Blackburn TP, Bradshaw EM, Elahi FM, Gorelick PB, Isaacs JD, Wallin A, Williams SCR. The promise of molecular science in brain health. What breakthroughs are anticipated in the next 20 years? CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 7:100364. [PMID: 39263555 PMCID: PMC11387710 DOI: 10.1016/j.cccb.2024.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Brain health means optimal physiological brain function across the normal life-course. It encompasses not only healthy brain aging but also brain diseases, their diagnosis and treatment. In all these areas, molecular science has advanced our understanding. This multi-disciplinary review combines viewpoints from laboratory science, clinical medicine and the bioscience industry. First, we review the advances that molecular science has brought to brain health in the past twenty years. These include therapeutic antibodies for CNS diseases (multiple sclerosis, Alzheimer disease) and the dramatic introduction of RNA-targeted therapeutics. Second, we highlight areas where greater molecular understanding is needed. Salient examples are the relation of brain structure to cognitive symptoms, and molecular biomarkers for diagnosis, target discovery and testing of interventions. Finally, we speculate on aspects of molecular science that are likely to advance brain health in the next twenty years. These include: cell senescence and chronobiology; gene editing (notably, CRISPR) and RNA targeting (RNA interference, miRNA manipulation); brain-immune interactions; novel drug targets (AQP4, HIF1, Toll-like receptors); and novel chemistry to make new drugs (molecular machines, quantum molecular modelling and "click" chemistry). Early testing of the relationships between molecular pathways and clinical manifestations will drive much-needed breakthroughs in neurology and psychiatry.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
| | - Thomas P Blackburn
- Translational Pharmacology BioVentures, Leigh on Sea, Essex, SS9 2UA, UK
- TPBioVentures, Hoboken, NJ, USA
| | - Elizabeth M Bradshaw
- Carol and Gene Ludwig Center for Research on Neurodegeneration, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Fanny M Elahi
- Departments of Neurology and Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029-5674, USA
- James J. Peter VA Medical Center, Bronx, NY, USA
| | - Philip B Gorelick
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 635 N. Michigan Avenue, Chicago, IL 60611, USA
| | - Jeremy D Isaacs
- Molecular & Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Steven CR Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London. SE5 8AF, UK
| |
Collapse
|
11
|
Zhu Y, Hu Y, Liu Z, Chang L, Geng X, Yin X, Zhao BQ, Fan W. The LPS-inactivating enzyme acyloxyacyl hydrolase protects the brain from experimental stroke. Transl Res 2024; 270:42-51. [PMID: 38522823 DOI: 10.1016/j.trsl.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Blood-brain-barrier (BBB) disruption is a pathological hallmark of ischemic stroke, and inflammation occurring at the BBB contributes to the pathogenesis of ischemic brain injury. Lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, is elevated in patients with acute stroke. The activity of LPS is controlled by acyloxyacyl hydrolase (AOAH), a host enzyme that deacylates LPS to inactivated forms. However, whether AOAH influences the pathogenesis of ischemic stroke remain elusive. We performed in vivo experiments to explore the role and mechanism of AOAH on neutrophil extravasation, BBB disruption, and brain infarction. We found that AOAH was upregulated in neutrophils in peri-infarct areas from mice with transient focal cerebral ischemia. AOAH deficiency increased neutrophil extravasation into the brain parenchyma and proinflammatory cytokine production, broke down the BBB and worsened stroke outcomes in mice. These effects require Toll-like receptor 4 (TLR4) because absence of TLR4 or pharmacologic inhibition of TLR4 signaling prevented the exacerbated inflammation and BBB damage in Aoah-/- mice after ischemic stroke. Importantly, neutrophil depletion or inhibition of neutrophil trafficking by blocking LFA-1 integrin dramatically reduced stroke-induced BBB breakdown in Aoah-/- mice. Furthermore, virus-mediated overexpression of AOAH induced a substantial decrease in neutrophil recruitment that was accompanied by reducing BBB damage and stroke volumes. Our findings show the importance of AOAH in regulating neutrophil-dependent BBB breakdown and cerebral infarction. Consequently, strategies that modulate AOAH may be a new therapeutic approach for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yuanbo Zhu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yue Hu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhongwang Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Luping Chang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xue Geng
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xuhui Yin
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Wenying Fan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
12
|
Li L, Wang Y. Identification of Potential Biomarkers for Patients with DWI-Negative Ischemic Stroke. J Mol Neurosci 2024; 74:68. [PMID: 38995420 PMCID: PMC11245437 DOI: 10.1007/s12031-024-02229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/24/2024] [Indexed: 07/13/2024]
Abstract
Ischemic stroke is the leading cause of long-term disability in adults, accounting for 80% of stroke cases. Diffusion weighted imaging (DWI) examination is the main test for acute ischemic stroke, but in recent years, several studies have shown that some patients show negative DWI examination after the onset of ischemic stroke with symptoms of significant neurological deficits. In this study, we investigated potential biomarkers related to immune metabolism in the peripheral blood of DWI-negative versus DWI-positive patients after ischemic stroke and explored their possible regulatory processes in ischemic stroke. The datasets related to ischemic stroke were downloaded from the GEO database, immune-related genes and metabolism-related genes were obtained from the ImmPort database and MSigDB database, respectively, and immune-related differential genes were obtained based on immune scores using the algorithm of the R software package "GSVA." Candidate genes were selected based on intersections, hub genes were screened using the algorithm in Cytoscape software, and finally, GeneMANIA analysis, GSEA enrichment analysis, subcellular localization, gene transcription factor and gene-drug interaction networks, and disease correlation analyses were performed for the hub genes. Five hub genes (GART, TYMS, PPAT, CTPS1, and PAICS) were obtained by PPI network analysis and software analysis. Among them, PPAT and PAICS may be the real hub genes with consistent and significantly differentiated results from the discovery and validation sets. The functions of these hub genes may be related to pathways such as nucleotide biosynthetic processes. The constructed hub gene ceRNA network showed that hsa-10a-5p is the key miRNA connecting PAICS and multiple lncRNAs in this study. Differential genes related to immunity and metabolism in DWI-negative and DWI-positive patients after IS were identified using bioinformatics analysis, and their pathways and related TF-RNAs, miRNAs, and lncRNAs were identified. These genes may be considered effective targets for the diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 6500032, China
| | - Ying Wang
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 6500032, China.
| |
Collapse
|
13
|
Lyu T, Qiu X, Wang Y, Zhang L, Dai Y, Wang X, Zhao S, Xiang M, Cui L, Cheng S, Liu Y, Gu H, Jiang Y, Meng X, Wang Y, Zhao X, Wang X, Li Q, Wang M, Jiang Y, Xu Z, Huang X, Li H, Wang Y, Li Z. DNMT3A dysfunction promotes neuroinflammation and exacerbates acute ischemic stroke. MedComm (Beijing) 2024; 5:e652. [PMID: 39006763 PMCID: PMC11246610 DOI: 10.1002/mco2.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Somatic mutations related to clonal hematopoiesis of indeterminate potential (CHIP) are risk factors for stroke. The impact of DNMT3A, the most mutated gene in CHIP, on clinical functional outcomes of acute ischemic stroke (AIS) remains unclear. In a well-characterized cohort of 8524 ischemic stroke patients, we demonstrated that DNMT3A-driven CHIP was significantly associated with neurological disability in these patients. With a stroke mouse model of transient middle cerebral artery occlusion (tMCAO), we demonstrated that DNMT3A protein levels in the brain penumbra increased. The DNMT3A inhibitor RG108 administration amplified neutrophil proliferation in the blood, promoted neutrophil infiltration into the brain penumbra, and exaggerated proinflammatory activation in tMCAO male mice. DNMT3A inhibition also significantly increased infarct volume and worsened neurobehavioral function in tMCAO male mice. In conclusion, DNMT3A somatic mutations are associated with worsened neurological disability in some patients with AIS, potentially through increased neutrophil proliferation and infiltration in the ischemic brain region. These findings suggest a possible mechanism for proinflammatory activation and tissue damage in the affected brain tissue, highlighting the need for further research in this area.
Collapse
|
14
|
Yao Y, Ni W, Feng L, Meng J, Tan X, Chen H, Shen J, Zhao H. Comprehensive immune modulation mechanisms of Angong Niuhuang Wan in ischemic stroke: Insights from mass cytometry analysis. CNS Neurosci Ther 2024; 30:e14849. [PMID: 39075660 PMCID: PMC11286541 DOI: 10.1111/cns.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Angong Niuhuang Wan (AGNHW, ), is a classical medicinal formula in Traditional Chinese Medicine (TCM) that has been appreciated for its neuroprotective properties in ischemic cerebral injuries, yet its intricate mechanisms remain only partially elucidated. AIMS This study leverages advanced Mass cytometry (CyTOF) to analyze AGNHW's multifaceted immunomodulation effects in-depth, emphasizing previously underexplored areas. RESULTS AGNHW mitigated monocyte-derived macrophages (MoDM) infiltration in the brain, distinguishing its effects on those from microglia. While the vehicle group exhibited elevated inflammatory markers like CD4, CD8a, and CD44 in ischemic brains, the AGNHW-treated group attenuated their expressions, indicating AGNHW's potential to temper the post-ischemic inflammatory response. Systemically, AGNHW modulated fundamental immune cell dynamics, notably augmenting CD8+ T cells, B cells, monocytes, and neutrophil counts in the peripheral blood under post-stroke conditions. Intracellularly, AGNHW exhibited its targeted modulation of the signaling pathways, revealing a remarked inhibition of key markers like IκBα, indicating potential suppression of inflammatory responses in ischemic brain injuries. CONCLUSION This study offers a comprehensive portrait of AGNHW's immunomodulation effects on ischemic stroke, illuminating its dual sites of action-both cerebral and systemic-and its nuanced modulation of cellular and molecular dynamics.
Collapse
Affiliation(s)
- Yang Yao
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of NeurologyTianjin Medical University General HospitalTianjinChina
| | - Weihua Ni
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Liangshu Feng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Jihong Meng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Xiaomu Tan
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Hansen Chen
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- School of Chinese Medicine, State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
| | - Jiangang Shen
- School of Chinese Medicine, State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
| | - Heng Zhao
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
15
|
Liu T, Zhang M, Zhang J, Kang N, Zheng L, Ding Z. Targeted Delivery of Macrophage Membrane Biomimetic Liposomes Through Intranasal Administration for Treatment of Ischemic Stroke. Int J Nanomedicine 2024; 19:6177-6199. [PMID: 38911498 PMCID: PMC11194020 DOI: 10.2147/ijn.s458656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose Ginsenoside Rg3 (Rg3) and Panax notoginseng saponins (PNS) can be used for ischemic stroke treatment, however, the lack of targeting to the ischemic region limits the therapeutic effect. To address this, we leveraged the affinity of macrophage membrane proteins for inflamed brain microvascular endothelial cells to develop a macrophage membrane-cloaked liposome loaded with Rg3 and PNS (MM-Lip-Rg3/PNS), which can precisely target brain lesion region through intranasal administration. Methods MM-Lip-Rg3/PNS was prepared by co-extrusion method and was performed by characterization, stability, surface protein, and morphology. The cellular uptake, immune escape ability, and blood-brain barrier crossing ability of MM-Lip-Rg3/PNS were studied in vitro. The in vivo brain targeting, biodistribution and anti-ischemic efficacy of MM-Lip-Rg3/PNS were evaluated in MACO rats, and we determined the diversity of the nasal brain pathway through the olfactory nerve blockade model in rats. Finally, the pharmacokinetics and brain targeting index of MM-Lip-Rg3/PNS were investigated. Results Our results indicated that MM-Lip-Rg3/PNS was spherical with a shell-core structure. MM-Lip-Rg3/PNS can avoid mononuclear phagocytosis, actively bind to inflammatory endothelial cells, and have the ability to cross the blood-brain barrier. Moreover, MM-Lip-Rg3/PNS could specifically target ischemic sites, even microglia, increase the cumulative number of drugs in the brain, improve the inflammatory environment of the brain, and reduce the infarct size. By comparing olfactory nerve-blocking rats with normal rats, it was found that there are direct and indirect pathways for nasal entry into the brain. Pharmacokinetics demonstrated that MM-Lip-Rg3/PNS exhibited stronger brain targeting and prolonged drug half-life. Conclusion MM-Lip-Rg3/PNS might contribute to the accumulation of Rg3 and PNS in the ischemic brain area to improve treatment efficacy. This biomimetic nano-drug delivery system provides a new and promising strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tianshu Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mengfan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Naijin Kang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Linlin Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Zhiying Ding
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
16
|
Xie L, He M, Ying C, Chu H. Mechanisms of inflammation after ischemic stroke in brain-peripheral crosstalk. Front Mol Neurosci 2024; 17:1400808. [PMID: 38932932 PMCID: PMC11199882 DOI: 10.3389/fnmol.2024.1400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is a devastating disease with high morbidity, disability, and mortality, among which ischemic stroke is more common. However, there is still a lack of effective methods to improve the prognosis and reduce the incidence of its complications. At present, there is evidence that peripheral organs are involved in the inflammatory response after stroke. Moreover, the interaction between central and peripheral inflammation includes the activation of resident and peripheral immune cells, as well as the activation of inflammation-related signaling pathways, which all play an important role in the pathophysiology of stroke. In this review, we discuss the mechanisms of inflammatory response after ischemic stroke, as well as the interactions through circulatory pathways between peripheral organs (such as the gut, heart, lung and spleen) and the brain to mediate and regulate inflammation after ischemic stroke. We also propose the potential role of meningeal lymphatic vessels (MLVs)-cervical lymph nodes (CLNs) as a brain-peripheral crosstalk lymphatic pathway in ischemic stroke. In addition, we also summarize the mechanisms of anti-inflammatory drugs in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ling Xie
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Ming He
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Caidi Ying
- Department of Hepatobiliary and Pancreatic Surgery, The Traditional Chinese Medicine Hospital of Ningbo, Ningbo, China
| | - Haifeng Chu
- Department of Neurosurgery, The Traditional Chinese Medicine Hospital of Linping District, Hangzhou, China
| |
Collapse
|
17
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
18
|
Pu B, Zhu H, Wei L, Gu L, Zhang S, Jian Z, Xiong X. The Involvement of Immune Cells Between Ischemic Stroke and Gut Microbiota. Transl Stroke Res 2024; 15:498-517. [PMID: 37140808 DOI: 10.1007/s12975-023-01151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
Ischemic stroke, a disease with high mortality and disability rate worldwide, currently has no effective treatment. The systemic inflammation response to the ischemic stroke, followed by immunosuppression in focal neurologic deficits and other inflammatory damage, reduces the circulating immune cell counts and multiorgan infectious complications such as intestinal and gut dysfunction dysbiosis. Evidence showed that microbiota dysbiosis plays a role in neuroinflammation and peripheral immune response after stroke, changing the lymphocyte populations. Multiple immune cells, including lymphocytes, engage in complex and dynamic immune responses in all stages of stroke and may be a pivotal moderator in the bidirectional immunomodulation between ischemic stroke and gut microbiota. This review discusses the role of lymphocytes and other immune cells, the immunological processes in the bidirectional immunomodulation between gut microbiota and ischemic stroke, and its potential as a therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Liang Wei
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, People's Republic of China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
19
|
Deng X, Hou S, Wang Y, Yang H, Wang C. Genetic insights into the relationship between immune cell characteristics and ischemic stroke: A bidirectional Mendelian randomization study. Eur J Neurol 2024; 31:e16226. [PMID: 38323746 PMCID: PMC11236043 DOI: 10.1111/ene.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND PURPOSE Ischemic stroke, a major contributor to global disability and mortality, is underpinned by intricate pathophysiological mechanisms, notably neuroinflammation and immune cell dynamics. Prior research has identified a nuanced and often paradoxical link between immune cell phenotypes and ischemic stroke susceptibility. The aim of this study was to elucidate the potential causal links between the median fluorescence intensity (MFI) and morphological parameters (MP) of 731 immune cell types and ischemic stroke risk. METHODS By analyzing extensive genetic datasets, we conducted comprehensive Mendelian randomization (MR) analyses to discern the genetic correlations between diverse immune cell attributes (MFI and MP) and ischemic stroke risk. RESULTS Our study identified key immune cell signatures linked to ischemic stroke risk. Both B cells and T cells, among other immune cell types, have a bidirectional influence on stroke risk. Notably, the regulatory T-cell phenotype demonstrates significant neuroprotective properties, with all odds ratio (OR) values and confidence intervals (CIs) being less than 1. Furthermore, CD39 phenotype immune cells, particularly CD39+ CD8+ T cells (inverse variance weighting [IVW] OR 0.92, 95% CI 0.87-0.97; p = 0.002) and CD39+ activated CD4 regulatory T cells (IVW OR 0.93, 95% CI 0.90-0.97; p < 0.001), show notable neuroprotection against ischemic stroke. CONCLUSION This investigation provides new genetic insights into the interplay between various immune cells and ischemic stroke, underscoring the complex role of immune processes in stroke pathogenesis. These findings lay a foundation for future research, which may confirm and expand upon these links, potentially leading to innovative immune-targeted therapies for stroke prevention and management.
Collapse
Affiliation(s)
- Xia Deng
- Shandong Second Medical UniversityWeifangChina
| | - Shuai Hou
- Shandong Second Medical UniversityWeifangChina
| | - Yanqiang Wang
- Department II of NeurologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Haiyan Yang
- Emergency DepartmentYantaishan hospitalYantaiChina
| | | |
Collapse
|
20
|
Dash SP, Gupta S, Sarangi PP. Monocytes and macrophages: Origin, homing, differentiation, and functionality during inflammation. Heliyon 2024; 10:e29686. [PMID: 38681642 PMCID: PMC11046129 DOI: 10.1016/j.heliyon.2024.e29686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Monocytes and macrophages are essential components of innate immune system and have versatile roles in homeostasis and immunity. These phenotypically distinguishable mononuclear phagocytes play distinct roles in different stages, contributing to the pathophysiology in various forms making them a potentially attractive therapeutic target in inflammatory conditions. Several pieces of evidence have supported the role of different cell surface receptors expressed on these cells and their downstream signaling molecules in initiating and perpetuating the inflammatory response. In this review, we discuss the current understanding of the monocyte and macrophage biology in inflammation, highlighting the role of chemoattractants, inflammasomes, and integrins in the function of monocytes and macrophages during events of inflammation. This review also covers the recent therapeutic interventions targeting these mononuclear phagocytes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P. Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
21
|
Niering M, Seifert J. The effects of visual skills training on cognitive and executive functions in stroke patients: a systematic review with meta-analysis. J Neuroeng Rehabil 2024; 21:41. [PMID: 38532485 PMCID: PMC10967170 DOI: 10.1186/s12984-024-01338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The visual system and associated skills are of particular importance in stroke rehabilitation. The process of neuroplasticity involved in restoring cognitive function during this period is mainly based on anatomical and physiological mechanisms. However, there is little evidence-based knowledge about the effects of visual skills training that could be used to improve therapeutic outcomes in cognitive rehabilitation. A computerized systematic literature search was conducted in the PubMed, Medline, and Web of Science databases from 1 January 1960 to 11 Febuary 2024. 1,787 articles were identified, of which 24 articles were used for the calculation of weighted standardized mean differences (SMD) after screening and eligibility verification. The findings revealed moderate effects for global cognitive function (SMD = 0.62) and activities of daily living (SMD = 0.55) as well as small effects for executive function (SMD = 0.20) - all in favor of the intervention group. The analyses indicate that the results may not be entirely robust, and should therefore be treated with caution when applied in practice. Visual skills training shows positive effects in improving cognitive and executive functions, especially in combination with high cognitive load and in an early phase of rehabilitation. An improvement in activities of daily living can also be observed with this type of intervention. The high heterogeneity of the studies and different treatment conditions require the identification of a relationship between certain visual skills and executive functions in future research.
Collapse
Affiliation(s)
- Marc Niering
- Institute of Biomechanics and Neurosciences, Nordic Science, Hannover, Germany
| | - Johanna Seifert
- Institute of Biomechanics and Neurosciences, Nordic Science, Hannover, Germany.
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
22
|
Li Q, Tian Y, Niu J, Guo E, Lu Y, Dang C, Feng L, Li L, Wang L. Identification of diagnostic signatures for ischemic stroke by machine learning algorithm. J Stroke Cerebrovasc Dis 2024; 33:107564. [PMID: 38215553 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/25/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE Ischemic stroke (IS) is one of the major diseases threatening human health and survival and a leading cause of acquired mortality and disability in adults. The aim of this study was to screen diagnostic features of IS and to explore the characteristics of immune cell infiltration in IS pathogenesis. METHODS The microarray data of IS (GSE16561, GSE58294, GSE37587, and GSE124026) in the GEO database were merged after removing the batch effect. Then integrated bioinformatic analysis and machine-learning strategies were adopted to analyze the functional correlation and select diagnostic signatures. The WGCNA was used to identify the co-expression modules related to IS. The CIBERSORT algorithm was performed to assess the inflammatory state of IS and to investigate the correlation between diagnostic signatures and infiltrating immune cells. RESULTS Functional analysis of dysregulated genes showed that immune response-regulating signaling pathway and pattern recognition receptor activity were enriched in the pathophysiology of IS. The turquoise module was identified as the significant module with IS. By using Lasso and SVM-RFE learning methods, we finally obtained four diagnostic genes, including LAMP2, CR1, CLEC4E, and F5. The corresponding results of AUC of ROC prediction model in training and validation cohort were 0.954 and 0.862, respectively. The immune cell infiltration analysis suggested that plasma cells, resting and activated NK cells, activated dendritic cells, memory B cells, CD8+ T cells, naïve CD4+ T cells, and resting mast cells may be involved in the development of IS. Additionally, these diagnostic signatures might be correlated with multiple immune cells in varying degrees. CONCLUSION We identified four biologically relevant genes (LAMP2, CR1, CLEC4E, and F5) with diagnostic effects for IS, our results further provide novel insights regarding molecular mechanisms associated with various immune cells that related to IS for future investigations.
Collapse
Affiliation(s)
- Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150081, China.
| | - Yu Tian
- Department of Geriatrics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jingyan Niu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yaoheng Lu
- Department of General Surgery, Chengdu Integrated TCM&Western Medicine Hospital, Chengdu, China
| | - Chun Dang
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Feng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150081, China.
| |
Collapse
|
23
|
Zhang H, Sun J, Zou P, Huang Y, Yang Q, Zhang Z, Luo P, Jiang X. Identification of hypoxia- and immune-related biomarkers in patients with ischemic stroke. Heliyon 2024; 10:e25866. [PMID: 38384585 PMCID: PMC10878920 DOI: 10.1016/j.heliyon.2024.e25866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Background The immune microenvironment and hypoxia play crucial roles in the pathophysiology of ischemic stroke (IS). Hence, in this study, we aimed to identify hypoxia- and immune-related biomarkers in IS. Methods The IS microarray dataset GSE16561 was examined to determine differentially expressed genes (DEGs) utilizing bioinformatics-based analysis. The intersection of hypoxia-related genes and DEGs was conducted to identify differentially expressed hypoxia-related genes (DEHRGs). Then, using weighted correlation network analysis (WGCNA), all of the genes in GSE16561 dataset were examined to create a co-expression network, and module-clinical trait correlations were examined for the purpose of examining the genes linked to immune cells. The immune-related DEHRGs were submitted to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. A protein-protein interaction (PPI) network was constructed by Cytoscape plugin MCODE, in order to extract hub genes. The miRNet was used to predict hub gene-related transcription factors (TFs) and miRNAs. Finally, a diagnostic model was developed by least absolute shrinkage and selection operator (LASSO) logistic regression. Results Between the control and IS samples, 4171 DEGs were found. Thereafter, the intersection of hypoxia-related genes and DEGs was conducted to obtain 45 DEHRGs. Ten significantly differentially infiltrated immune cells were found-namely, CD56dim natural killer cells, activated CD8 T cells, activated dendritic cells, activated B cells, central memory CD8 T cells, effector memory CD8 T cells, natural killer cells, gamma delta T cells, plasmacytoid dendritic cells, and neutrophils-between IS and control samples. Subsequently, we identified 27 immune-related DEHRGs through the intersection of DEHRGs and genes in important modules of WGCNA. The immune-related DEHRGs were primarily enriched in response to hypoxia, cellular polysaccharide metabolic process, response to decreased oxygen levels, polysaccharide metabolic process, lipid and atherosclerosis, and HIF-1 signaling pathway H. Using MCODE, FOS, DDIT3, DUSP1, and NFIL3 were found to be hub genes. In the validation cohort and training set, the AUC values of the diagnostic model were 0.9188034 and 0.9395085, respectively. Conclusion In brief, we identified and validated four hub genes-FOS, DDIT3, DUSP1, and NFIL3-which might be involved in the pathological development of IS, potentially providing novel perspectives for the diagnosis and treatment of IS.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jidong Sun
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Zou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiuzi Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuoyuan Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Biochemistry and Molecular Biology, College of Life Science, Northwest University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
25
|
Shehjar F, Almarghalani DA, Mahajan R, Hasan SAM, Shah ZA. The Multifaceted Role of Cofilin in Neurodegeneration and Stroke: Insights into Pathogenesis and Targeting as a Therapy. Cells 2024; 13:188. [PMID: 38247879 PMCID: PMC10814918 DOI: 10.3390/cells13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
This comprehensive review explores the complex role of cofilin, an actin-binding protein, across various neurodegenerative diseases (Alzheimer's, Parkinson's, schizophrenia, amyotrophic lateral sclerosis (ALS), Huntington's) and stroke. Cofilin is an essential protein in cytoskeletal dynamics, and any dysregulation could lead to potentially serious complications. Cofilin's involvement is underscored by its impact on pathological hallmarks like Aβ plaques and α-synuclein aggregates, triggering synaptic dysfunction, dendritic spine loss, and impaired neuronal plasticity, leading to cognitive decline. In Parkinson's disease, cofilin collaborates with α-synuclein, exacerbating neurotoxicity and impairing mitochondrial and axonal function. ALS and frontotemporal dementia showcase cofilin's association with genetic factors like C9ORF72, affecting actin dynamics and contributing to neurotoxicity. Huntington's disease brings cofilin into focus by impairing microglial migration and influencing synaptic plasticity through AMPA receptor regulation. Alzheimer's, Parkinson's, and schizophrenia exhibit 14-3-3 proteins in cofilin dysregulation as a shared pathological mechanism. In the case of stroke, cofilin takes center stage, mediating neurotoxicity and neuronal cell death. Notably, there is a potential overlap in the pathologies and involvement of cofilin in various diseases. In this context, referencing cofilin dysfunction could provide valuable insights into the common pathologies associated with the aforementioned conditions. Moreover, this review explores promising therapeutic interventions, including cofilin inhibitors and gene therapy, demonstrating efficacy in preclinical models. Challenges in inhibitor development, brain delivery, tissue/cell specificity, and long-term safety are acknowledged, emphasizing the need for precision drug therapy. The call to action involves collaborative research, biomarker identification, and advancing translational efforts. Cofilin emerges as a pivotal player, offering potential as a therapeutic target. However, unraveling its complexities requires concerted multidisciplinary efforts for nuanced and effective interventions across the intricate landscape of neurodegenerative diseases and stroke, presenting a hopeful avenue for improved patient care.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
| | - Daniyah A. Almarghalani
- Stroke Research Unit, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Reetika Mahajan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
| | - Syed A.-M. Hasan
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
26
|
Sprissler R, Hammer M, Labiner D, Joshi N, Alan A, Weinand M. Leukocyte differential gene expression prognostic value for high versus low seizure frequency in temporal lobe epilepsy. BMC Neurol 2024; 24:16. [PMID: 38166692 PMCID: PMC10759702 DOI: 10.1186/s12883-023-03459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND This study was performed to test the hypothesis that systemic leukocyte gene expression has prognostic value differentiating low from high seizure frequency refractory temporal lobe epilepsy (TLE). METHODS A consecutive series of patients with refractory temporal lobe epilepsy was studied. Based on a median baseline seizure frequency of 2.0 seizures per month, low versus high seizure frequency was defined as ≤ 2 seizures/month and > 2 seizures/month, respectively. Systemic leukocyte gene expression was analyzed for prognostic value for TLE seizure frequency. All differentially expressed genes were analyzed, with Ingenuity® Pathway Analysis (IPA®) and Reactome, to identify leukocyte gene expression and biological pathways with prognostic value for seizure frequency. RESULTS There were ten males and six females with a mean age of 39.4 years (range: 16 to 62 years, standard error of mean: 3.6 years). There were five patients in the high and eleven patients in the low seizure frequency cohorts, respectively. Based on a threshold of twofold change (p < 0.001, FC > 2.0, FDR < 0.05) and expression within at least two pathways from both Reactome and Ingenuity® Pathway Analysis (IPA®), 13 differentially expressed leukocyte genes were identified which were all over-expressed in the low when compared to the high seizure frequency groups, including NCF2, HMOX1, RHOB, FCGR2A, PRKCD, RAC2, TLR1, CHP1, TNFRSF1A, IFNGR1, LYN, MYD88, and CASP1. Similar analysis identified four differentially expressed genes which were all over-expressed in the high when compared to the low seizure frequency groups, including AK1, F2R, GNB5, and TYMS. CONCLUSIONS Low and high seizure frequency TLE are predicted by the respective upregulation and downregulation of specific leukocyte genes involved in canonical pathways of neuroinflammation, oxidative stress and lipid peroxidation, GABA (γ-aminobutyric acid) inhibition, and AMPA and NMDA receptor signaling. Furthermore, high seizure frequency-TLE is distinguished prognostically from low seizure frequency-TLE by differentially increased specific leukocyte gene expression involved in GABA inhibition and NMDA receptor signaling. High and low seizure frequency patients appear to represent two mechanistically different forms of temporal lobe epilepsy based on leukocyte gene expression.
Collapse
Affiliation(s)
- Ryan Sprissler
- Center for Applied Genetics and Genomic Medicine, RII, University of Arizona, Tucson, AZ, USA.
| | - Michael Hammer
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - David Labiner
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Neil Joshi
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Albert Alan
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, AZ, USA
- University of Arizona College of Medicine, Tucson, AZ, USA
| | - Martin Weinand
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
27
|
Yadav I, Kumar R, Fatima Z, Rema V. Ocimum sanctum [Tulsi] as a Potential Immunomodulator for the Treatment of Ischemic Injury in the Brain. Curr Mol Med 2024; 24:60-73. [PMID: 36515030 DOI: 10.2174/1566524023666221212155340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022]
Abstract
Stroke causes brain damage and is one of the main reasons for death. Most survivors of stroke face long-term physical disabilities and cognitive dysfunctions. In addition, they also have persistent emotional and behavioral changes. The two main treatments that are effective are reperfusion with recombinant tissue plasminogen activator and recanalization of penumbra using mechanical thrombectomy. However, these treatments are suitable only for a few patients due to limitations such as susceptibility to hemorrhage and the requirement for administering tissue plasminogen activators within the short therapeutic window during the early hours following a stroke. The paucity of interventions and treatments could be because of the multiple pathological mechanisms induced in the brain by stroke. The ongoing immune response following stroke has been attributed to the worsening brain injury. Hence, novel compounds with immunomodulatory properties that could improve the outcome of stroke patients are required. Natural compounds and medicinal herbs with anti-inflammatory activities and having minimal or no adverse systemic effect could be beneficial in treating stroke. Ocimum sanctum is a medicinal herb that can be considered an effective therapeutic option for ischemic brain injury. Ocimum sanctum, commonly known as holy basil or "Tulsi," is mentioned as the "Elixir of Life" for its healing powers. Since antiquity, Tulsi has been used in the Ayurvedic and Siddha medical systems to treat several diseases. It possesses immuno-modulatory activity, which can alter cellular and humoral immune responses. Tulsi can be considered a potential option as an immuno-modulator for treating various diseases, including brain stroke. In this review, we will focus on the immunomodulatory properties of Tulsi, specifically its effect on both innate and adaptive immunity, as well as its antioxidant and antiinflammatory properties, which could potentially be effective in treating ongoing immune reactions following ischemic brain injury.
Collapse
Affiliation(s)
- Inderjeet Yadav
- National Brain Research Centre [NBRC], Manesar, Haryana, 122052, India
| | - Ravi Kumar
- National Brain Research Centre [NBRC], Manesar, Haryana, 122052, India
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechno logy, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Velayudhan Rema
- National Brain Research Centre [NBRC], Manesar, Haryana, 122052, India
| |
Collapse
|
28
|
Wu J, Mao S, Wu X, Zhao Y, Zhang W, Zhu F. Jasminoidin reduces ischemic stroke injury by regulating microglia polarization via PASK-EEF1A1 axis. Chem Biol Drug Des 2024; 103:e14354. [PMID: 37743322 DOI: 10.1111/cbdd.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Jasminoidin (JAS) can alleviate ischemic stroke (IS) injury, but its molecular mechanism remains undefined. The polarization of microglia affects IS process. This research is powered to probe whether the molecular mechanism of JAS for IS treatment is coupled with microglia polarization. IS modeling in mice was accomplished by middle cerebral artery occlusion (MCAO) and model mice were injected with 25 and 50 mg/mL JAS, followed by determination of infarct volume, brain water content, and histological changes in mouse brains. The microglia modeling was performed by 1-h oxygen-glucose deprivation and 24-h reoxygenation. Oxygen-glucose deprivation/reoxygenation (OGD/R)-induced microglia were treated with JAS and transfected with Per-Arnt-Sim kinase (PASK)-overexpressing plasmid, subsequent to which cell viability and lactate dehydrogenase (LDH) level were determined. The mRNA or protein expressions of examined genes in microglia and brain tissues were detected by quantitative real-time polymerase chain reaction or western blot. MCAO-induced massive infarction, edema, and injury in mouse brain tissues, upregulated interleukin-1 beta (IL-1β), FcγRIIB (CD32), tumor necrosis factor alpha (TNF-α), PASK, p-eukaryotic elongation factor 1A1 (EEF1A1), and p-EEF1A1/EEF1A1 levels, but downregulated mannose receptor 1 (CD206), arginase-1 (Arg-1) and interleukin-10 (IL-10), and EEF1A1 expressions, which was reversed by JAS. OGD/R treatment decreased microglial viability as well as expressions of CD206, Arg-1, IL-10, and EEF1A1, yet increased cytotoxicity and levels of IL-1β, CD32, TNF-α, PASK, p-EEF1A1, and p-EEF1A1/EEF1A1, which was reversed by JAS. PASK overexpression reversed the effects of JAS on microglia. JAS reduces IS injury by regulating microglia polarization via PASK-EEF1A1 axis.
Collapse
Affiliation(s)
- Jinhan Wu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shiqi Mao
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xiang Wu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yi Zhao
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Weijun Zhang
- Department of Neurology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Feng Zhu
- School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
29
|
Wang S, Li G, Liang X, Wu Z, Chen C, Zhang F, Niu J, Li X, Yan J, Wang N, Li J, Wang Y. Small Extracellular Vesicles Derived from Altered Peptide Ligand-Loaded Dendritic Cell Act as A Therapeutic Vaccine for Spinal Cord Injury Through Eliciting CD4 + T cell-Mediated Neuroprotective Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304648. [PMID: 38037457 PMCID: PMC10797491 DOI: 10.1002/advs.202304648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/13/2023] [Indexed: 12/02/2023]
Abstract
The balance among different CD4+ T cell subsets is crucial for repairing the injured spinal cord. Dendritic cell (DC)-derived small extracellular vesicles (DsEVs) effectively activate T-cell immunity. Altered peptide ligands (APLs), derived from myelin basic protein (MBP), have been shown to affect CD4+ T cell subsets and reduce neuroinflammation levels. However, the application of APLs is challenging because of their poor stability and associated side effects. Herein, it is demonstrate that DsEVs can act as carriers for APL MBP87-99 A91 (A91-DsEVs) to induce the activation of 2 helper T (Th2) and regulatory T (Treg) cells for spinal cord injury (SCI) in mice. These stimulated CD4+ T cells can efficiently "home" to the lesion area and establish a beneficial microenvironment through inducing the activation of M2 macrophages/microglia, inhibiting the expression of inflammatory cytokines, and increasing the release of neurotrophic factors. The microenvironment mediated by A91-DsEVs may enhance axon regrowth, protect neurons, and promote remyelination, which may support the recovery of motor function in the SCI model mice. In conclusion, using A91-DsEVs as a therapeutic vaccine may help induce neuroprotective immunity in the treatment of SCI.
Collapse
Affiliation(s)
- Sikai Wang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and RegenerationThe Second Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Guanglei Li
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Xiongjie Liang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Zexuan Wu
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Chao Chen
- Faculty of Medicine and DentistryUniversity of AlbertaEdmontonT5C 0T2Canada
| | - Fawang Zhang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Jiawen Niu
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and RegenerationThe Second Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Xuefeng Li
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Jinglong Yan
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Nanxiang Wang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Jing Li
- Department of Pathology and Electron MicroscopyFaculty of Basic Medical ScienceHarbin Medical UniversityNo. 157 Baojian RoadHarbin150086China
| | - Yufu Wang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| |
Collapse
|
30
|
Zhang Y, Jiang Y, Zou Y, Fan Y, Feng P, Fu X, Li K, Zhang J, Dong Y, Yan S, Zhang Y. Peripheral blood CD19 positive B lymphocytes increase after ischemic stroke and correlate with carotid atherosclerosis. Front Neurol 2023; 14:1308041. [PMID: 38221996 PMCID: PMC10784375 DOI: 10.3389/fneur.2023.1308041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction Atherosclerosis is the primary pathological basis of ischemic stroke, and dyslipidemia is one of its major etiological factors. Acute ischemic stroke patients exhibit imbalances in lymphocyte subpopulations, yet the correlation between these dynamic changes in lymphocyte subpopulations and lipid metabolism disorders, as well as carotid atherosclerosis in stroke patients remains poorly understood. Methods We retrospectively analyzed the demographic data, risk factors of cerebrovascular disease, laboratory examination (lymphocyte subsets, lipid indexes, etc.), clinical features and c;/]-sity from December 2017 to September 2019 and non-stroke patients with dizziness/vertigo during the same period. Results The results showed that peripheral B lymphocyte proportions are elevated in acute ischemic stroke patients compared with those of the control group (13.6 ± 5.3 vs. 11.7 ± 4.4%, p = 0.006). Higher B lymphocyte proportions are associated with concurrent dyslipidemia, increased levels of vascular risk factors including triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and very-low-density lipoprotein cholesterol (VLDL-C), as well as decreased levels of the protective factor high-density lipoprotein cholesterol (HDL-C). Elevated B lymphocyte proportions are independently correlated with carotid atherosclerosis in stroke patients. Discussion We found CD19 positive B Lymphocytes increase after ischemic stroke and correlate with Carotid Atherosclerosis. Lymphocyte subpopulations should be highlighted in stroke patients.
Collapse
Affiliation(s)
- Yuhua Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Jiang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yutian Zou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Afflliated Changshu Hospital of Nantong University, Changshu, China
| | - Yinyin Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Feng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Fu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Keru Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinru Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunlei Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuying Yan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanlin Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
31
|
Cao Y, Yao W, Lu R, Zhao H, Wei W, Lei X, Zhang Z, Liu B. Reveal the correlation between hub hypoxia/immune-related genes and immunity and diagnosis, and the effect of SAP30 on cell apoptosis, ROS and MDA production in cerebral ischemic stroke. Aging (Albany NY) 2023; 15:15161-15182. [PMID: 38154101 PMCID: PMC10781503 DOI: 10.18632/aging.205339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/08/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Cerebral ischemic stroke (CIS) is a common cerebrovascular disease. The purpose of this study was to investigate the potential mechanism of hypoxia and immune-related genes in CIS. METHODS All data were downloaded from public databases. Hub mRNAs was identified by differential expression analysis, WGCNA analysis and machine learning. Hub mRNAs were used to construct the classification models. Pearson correlation analysis was used to analyze the correlation between hub mRNAs and immune cell infiltration. Finally, the SAP30 was selected for verification in HMC3 cells. RESULTS The SVM, RF and DT classification models constructed based on 6 hub mRNAs had higher area under the curve values, which implied that these classification models had high diagnostic accuracy. Pearson correlation analysis found that Macrophage has the highest negative correlation with CCR7, while Neutrophil has the highest positive correlation with SLC2A3. Drug prediction found that ruxolitinib, methotrexate, resveratrol and resatorvid may play a role in disease treatment by targeting different hub mRNAs. Notably, inhibition of SAP30 expression can reduce the apoptosis of HMC3 cells and inhibit the production of ROS and MDA. CONCLUSION The identification of hub miRNAs and the construction of classification diagnosis models provide a theoretical basis for the diagnosis and management of CIS.
Collapse
Affiliation(s)
- Yue Cao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| | - Wanmei Yao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| | - Rongrong Lu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| | - Huan Zhao
- Department of Pharmacy, The Hospital of Shanxi University of Chinese Medicine, Taiyuan, Shanxi 140100, China
| | - Wenyi Wei
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| | - Xiaolei Lei
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| | - Zheng Zhang
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| | - Biwang Liu
- School of Fushan, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| |
Collapse
|
32
|
Liu Z, Xia Q, Ma D, Wang Z, Li L, Han M, Yin X, Ji X, Wang S, Xin T. Biomimetic nanoparticles in ischemic stroke therapy. DISCOVER NANO 2023; 18:40. [PMID: 36969494 PMCID: PMC10027986 DOI: 10.1186/s11671-023-03824-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/07/2023] [Indexed: 05/28/2023]
Abstract
Abstract Ischemic stroke is one of the most severe neurological disorders with limited therapeutic strategies. The utilization of nanoparticle drug delivery systems is a burgeoning field and has been widely investigated. Among these, biomimetic drug delivery systems composed of biogenic membrane components and synthetic nanoparticles have been extensively highlighted in recent years. Biomimetic membrane camouflage presents an effective strategy to prolong circulation, reduce immunogenicity and enhance targeting. For one thing, biomimetic nanoparticles reserve the physical and chemical properties of intrinsic nanoparticle. For another, the biological functions of original source cells are completely inherited. Compared to conventional surface modification methods, this approach is more convenient and biocompatible. In this review, membrane-based nanoparticles derived from different donor cells were exemplified. The prospect of future biomimetic nanoparticles in ischemic stroke therapy was discussed. Graphic abstract
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Qian Xia
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Dengzhen Ma
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Zhihai Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
| | - Longji Li
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| |
Collapse
|
33
|
Liu PY, Li HQ, Dong MQ, Gu XY, Xu SY, Xia SN, Bao XY, Xu Y, Cao X. Infiltrating myeloid cell-derived properdin markedly promotes microglia-mediated neuroinflammation after ischemic stroke. J Neuroinflammation 2023; 20:260. [PMID: 37951917 PMCID: PMC10640761 DOI: 10.1186/s12974-023-02946-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Emerging evidence has shown that myeloid cells that infiltrate into the peri-infarct region may influence the progression of ischemic stroke by interacting with microglia. Properdin, which is typically secreted by immune cells such as neutrophils, monocytes, and T cells, has been found to possess damage-associated molecular patterns (DAMPs) properties and can perform functions unrelated to the complement pathway. However, the role of properdin in modulating microglia-mediated post-stroke neuroinflammation remains unclear. METHODS Global and conditional (myeloid-specific) properdin-knockout mice were subjected to transient middle cerebral artery occlusion (tMCAO). Histopathological and behavioral tests were performed to assess ischemic brain injury in mice. Single-cell RNA sequencing and immunofluorescence staining were applied to explore the source and the expression level of properdin. The transcriptomic profile of properdin-activated primary microglia was depicted by transcriptome sequencing. Lentivirus was used for macrophage-inducible C-type lectin (Mincle) silencing in microglia. Conditioned medium from primary microglia was administered to primary cortex neurons to determine the neurotoxicity of microglia. A series of cellular and molecular biological techniques were used to evaluate the proinflammatory response, neuronal death, protein-protein interactions, and related signaling pathways, etc. RESULTS: The level of properdin was significantly increased, and brain-infiltrating neutrophils and macrophages were the main sources of properdin in the ischemic brain. Global and conditional myeloid knockout of properdin attenuated microglial overactivation and inflammatory responses at the acute stage of tMCAO in mice. Accordingly, treatment with recombinant properdin enhanced the production of proinflammatory cytokines and augmented microglia-potentiated neuronal death in primary culture. Mechanistically, recombinant properdin served as a novel ligand that activated Mincle receptors on microglia and downstream pathways to drive primary microglia-induced inflammatory responses. Intriguingly, properdin can directly bind to the microglial Mincle receptor to exert the above effects, while Mincle knockdown limits properdin-mediated microglial inflammation. CONCLUSION Properdin is a new medium by which infiltrating peripheral myeloid cells communicate with microglia, further activate microglia, and exacerbate brain injury in the ischemic brain, suggesting that targeted disruption of the interaction between properdin and Mincle on microglia or inhibition of their downstream signaling may improve the prognosis of ischemic stroke.
Collapse
Affiliation(s)
- Pin-Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Hui-Qin Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Meng-Qi Dong
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Xin-Ya Gu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Si-Yi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Sheng-Nan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Xin-Yu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China.
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu, 210008, People's Republic of China.
- Nanjing Neurology Medical Center, Nanjing, Jiangsu, 210008, People's Republic of China.
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China.
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People's Republic of China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu, 210008, People's Republic of China.
- Nanjing Neurology Medical Center, Nanjing, Jiangsu, 210008, People's Republic of China.
| |
Collapse
|
34
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
35
|
Shi Y, Stowe AM, Hu X. The role of immune cells in brain injuries and diseases. Neurobiol Dis 2023; 188:106340. [PMID: 37913833 DOI: 10.1016/j.nbd.2023.106340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Affiliation(s)
- Yejie Shi
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ann M Stowe
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Xiaoming Hu
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Wang R, Li H, Ling C, Zhang X, Lu J, Luan W, Zhang J, Shi L. A novel phenotype of B cells associated with enhanced phagocytic capability and chemotactic function after ischemic stroke. Neural Regen Res 2023; 18:2413-2423. [PMID: 37282471 DOI: 10.4103/1673-5374.371365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Accumulating evidence has demonstrated the involvement of B cells in neuroinflammation and neuroregeneration. However, the role of B cells in ischemic stroke remains unclear. In this study, we identified a novel phenotype of macrophage-like B cells in brain-infiltrating immune cells expressing a high level of CD45. Macrophage-like B cells characterized by co-expression of B-cell and macrophage markers, showed stronger phagocytic and chemotactic functions compared with other B cells and showed upregulated expression of phagocytosis-related genes. Gene Ontology analysis found that the expression of genes associated with phagocytosis, including phagosome- and lysosome-related genes, was upregulated in macrophage-like B cells. The phagocytic activity of macrophage-like B cells was verified by immunostaining and three-dimensional reconstruction, in which TREM2-labeled macrophage-like B cells enwrapped and internalized myelin debris after cerebral ischemia. Cell-cell interaction analysis revealed that macrophage-like B cells released multiple chemokines to recruit peripheral immune cells mainly via CCL pathways. Single-cell RNA sequencing showed that the transdifferentiation to macrophage-like B cells may be induced by specific upregulation of the transcription factor CEBP family to the myeloid lineage and/or by downregulation of the transcription factor Pax5 to the lymphoid lineage. Furthermore, this distinct B cell phenotype was detected in brain tissues from mice or patients with traumatic brain injury, Alzheimer's disease, and glioblastoma. Overall, these results provide a new perspective on the phagocytic capability and chemotactic function of B cells in the ischemic brain. These cells may serve as an immunotherapeutic target for regulating the immune response of ischemic stroke.
Collapse
Affiliation(s)
- Rui Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Huaming Li
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chenhan Ling
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaotao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Weimin Luan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine; Brain Research Institute, Zhejiang University; Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ligen Shi
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
37
|
Wang Y, Jun Yun H, Ding Y, Du H, Geng X. Montelukast sodium protects against focal cerebral ischemic injury by regulating inflammatory reaction via promoting microglia polarization. Brain Res 2023; 1817:148498. [PMID: 37499731 DOI: 10.1016/j.brainres.2023.148498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Neuroinflammation plays an important role in brain injury and repair. Regulation of post-stroke inflammation may be a reasonable strategy to treat ischemic stroke. The present study demonstrates that montelukast sodium protected brain tissue by regulating the post-stroke inflammatory reaction. METHODS Adult male mice underwent distal occlusion of the middle cerebral artery (d-MCAO) surgery, followed by intraperitoneal injection of montelukast sodium or equivalent saline, from day 0-7 after the operation. On the 7th day, Rotarod and adhesive-removal test were performed. M AP2 staining, and Iba1, CD206, and CD16/32 co staining were performed. BV2 microglial cell lines were co-cultured with different concentrations of montelukast sodium with or without lipopolysaccharide (LPS). Real-time polymerase chain reaction (rt-PCR) and enzyme linked immunosorbent assay (ELISA) were used to detect the mRNA expression of M1 and M2 phenotypic microglia markers and the release of cytokines representing from different phenotypes of microglia cells. RESULTS Montelukast sodium prolonged the time that d-MCAO mice remained on the rotating bar, shortened the time to remove the sticker on the opposite claw, and reduced the infarct volume, promoting the transformation of microglial cells/macrophages around the infarct to the M2 phenotype. Montelukast sodium increased the mRNA expression of Arg-1, CD206, TGF-β, and IL-10 in BV2 microglial cell lines stimulated by LPS, while decreased the expression of iNOS, TNF-α, and CD16/32. CONCLUSION Montelukast sodium can protect against focal cerebral ischemic injury by regulating inflammatory reaction via promoting microglia polarization.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yuchuan Ding
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Huishan Du
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
38
|
Qin R, Huang L, Xu W, Qin Q, Liang X, Lai X, Huang X, Xie M, Chen L. Identification of disulfidptosis-related genes and analysis of immune infiltration characteristics in ischemic strokes. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:18939-18959. [PMID: 38052584 DOI: 10.3934/mbe.2023838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Immune infiltration plays a pivotal role in the pathogenesis of ischemic stroke. A novel form of cell death known as disulfidptosis has emerged in recent studies. However, there is currently a lack of research investigating the regulatory mechanism of disulfidptosis-related genes in immune infiltration during ischemic stroke. Using machine learning methods, we identified candidate key disulfidptosis-related genes (DRGs). Subsequently, we performed an analysis of immune cell infiltration to investigate the dysregulation of immune cells in the context of ischemic stroke. We assessed their diagnostic value by employing receiver operating characteristic (ROC) curves. To gain further insights, we conducted functional enrichment analyses to elucidate the signaling pathways associated with these seven DRGs. We identified two distinct subclusters based on the expression patterns of these seven DRGs. The unique roles of these subclusters were further evaluated through KEGG analysis and immune infiltration studies. Furthermore, we validated the expression profiles of these seven DRGs using both single-cell datasets and external datasets. Lastly, molecular docking was performed to explore potential drugs for the treatment of ischemic stroke. We identified seven DRGs. The seven DRGs are related to immune cells. Additionally, these seven DRGs also demonstrate potential diagnostic value in ischemic stroke. Functional enrichment analysis highlighted pathways such as platelet aggregation and platelet activation. Two subclusters related to disulfidptosis were defined, and functional enrichment analysis of their differentially expressed genes (DEGs) primarily involved pathways like cytokine-cytokine receptor interaction. Single-cell analysis indicated that these seven DRGs were primarily distributed among immune cell types. Molecular docking results suggested that genistein might be a potential therapeutic drug. This study has opened up new avenues for exploring the causes of ischemic stroke and developing potential therapeutic targets.
Collapse
Affiliation(s)
- Rongxing Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Lijuan Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xinyu Lai
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
39
|
Zhang L, Wang YC, Liao Y, Zhang Q, Liu X, Zhu D, Feng H, Bryce MR, Ren L. Near-Infrared Afterglow ONOO --Triggered Nanoparticles for Real-Time Monitoring and Treatment of Early Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45574-45584. [PMID: 37729542 PMCID: PMC10561133 DOI: 10.1021/acsami.3c08033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Early detection and drug intervention with the appropriate timing and dosage are the main clinical challenges for ischemic stroke (IS) treatment. The conventional therapeutic agents relay fluorescent signals, which require real-time external light excitation, thereby leading to inevitable autofluorescence and poor tissue penetration. Herein, we report endogenous peroxynitrite (ONOO-)-activated BDP-4/Cur-CL NPs that release NIR afterglow signals (λmax 697 nm) for real-time monitoring of the progression of ischemia reperfusion (I/R) brain injury while releasing curcumin for the safe treatment of IS. The BDP-4/Cur-CL NPs exhibited bright NIR afterglow luminescence (maximum 732-fold increase), superb sensitivity (LOD = 82.67 nM), high energy-transfer efficiency (94.6%), deep tissue penetration (20 mm), outstanding antiapoptosis, and anti-inflammatory effects. The activated NIR afterglow signal obtained in mice with middle cerebral artery occlusion (MCAO) showed three functions: (i) the BDP-4/Cur-CL NPs are rapidly activated by endogenous ONOO-, instantly illuminating the lesion area, distinguishing I/R damage from normal areas, which can be successfully used for endogenous ONOO- detection in the early stage of IS; (ii) real-time reporting of in situ generation and dynamic fluctuations of endogenous ONOO- levels in the lesion area, which is of great value in monitoring the evolutionary mechanisms of IS; and (iii) dynamic monitoring of the release of curcumin drug for safe treatment. Indeed, the released curcumin effectively decreased apoptosis, enhanced survival, alleviated neuroinflammation, reduced brain tissue loss, and improved the cognition of MCAO stroke mice. This work is the first example of afterglow luminescence for early diagnosis, real-time reporting, drug tracing, and treatment for IS.
Collapse
Affiliation(s)
- Liping Zhang
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Ya-chao Wang
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Yuqi Liao
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Qian Zhang
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Xia Liu
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Dongxia Zhu
- Key
Laboratory of Nanobiosensing and Nanobioanalysis at Universities of
Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, P. R. China
| | - Haixing Feng
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| | - Martin R. Bryce
- Department
of Chemistry Durham, University Durham, Durham DH1 3LE, U.K.
| | - Lijie Ren
- Department
of Neurology, Inst Translat Med, The First
Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital, Shenzhen 518035, P. R. China
| |
Collapse
|
40
|
Dou X, Ji W, Dai M, Sun S, Chen R, Yang J, Long J, Ge Y, Lin Y. Spatial and temporal mapping of neuron-microglia interaction modes in acute ischemic stroke. Biochem Pharmacol 2023; 216:115772. [PMID: 37659736 DOI: 10.1016/j.bcp.2023.115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Ischemic stroke (IS) is a major cause of morbidity and mortality worldwide, accounting for 75-80% of all strokes. Under conditions of ischemia and hypoxia, neurons suffer damage or death, leading to a series of secondary immune reactions. Microglia, the earliest activated immune cells, can exert neurotoxic or neuroprotective effects on neurons through secretion of factors. There exists a complex interaction between neurons and microglia during this process. Moreover, the interaction between them becomes even more complex due to differences in the infarct area and reperfusion time. This review first elaborates on the differences in neuronal death modes between the ischemic core and penumbra, and then introduces the differences in microglial markers across different infarct areas with varying reperfusion time, indicating distinct functions. Finally, we focus on exploring the interaction modes between neurons and microglia in order to precisely target beneficial interactions and inhibit harmful ones, thus providing new therapeutic strategies for the treatment of IS.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Wei Ji
- Department of Anesthesiology, Yantai Affiliated Hospital of BinZhou Medical College, Yantai 264000, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
41
|
Zhou Y, Luo Y, Liang H, Zhong P, Wu D. Applicability of the low-grade inflammation score in predicting 90-day functional outcomes after acute ischemic stroke. BMC Neurol 2023; 23:320. [PMID: 37679730 PMCID: PMC10483771 DOI: 10.1186/s12883-023-03365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The low-grade inflammation (LGI) score, a novel indicator of chronic LGI, combines C-reactive protein (CRP), leukocyte counts, the neutrophil/lymphocyte ratio (NLR), and the platelet (PLT) count to predict outcomes of patients with various conditions, such as cardiovascular diseases, cancers, and neurodegenerative diseases. However, few studies have examined the role of the LGI score in predicting functional outcomes of patients with ischemic stroke. The present study aimed to evaluate the association between the LGI score and functional outcomes of patients with ischemic stroke. METHODS A total of 1,215 patients were screened in the present study, and 876 patients were finally included in this retrospective observational study based on the inclusion and exclusion criteria. Blood tests were conducted within 24 h of admission. Severity of ischemic stroke was assessed using the NIHSS score with severe stroke denoted by NIHSS > 5. Early neurological deterioration (END) was defined as an increment in the total NIHSS score of ≥ 2 points within 7 days after admission. Patient outcomes were assessed on day 90 after stroke onset using the modified Rankin Scale (mRS). RESULTS The LGI score was positively correlated with baseline and the day 7 NIHSS scores (R2 = 0.119, p < 0.001;R2 = 0.123, p < 0.001). Multivariate regression analysis showed that the LGI score was an independent predictor of stroke severity and END. In the crude model, the LGI score in the fourth quartile was associated with a higher risk of poor outcomes on day 90 compared with the LGI score in the first quartile (OR = 5.02, 95% CI: 3.09-8.14, p for trend < 0.001). After adjusting for potential confounders, the LGI score in the fourth quartile was independently associated with poor outcomes on day 90 (OR = 2.65, 95% CI: 1.47-4.76, p for trend = 0.001). Finally, the ROC curve analysis showed an AUC of 0.682 for poor outcomes on day 90 after stroke onset. CONCLUSION The LGI score is strongly correlated with the severity of acute ischemic stroke and that the LGI score might be a good predictor for poor outcomes on day 90 in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Yang Zhou
- Emergency Department, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Yufan Luo
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, China
| | - Huazheng Liang
- Monash Suzhou Research Institute, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
| | - Ping Zhong
- Department of Neurology, Shanghai Yangpu District Shidong Hospital, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China.
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
42
|
Lu W, Wen J. H 2S-RhoA/ROCK Pathway and Glial Cells in Axonal Remyelination After Ischemic Stroke. Mol Neurobiol 2023; 60:5493-5504. [PMID: 37322287 DOI: 10.1007/s12035-023-03422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Ischemic stroke is one of the main reasons of disability and death. Stroke-induced functional deficits are mainly due to the secondary degeneration of the white matter characterized by axonal demyelination and injury of axon-glial integrity. Enhancement of the axonal regeneration and remyelination could promote the neural functional recovery. However, cerebral ischemia-induced activation of RhoA/Rho kinase (ROCK) pathway plays a crucial and harmful role in the process of axonal recovery and regeneration. Inhibition of this pathway could promote the axonal regeneration and remyelination. In addition, hydrogen sulfide (H2S) has the significant neuroprotective role during the recovery of ischemic stroke via inhibiting the inflammatory response and oxidative stress, regulating astrocyte function, promoting the differentiation of endogenous oligodendrocyte precursor cells (OPCs) to mature oligodendrocyte. Among all of these effects, promoting the formation of mature oligodendrocyte is a crucial part of axonal regeneration and remyelination. Furthermore, numerous studies have uncovered the crosstalk between astrocytes and oligodendrocyte, microglial cells and oligodendrocyte in the axonal remyelination following ischemic stroke. The purpose of this review was to discuss the relationship among H2S, RhoA/ROCK pathway, astrocytes, and microglial cells in the axonal remyelination following ischemic stroke to reveal new strategies for preventing and treating this devastating disease.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
43
|
Lu W, Chen Z, Wen J. The role of RhoA/ROCK pathway in the ischemic stroke-induced neuroinflammation. Biomed Pharmacother 2023; 165:115141. [PMID: 37437375 DOI: 10.1016/j.biopha.2023.115141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
It is widely known that ischemic stroke is the prominent cause of death and disability. To date, neuroinflammation following ischemic stroke represents a complex event, which is an essential process and affects the prognosis of both experimental stroke animals and stroke patients. Intense neuroinflammation occurring during the acute phase of stroke contributes to neuronal injury, BBB breakdown, and worse neurological outcomes. Inhibition of neuroinflammation may be a promising target in the development of new therapeutic strategies. RhoA is a small GTPase protein that activates a downstream effector, ROCK. The up-regulation of RhoA/ROCK pathway possesses important roles in promoting the neuroinflammation and mediating brain injury. In addition, nuclear factor-kappa B (NF-κB) is another vital regulator of ischemic stroke-induced neuroinflammation through regulating the functions of microglial cells and astrocytes. After stroke onset, the microglial cells and astrocytes are activated and undergo the morphological and functional changes, thereby deeply participate in a complicated neuroinflammation cascade. In this review, we focused on the relationship among RhoA/ROCK pathway, NF-κB and glial cells in the neuroinflammation following ischemic stroke to reveal new strategies for preventing the intense neuroinflammation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
44
|
Shabani M, Erfani S, Abdolmaleki A, Afzali FE, Khoshnazar SM. Alpha-pinene modulates inflammatory response and protects against brain ischemia via inducible nitric oxide synthase-nuclear factor-kappa B-cyclooxygenase-2 pathway. Mol Biol Rep 2023; 50:6505-6516. [PMID: 37329479 DOI: 10.1007/s11033-023-08480-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUNDS Cerebral ischemia-reperfusion leads to brain tissue injury. Inflammation and apoptosis play pivotal roles in the pathology. OBJECTIVE α-Pinene is an organic compound of many aromatic plants and is known as a potent agent to possess antioxidant, and anti-inflammatory properties. Here, we sought to identify the anti-inflammatory and anti-apoptosis mechanism by which α-Pinene improves brain ischemia injury. RESULTS Male Wistar rats underwent MCAO surgery for 1 h and different doses of alpha-pinene (25, 50, and 100 mg/kg) were intraperitoneally injected immediately after reperfusion to test this hypothesis. IV, NDS, gene and protein expression of inducible nitric oxide synthase (iNOS), cyclogenase-2 (COX-2), nuclear factor kappa B (NF-κB) p65, and caspase-3 were assessed 24 h after reperfusion. Results demonstrated that NF-κB p65, iNOS, and COX-2 gene and protein expression increased in the hippocampus, cortex, and striatum after 24 h of reperfusion, and alpha-pinene significantly inhibited NF-kB p65, iNOS, and COX-2 expression. Also, alpha-pinene significantly reduced the ischemia/reperfusion-induced caspase-3 activation in CA1 area of hippocampus. CONCLUSION Results showed that alpha-pinene protects the cerebral against ischemic damage caused by MCAO, and this effect may be through the regulating iNOS -NF-kappa B- COX-2 and caspase-3 inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sohaila Erfani
- Department of Biology, Faculty of Science, Ilam University, Ilam, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Fatemeh Ephtekhar Afzali
- Department of Animal Science and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
45
|
Cao Y, Yue X, Jia M, Wang J. Neuroinflammation and anti-inflammatory therapy for ischemic stroke. Heliyon 2023; 9:e17986. [PMID: 37519706 PMCID: PMC10372247 DOI: 10.1016/j.heliyon.2023.e17986] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 04/25/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Stroke remains one of the most devastating and challenging neurological diseases worldwide. Inflammation, as well as oxidative stress is one of the main contributors to post-stroke injuries, and oxidative stress can further induce inflammation. Moreover, the inflammatory response is closely related to immune modulation in ischemic stroke progression. Hence, major ischemic stroke treatment strategies include targeting inflammatory responses, immune modulation (especially immune cells), and inflammatory response to suppress stroke progression. To date, several drugs have demonstrated clinical efficacy, such as Etanercept and Fingolimod. However, only edaravone dexborneol has successfully passed the phase III clinical trial and been approved by the National Medical Products Administration (NMPA) to treat ischemic stroke in China, which can restore redox balance and regulate inflammatory immune responses, thus providing neuroprotection in ischemic stroke. In this review, we will comprehensively summarize the current advances in the application of inflammatory biomarkers, neuroinflammation and neuro-immunotherapeutic scenarios for ischemic stroke, thus aiming to provide a theoretical basis and new prospects and frontiers for clinical applications.
Collapse
Affiliation(s)
- Yangyue Cao
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xuanye Yue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Jia
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Chen W, Chen Y, Wu L, Gao Y, Zhu H, Li Y, Ji X, Wang Z, Wang W, Han L, Zhu B, Wang H, Xu M. Identification of cell death-related biomarkers and immune infiltration in ischemic stroke between male and female patients. Front Immunol 2023; 14:1164742. [PMID: 37435058 PMCID: PMC10332266 DOI: 10.3389/fimmu.2023.1164742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/17/2023] [Indexed: 07/13/2023] Open
Abstract
Background Stroke is the second leading cause of death and the third leading cause of disability worldwide, with ischemic stroke (IS) being the most prevalent. A substantial number of irreversible brain cell death occur in the short term, leading to impairment or death in IS. Limiting the loss of brain cells is the primary therapy target and a significant clinical issue for IS therapy. Our study aims to establish the gender specificity pattern from immune cell infiltration and four kinds of cell-death perspectives to improve IS diagnosis and therapy. Methods Combining and standardizing two IS datasets (GSE16561 and GSE22255) from the GEO database, we used the CIBERSORT algorithm to investigate and compare the immune cell infiltration in different groups and genders. Then, ferroptosis-related differently expressed genes (FRDEGs), pyroptosis-related DEGs (PRDEGs), anoikis-related DEGs (ARDEGs), and cuproptosis-related DEGs (CRDEGs) between the IS patient group and the healthy control group were identified in men and women, respectively. Machine learning (ML) was finally used to generate the disease prediction model for cell death-related DEGs (CDRDEGs) and to screen biomarkers related to cell death involved in IS. Results Significant changes were observed in 4 types of immune cells in male IS patients and 10 types in female IS patients compared with healthy controls. In total, 10 FRDEGs, 11 PRDEGs, 3 ARDEGs, and 1 CRDEG were present in male IS patients, while 6 FRDEGs, 16 PRDEGs, 4 ARDEGs, and 1 CRDEG existed in female IS patients. ML techniques indicated that the best diagnostic model for both male and female patients was the support vector machine (SVM) for CDRDEG genes. SVM's feature importance analysis demonstrated that SLC2A3, MMP9, C5AR1, ACSL1, and NLRP3 were the top five feature-important CDRDEGs in male IS patients. Meanwhile, the PDK4, SCL40A1, FAR1, CD163, and CD96 displayed their overwhelming influence on female IS patients. Conclusion These findings contribute to a better knowledge of immune cell infiltration and their corresponding molecular mechanisms of cell death and offer distinct clinically relevant biological targets for IS patients of different genders.
Collapse
Affiliation(s)
- Wenli Chen
- Department of Rehabilitation Medicine, ZhongDa Hospital Southeast University, Nanjing, China
| | - Yuanfang Chen
- Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
| | - Liting Wu
- Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Gao
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hangju Zhu
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
- Jiangsu Cancer Center, Jiangsu Cancer Hospital, Nanjing, China
| | - Ye Li
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xinyu Ji
- Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
| | - Ziyi Wang
- Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wen Wang
- Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Han
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Baoli Zhu
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxing Wang
- Department of Rehabilitation Medicine, ZhongDa Hospital Southeast University, Nanjing, China
| | - Ming Xu
- Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Zhu F, Ji Y, Song JH, Huang GX, Zhang YF. Correlations between NLR, NHR, and clinicopathological characteristics, and prognosis of acute ischemic stroke. Medicine (Baltimore) 2023; 102:e33957. [PMID: 37327299 PMCID: PMC10270530 DOI: 10.1097/md.0000000000033957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/17/2023] [Indexed: 06/18/2023] Open
Abstract
Neuroinflammation plays an essential role in the process of acute ischemic stroke (AIS) injury repair. The current study seeks to investigate the relationship between the neutrophil/lymphocyte ratio (NLR) and neutrophil/high-density lipoprotein cholesterol ratio (NHR) and AIS disease severity and short-term prognosis. As such, the primary aim of this study is to improve AIS diagnosis and treatment. A total of 136 patients with AIS at the Nantong Third People's Hospital were retrospectively analyzed. The inclusion criteria comprised patients with ischemic stroke admitted to the hospital <24 hours after symptom onset. Baseline, clinical, and laboratory data were collected from all patients within 24 hours of admission. Univariate, multivariate and receiver operating characteristic curve analysis were performed to determine the relationship between NLR, NHR, AIS severity, and short-term prognosis. NLR (odds ratio [OR] = 1.448, 95% confidence interval [CI] 1.116-1.878, P = .005) and NHR (OR = 1.480, 95% CI 1.158-1.892, P = .002) were identified as independent risk factors for stroke severity. Additionally, the correlation between combined NLR and NHR and AIS severity achieved a sensitivity of 81.4% and specificity of 60.4% with a best cutoff value of 6.989. This outcome was superior to that of the single composite inflammatory index. Moreover, NLR (OR = 1.252, 95% CI 1.008-1.554, P = .042) was an independent risk factor for poor short-term prognosis in patients with AIS. When the optimal cutoff value was 2.605, the sensitivity of NLR correlation with the short-term prognosis of AIS was 82.2%, and the specificity was 59.3%. NLR combined with NHR exhibits a strong correlation with disease severity in AIS. Meanwhile, an elevated NLR in patients with AIS can predict a poor short-term prognosis.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu Province, China
| | - Yan Ji
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu Province, China
| | - Jiang-Hua Song
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu Province, China
| | - Guo-Xiang Huang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yun-Feng Zhang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
48
|
Wang Y, Su X, Leung GHD, Ren B, Zhang Q, Xiong Z, Zhou J, Yang L, Lu G, Chan WY, Ren L. Circulating microRNAs as diagnostic biomarkers for ischemic stroke: evidence from comprehensive analysis and real-world validation. Int J Med Sci 2023; 20:1009-1023. [PMID: 37484808 PMCID: PMC10357437 DOI: 10.7150/ijms.83963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
Ischemic stroke (IS) is the majority of strokes which remain the second leading cause of deaths in the last two decades. Circulating microRNAs (miRNAs) have been suggested as potential diagnostic and therapeutic tools for IS by previous studies analyzing their differential expression. However, inconclusive and controversial conclusions of these results have to be addressed. In this study, comprehensive analysis and real-world validation were performed to assess the associations between circulating miRNAs and IS. 29 studies with 112 miRNAs were extracted after manual selection and filtering, 12 differentially expressed miRNAs were obtained from our results of meta-analysis. These miRNAs were evaluated in 20 IS patients, compared to 20 healthy subjects. 4 miRNAs (hsa-let-7e-5p, hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-185-5p) exhibited the significant expression level in IS patient plasma samples. Pathway and biological process enrichment analysis for the target genes of the 4 validated miRNAs identified cellular senescence and neuroinflammation as key post-IS response pathways. The results of our analyses closely correlated with the pathogenesis and implicated pathways observed in IS subjects suggested by the literature, which may provide aid in the development of circulating diagnostic or therapeutic targets for IS patients.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518000, China
| | - Xianwei Su
- Research and Development Unit, Shenzhen GenDo Medical Technology Co., Ltd., Dapeng, Shenzhen 518000, China
| | | | - Bohua Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1QU, UK
| | - Qiang Zhang
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518000, China
| | - Zhiqiang Xiong
- SDIVF R&D Centre, 209,12W, HKSTP, Shatin, Hong Kong, China
| | - Jingye Zhou
- Research and Development Unit, Shenzhen GenDo Medical Technology Co., Ltd., Dapeng, Shenzhen 518000, China
| | - Ling Yang
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518000, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lijie Ren
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518000, China
| |
Collapse
|
49
|
Wei YH, Bi RT, Qiu YM, Zhang CL, Li JZ, Li YN, Hu B. The gastrointestinal-brain-microbiota axis: a promising therapeutic target for ischemic stroke. Front Immunol 2023; 14:1141387. [PMID: 37342335 PMCID: PMC10277866 DOI: 10.3389/fimmu.2023.1141387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Ischemic stroke is a highly complex systemic disease characterized by intricate interactions between the brain and gastrointestinal tract. While our current understanding of these interactions primarily stems from experimental models, their relevance to human stroke outcomes is of considerable interest. After stroke, bidirectional communication between the brain and gastrointestinal tract initiates changes in the gastrointestinal microenvironment. These changes involve the activation of gastrointestinal immunity, disruption of the gastrointestinal barrier, and alterations in gastrointestinal microbiota. Importantly, experimental evidence suggests that these alterations facilitate the migration of gastrointestinal immune cells and cytokines across the damaged blood-brain barrier, ultimately infiltrating the ischemic brain. Although the characterization of these phenomena in humans is still limited, recognizing the significance of the brain-gastrointestinal crosstalk after stroke offers potential avenues for therapeutic intervention. By targeting the mutually reinforcing processes between the brain and gastrointestinal tract, it may be possible to improve the prognosis of ischemic stroke. Further investigation is warranted to elucidate the clinical relevance and translational potential of these findings.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- *Correspondence: Ya-nan Li, ; Bo Hu,
| | - Bo Hu
- *Correspondence: Ya-nan Li, ; Bo Hu,
| |
Collapse
|
50
|
Maharajni P, Caretti V, Moro MA, McCullough LD. Role of the Meningeal Lymphatics in Stroke. Stroke 2023; 54:1670-1673. [PMID: 37216448 PMCID: PMC10204316 DOI: 10.1161/strokeaha.123.043424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Perla Maharajni
- Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, TX, 77030
| | - Viola Caretti
- Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, TX, 77030
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, 6621 Fannin St., Houston, TX 77030, USA
| | - Maria A. Moro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Neurovascular, Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, TX, 77030
| |
Collapse
|