1
|
Zhang L, Wu Z, Kang M, Wang J, Tan B. Utilization of Ningxiang pig milk oligosaccharides by Akkermansia muciniphila in vitro fermentation: enhancing neonatal piglet survival. Front Microbiol 2024; 15:1430276. [PMID: 38933035 PMCID: PMC11199860 DOI: 10.3389/fmicb.2024.1430276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Akkermansia muciniphila (A. muciniphila), an intestinal symbiont residing in the mucosal layer, shows promise as a probiotic. Our previous study found that the abundance of A. muciniphila was significantly higher in Ningxiang suckling piglets compared to other breeds, suggesting that early breast milk may play a crucial role. This study examines A. muciniphila's ability to utilize Ningxiang pig milk oligosaccharides. We discovered that A. muciniphila can thrive on both Ningxiang pig colostrum and purified pig milk oligosaccharides. Genetic analysis has shown that A. muciniphila harbors essential glycan-degrading enzymes, enabling it to effectively break down a broad spectrum of oligosaccharides. Our findings demonstrate that A. muciniphila can degrade pig milk oligosaccharides structures such as 3'-FL, 3'-SL, LNT, and LNnT, producing short-chain fatty acids in the process. The hydrolysis of these host-derived glycan structures enhances A. muciniphila's symbiotic interactions with other beneficial gut bacteria, contributing to a dynamic microbial ecological network. The capability of A. muciniphila to utilize pig milk oligosaccharides allows it to establish itself in the intestines of newborn piglets, effectively colonizing the mucosal layer early in life. This early colonization is key in supporting both mucosal and metabolic health, which is critical for enhancing piglet survival during lactation.
Collapse
Affiliation(s)
- Longlin Zhang
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Zichen Wu
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Meng Kang
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Jing Wang
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Bie Tan
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
2
|
Zhong J, Doughty R, Thymann T, Sangild PT, Nguyen DN, Muk T. Insulin-like growth factor-1 effects on kidney development in preterm piglets. Pediatr Res 2024:10.1038/s41390-024-03222-3. [PMID: 38762663 DOI: 10.1038/s41390-024-03222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Preterm birth disrupts fetal kidney development, potentially leading to postnatal acute kidney injury. Preterm infants are deficient in insulin-like growth factor 1 (IGF-1), a growth factor that stimulates organ development. By utilizing a preterm pig model, this study investigated whether IGF-1 supplementation enhances preterm kidney maturation. METHODS Cesarean-delivered preterm pigs were treated systemically IGF-1 or vehicle control for 5, 9 or 19 days after birth. Blood, urine, and kidney tissue were collected for biochemical, histological and gene expression analyses. Age-matched term-born pigs were sacrificed at similar postnatal ages and served as the reference group. RESULTS Compared with term pigs, preterm pigs exhibited impaired kidney maturation, as indicated by analyses of renal morphology, histopathology, and inflammatory and injury markers. Supplementation with IGF-1 reduced signs of kidney immaturity, particularly in the first week of life, as indicated by improved morphology, upregulated expression of key developmental genes, reduced severity and incidence of microscopic lesions, and decreased levels of inflammatory and injury markers. No association was seen between the symptoms of necrotizing enterocolitis and kidney defects. CONCLUSION Preterm birth in pigs impairs kidney maturation and exogenous IGF-1 treatment partially reverses this impairment. Early IGF-1 supplementation could support the development of preterm kidneys. IMPACT Preterm birth may disrupt kidney development in newborns, potentially leading to morphological changes, injury, and inflammation. Preterm pigs have previously been used as models for preterm infants, but not for kidney development. IGF-1 supplementation promotes kidney maturation and alleviates renal impairments in the first week of life in preterm pigs. IGF-1 may hold potential as a supportive therapy for preterm infants sensitive to acute kidney injury.
Collapse
Affiliation(s)
- Jingren Zhong
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Richard Doughty
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Thomas Thymann
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Per Torp Sangild
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
| | - Duc Ninh Nguyen
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tik Muk
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
3
|
Bæk O, Rasmussen MB, Gerts T, Aunsholt L, Zachariassen G, Sangild P, Nguyen DN. Insulin-like growth factor 1 associated with altered immune responses in preterm infants and pigs. Pediatr Res 2024; 95:120-128. [PMID: 37648745 PMCID: PMC10798898 DOI: 10.1038/s41390-023-02794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/10/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Preterm infants show low blood levels of insulin-like growth factor 1 (IGF-1), known to be negatively correlated with Interleukin-6 (IL-6). We hypothesized that circulating IGF-1 is associated with systemic immune-markers following preterm birth and that exogenous IGF-1 supplementation modulates immune development in preterm pigs, used as model for preterm infants. METHODS Plasma levels of IGF-1 and 29 inflammatory markers were measured in very preterm infants (n = 221). In preterm pigs, systemic immune development, assessed by in vitro challenge, was compared between IGF-1 treated (2.25 mg/kg/day) and control animals. RESULTS Preterm infants with lowest gestational age and birth weight showed the lowest IGF-1 levels, which were correlated not only with IL-6, but a range of immune-markers. IGF-1 supplementation to preterm pigs reduced plasma IL-10 and Interferon-γ (IFN-γ), IL-2 responses to challenge and reduced expression of genes related to Th1 polarization. In vitro addition of IGF-1 (100 ng/mL) further reduced the IL-2 and IFN-γ responses but increased IL-10 response. CONCLUSIONS In preterm infants, plasma IGF-1 correlated with several immune markers, while supplementing IGF-1 to preterm pigs tended to reduce Th1 immune responses. Future studies should document whether IGF-1 supplementation to preterm infants affects immune development and sensitivity to infection. IMPACT Supplementation of insulin-like growth factor 1 (IGF-1) to preterm infants has been proposed to promote postnatal growth, but its impact on the developing immune system is largely unknown. In a cohort of very preterm infants, low gestational age and birth weight were the primary predictors of low plasma levels of IGF-1, which in turn were associated with plasma immune markers. Meanwhile, in immature preterm pigs, experimental supplementation of IGF-1 reduced Th1-related immune responses in early life. Supplementation of IGF-1 to preterm infants may affect the developing immune system, which needs consideration when evaluating overall impact on neonatal health.
Collapse
Affiliation(s)
- Ole Bæk
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Martin Bo Rasmussen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Therese Gerts
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Aunsholt
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gitte Zachariassen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative network, Region of Southern Denmark, Odense, Denmark
| | - Per Sangild
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Duc Ninh Nguyen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Sun J, Akıllıoğlu HG, Zhong J, Muk T, Pan X, Lund MN, Sangild PT, Nguyen DN, Bering SB. Ultra-High Temperature Treatment of Liquid Infant Formula, Systemic Immunity, and Kidney Development in Preterm Neonates. Mol Nutr Food Res 2023; 67:e2300318. [PMID: 37888862 DOI: 10.1002/mnfr.202300318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/25/2023] [Indexed: 10/28/2023]
Abstract
SCOPE Ready-to-feed liquid infant formulas (IFs) are increasingly being used for newborn preterm infants when human milk is unavailable. However, sterilization of liquid IFs by ultra-high temperature (UHT) introduces Maillard reaction products (MRPs) that may negatively affect systemic immune and kidney development. METHODS AND RESULTS UHT-treated IF without and with prolonged storage (SUHT) are tested against pasteurized IF (PAST) in newborn preterm pigs as a model for preterm infants. After 5 days, blood leukocytes, markers of systemic immunity and inflammation, kidney structure and function are evaluated. No consistent differences between UHT and PAST pigs are observed. However, SUHT increases plasma TNFα and IL-6 and reduces neutrophils and in vitro response to LPS. In SUHT pigs, the immature kidneys show minor upregulation of gene expressions related to inflammation (RAGE, MPO, MMP9) and oxidative stress (CAT, GLO1), together with glomerular mesangial expansion and cell injury. The increased inflammatory status in SUHT pigs appears unrelated to systemic levels of MRPs. CONCLUSION SUHT feeding may impair systemic immunity and affect kidney development in preterm newborns. The systemic effects may be induced by local gut inflammatory effects of MRPs. Optimal processing and length of storage are critical for UHT-treated liquid IFs for preterm infants.
Collapse
Affiliation(s)
- Jing Sun
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | | | - Jingren Zhong
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Tik Muk
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Marianne Nissen Lund
- Department of Food Science, University of Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
- Hans Christian Andersen Children's Hospital, Odense, Denmark
- Department of Neonatology, Rigshospitalet, Denmark
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Stine Brandt Bering
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Ayala L, Sánchez CJ, Hernández F, Madrid J, López MJ, Martínez-Miró S. A Comparison of Haematological and Biochemical Profiles between Intrauterine Growth Restriction and Normal Piglets at 72 Hours Postpartum. Animals (Basel) 2023; 13:3540. [PMID: 38003158 PMCID: PMC10668781 DOI: 10.3390/ani13223540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Intrauterine growth restriction in piglets has been a problem in the pig industry due to genetic selection based on hyperprolificacy. This has led to an increase in the number of underweight piglets and a worsening of the survival rate. The goal of this study was to enhance the knowledge of differences between normal and IUGR piglets a few hours after birth in terms of haematological variables, biochemical parameters, and immunoglobulin levels. Two groups of 20 piglets each were assessed. The control group (N) was made up of piglets with weights greater than 1500 g, and the IUGR group consisted of piglets weighing 500-1000 g and with at least two IUGR features. Blood samples were collected 72 h after birth for analysis of the red and white blood cell parameters, reticulocyte indices, platelet indices, biochemical parameters, and immunoglobulin levels. Alterations in red blood cells and reticulocytes, a lower lymphocyte count, hyperinsulinemia, and high oxidative stress were observed in IUGR piglets (p < 0.05). In contrast, differences were not observed (p > 0.05) in the serum immunoglobulin level. It can be concluded that the haematological and biochemical differences in IUGR piglets with respect to normal-weight piglets are present at birth indicating possible alterations in immunity, metabolism, and redox status; therefore, IUGR piglets could be more vulnerable to illness and future disorders, such as metabolic syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Martínez-Miró
- Department of Animal Production, Faculty of Veterinary, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (L.A.); (C.J.S.); (F.H.); (J.M.); (M.J.L.)
| |
Collapse
|
6
|
Amdi C, Larsen C, Jensen KMR, Tange EØ, Sato H, Williams AR. Intrauterine growth restriction in piglets modulates postnatal immune function and hepatic transcriptional responses independently of energy intake. Front Physiol 2023; 14:1254958. [PMID: 37916220 PMCID: PMC10617784 DOI: 10.3389/fphys.2023.1254958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction: Insufficient prenatal nutrition can affect fetal development and lead to intrauterine growth restriction (IUGR). The aim of this study was to investigate hepatic transcriptional responses and innate immune function in piglets suffering from IUGR compared to normal-sized piglets at 3 days of age and explore whether the provision of an energy-rich supplement at birth could modulate these parameters. Methods: A total of 68 piglets were included in the study. Peripheral blood mononuclear cells were harvested for LPS stimulation, and organs were harvested post-mortem to quantify relative weights. Liver tissue was utilized for RNA sequencing coupled with gene-set enrichment analysis. Results: IUGR resulted in increased expression of genes such as PDK4 and substantial alterations in transcriptional pathways related to metabolic activity (e.g., citric acid and Krebs cycles), but these changes were equivalent in piglets given an energy-rich supplement or not. Transcriptomic analysis and serum biochemistry suggested altered glucose metabolism and a shift toward oxidation of fatty acids. IUGR piglets also exhibited suppression of genes related to innate immune function (e.g., CXCL12) and pathways related to cell proliferation (e.g., WNT and PDGF signaling). Moreover, they produced less IL-1β in response to LPS stimulation and had lower levels of blood eosinophils than normal-sized piglets. Discussion: Taken together, our results indicate that IUGR results in early-life alterations in metabolism and immunity that may not be easily restored by the provision of exogenous energy supplementation.
Collapse
Affiliation(s)
- C. Amdi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
7
|
Sun J, Chong J, Zhang J, Ge L. Preterm pigs for preterm birth research: reasonably feasible. Front Physiol 2023; 14:1189422. [PMID: 37520824 PMCID: PMC10374951 DOI: 10.3389/fphys.2023.1189422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Preterm birth will disrupt the pattern and course of organ development, which may result in morbidity and mortality of newborn infants. Large animal models are crucial resources for developing novel, credible, and effective treatments for preterm infants. This review summarizes the classification, definition, and prevalence of preterm birth, and analyzes the relationship between the predicted animal days and one human year in the most widely used animal models (mice, rats, rabbits, sheep, and pigs) for preterm birth studies. After that, the physiological characteristics of preterm pig models at different gestational ages are described in more detail, including birth weight, body temperature, brain development, cardiovascular system development, respiratory, digestive, and immune system development, kidney development, and blood constituents. Studies on postnatal development and adaptation of preterm pig models of different gestational ages will help to determine the physiological basis for survival and development of very preterm, middle preterm, and late preterm newborns, and will also aid in the study and accurate optimization of feeding conditions, diet- or drug-related interventions for preterm neonates. Finally, this review summarizes several accepted pediatric applications of preterm pig models in nutritional fortification, necrotizing enterocolitis, neonatal encephalopathy and hypothermia intervention, mechanical ventilation, and oxygen therapy for preterm infants.
Collapse
Affiliation(s)
- Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Jie Chong
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| |
Collapse
|
8
|
Magrini SH, Mossor AM, German RZ, Young JW. Developmental factors influencing bone strength in precocial mammals: An infant pig model. J Anat 2023; 243:174-181. [PMID: 36815568 PMCID: PMC10273336 DOI: 10.1111/joa.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Most vertebrates are precocial in locomotion, able to walk and run soon after birth. Precociality requires a bony skeleton of sufficient strength to resist mechanical loading during early locomotor efforts. The aim of this study was to use an animal model-the preterm infant pig-to investigate some of the proximate factors that might determine variation in bone strength in precocial animals. Based on the prior literature, we tested the null predictions that skeletal integrity would be significantly compromised by truncated gestation (i.e., preterm birth) and reduced body mass at birth. We generated a suite of both morphometric measures (tissue mineral density and cross-sectional geometry) and performance-related metrics (ability to resist loading, deformation, and fracture during three-point bending tests) of the appendicular skeleton of preterm and full-term infant pigs. Results showed that very few measures in our ontogenetic infant pig sample significantly varied with either gestation length or birth mass. Overall, our results contribute to a growing body of literature demonstrating the early functional capacity of the precocial infant musculoskeletal system and suggest that bone strength in perinatal precocial mammals may be robust to the factors shown to compromise skeletal integrity in more altricial taxa.
Collapse
Affiliation(s)
| | - Angela M. Mossor
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Department of Anatomy and NeurobiologyNortheast Ohio Medical University (NEOMED)RootstownOhioUSA
| | - Rebecca Z. German
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Department of Anatomy and NeurobiologyNortheast Ohio Medical University (NEOMED)RootstownOhioUSA
| | - Jesse W. Young
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Department of Anatomy and NeurobiologyNortheast Ohio Medical University (NEOMED)RootstownOhioUSA
| |
Collapse
|
9
|
Li W, Zhang C, Li W, Qin F, Gao X, Xu F. Nomogram for predicting fulminant necrotizing enterocolitis. Pediatr Surg Int 2023; 39:154. [PMID: 36939896 PMCID: PMC10027821 DOI: 10.1007/s00383-023-05435-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Fulminant necrotizing enterocolitis (FNEC) is the most serious subtype of NEC and has a high mortality rate and a high incidence of sequelae. Onset prediction can help in the establishment of a customized treatment strategy. This study aimed to develop and evaluate a predictive nomogram for FNEC. METHODS We conducted a retrospective observation to study the clinical data of neonates diagnosed with NEC (Bell stage ≥ IIB). Neonates were divided into the FNEC and NEC groups. A multivariate logistic regression model was used to construct the nomogram model. The performance of the nomogram was assessed using area under the curve, calibration analysis, and decision curve analysis. RESULTS A total of 206 neonate cases were included, among which 40 (19.4%) fulfilled the definition of FNEC. The identified predictors were assisted ventilation after NEC onset; shock at NEC onset; feeding volumes before NEC onset; neutrophil counts on the day of NEC onset; and neutrophil, lymphocyte, and monocyte counts on day 1 after NEC onset. The nomogram exhibited good discrimination, with an area under the receiver operating characteristic curve of 0.884 (95% CI 0.825-0.943). The predictive model was well calibrated. Decision curve analysis confirmed the clinical usefulness of this nomogram. CONCLUSION A nomogram with a potentially effective application was developed to facilitate the individualized prediction of FNEC, with the hope of providing further direction for the early diagnosis of FNEC and timing of intervention.
Collapse
Affiliation(s)
- Weibo Li
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Branch Center of the Third Affiliated Hospital of Advanced Medical Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Chen Zhang
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Branch Center of the Third Affiliated Hospital of Advanced Medical Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenli Li
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Branch Center of the Third Affiliated Hospital of Advanced Medical Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Fanyue Qin
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Branch Center of the Third Affiliated Hospital of Advanced Medical Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Falin Xu
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Branch Center of the Third Affiliated Hospital of Advanced Medical Research Center of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Cortes-Araya Y, Stenhouse C, Salavati M, Dan-Jumbo SO, Ho W, Ashworth CJ, Clark E, Esteves CL, Donadeu FX. KLB dysregulation mediates disrupted muscle development in intrauterine growth restriction. J Physiol 2022; 600:1771-1790. [PMID: 35081669 PMCID: PMC9303651 DOI: 10.1113/jp281647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract Intrauterine growth restriction (IUGR) is a leading cause of neonatal morbidity and mortality in humans and domestic animals. Developmental adaptations of skeletal muscle in IUGR lead to increased risk of premature muscle loss and metabolic disease in later life. Here, we identified β‐Klotho (KLB), a fibroblast growth factor 21 (FGF21) co‐receptor, as a novel regulator of muscle development in IUGR. Using the pig as a naturally‐occurring disease model, we performed transcriptome‐wide profiling of fetal muscle (day 90 of pregnancy) from IUGR and normal‐weight (NW) littermates. We found that, alongside large‐scale transcriptional changes comprising multiple developmental, tissue injury and metabolic gene pathways, KLB was increased in IUGR muscle. Moreover, FGF21 concentrations were increased in plasma in IUGR fetuses. Using cultures of fetal muscle progenitor cells (MPCs), we showed reduced myogenic capacity of IUGR compared to NW muscle in vitro, as evidenced by differences in fusion indices and myogenic transcript levels, as well as mechanistic target of rapamycin (mTOR) activity. Moreover, transfection of MPCs with KLB small interfering RNA promoted myogenesis and mTOR activation, whereas treatment with FGF21 had opposite and dose‐dependent effects in porcine and also in human fetal MPCs. In conclusion, our results identify KLB as a novel and potentially critical mediator of impaired muscle development in IUGR, through conserved mechanisms in pigs and humans. Our data shed new light onto the pathogenesis of IUGR, a significant cause of lifelong ill‐health in humans and animals. Key points Intrauterine growth restriction (IUGR) is associated with large‐scale transcriptional changes in developmental, tissue injury and metabolic gene pathways in fetal skeletal muscle. Levels of the fibroblast growth factor 21 (FGF21) co‐receptor, β‐Klotho (KLB) are increased in IUGR fetal muscle, and FGF21 concentrations are increased in IUGR fetal plasma. KLB mediates a reduction in muscle development through inhibition of mechanistic target of rapamycin signalling. These effects of KLB on muscle cells are conserved in pig and human, suggesting a vital role of this protein in the regulation of muscle development and function in mammals.
Collapse
Affiliation(s)
- Yennifer Cortes-Araya
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Claire Stenhouse
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.,Present address: Physiology of Reproduction, Department of Animal Science, Texas A&M University, 440 Kleberg Center, College Station, Texas, 77843-2471, USA
| | - Mazdak Salavati
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Susan O Dan-Jumbo
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - William Ho
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Cheryl J Ashworth
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Emily Clark
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Cristina L Esteves
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - F Xavier Donadeu
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
11
|
Reid DS, Burnett DD, Contreras-Correa ZE, Lemley CO. Differences in bovine placentome blood vessel density and transcriptomics in a mid to late-gestating maternal nutrient restriction model. Placenta 2021; 117:122-130. [PMID: 34883456 DOI: 10.1016/j.placenta.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Prenatal development is reliant on a functioning placenta, which can be influenced by maternal nutrition. Moreover, the variation in cotyledonary capacity within an animal has not been fully examined to date. Therefore, the purpose of this study was to determine the effect of (1) placentome size and (2) maternal nutrient restriction on molecular, microscopic, and macroscopic features of bovine placentomes during late gestation. METHODS Pregnant cows (n = 6) were placed into one of 2 treatments: CON (100% NRC) vs RES (60% of NRC) from day 140 until slaughter at day 240 of gestation. Placentomes of various sizes were perfused to assess macroscopic blood vessel density of the cotyledon. Microscopic imaging and RNA extraction for sequencing was performed. RESULTS Macroscopic blood vessel density relative to placentome weight was not different (P = 0.42) among small, medium, or large placentomes. Cotyledonary microscopic blood vessel number, area, and perimeter was increased (P < 0.005) in high versus low blood perfusion areas. Differential expressed gene (DEG) analysis showed 209 upregulations and 168 downregulations in the RES group (P ≤ 0.0001). Gene Ontology (GO) analysis showed that downregulated enriched terms were involved in blood vessel and mesenchymal stem cells development, whereas upregulated enriched terms were involved with translation and ribosomal function. DISCUSSION This study demonstrates that placentome function is uniform across various placentome sizes within an animal. However, microscopic heterogeneity exists within each placentome. Maternal nutrient constraints alter placental transcriptomics which may yield compensatory mechanisms involved in nutrient transport including increased perimeter.
Collapse
Affiliation(s)
- Dana S Reid
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Derris D Burnett
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Zully E Contreras-Correa
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
12
|
Infant Formula Based on Milk Fat Affects Immune Development in Both Normal Birthweight and Fetal Growth Restricted Neonatal Piglets. Nutrients 2021; 13:nu13103310. [PMID: 34684311 PMCID: PMC8539276 DOI: 10.3390/nu13103310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Infant formulas offer an alternative to breast milk for both normal birth weight (NBW) and immunocompromised intrauterine growth restricted (IUGR) infants. Although the lipid fraction in formulas is often derived from vegetable oils, it is unclear if this alters immunological outcomes relative to milk fats or whether these effects differ between IUGR and NBW infants. We hypothesized that replacing vegetable oil with bovine milk fat in infant formula would improve immune development in IUGR and NBW neonates. Two-day old piglets were selected (NBW, n = 18, IUGR, n = 18) and each group of animals were fed formula based on either vegetable oil (VEG) or bovine milk fat (MILK). Animals were reared until day 23/24 and systemic immune parameters were evaluated. Milk-fat feeding decreased blood neutrophil counts and improved neutrophil function while transiently reducing leucocytes’ expression of genes related to adaptive and innate immunity as well as energy metabolism, following in vitro stimulation by live Staphylococcus epidermidis (whole blood, 2 h). However, there were only a few interactions between milk-fat type and birthweight status. Thus, piglets fed milk-fat-based formula had improved neutrophil maturation and suppressed pro-inflammatory responses, compared to those fed vegetable-oil-based formula.
Collapse
|
13
|
Zarate MA, De Dios RK, Balasubramaniyan D, Zheng L, Sherlock LG, Rozance PJ, Wright CJ. The Acute Hepatic NF-κB-Mediated Proinflammatory Response to Endotoxemia Is Attenuated in Intrauterine Growth-Restricted Newborn Mice. Front Immunol 2021; 12:706774. [PMID: 34539638 PMCID: PMC8440955 DOI: 10.3389/fimmu.2021.706774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a relevant predictor for higher rates of neonatal sepsis worldwide and is associated with an impaired neonatal immunity and lower immune cell counts. During the perinatal period, the liver is a key immunological organ responsible for the nuclear factor kappa B (NF-κB)-mediated innate immune response to inflammatory stimuli, but whether this role is affected by IUGR is unknown. Herein, we hypothesized that the newborn liver adapts to calorie-restriction IUGR by inducing changes in the NF-κB signaling transcriptome, leading to an attenuated acute proinflammatory response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic gene expression of key NF-κB factors in the IUGR and normally grown (NG) newborn mice. Real-time quantitative PCR (RT-qPCR) analysis revealed an upregulation of both IκB proteins genes (Nfkbia and Nfkbib) and the NF-κB subunit Nfkb1 in IUGR vs. NG. We next measured the LPS-induced hepatic expression of acute proinflammatory genes (Ccl3, Cxcl1, Il1b, Il6, and Tnf) and observed that the IUGR liver produced an attenuated acute proinflammatory cytokine gene response (Il1b and Tnf) to LPS in IUGR vs. unexposed (CTR). Consistent with these results, LPS-exposed hepatic tumor necrosis factor alpha (TNF-α) protein concentrations were lower in IUGR vs. LPS-exposed NG and did not differ from IUGR CTR. Sex differences at the transcriptome level were observed in the IUGR male vs. female. Our results demonstrate that IUGR induces key modifications in the NF-κB transcriptomic machinery in the newborn that compromised the acute proinflammatory cytokine gene and protein response to LPS. Our results bring novel insights in understanding how the IUGR newborn is immunocompromised due to fundamental changes in NF-κB key factors.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Durganili Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul J Rozance
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
14
|
Oke SL, Hardy DB. The Role of Cellular Stress in Intrauterine Growth Restriction and Postnatal Dysmetabolism. Int J Mol Sci 2021; 22:6986. [PMID: 34209700 PMCID: PMC8268884 DOI: 10.3390/ijms22136986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Disruption of the in utero environment can have dire consequences on fetal growth and development. Intrauterine growth restriction (IUGR) is a pathological condition by which the fetus deviates from its expected growth trajectory, resulting in low birth weight and impaired organ function. The developmental origins of health and disease (DOHaD) postulates that IUGR has lifelong consequences on offspring well-being, as human studies have established an inverse relationship between birth weight and long-term metabolic health. While these trends are apparent in epidemiological data, animal studies have been essential in defining the molecular mechanisms that contribute to this relationship. One such mechanism is cellular stress, a prominent underlying cause of the metabolic syndrome. As such, this review considers the role of oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and inflammation in the pathogenesis of metabolic disease in IUGR offspring. In addition, we summarize how uncontrolled cellular stress can lead to programmed cell death within the metabolic organs of IUGR offspring.
Collapse
Affiliation(s)
- Shelby L. Oke
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Daniel B. Hardy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| |
Collapse
|
15
|
Arévalo Sureda E, Pierzynowska K, Weström B, Sangild PT, Thymann T. Exocrine Pancreatic Maturation in Pre-term and Term Piglets Supplemented With Bovine Colostrum. Front Nutr 2021; 8:687056. [PMID: 34249996 PMCID: PMC8264203 DOI: 10.3389/fnut.2021.687056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Pre-term infants have an immature digestive system predisposing to short- and long-term complications including feeding intolerance, maldigestion and necrotizing enterocolitis (NEC). Optimal feeding strategies are required to promote maturation of the gut including the exocrine pancreas. Little is known about age- and diet-related development of pancreatic exocrine enzymes following pre-term birth. Currently, bovine colostrum supplementation is investigated in clinical trials on pre-term infants. Using pigs as models for infants, we hypothesized that pancreatic enzyme content is (1) immature following pre-term birth, (2) stimulated by early colostrum supplementation, and (3) stimulated by later colostrum fortification. Thus, using piglets as models for infants, we measured trypsin, amylase, lipase and total protein in pancreatic tissue collected from piglets delivered by cesarean section either pre-term (90% gestation) or close to term. Experiment 1:Pre-term and term pigs were compared at birth and 11 days. Experiment 2: Pre-term and term pigs were either enterally supplemented with bovine colostrum or fed total parenteral nutrition for 5 days, followed by exclusive milk feeding until day 26. Experiment 3: Pre-term pigs were fed bovine's milk with or without colostrum fortification until 19 days. The results showed that pancreatic trypsin, amylase and total protein contents were reduced in pre-term vs. term pigs. Trypsin mainly increased with advancing post-conceptional age (2-fold), while amylase was affected predominantly by advancing post-natal age, and mostly in pre-term pigs from birth to 11 or 26 days. Colostrum feeding in both term and pre-term piglets decreased trypsin and increased amylase contents. Lipase activity decreased with advancing gestational age at birth and post-natal age, with no consistent responses to colostrum feeding, with lipase activities decreasing relative to total pancreatic protein content. In summary, key pancreatic enzymes, amylase and trypsin, are immature following pre-term birth, potentially contributing to reduced digestive capacity in pre-term neonates. Rapid post-natal increases occurs within few weeks of pre-term birth, partly stimulated by enteral colostrum intake, reflecting a marked adaptation capacity. Alternatively, lipase is less affected by pre-/post-natal age and feeding. Thus, there is a highly enzyme-specific and asymmetric perinatal development of the exocrine pancreas.
Collapse
Affiliation(s)
- Ester Arévalo Sureda
- Precision Livestock and Nutrition/TERRA Teaching and Research Centre, Gembloux Agro-Biotech, University of Liège, Gembloux, Belgium.,Functional Zoology, Department of Biology, Lund University, Lund, Sweden.,Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Kateryna Pierzynowska
- Functional Zoology, Department of Biology, Lund University, Lund, Sweden.,Department of Animal Physiology, The Kielanowski Institute of Animal Nutrition and Physiology, Jabłonna, Poland
| | - Björn Weström
- Functional Zoology, Department of Biology, Lund University, Lund, Sweden
| | - Per Torp Sangild
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark.,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.,Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | - Thomas Thymann
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Matyba P, Florowski T, Dasiewicz K, Ferenc K, Olszewski J, Trela M, Galemba G, Słowiński M, Sady M, Domańska D, Gajewski Z, Zabielski R. Performance and Meat Quality of Intrauterine Growth Restricted Pigs. Animals (Basel) 2021; 11:ani11020254. [PMID: 33498468 PMCID: PMC7909567 DOI: 10.3390/ani11020254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Pigs with intrauterine growth restriction (IUGR) are neonates born at term but having low birth weight and a characteristic head shape. IUGR is observed in 6-10% of pig neonates. IUGR causes problems in livestock farms due to high mortality of the piglets in the first days of life and slower postnatal growth. Tracing the surviving IUGR piglets is difficult, so the data on their post-weaning growth, performance, and carcass quality is scanty. This study shows that the post-weaning performance of IUGR pigs is poorer than that of their normal littermates. However, the growers’/fatteners’ morbidity and meat quality is not different, and the consumer preference tests clearly show that the meat of the IUGR pigs is more readily accepted than that of the normal pigs. Consumers indicated better taste, smell, and consistency of this meat. The basis of consumers preference is in a slightly different chemical composition and structure of the muscle tissue. This study shows that efforts toward reducing high mortality among IUGR neonates may be beneficial. Abstract Intrauterine growth restricted (IUGR) pigs are characterized by high perinatal mortality and dysfunction of internal organs, adipose, and muscle tissues. However, little is known about the post-weaning performance and meat quality of the IUGR pigs. The aim of this study was to compare normal pigs and pigs with IUGR from birth until slaughter, also with respect to their meat quality. Pigs with the IUGR achieved lower slaughter weight but did not differ significantly from normal pigs in terms of their meat content. The IUGR did not negatively affect the culinary quality of the obtained meat, including its content of basic chemical components and energy value, as well as hardness, chewiness, cohesiveness, elasticity, and penetration force. The meat of the IUGR pigs, when compared to the meat of normal pigs, was characterized by higher pH, lower EC (Electrical Conductivity) and drip loss; it was also tenderer and obtained higher scores in sensory evaluation of taste, smell, and general desirability. Therefore, such raw material can be appreciated by the consumers and can be used for the production of culinary portions similarly to the raw material obtained from normal pigs.
Collapse
Affiliation(s)
- Piotr Matyba
- Center for Biomedicine Research, Center for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Veterinary Research Centre, 02-797 Warsaw, Poland; (P.M.); (K.F.); (J.O.); (M.T.); (M.S.); (D.D.); (Z.G.)
| | - Tomasz Florowski
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (T.F.); (K.D.); (M.S.)
| | - Krzysztof Dasiewicz
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (T.F.); (K.D.); (M.S.)
| | - Karolina Ferenc
- Center for Biomedicine Research, Center for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Veterinary Research Centre, 02-797 Warsaw, Poland; (P.M.); (K.F.); (J.O.); (M.T.); (M.S.); (D.D.); (Z.G.)
| | - Jarosław Olszewski
- Center for Biomedicine Research, Center for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Veterinary Research Centre, 02-797 Warsaw, Poland; (P.M.); (K.F.); (J.O.); (M.T.); (M.S.); (D.D.); (Z.G.)
| | - Michał Trela
- Center for Biomedicine Research, Center for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Veterinary Research Centre, 02-797 Warsaw, Poland; (P.M.); (K.F.); (J.O.); (M.T.); (M.S.); (D.D.); (Z.G.)
| | | | - Mirosław Słowiński
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (T.F.); (K.D.); (M.S.)
| | - Maria Sady
- Center for Biomedicine Research, Center for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Veterinary Research Centre, 02-797 Warsaw, Poland; (P.M.); (K.F.); (J.O.); (M.T.); (M.S.); (D.D.); (Z.G.)
| | - Dominika Domańska
- Center for Biomedicine Research, Center for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Veterinary Research Centre, 02-797 Warsaw, Poland; (P.M.); (K.F.); (J.O.); (M.T.); (M.S.); (D.D.); (Z.G.)
| | - Zdzisław Gajewski
- Center for Biomedicine Research, Center for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Veterinary Research Centre, 02-797 Warsaw, Poland; (P.M.); (K.F.); (J.O.); (M.T.); (M.S.); (D.D.); (Z.G.)
| | - Romuald Zabielski
- Center for Biomedicine Research, Center for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Veterinary Research Centre, 02-797 Warsaw, Poland; (P.M.); (K.F.); (J.O.); (M.T.); (M.S.); (D.D.); (Z.G.)
- Correspondence: ; Tel.: +48-603757933
| |
Collapse
|
17
|
Bæk O, Cilieborg MS, Nguyen DN, Bering SB, Thymann T, Sangild PT. Sex-Specific Survival, Growth, Immunity and Organ Development in Preterm Pigs as Models for Immature Newborns. Front Pediatr 2021; 9:626101. [PMID: 33643975 PMCID: PMC7905020 DOI: 10.3389/fped.2021.626101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Background: After very preterm birth, male infants show higher mortality than females, with higher incidence of lung immaturity, neurological deficits, infections, and growth failure. In modern pig production, piglets dying in the perinatal period (up to 20%) often show signs of immature organs, but sex-specific effects are not clear. Using preterm pigs as model for immature infants and piglets, we hypothesized that neonatal survival and initial growth and immune development depend on sex. Methods: Using data from a series of previous intervention trials with similar delivery and rearing procedures, we established three cohorts of preterm pigs (90% gestation), reared for 5, 9, or 19 days before sample collection (total n = 1,938 piglets from 109 litters). Partly overlapping endpoints among experiments allowed for multiple comparisons between males and females for data on mortality, body and organ growth, gut, immunity, and brain function. Results: Within the first 2 days, males showed higher mortality than females (18 vs. 8%, P < 0.001), but less severe immune response to gram-positive infection. No effect of sex was observed for thermoregulation or plasma cortisol. Later, infection resistance did not differ between sexes, but growth rate was reduced for body (up to -40%) and kidneys (-6%) in males, with higher leucocyte counts (+15%) and lower CD4 T cell fraction (-5%) on day 9 and lower monocyte counts (-18%, day 19, all P < 0.05). Gut structure, function and necrotizing enterocolitis (NEC) incidence were similar between groups, but intestinal weight (-3%) and brush-border enzyme activities were reduced at day 5 (lactase, DPP IV, -8%) in males. Remaining values for blood biochemistry, hematology, bone density, regional brain weights, and visual memory (tested in a T maze) were similar. Conclusion: Following preterm birth, male pigs show higher mortality and slower growth than females, despite limited differences in organ growth, gut, immune, and brain functions. Neonatal intensive care procedures may be particularly important for compromised newborns of the male sex. Preterm pigs can serve as good models to study the interactions of sex- and maturation-specific survival and physiological adaptation in mammals.
Collapse
Affiliation(s)
- Ole Bæk
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Malene Skovsted Cilieborg
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stine Brandt Bering
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.,Department of Pediatrics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
18
|
Bæk O, Ren S, Brunse A, Sangild PT, Nguyen DN. Impaired Neonatal Immunity and Infection Resistance Following Fetal Growth Restriction in Preterm Pigs. Front Immunol 2020; 11:1808. [PMID: 32903565 PMCID: PMC7438575 DOI: 10.3389/fimmu.2020.01808] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023] Open
Abstract
Background: Infants born preterm or small for gestational age (SGA, due to fetal growth restriction) both show an increased risk of neonatal infection. However, it remains unclear how the co-occurrence of preterm birth and SGA may affect neonatal immunity and infection risk. We hypothesized that fetal growth restricted (FGR) preterm newborns possess impaired immune competence and increased susceptibility to systemic infection and sepsis, relative to corresponding normal birth weight (NBW) newborns. Methods: Using preterm pigs as a model for preterm infants, gene expression in lipopolysaccharide (LPS) stimulated cord blood was compared between NBW and FGR (lowest 25% birth weight percentile) preterm pigs. Next, clinical responses to a systemic Staphylococcus epidermidis (SE) challenge were investigated in newborn FGR and NBW preterm pigs. Finally, occurrence of spontaneous infections were investigated in 9 d-old FGR and NBW preterm pigs, with or without neonatal antibiotics treatment. Results: At birth, preterm FGR piglets showed diminished ex vivo cord blood responses to LPS for genes related to both innate and adaptive immunity, and also more severe septic responses following SE infection (e.g., higher blood lactate, decreased blood pH, neutrophil and platelet counts, relative to NBW pigs). After 9 d, FGR pigs had higher incidence and severity of spontaneous infections (e.g., higher bacterial densities in the bone marrow), increased regulatory T cell numbers, reduced neutrophil phagocytosis capacity, and impaired ex vivo blood gene responses to LPS, especially when receiving neonatal antibiotics. Conclusion: FGR at preterm birth is associated with poor immune competence, impaired infection resistance, and greater sepsis susceptibility in the immediate postnatal period. Our results may explain the increased morbidity and mortality of SGA preterm infants and highlight the need for clinical vigilance for this highly sensitive subgroup of preterm neonates.
Collapse
Affiliation(s)
- Ole Bæk
- Section for Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark
| | - Shuqiang Ren
- Section for Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark
| | - Anders Brunse
- Section for Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark
| | - Per Torp Sangild
- Section for Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark
| | - Duc Ninh Nguyen
- Section for Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Qi M, Wang J, Tan B, Liao S, Long C, Yin Y. Postnatal growth retardation is associated with intestinal mucosa mitochondrial dysfunction and aberrant energy status in piglets. J Cell Mol Med 2020; 24:10100-10111. [PMID: 32667125 PMCID: PMC7520312 DOI: 10.1111/jcmm.15621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with postnatal growth retardation (PGR) are prone to developing chronic disease. Abnormal development in small intestine is casually implicated in impaired growth performance. However, the exact mechanism is still unknown. In this present study, PGR piglets (aged 42 days) were employed as a good model to analyse changes in nutrient absorption and energy metabolism in the intestinal mucosa. The results showed lower serum concentrations of free amino acids, and lipid metabolites in PGR piglets, which were in accordance with the down‐regulated mRNA expressions involved in fatty acid and amino acid transporters in the jejunal and ileal mucosa. The decreased activities of digestive enzymes and the marked swelling in mitochondria were also observed in the PGR piglets. In addition, it was found that lower ATP production, higher AMP/ATP ratio, deteriorated mitochondrial complex III and ATP synthase, and decreased manganese superoxide dismutase activity in the intestinal mucosa of PGR piglets. Furthermore, altered gene expression involved in energy metabolism, accompanied by decreases in the protein abundance of SIRT1, PGC‐1α and PPARγ, as well as phosphorylations of AMPKα, mTOR, P70S6K and 4E‐BP1 were observed in intestinal mucosa of PGR piglets. In conclusion, decreased capability of nutrient absorption, mitochondrial dysfunction, and aberrant energy status in the jejunal and ileal mucosa may contribute to PGR piglets.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cimin Long
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
20
|
Ahnfeldt AM, Bæk O, Hui Y, Nielsen CH, Obelitz-Ryom K, Busk-Anderson T, Ruge A, Holst JJ, Rudloff S, Burrin D, Nguyen DN, Nielsen DS, Zachariassen G, Bering SB, Thymann T, Sangild PT. Nutrient Restriction has Limited Short-Term Effects on Gut, Immunity, and Brain Development in Preterm Pigs. J Nutr 2020; 150:1196-1207. [PMID: 32069355 DOI: 10.1093/jn/nxaa030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/30/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Extrauterine growth restriction (EUGR) in preterm infants is associated with higher morbidity and impaired neurodevelopment. Early nutrition support may prevent EUGR in preterm infants, but it is not known if this improves organ development and brain function in the short and long term. OBJECTIVE Using pigs as models for infants, we hypothesized that diet-induced EUGR impairs gut, immunity, and brain development in preterm neonates during the first weeks after birth. METHODS Forty-four preterm caesarean-delivered pigs (Danish Landrace × Large White × Duroc, birth weight 975 ± 235 g, male:female ratio 23:21) from 2 sows were fed increasing volumes [32-180 mL/(kg·d)] of dilute bovine milk (EUGR group) or the same diet fortified with powdered bovine colostrum for 19 d (CONT group, 50-100% higher protein and energy intake than the EUGR group). RESULTS The EUGR pigs showed reduced body growth (-39%, P < 0.01), lower plasma albumin, phosphate, and creatine kinase concentrations (-35 to 14%, P < 0.05), increased cortisol and free iron concentrations (+130 to 700%, P < 0.05), and reduced relative weights of the intestine, liver, and spleen (-38 to 19%, all P < 0.05). The effects of EUGR on gut structure, function, microbiota, and systemic immunity were marginal, although EUGR temporarily increased type 1 helper T cell (Th1) activity (e.g. more blood T cells and higher Th1-related cytokine concentrations on day 8) and reduced colon nutrient fermentation (lower SCFA concentration; -45%, P < 0.01). Further, EUGR pigs showed increased relative brain weights (+19%, P < 0.01), however, memory and learning, as tested in a spatial T-maze, were not affected. CONCLUSION Most of the measured organ growth, and digestive, immune, and brain functions showed limited effects of diet-induced EUGR in preterm pigs during the first weeks after birth. Likewise, preterm infants may show remarkable physiological adaptation to deficient nutrient supply during the first weeks of life although early life malnutrition may exert negative consequences later.
Collapse
Affiliation(s)
- Agnethe May Ahnfeldt
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Bæk
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yan Hui
- Department of Food Science, Food Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Karina Obelitz-Ryom
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tilla Busk-Anderson
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ruge
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Silvia Rudloff
- Institute of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Douglas Burrin
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Duc Ninh Nguyen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, Food Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Zachariassen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Stine Brandt Bering
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Thymann
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Torp Sangild
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| |
Collapse
|