1
|
Chang JW, Tang CH. The role of macrophage polarization in rheumatoid arthritis and osteoarthritis: Pathogenesis and therapeutic strategies. Int Immunopharmacol 2024; 142:113056. [PMID: 39217882 DOI: 10.1016/j.intimp.2024.113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are common and debilitating joint disorders affecting millions of individuals worldwide. Despite their distinct pathological features, both conditions share a crucial role of macrophages in disease progression. Macrophages exhibit remarkable plasticity, polarizing into pro-inflammatory M1 or anti-inflammatory M2 phenotypes in response to environmental cues. An imbalance in macrophage polarization, particularly a shift towards the M1 phenotype, contributes to chronic inflammation and joint damage in RA and OA. This review explores the complex interplay between macrophages and various cell types, including T cells, B cells, synovial fibroblasts, osteoclasts, chondrocytes, and adipocytes, in the pathogenesis of these diseases. We discuss the current understanding of macrophage polarization in RA and OA, highlighting the molecular mechanisms involved. Furthermore, we provide an overview of potential therapeutic strategies targeting macrophage polarization, such as disease-modifying anti-rheumatic drugs, traditional Chinese medicine, nanomedicines, proteins, chemical compounds, and physical therapies. By elucidating the precise mechanisms governing macrophage polarization and its interactions with other cells in the joint microenvironment, researchers can identify novel therapeutic targets and develop targeted interventions to alleviate disease progression and improve patient outcomes in RA and OA.
Collapse
Affiliation(s)
- Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Wang X, Hu H, Yan G, Zheng B, Luo J, Fan J. Identification and validation of interferon-stimulated gene 15 as a biomarker for dermatomyositis by integrated bioinformatics analysis and machine learning. Front Immunol 2024; 15:1429817. [PMID: 39559355 PMCID: PMC11570269 DOI: 10.3389/fimmu.2024.1429817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Background Dermatomyositis (DM) is an autoimmune disease that primarily affects the skin and muscles. It can lead to increased mortality, particularly when patients develop associated malignancies or experience fatal complications such as pulmonary fibrosis. Identifying reliable biomarkers is essential for the early diagnosis and treatment of DM. This study aims to identify and validate pivotal diagnostic biomarker for DM through integrated bioinformatics analysis and clinical sample validation. Methods Gene expression datasets GSE46239 and GSE142807 from the Gene Expression Omnibus (GEO) database were merged for analysis. Differentially expressed genes (DEGs) were identified and subjected to enrichment analysis. Advanced machine learning methods were utilized to further pinpoint hub genes. Weighted gene co-expression network analysis (WGCNA) was also conducted to discover key gene modules. Subsequently, we derived intersection gene from these methods. The diagnostic performance of the candidate biomarker was evaluated using analysis with dataset GSE128314 and confirmed by immunohistochemistry (IHC) in skin lesion biopsy specimens. The CIBERSORT algorithm was used to analyze immune cell infiltration patterns in DM, then the association between the hub gene and immune cells was investigated. Gene set enrichment analysis (GSEA) was performed to understand the biomarker's biological functions. Finally, the drug-gene interactions were predicted using the DrugRep server. Results Interferon-stimulated gene 15 (ISG15) was identified by intersecting DEGs, advanced machine learning-selected genes and key module genes from WGCNA. ROC analysis showed ISG15 had a high Area under the curve (AUC) of 0.950. IHC findings confirmed uniformly positive expression of ISG15, particularly in perivascular regions and lymphocytes, contrasting with universally negative expression in controls. Further analysis revealed that ISG15 is involved in abnormalities in various immune cells and inflammation-related pathways. We also predicted three drugs targeting ISG15, supported by molecular docking studies. Conclusion Our study identifies ISG15 as a highly specific diagnostic biomarker for DM, ISG15 may be closely related to the pathogenesis of DM, demonstrating promising potential for clinical application.
Collapse
Affiliation(s)
- Xingwang Wang
- Department of Dermatology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Hao Hu
- Department of Radiation Therapy, General Hospital of Southern Theater Command, Guangzhou, China
| | - Guangning Yan
- Department of Pathology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Bo Zheng
- Department of Dermatology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jinxia Luo
- Department of Pathology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jianyong Fan
- Department of Dermatology, General Hospital of Southern Theater Command, Guangzhou, China
| |
Collapse
|
3
|
Qin T, Sun M, Huang Y, Guo J, Hong A, Zheng Q, Wei T, He Q, Ren Z. MiR-221 on protective oxidative induced by selenium modified Codonopsis pilosula polysaccharide. Int J Biol Macromol 2024; 279:134815. [PMID: 39154690 DOI: 10.1016/j.ijbiomac.2024.134815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Oxidative stress plays an important role in various diseases. miR-221 has been reported to regulate oxidative stress. However, the mechanism of miR-221 in regulating oxidative stress induced by sCPPS5 remains unclear. This study aimed to investigate the protective effects and mechanisms of miR-221 on oxidative stress induced by sCPPS5. The expression of SOD, CAT, MDA, LDH, MMP, caspase-3 activity and apoptosis were measured. In addition, the key signaling factors in the Keap1-Nrf2-ARE signaling pathway were determined by real-time PCR and Western blot. Mice were employed to evaluate the effects of sCPPS5 and the possible mechanism in vivo. sCPPS5 promoted the expression of SOD and CAT and activated Keap1-Nrf2-ARE signaling pathway inhibit the MDA content, MMP, caspase-3 activity, apoptosis and LDH release rate after transfection with miR-221 mimics and inhibitors. Consistently, sCPPS5 has the potential to enhance the expression of antioxidant enzymes as well as upregulate mRNA expression of crucial signal proteins in vivo. miR-221 on oxidative stress protection induced by sCPPS5 possibly through regulating the Keap1-Nrf2-ARE signaling pathway in macrophages.
Collapse
Affiliation(s)
- Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Mengke Sun
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yongyuan Huang
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jinhang Guo
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ancan Hong
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zheng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tiantian Wei
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiuyue He
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
4
|
Liao J, Gu Q, Liu Z, Wang H, Yang X, Yan R, Zhang X, Song S, Wen L, Wang Y. Edge advances in nanodrug therapies for osteoarthritis treatment. Front Pharmacol 2024; 15:1402825. [PMID: 39539625 PMCID: PMC11559267 DOI: 10.3389/fphar.2024.1402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
As global population and lifestyles change, osteoarthritis (OA) is becoming a major healthcare challenge world. OA, a chronic condition characterized by inflammatory and degeneration, often present with joint pain and can lead to irreversible disability. While there is currently no cure for OA, it is commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and glucosamine. Although these treatments can alleviate symptoms, it is difficult to effectively deliver and sustain therapeutic agents within joints. The emergence of nanotechnology, particularly in form of smart nanomedicine, has introduced innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies offer promising advantages, including more precise targeting of affected areas, prolonged therapeutic effects, enhanced bioavailability, and reduced systemic toxicity compared to traditional treatments. While nanoparticles show potential as a viable delivery system for OA therapies based on encouraging lab-based and clinical trials results, there remails a considerable gap between current research and clinical application. This review highlights recent advances in nanotherapy for OA and explore future pathways to refine and optimize OA treatments strategies.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Qingjia Gu
- Department of ENT, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xian Yang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongkai Yan
- Department of Radiology, Ohio state university, Columbus, OH, United States
| | - Xiaofeng Zhang
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Seyedi D, Espandar N, Hojatizadeh M, Mohammadi Y, Sadri F, Rezaei Z. Noncoding RNAs in rheumatoid arthritis: modulators of the NF-κB signaling pathway and therapeutic implications. Front Immunol 2024; 15:1486476. [PMID: 39530095 PMCID: PMC11550995 DOI: 10.3389/fimmu.2024.1486476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint inflammation and gradual tissue destruction. New research has shown how important noncoding RNAs (ncRNAs) are for changing immune and inflammatory pathways, such as the WNT signaling pathway, which is important for activating synovial fibroblasts and osteoblasts to work. This article examines the current understanding of several ncRNAs, such as miRNAs, lncRNAs, and circRNAs, that influence NF-κB signaling in the pathogenesis of RA. We investigate how these ncRNAs impact NF-κB signaling components, altering cell proliferation, differentiation, and death in joint tissues. The paper also looks at how ncRNAs can be used as potential early detection markers and therapeutic targets in RA because they can change important pathogenic pathways. This study highlights the therapeutic potential of targeting ncRNAs in RA therapy techniques, with the goal of reducing inflammation and stopping disease progression. This thorough analysis opens up new possibilities for understanding the molecular foundations of RA and designing novel ncRNA-based treatments.
Collapse
Affiliation(s)
- Dina Seyedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmadin Espandar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Maryam Hojatizadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mohammadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
6
|
Kong W, Bao Y, Li W, Guan D, Yin Y, Xiao Y, Zhu S, Sun Y, Xia Z. Collaborative Enhancement of Diabetic Wound Healing and Skin Regeneration by Recombinant Human Collagen Hydrogel and hADSCs. Adv Healthc Mater 2024:e2401012. [PMID: 39388509 DOI: 10.1002/adhm.202401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Stem cell-based therapies hold significant promise for chronic wound healing and skin appendages regeneration, but challenges such as limited stem cell lifespan and poor biocompatibility of delivery systems hinder clinical application. In this study, an in situ delivery system for human adipose-derived stem cells is developed (hADSCs) to enhance diabetic wound healing. The system utilizes a photo-crosslinking recombinant human type III collagen (rHCIII) hydrogel to encapsulate hADSCs, termed the hADSCs@rHCIII hydrogel. This hydrogel undergoes local crosslinking at the wound site, establishing a sturdy 3D niche suitable for stem cell function. Consequently, the encapsulated hADSCs exhibit strong attachment and spreading within the hydrogels, maintaining their proliferation, metabolic activity, and viability for up to three weeks in vitro. Importantly, in vivo studies demonstrate that the hADSCs@rHCIII hydrogel achieves significant in situ delivery of stem cells, prolonging their retention within the wound. This ultimately enhances their immunomodulatory capabilities, promotes neovascularization and granulation tissue formation, facilitates matrix remodeling, and accelerates healing in a diabetic mouse wound model. Collectively, these findings highlight the potential of the conveniently-prepared and user-friendly hADSCs@rHCIII hydrogel as a promising therapeutic approach for diabetic wound treatment and in situ skin regeneration.
Collapse
Affiliation(s)
- Weishi Kong
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Yulu Bao
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Dingding Guan
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Yating Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Department of Burn and Plastic Surgery, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, P. R. China
| | - Yongqiang Xiao
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, P. R. China
| | - Shihui Zhu
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
- Department of Burns and Plastic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yu Sun
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Muturi HT, Ghadieh HE, Asalla S, Lester SG, Belew GD, Zaidi S, Abdolahipour R, Shrestha AP, Portuphy AO, Stankus HL, Helal RA, Verhulst S, Duarte S, Zarrinpar A, van Grunsven LA, Friedman SL, Schwabe RF, Hinds TD, Kumarasamy S, Najjar SM. Conditional deletion of CEACAM1 in hepatic stellate cells causes their activation. Mol Metab 2024; 88:102010. [PMID: 39168268 PMCID: PMC11403062 DOI: 10.1016/j.molmet.2024.102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVES Hepatic CEACAM1 expression declines with advanced hepatic fibrosis stage in patients with metabolic dysfunction-associated steatohepatitis (MASH). Global and hepatocyte-specific deletions of Ceacam1 impair insulin clearance to cause hepatic insulin resistance and steatosis. They also cause hepatic inflammation and fibrosis, a condition characterized by excessive collagen production from activated hepatic stellate cells (HSCs). Given the positive effect of PPARγ on CEACAM1 transcription and on HSCs quiescence, the current studies investigated whether CEACAM1 loss from HSCs causes their activation. METHODS We examined whether lentiviral shRNA-mediated CEACAM1 donwregulation (KD-LX2) activates cultured human LX2 stellate cells. We also generated LratCre + Cc1fl/fl mutants with conditional Ceacam1 deletion in HSCs and characterized their MASH phenotype. Media transfer experiments were employed to examine whether media from mutant human and murine HSCs activate their wild-type counterparts. RESULTS LratCre + Cc1fl/fl mutants displayed hepatic inflammation and fibrosis but without insulin resistance or hepatic steatosis. Their HSCs, like KD-LX2 cells, underwent myofibroblastic transformation and their media activated wild-type HSCs. This was inhibited by nicotinic acid treatment which blunted the release of IL-6 and fatty acids, both of which activate the epidermal growth factor receptor (EGFR) tyrosine kinase. Gefitinib inhibition of EGFR and its downstream NF-κB/IL-6/STAT3 inflammatory and MAPK-proliferation pathways also blunted HSCs activation in the absence of CEACAM1. CONCLUSIONS Loss of CEACAM1 in HSCs provoked their myofibroblastic transformation in the absence of insulin resistance and hepatic steatosis. This response is mediated by autocrine HSCs activation of the EGFR pathway that amplifies inflammation and proliferation.
Collapse
Affiliation(s)
- Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Department of Biomedical Sciences, University of Balamand, Faculty of Medicine and Health Sciences, Al-Koura, Lebanon
| | - Suman Asalla
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sumona G Lester
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Getachew D Belew
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sobia Zaidi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Raziyeh Abdolahipour
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Abhishek P Shrestha
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Agnes O Portuphy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hannah L Stankus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Raghd Abu Helal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussel, Belgium
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussel, Belgium
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Robert F Schwabe
- Department of Medicine and the Digestive and Liver Disease Research Center, Columbia University New York, NY, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
8
|
Kulakova K, Lawal TR, Mccarthy E, Floudas A. The Contribution of Macrophage Plasticity to Inflammatory Arthritis and Their Potential as Therapeutic Targets. Cells 2024; 13:1586. [PMID: 39329767 PMCID: PMC11430612 DOI: 10.3390/cells13181586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammatory arthritis are common chronic inflammatory autoimmune diseases characterised by progressive, destructive inflammation of the joints leading to a loss of function and significant comorbidities; importantly, there are no cures and only 20% of patients achieve drug-free remission for over 2 years. Macrophages play a vital role in maintaining homeostasis, however, under the wrong environmental cues, become drivers of chronic synovial inflammation. Based on the current "dogma", M1 macrophages secrete pro-inflammatory cytokines and chemokines, promoting tissue degradation and joint and bone erosion which over time lead to accelerated disease progression. On the other hand, M2 macrophages secrete anti-inflammatory mediators associated with wound healing, tissue remodelling and the resolution of inflammation. Currently, four subtypes of M2 macrophages have been identified, namely M2a, M2b, M2c and M2d. However, more subtypes may exist due to macrophage plasticity and the ability for repolarisation. Macrophages are highly plastic, and polarisation exists as a continuum with diverse intermediate phenotypes. This plasticity is achieved by a highly amenable epigenome in response to environmental stimuli and shifts in metabolism. Initiating treatment during the early stages of disease is important for improved prognosis and patient outcomes. Currently, no treatment targeting macrophages specifically is available. Such therapeutics are being investigated in ongoing clinical trials. The repolarisation of pro-inflammatory macrophages towards the anti-inflammatory phenotype has been proposed as an effective approach in targeting the M1/M2 imbalance, and in turn is a potential therapeutic strategy for IA diseases. Therefore, elucidating the mechanisms that govern macrophage plasticity is fundamental for the success of novel macrophage targeting therapeutics.
Collapse
Affiliation(s)
- Karina Kulakova
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
| | - Tope Remilekun Lawal
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
| | - Eoghan Mccarthy
- Department of Rheumatology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
- Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Achilleas Floudas
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
- Medical School, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
9
|
Ahamed F, Eppler N, Jones E, Zhang Y. Understanding Macrophage Complexity in Metabolic Dysfunction-Associated Steatotic Liver Disease: Transitioning from the M1/M2 Paradigm to Spatial Dynamics. LIVERS 2024; 4:455-478. [PMID: 39328386 PMCID: PMC11426415 DOI: 10.3390/livers4030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses metabolic dysfunction-associated fatty liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), with MASH posing a risk of progression to cirrhosis and hepatocellular carcinoma (HCC). The global prevalence of MASLD is estimated at approximately a quarter of the population, with significant healthcare costs and implications for liver transplantation. The pathogenesis of MASLD involves intrahepatic liver cells, extrahepatic components, and immunological aspects, particularly the involvement of macrophages. Hepatic macrophages are a crucial cellular component of the liver and play important roles in liver function, contributing significantly to tissue homeostasis and swift responses during pathophysiological conditions. Recent advancements in technology have revealed the remarkable heterogeneity and plasticity of hepatic macrophage populations and their activation states in MASLD, challenging traditional classification methods like the M1/M2 paradigm and highlighting the coexistence of harmful and beneficial macrophage phenotypes that are dynamically regulated during MASLD progression. This complexity underscores the importance of considering macrophage heterogeneity in therapeutic targeting strategies, including their distinct ontogeny and functional phenotypes. This review provides an overview of macrophage involvement in MASLD progression, combining traditional paradigms with recent insights from single-cell analysis and spatial dynamics. It also addresses unresolved questions and challenges in this area.
Collapse
Affiliation(s)
- Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
10
|
Zeng B, Li Y, Khan N, Su A, Yang Y, Mi P, Jiang B, Liang Y, Duan L. Yin-Yang: two sides of extracellular vesicles in inflammatory diseases. J Nanobiotechnology 2024; 22:514. [PMID: 39192300 DOI: 10.1186/s12951-024-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of Yin-Yang, originating in ancient Chinese philosophy, symbolizes two opposing but complementary forces or principles found in all aspects of life. This concept can be quite fitting in the context of extracellular vehicles (EVs) and inflammatory diseases. Over the past decades, numerous studies have revealed that EVs can exhibit dual sides, acting as both pro- and anti-inflammatory agents, akin to the concept of Yin-Yang theory (i.e., two sides of a coin). This has enabled EVs to serve as potential indicators of pathogenesis or be manipulated for therapeutic purposes by influencing immune and inflammatory pathways. This review delves into the recent advances in understanding the Yin-Yang sides of EVs and their regulation in specific inflammatory diseases. We shed light on the current prospects of engineering EVs for treating inflammatory conditions. The Yin-Yang principle of EVs bestows upon them great potential as, therapeutic, and preventive agents for inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 53020, Guangxi, China
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Aiyuan Su
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yicheng Yang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA
| | - Peng Mi
- Department of Radiology, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Jiang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA.
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
11
|
Lun H, Li P, Li J, Liu F. The effect of intestinal flora metabolites on macrophage polarization. Heliyon 2024; 10:e35755. [PMID: 39170251 PMCID: PMC11337042 DOI: 10.1016/j.heliyon.2024.e35755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Intestinal flora metabolites played a crucial role in immunomodulation by influencing host immune responses through various pathways. Macrophages, as a type of innate immune cell, were essential in chemotaxis, phagocytosis, inflammatory responses, and microbial elimination. Different macrophage phenotypes had distinct biological functions, regulated by diverse factors and mechanisms. Advances in intestinal flora sequencing and metabolomics have enhanced understanding of how intestinal flora metabolites affect macrophage phenotypes and functions. These metabolites had varying effects on macrophage polarization and different mechanisms of influence. This study summarized the impact of gut microbiota metabolites on macrophage phenotype and function, along with the underlying mechanisms associated with different metabolites produced by intestinal flora.
Collapse
Affiliation(s)
- Hengzhong Lun
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fenfen Liu
- Department of Nephrology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| |
Collapse
|
12
|
Tang Z, Li J, Li C. Post-Transcriptional Regulator RBM47 Stabilizes FBXO2 mRNA to Advance Osteoarthritis Development: WGCNA Analysis and Experimental Validation. Biochem Genet 2024; 62:3092-3110. [PMID: 38070024 DOI: 10.1007/s10528-023-10590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 07/31/2024]
Abstract
Osteoarthritis (OA) is a common chronic joint degenerative disease and a major cause of disability in the elderly. However, the current intervention strategies cannot effectively improve OA, and the pathogenesis of OA remains elusive. The present study identified RNA binding motif protein 47 (RBM47) as an upstream modulator of key dysregulation gene co-expression module based on weighted gene co-expression network analysis (WGCNA) analysis and least absolute shrinkage and selection operator (Lasso) modeling. Subsequently, data from real-time quantitative PCR and western blot analysis revealed that RBM47 was upregulated in OA models in vivo and in vitro compared with normal controls. Functional analysis results from the MTT assay, flow cytometry, evaluation of LDH activities and inflammatory mediators, and western blot analysis of extracellular matrix (ECM) proteins, showed that RBM47 knockdown significantly alleviated inflammation, apoptosis, and ECM degradation in interleukin 1β (IL-1β)-treated chondrocytes. Mechanistically, RBM47 bound to F box only protein 2 (FBXO2) and stabilized FBXO2 messenger RNA (mRNA) to promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in chondrocytes. Results from the recovery assay showed that the re-activation of STAT3 signaling by overexpressing FBXO2 or STAT3 counteracted the alleviating effect of RBM47 downregulation on IL-1β-induced inflammation, apoptosis, and ECM degradation. Altogether, our findings illustrate that RBM47 stabilizes FBXO2 mRNA to advance OA development by activating STAT3 signaling, which enhances our understanding of the molecular regulatory mechanisms underlying the development of OA.
Collapse
Affiliation(s)
- Zhifang Tang
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Jingyuan Li
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Chuan Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force, PLA, No.212 Daguan Road, Xishan District, Kunming, 650000, Yunnan, China.
| |
Collapse
|
13
|
Fei X, Li N, Xu X, Zhu Y. Macrophage biology in the pathogenesis of Helicobacter pylori infection. Crit Rev Microbiol 2024:1-18. [PMID: 39086061 DOI: 10.1080/1040841x.2024.2366944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Infection with H. pylori induces chronic gastric inflammation, progressing to peptic ulcer and stomach adenocarcinoma. Macrophages function as innate immune cells and play a vital role in host immune defense against bacterial infection. However, the distinctive mechanism by which H. pylori evades phagocytosis allows it to colonize the stomach and further aggravate gastric preneoplastic pathology. H. pylori exacerbates gastric inflammation by promoting oxidative stress, resisting macrophage phagocytosis, and inducing M1 macrophage polarization. M2 macrophages facilitate the proliferation, invasion, and migration of gastric cancer cells. Various molecular mechanisms governing macrophage function in the pathogenesis of H. pylori infection have been identified. In this review, we summarize recent findings of macrophage interactions with H. pylori infection, with an emphasis on the regulatory mechanisms that determine the clinical outcome of bacterial infection.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nianshuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Feng K, Wang F, Chen H, Zhang R, Liu J, Li X, Xie X, Kang Q. Cartilage progenitor cells derived extracellular vesicles-based cell-free strategy for osteoarthritis treatment by efficient inflammation inhibition and extracellular matrix homeostasis restoration. J Nanobiotechnology 2024; 22:345. [PMID: 38890638 PMCID: PMC11186174 DOI: 10.1186/s12951-024-02632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease which currently lacks of effective agents. It is therefore urgent and necessary to seek an effective approach that can inhibit inflammation and promote cartilage matrix homeostasis. Cartilage progenitor cells (CPCs) are identified as a cell population of superficial zone in articular cartilage which possess strong migration ability, proliferative capacity, and chondrogenic potential. Recently, the application of CPCs may represent a novel cell therapy strategy for OA treatment. There is growing evidence that extracellular vesicles (EVs) are primary mediators of the benefits of stem cell-based therapy. In this study, we explored the protective effects of CPCs-derived EVs (CPCs-EVs) on IL-1β-induced chondrocytes. We found CPCs-EVs exhibited chondro-protective effects in vitro. Furthermore, our study demonstrated that CPCs-EVs promoted matrix anabolism and inhibited inflammatory response at least partially via blocking STAT3 activation. In addition, liquid chromatography-tandem mass spectrometry analysis identified 991 proteins encapsulated in CPCs-EVs. By bioinformatics analysis, we showed that STAT3 regulatory proteins were enriched in CPCs-EVs and could be transported to chondrocytes. To promoting the protective function of CPCs-EVs in vivo, CPCs-EVs were modified with cationic peptide ε-polylysine-polyethylene-distearyl phosphatidylethanolamine (PPD) for surface charge reverse. In posttraumatic OA mice, our results showed PPD modified CPCs-EVs (PPD-EVs) effectively inhibited extracellular matrix catabolism and attenuated cartilage degeneration. Moreover, PPD-EVs down-regulated inflammatory factors expressions and reduced OA-related pain in OA mice. In ex-vivo cultured OA cartilage explants, PPD-EVs successfully promoted matrix anabolism and inhibited inflammation. Collectively, CPCs-EVs-based cell-free therapy is a promising strategy for OA treatment.
Collapse
Affiliation(s)
- Kai Feng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Feng Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hongfang Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Rui Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jiashuo Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaodong Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xuetao Xie
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
15
|
Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol 2024; 224:116218. [PMID: 38643906 DOI: 10.1016/j.bcp.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
16
|
Soares AR, Picciotto MR. Nicotinic regulation of microglia: potential contributions to addiction. J Neural Transm (Vienna) 2024; 131:425-435. [PMID: 37778006 PMCID: PMC11189589 DOI: 10.1007/s00702-023-02703-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Clinical and preclinical studies have identified immunosuppressive effects of nicotine, with potential implications for treating nicotine addiction. Here we review how nicotine can regulate microglia, the resident macrophages in the brain, and corresponding effects of nicotine on neuroimmune signaling. There is significant evidence that activation of α7 nicotinic acetylcholine receptors (nAChRs) on microglia can trigger an anti-inflammatory cascade that alters microglial polarization and activity, cytokine release, and intracellular calcium concentrations, leading to neuroprotection. These anti-inflammatory effects of nicotine-dependent α7 nAChR signaling are lost during withdrawal, suggesting that neuroimmune signaling is potentiated during abstinence, and thus, heightened microglial activity may drive circuit disruption that contributes to withdrawal symptoms and hyperkatifeia. In sum, the clinical literature has highlighted immunomodulatory effects of nicotine and the potential for anti-inflammatory compounds to treat addiction. The preclinical literature investigating the underlying mechanisms points to a role of microglial engagement in the circuit dysregulation and behavioral changes that occur during nicotine addiction and withdrawal, driven, at least in part, by activation of α7 nAChRs on microglia. Specifically targeting microglial signaling may help alleviate withdrawal symptoms in people with nicotine dependence and help to promote abstinence.
Collapse
Affiliation(s)
- Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA.
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA.
| |
Collapse
|
17
|
Wen R, Luo L, Zhang R, Zhou X, Wang W, Gong L. Structural Characterization of Polygonatum Cyrtonema Polysaccharide and Its Immunomodulatory Effects on Macrophages. Molecules 2024; 29:2076. [PMID: 38731567 PMCID: PMC11085417 DOI: 10.3390/molecules29092076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-β-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (R.W.); (L.L.); (R.Z.); (X.Z.)
| | - Limin Gong
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (R.W.); (L.L.); (R.Z.); (X.Z.)
| |
Collapse
|
18
|
Li W, Li W, Wu P, Jin W, Yuan L, Wang B, Li S, Kang X. Differential responses to avian pathogenic E. coli and the regulatory role of splenic miRNAs in APEC infection in Silkie chickens. Front Cell Infect Microbiol 2024; 14:1358216. [PMID: 38533381 PMCID: PMC10963617 DOI: 10.3389/fcimb.2024.1358216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a bacterial disease that harms the poultry industry worldwide, but its effect on Chinese Silkie has not been reported. Studies on whether there are differences in Silkie individual resistance to APEC and the regulatory role of spleen miRNAs lay the foundation for strategies against APEC. Therefore, 270 Silkie chickens were infected with the median lethal dose of an E. coli O1, O2, and O78 mixture. These chickens were divided into a susceptible group (Group S) and a recovery group (Group R) according to whether they survived 15 days postinfection (dpi). Moreover, 90 uninfected APEC Silkie served as controls (Group C). The splenic miRNA expression profile was examined to evaluate the role of miRNAs in the APEC infection response. Of the 270 Silkies infected with APEC, 144 were alive at 15 dpi. Cluster analysis and principal component analysis (PCA) of splenic miRNAs revealed that the four Group R replicates were clustered with the three Group C replicates and were far from the three Group S replicates. Differentially expressed (DE) miRNAs, especially gga-miR-146b-5p, play essential roles in immune and inflammatory responses to APEC. Functional enrichment analyses of DEmiRNAs suggested that suppression of immune system processes (biological processes) might contribute to susceptibility to APEC and that FoxO signaling pathways might be closely associated with the APEC infection response and postinfection repair. This study paves the way for screening anti-APEC Silkies and provides novel insights into the regulatory role of miRNAs in APEC infection.
Collapse
Affiliation(s)
- Wenqing Li
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Wanli Li
- The Shennong Laboratory, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Pinhui Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Wei Jin
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lin Yuan
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bingxun Wang
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shengli Li
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
19
|
Zhang D, Jia N, Hu Z, Keqing Z, Chenxi S, Chunying S, Chen C, Chen W, Hu Y, Ruan Z. Bioinformatics identification of potential biomarkers and therapeutic targets for ischemic stroke and vascular dementia. Exp Gerontol 2024; 187:112374. [PMID: 38320734 DOI: 10.1016/j.exger.2024.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Ischemic stroke and vascular dementia, as common cerebrovascular diseases, with the former causing irreversible neurological damage and the latter causing cognitive and memory impairment, are closely related and have long received widespread attention. Currently, the potential causative genes of these two diseases have yet to be investigated, and effective early diagnostic tools for the diseases have not yet emerged. In this study, we screened new potential biomarkers and analyzed new therapeutic targets for both diseases from the perspective of immune infiltration. Two gene expression profiles on ischemic stroke and vascular dementia were obtained from the NCBI GEO database, and key genes were identified by LASSO regression and SVM-RFE algorithms, and key genes were analyzed by GO and KEGG enrichment. The CIBERSORT algorithm was applied to the gene expression profile species of the two diseases to quantify the 24 subpopulations of immune cells. Moreover, logistic regression modeling analysis was applied to illustrate the stability of the key genes in the diagnosis. Finally, the key genes were validated using RT-PCR assay. A total of 105 intersecting DEGs genes were obtained in the 2 sets of GEO datasets, and bioinformatics functional analysis of the intersecting DEGs genes showed that GO was mainly involved in the purine ribonucleoside triphosphate metabolic process,respiratory chain complex,DNA-binding transcription factor binding and active transmembrane transporter activity. KEGG is mainly involved in the Oxidative phosphorylation, cAMP signaling pathway. The LASSO regression algorithm and SVM-RFE algorithm finally obtained three genes, GAS2L1, ARHGEF40 and PFKFB3, and the logistic regression prediction model determined that the three genes, GAS2L1 (AUC: 0.882), ARHGEF40 (AUC: 0.867) and PFKFB3 (AUC: 0.869), had good diagnostic performance. Meanwhile, the two disease core genes and immune infiltration were closely related, GAS2L1 and PFKFB3 had the highest positive correlation with macrophage M1 (p < 0.001) and the highest negative correlation with mast cell activation (p = 0.0017); ARHGEF40 had the highest positive correlation with macrophage M1 and B cells naive (p < 0.001), the highest negative correlation with B cell memory highest correlation (p = 0.0047). RT-PCR results showed that the relative mRNA expression levels of GAS2L1, ARHGEF40, and PFKFB3 were significantly elevated in the populations of both disease groups (p < 0.05). Immune infiltration-based models can be used to predict the diagnosis of patients with ischemic stroke and vascular dementia and provide a new perspective on the early diagnosis and treatment of both diseases.
Collapse
Affiliation(s)
- Ding Zhang
- Guangxi university of chinese medicine Nanning, China
| | - Ni Jia
- Shaanxi University of Traditional Chinese Medicine Xianyang, China
| | - Zhihan Hu
- Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Zhou Keqing
- Guangxi university of chinese medicine Nanning, China
| | - Song Chenxi
- Guangxi university of chinese medicine Nanning, China
| | - Sun Chunying
- Guangxi university of chinese medicine Nanning, China
| | - Canrong Chen
- Guangxi university of chinese medicine Nanning, China
| | - Wei Chen
- Guangxi university of chinese medicine First Affiliated Hospital Nanning, China
| | - Yueqiang Hu
- Guangxi university of chinese medicine First Affiliated Hospital Nanning, China.
| | - Ziyun Ruan
- Guangxi university of chinese medicine Nanning, China
| |
Collapse
|
20
|
Qian Y, Chu G, Zhang L, Wu Z, Wang Q, Guo JJ, Zhou F. M2 macrophage-derived exosomal miR-26b-5p regulates macrophage polarization and chondrocyte hypertrophy by targeting TLR3 and COL10A1 to alleviate osteoarthritis. J Nanobiotechnology 2024; 22:72. [PMID: 38374072 PMCID: PMC10877765 DOI: 10.1186/s12951-024-02336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent chronic musculoskeletal diseases among the elderly population. In this study, macrophage-derived exosomes were isolated and identified. Exosomes were subjected to microRNA (miRNA) sequencing and bioinformatic analysis, and differentially expressed miRNAs were verified. miR-26b-5p target genes were confirmed through target-site mutation combined with a dual-luciferase reporter assay. The effects of miR-26b-5p on macrophage polarization and chondrocyte hypertrophy were assessed in vitro. miR-26b-5p agomir was applied to mice with OA induced by anterior cruciate ligament transection (ACLT). The therapeutic effects of miR-26b-5p were evaluated via pain behavior experiments and histological observations. In vitro, miR-26b-5p repolarized M1 macrophages to an anti-inflammatory M2 type by targeting the TLR3 signaling pathway. miR-26b-5p could target COL10A1, further inhibiting chondrocyte hypertrophy induced by M1 macrophage-conditioned medium (M1-CM). In vivo, miR-26b-5p agomir ameliorated gait abnormalities and mechanical allodynia in OA mice. miR-26b-5p treatment attenuated synovitis and cartilage degeneration, thereby delaying OA progression. In conclusion, M2 macrophage-derived exosomal miR-26b-5p could protect articular cartilage and ameliorate gait abnormalities in OA mice by targeting TLR3 and COL10A1. miR-26b-5p further affected macrophage polarization and chondrocyte hypertrophy. Thus, this exosomal miR-26b-5p-based strategy might be a potential method for OA treatment.
Collapse
Affiliation(s)
- Yufan Qian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Zhikai Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Qiuyuan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Jiong Jiong Guo
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China.
| | - Feng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China.
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
21
|
Ma J, Li X, Qiu Z, Zhu C, Wu Z, Da M. Correlation of mir-221-3p differential expression with clinical characteristics of gastric cancer patients. Mol Biol Rep 2024; 51:69. [PMID: 38175275 DOI: 10.1007/s11033-023-08924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common digestive malignancies. Although miR-221-3p was defined as a novel biomarker in many types of cancer, the relationship between its expression differences and the clinicopathological characteristics and prognosis of GC patients was yet to be fully understood. METHODS AND RESULTS TCGA database was utilized to predict the potential biological function of miR-221-3p in GC. QRT-PCR and RNA FISH were performed to detect the expression levels of miR-221-3p in GC. The miR-221-3p expression levels in GC tissues and cells were significantly higher than those in paracancerous tissues (p < 0.001) and normal gastric mucosal cells (p < 0.05). Higher expression levels of miR-221-3p were associated with tumor diameter ≥ 4 cm (χ2 = 5.519, p = 0.019), cTNM stage (III + IV) (χ2 = 28.013, p = 0.000), lymph node metastasis (χ2 = 23.272, p = 0.000) and distant metastasis (χ2 = 7.930, p = 0.005). Kaplan-Meier survival analysis showed a better prognosis for GC patients with miR-221-3p low expression(HR = 4.520, 95% CI: 1.844-11.075). CONCLUSIONS miR-221-3p is highly expressed in GC tissues, which plays an important role in tumorigenesis, invasion and metastasis. miR-221-3p may become an important biomarker and potential molecular therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Jichun Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Xingliang Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhisheng Qiu
- Department of Surgical Oncology, Gansu Provincial Hospital, Donggang West 204 Road, Lanzhou City, 730000, Gansu Province, PR China
| | - Ciba Zhu
- The First School of Clinical Medicine, Gansu University of Traditional Medicine, Lanzhou, 730000, PR China
| | - Ziyao Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
- Department of Surgical Oncology, Gansu Provincial Hospital, Donggang West 204 Road, Lanzhou City, 730000, Gansu Province, PR China.
| |
Collapse
|
22
|
Li Z, Zhang H, Zheng W, Yan Z, Yang J, Li S, Huang W. Esaxerenone Protects against Diabetic Cardiomyopathy via Inhibition of the Chemokine and PI3K-Akt Signaling Pathway. Biomedicines 2023; 11:3319. [PMID: 38137541 PMCID: PMC10741975 DOI: 10.3390/biomedicines11123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Diabetic cardiomyopathy (DCM) is a unique form of cardiomyopathy that develops as a consequence of diabetes and significantly contributes to heart failure in patients. Esaxerenone, a selective non-steroidal mineralocorticoid receptor antagonist, has demonstrated potential in reducing the incidence of cardiovascular and renal events in individuals with chronic kidney and diabetes disease. However, the exact protective effects of esaxerenone in the context of DCM are still unclear. (2) Methods: The DCM model was successfully induced in mice by administering streptozotocin (55 mg/kg per day) for five consecutive days. After being fed a normal diet for 16 weeks, echocardiography was performed to confirm the successful establishment of the DCM model. Subsequent sequencing and gene expression analysis revealed significant differences in gene expression in the DCM group. These differentially expressed genes were identified as potential targets for DCM. By utilizing the Swiss Target Prediction platform, we employed predictive analysis to identify the potential targets of esaxerenone. A protein-protein-interaction (PPI) network was constructed using the common targets of esaxerenone and DCM. Enrichment analysis was conducted using Metascape. (3) Results: Compared to the control, the diabetic group exhibited impaired cardiac function and myocardial fibrosis. There was a total of 36 common targets, with 5 key targets. Enrichment analysis revealed that the chemokine and PI3K-Akt signaling pathway was considered a crucial pathway. A target-pathway network was established, from which seven key targets were identified. All key targets exhibited good binding characteristics when interacting with esaxerenone. (4) Conclusion: The findings of this study suggest that esaxerenone exhibits a favorable therapeutic effect on DCM, primarily by modulating the chemokine and PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Ziyue Li
- Guangdong Medical Innovation 3D Printing Application Transformation Platform, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; (Z.L.); (W.Z.); (Z.Y.)
| | - Huihui Zhang
- Burns Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Weihan Zheng
- Guangdong Medical Innovation 3D Printing Application Transformation Platform, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; (Z.L.); (W.Z.); (Z.Y.)
| | - Zi Yan
- Guangdong Medical Innovation 3D Printing Application Transformation Platform, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; (Z.L.); (W.Z.); (Z.Y.)
| | - Jiaxin Yang
- Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou 510515, China;
| | - Shiyu Li
- Guangdong Medical Innovation 3D Printing Application Transformation Platform, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; (Z.L.); (W.Z.); (Z.Y.)
| | - Wenhua Huang
- Guangdong Medical Innovation 3D Printing Application Transformation Platform, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; (Z.L.); (W.Z.); (Z.Y.)
| |
Collapse
|
23
|
Zhao D, Meng Y, Dian Y, Zhou Q, Sun Y, Le J, Zeng F, Chen X, He Y, Deng G. Molecular landmarks of tumor disulfidptosis across cancer types to promote disulfidptosis-target therapy. Redox Biol 2023; 68:102966. [PMID: 38035663 PMCID: PMC10698012 DOI: 10.1016/j.redox.2023.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The mystery about the mechanistic basis of disulfidptosis has recently been unraveled and shows promise as an effective treatment modality for triggering cancer cell death. However, the limited understanding of the role of disulfidptosis in tumor progression and drug sensitivity has hindered the development of disulfidptosis-targeted therapy and combinations with other therapeutic strategies. Here, we established a disulfidptosis signature model to estimate tumor disulfidptosis status in approximately 10,000 tumor samples across 33 cancer types and revealed its prognostic value. Then, we characterized disulfidptosis-associated molecular features and identified various types of molecular alterations that correlate with both drug-resistant and drug-sensitive responses to anti-tumor drugs. We further showed the vast heterogeneity in disulfidptosis status among 760 cancer cell lines across 25 cancer types. We experimentally validated that disulfidptosis score-high cell lines are more susceptible to glucose starvation-induced disulfidptosis compared to their counterparts with low scores. Finally, we investigated the impact of disulfidptosis status on drug response and revealed that disulfidptosis induction may enhance sensitivity to anti-cancer drugs, but in some cases, it could also lead to drug resistance in cultured cells. Overall, our multi-omics analysis firstly elucidates a comprehensive profile of disulfidptosis-related molecular alterations, prognosis, and potential therapeutic therapies at a pan-cancer level. These findings may uncover opportunities to utilize multiple drug sensitivities induced by disulfidptosis, thereby offering practical implications for clinical cancer therapy.
Collapse
Affiliation(s)
- Deze Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yi He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
24
|
Bakinowska E, Kiełbowski K, Pawlik A. The Role of Extracellular Vesicles in the Pathogenesis and Treatment of Rheumatoid Arthritis and Osteoarthritis. Cells 2023; 12:2716. [PMID: 38067147 PMCID: PMC10706487 DOI: 10.3390/cells12232716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Cells can communicate with each other through extracellular vesicles (EVs), which are membrane-bound structures that transport proteins, lipids and nucleic acids. These structures have been found to mediate cellular differentiation and proliferation apoptosis, as well as inflammatory responses and senescence, among others. The cargo of these vesicles may include immunomodulatory molecules, which can then contribute to the pathogenesis of various diseases. By contrast, EVs secreted by mesenchymal stem cells (MSCs) have shown important immunosuppressive and regenerative properties. Moreover, EVs can be modified and used as drug carriers to precisely deliver therapeutic agents. In this review, we aim to summarize the current evidence on the roles of EVs in the progression and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which are important and prevalent joint diseases with a significant global burden.
Collapse
Affiliation(s)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.)
| |
Collapse
|
25
|
Payet M, Septembre-Malaterre A, Gasque P, Guillot X. Human Synovial Mesenchymal Stem Cells Expressed Immunoregulatory Factors IDO and TSG6 in a Context of Arthritis Mediated by Alphaviruses. Int J Mol Sci 2023; 24:15932. [PMID: 37958918 PMCID: PMC10649115 DOI: 10.3390/ijms242115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Infection by arthritogenic alphaviruses (aavs) can lead to reactive arthritis, which is characterized by inflammation and persistence of the virus; however, its mechanisms remain ill-characterized. Intriguingly, it has been shown that viral persistence still takes place in spite of robust innate and adaptive immune responses, characterized notably by the infiltration of macrophages (sources of TNF-alpha) as well as T/NK cells (sources of IFN-gamma) in the infected joint. Aavs are known to target mesenchymal stem cells (MSCs) in the synovium, and we herein tested the hypothesis that the infection of MSCs may promote the expression of immunoregulators to skew the anti-viral cellular immune responses. We compared the regulated expression via human synovial MSCs of pro-inflammatory mediators (e.g., IL-1β, IL6, CCL2, miR-221-3p) to that of immunoregulators (e.g., IDO, TSG6, GAS6, miR146a-5p). We used human synovial tissue-derived MSCs which were infected with O'Nyong-Nyong alphavirus (ONNV, class II aav) alone, or combined with recombinant human TNF-α or IFN-γ, to mimic the clinical settings. We confirmed via qPCR and immunofluorescence that ONNV infected human synovial tissue-derived MSCs. Interestingly, ONNV alone did not regulate the expression of pro-inflammatory mediators. In contrast, IDO, TSG6, and GAS6 mRNA expression were increased in response to ONNV infection alone, but particularly when combined with both recombinant cytokines. ONNV infection equally decreased miR-146a-5p and miR-221-3p in the untreated cells and abrogated the stimulatory activity of the recombinant TNF-α but not the IFN-gamma. Our study argues for a major immunoregulatory phenotype of MSCs infected with ONNV which may favor virus persistence in the inflamed joint.
Collapse
Affiliation(s)
- Melissa Payet
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
| | - Axelle Septembre-Malaterre
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
| | - Philippe Gasque
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
- Immunology Laboratory (LICE-OI), CHU Bellepierre, Reunion University Hospital, 97400 Saint-Denis, La Réunion, France
| | - Xavier Guillot
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
- Rheumatology Clinical Department, CHU Bellepierre, Reunion University Hospital, 97400 Saint-Denis, La Réunion, France
| |
Collapse
|
26
|
Shou J, Li S, Shi W, Zhang S, Zeng Z, Guo Z, Ye Z, Wen Z, Qiu H, Wang J, Zhou M. 3WJ RNA Nanoparticles-Aptamer Functionalized Exosomes From M2 Macrophages Target BMSCs to Promote the Healing of Bone Fractures. Stem Cells Transl Med 2023; 12:758-774. [PMID: 37740533 PMCID: PMC10630079 DOI: 10.1093/stcltm/szad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/25/2023] [Indexed: 09/24/2023] Open
Abstract
Up to now, impaired bone regeneration severely affects the healing of bone fractures, thus bringing tremendous suffering to patients. As a vital mediator between inflammatory response and bone regeneration, M2 macrophage-derived exosomes (M2-Exos) attenuate inflammation and promote tissue repair. However, due to a lack of specific targeting property, M2-Exos will be rapidly eliminated after systematic administration, thus compromising their effectiveness in promoting bone regeneration. To solve this hurdle, we initially harvested and characterized the pro-osteogenic properties of M2-Exos. A bone marrow mesenchymal stem cell (BMSC)-specific aptamer was synthesized and 3-way junction (3WJ) RNA nanoparticles were applied to conjugate the BMSC-specific aptamer and M2-Exos. In vitro assays revealed that M2-Exos bore the representative features of exosomes and significantly promoted the proliferation, migration, and osteogenic differentiation of BMSCs. 3WJ RNA nanoparticles-aptamer functionalized M2-Exos (3WJ-BMSCapt/M2-Exos) maintained the original physical characteristics of M2-Exos, but bore a high specific binding ability to BMSCs. Furthermore, when being systemically administered in the mice model with femoral bone fractures, these functionalized M2-Exos mainly accumulated at the bone fracture site with a slow release of exosomal cargo, thereby significantly accelerating the healing processes compared with the M2-Exos group. Our study indicated that the 3WJ-BMSCapt/M2-Exos with BMSCs targeting ability and controlled release would be a promising strategy to treat bone fractures.
Collapse
Affiliation(s)
- Jiali Shou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
- Department of Ultrasound Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, the People’s Republic of China
| | - Shuyi Li
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, the People’s Republic of China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, the People’s Republic of China
| | - Wenzhe Shi
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Sijuan Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Zheng Zeng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Zecong Guo
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Ziming Ye
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Zhuohao Wen
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Huiguo Qiu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Jinheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, the People’s Republic of China
| | - Miao Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, the People’s Republic of China
| |
Collapse
|
27
|
Ji ZH, Gao F, Xie WY, Wu HY, Ren WZ, Yuan B. Mammary Epithelial Cell-Derived Exosomal miR-221-3p Regulates Macrophage Polarization by Targeting Igf2 bp2 during Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14742-14757. [PMID: 37757458 DOI: 10.1021/acs.jafc.3c03350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mastitis affects the milk quality and yield and is the most expensive disease in dairy cows. Elucidation of the pathogenesis of mastitis is of great importance for disease control. As a medium of intercellular communication, exosomes play key roles in various inflammatory diseases by regulating macrophage polarization. However, the molecular factors in exosomes that mediate the intercellular communication between mammary epithelial cells and macrophages during mastitis remain to be further explored. In this study, we isolated and identified mammary epithelial cell-derived exosomes from a lipopolysaccharide (LPS)/lipoteichoic acid (LTA)-induced mastitis cell model, and we demonstrated that exosomes from LPS/LTA-stimulated mammary epithelial cells promote M1-type macrophage polarization in vivo and in vitro. Based on the results of high-throughput sequencing, we constructed a differential miRNA (microRNA) expression profile of exosomes and demonstrated that miR-221-3p was highly expressed. Furthermore, in vivo and in vitro experiments, combined with coculture experiments and fluorescence tracing, showed that high miR-221-3p expression promoted M1-type macrophage polarization, demonstrating the transcellular role of miR-221-3p. Mechanistically, dual luciferase reporter gene assays and rescue assays showed that miR-221-3p regulated macrophage polarization by targeting Igf2bp2. The results of this study will deepen our understanding of the pathogenesis of mastitis, and the molecular regulatory axis that was established in this study is expected to be a target for mastitis treatment.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
- Jilin Academy of Agricultural Sciences, Jilin 132101, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| |
Collapse
|
28
|
Zhang H, Shang H, Wang Z, Li K. Associations of miRNA-146a and miRNA-223 with Rheumatoid Arthritis and Their Predictive Values. Int J Gen Med 2023; 16:3211-3218. [PMID: 37546237 PMCID: PMC10402887 DOI: 10.2147/ijgm.s416317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose To analyze the independent associations of miRNA-146a and miRNA-223 with rheumatoid arthritis (RA) and evaluate their predictive values for RA. Patients and Methods A total of 68 RA patients were selected as cases, and meanwhile 68 patients with a traumatic knee condition were selected as controls by matching to the cases according to sex and age at the ratio of 1:1. The independent associations of miRNA-146a and miRNA-223 with RA were identified by binary logistic regression analysis. Receiver operating characteristic (ROC) curve was used to evaluate their predictive values for RA. Results MiRNA-146a and miRNA-223 expression levels in both synovial tissues and serums were statistically higher in cases than in controls, and their expression levels in serums were not statistically different from those in synovial tissues in both cases and controls. The expression levels of miRNA-146a and miRNA-223 in synovial tissues were independently associated with RA, as well as the expression levels of miRNA-146a and miRNA-223 in serums. The area under curve (AUC) of combination of miRNA-146a and miRNA-223 in synovial tissues for the prediction of RA was 0.910 [95% confidence interval (CI): 0.863-0.962], and the AUC of combination of miRNA-146a and miRNA-223 in serums was 0.904 (95% CI: 0.851-0.957). Their difference was not statistically significant (P=0.873), but the AUC of combination prediction was statistically higher than those of individual predictions (synovial tissues: 0.910 vs 0.773, P=0.005, 0.910 vs 0.788, P=0.009; serums: 0.904 vs 0.766, P=0.005, 0.904 vs 0.784, P=0.011). Conclusion MiRNA-146a and miRNA-223 in both synovial tissues and serums could be applied in predicting RA, and their combination could elevate the predictive value significantly.
Collapse
Affiliation(s)
- Haoshaqiang Zhang
- Department of Orthopedics Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
| | - Hua Shang
- Department of Orthopedics Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
- Department of Human Resources, People's Hospital of Xinjiang Uygur Autonomous Region, UrumqiPeople's Republic of China
| | - Zhigang Wang
- Department of Orthopedics Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
| | - Kun Li
- Department of Orthopedics Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
| |
Collapse
|
29
|
Lin YR, Zheng FT, Xiong BJ, Chen ZH, Chen ST, Fang CN, Yu CX, Yang J. Koumine alleviates rheumatoid arthritis by regulating macrophage polarization. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116474. [PMID: 37031823 DOI: 10.1016/j.jep.2023.116474] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The imbalance between M1-and M2-polarized macrophages is one of the major pathophysiological changes in RA. Therefore, targeted macrophage polarization may be an effective therapy for RA. Koumine, an alkaloid monomer with the highest content and low toxicity in Gelsemium elegans Benth., has the effect of treating RA by playing an immunomodulatory role by influencing various immune cells. However, whether koumine affects macrophage polarization in RA and the associated molecular mechanisms remain unknown. AIM OF THE STUDY To investigate the mechanism of the anti-RA effect of koumine on macrophage polarization. MATERIALS AND METHODS The effect of koumine on macrophage polarization was investigated in vivo and in vitro. We first explored the effects of koumine on AIA rats and detected the levels of M1/M2 macrophage polarization markers in the spleen by western blotting. Then, we explored the regulatory effect of koumine on M1/M2 macrophage polarization and the effect on the PI3K/AKT signaling pathway in vitro. Finally, we verified the effects of koumine on macrophage polarization in CIA mice. RESULTS We found that koumine alleviated symptoms, including relieving pain, reducing joint redness and swelling in AIA rats and restoring the M1/M2 macrophage balance in vivo. Interestingly, koumine had an inhibitory effect on both M1 and M2 macrophage polarization in vitro, but it had a stronger inhibitory effect on M1 macrophage. In a mixed polarization experiment, koumine mainly inhibited M1 macrophage polarization and had an inhibitory effect on the PI3K/AKT signaling pathway. Finally, we found that koumine had therapeutic effects on CIA mice, regulated macrophage polarization and inhibited the PI3K/AKT signaling pathway. CONCLUSIONS Our results reveal that koumine regulates macrophage polarization through the PI3K/AKT signaling pathway. This may be one of the important mechanisms of its anti-RA effect, which provides a theoretical and scientific basis for the possible clinical application of koumine.
Collapse
Affiliation(s)
- Ya-Rong Lin
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Feng-Ting Zheng
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Bo-Jun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Ze-Hong Chen
- Laboratory of Medical Function, Basic Medical Experimental Teaching Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| | - Shi-Ting Chen
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Chao-Nan Fang
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Chang-Xi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
30
|
Zhang Y, Yang M, Xie H, Hong F, Yang S. Role of miRNAs in Rheumatoid Arthritis Therapy. Cells 2023; 12:1749. [PMID: 37443783 PMCID: PMC10340706 DOI: 10.3390/cells12131749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by autoimmunity, synovial inflammation and joint destruction. Pannus formation in the synovial cavity can cause irreversible damage to the joint and cartilage and eventually permanent disability. Current conventional treatments for RA have limitations regarding efficacy, safety and cost. microRNA (miRNA) is a type of non-coding RNA (ncRNA) that regulates gene expression at the post-transcriptional level. The dysregulation of miRNA has been observed in RA patients and implicated in the pathogenesis of RA. miRNAs have emerged as potential biomarkers or therapeutic agents. In this review, we explore the role of miRNAs in various aspects of RA pathophysiology, including immune cell imbalance, the proliferation and invasion of fibroblast-like synovial (FLS) cell, the dysregulation of inflammatory signaling and disturbance in angiogenesis. We delve into the regulatory effects of miRNAs on Treg/Th17 and M1/M2 polarization, the activation of the NF-κB/NLRP3 signaling pathway, neovascular formation, energy metabolism induced by FLS-cell-induced energy metabolism, apoptosis, osteogenesis and mobility. These findings shed light on the potential applications of miRNAs as diagnostic or therapeutic biomarkers for RA management. Furthermore, there are some strategies to regulate miRNA expression levels by utilizing miRNA mimics or exosomes and to hinder miRNA activity via competitive endogenous RNA (ceRNA) network-based antagonists. We conclude that miRNAs offer a promising avenue for RA therapy with unlimited potential.
Collapse
Affiliation(s)
- Yiping Zhang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| | - Hongyan Xie
- Department of Foreign Language, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China;
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang 330031, China
| | - Shulong Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| |
Collapse
|
31
|
Laux J, Martorelli M, Späth N, Maier F, Burnet M, Laufer SA. Selective Inhibitors of Janus Kinase 3 Modify Responses to Lipopolysaccharides by Increasing the Interleukin-10-to-Tumor Necrosis Factor α Ratio. ACS Pharmacol Transl Sci 2023; 6:892-906. [PMID: 37325444 PMCID: PMC10262334 DOI: 10.1021/acsptsci.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 06/17/2023]
Abstract
Janus kinase (JAK) inhibitors act at low doses (e.g., tofacitinib, 0.2-0.4 μmol/kg bid) in clinical use, suggesting an efficient underlying mode of action. We hypothesized that their effectiveness is due to their ability to raise the ratio of IL-10 to TNFα. Unlike other JAK isoforms, JAK3 is expressed mainly in hematopoietic cells and is essential for immune function. We used JAK3 selective inhibitors with preferential distribution to immune cells. Inhibition of JAK3 in human leukocytes reduced TNFα and IL-6 but maintained levels of IL-10, while pan-JAK inhibitors increased TNFα, IL-6, and IL-10. JAK1 is required for IL-10 receptor signaling, which suggests that, at exposure above the IC50 (55 nM for tofacitinib on JAK1), there is less feedback control of TNFα levels. This leads to self-limiting effects of JAK1 inhibitors and could place an upper limit on appropriate doses. In vivo, treating mice with JAK3 inhibitors before LPS administration decreased plasma TNFα and increased IL-10 above vehicle levels, suggesting that JAK3 inhibition may limit TNFα release by increasing IL-10 while leaving the IL-10 receptor functional. This mechanism should have general utility in controlling autoimmune diseases and can be conveniently observed by measuring the ratio of IL-10 to TNFα. In summary, our targeted, "leukotropic" inhibitors more effectively increased IL-10/TNFα ratios than unselective control compounds and could, therefore, be ideal for autoimmune therapy.
Collapse
Affiliation(s)
- Julian Laux
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, DE, Germany
- Department
of Pharmaceutical/Medicinal Chemistry, Eberhard
Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
| | - Mariella Martorelli
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, DE, Germany
- Department
of Pharmaceutical/Medicinal Chemistry, Eberhard
Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
| | - Nadja Späth
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, DE, Germany
| | - Florian Maier
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, DE, Germany
| | - Michael Burnet
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, DE, Germany
| | - Stefan A. Laufer
- Department
of Pharmaceutical/Medicinal Chemistry, Eberhard
Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
- Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany
- Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| |
Collapse
|
32
|
Peng Y, Zhou M, Yang H, Qu R, Qiu Y, Hao J, Bi H, Guo D. Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases. Mediators Inflamm 2023; 2023:8821610. [PMID: 37332618 PMCID: PMC10270764 DOI: 10.1155/2023/8821610] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Macrophages are innate immune cells in the organism and can be found in almost tissues and organs. They are highly plastic and heterogeneous cells and can participate in the immune response, thereby playing a crucial role in maintaining the immune homeostasis of the body. It is well known that undifferentiated macrophages can polarize into classically activated macrophages (M1 macrophages) and alternatively activated macrophages (M2 macrophages) under different microenvironmental conditions. The directions of macrophage polarization can be regulated by a series of factors, including interferon, lipopolysaccharide, interleukin, and noncoding RNAs. To elucidate the role of macrophages in various autoimmune diseases, we searched the literature on macrophages with the PubMed database. Search terms are as follows: macrophages, polarization, signaling pathways, noncoding RNA, inflammation, autoimmune diseases, systemic lupus erythematosus, rheumatoid arthritis, lupus nephritis, Sjogren's syndrome, Guillain-Barré syndrome, and multiple sclerosis. In the present study, we summarize the role of macrophage polarization in common autoimmune diseases. In addition, we also summarize the features and recent advances with a particular focus on the immunotherapeutic potential of macrophage polarization in autoimmune diseases and the potentially effective therapeutic targets.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hong Yang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266033, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Yan Qiu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| |
Collapse
|
33
|
He X, He H, Zhang Y, Wu T, Chen Y, Tang C, Xia T, Zhang X, Xie C. Role of ceRNA network in inflammatory cells of rheumatoid arthritis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:750-759. [PMID: 37539578 PMCID: PMC10930406 DOI: 10.11817/j.issn.1672-7347.2023.220621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Indexed: 08/05/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease caused by inflammatory cells. Various inflammatory cells involved in RA include fibroblast-like synoviocytes, macrophages, CD4+T-lymphocytes, B lymphocytes, osteoclasts and chondrocytes. The close interaction between various inflammatory cells leads to imbalance of immune response and disorder of the expression of mRNA in inflammatory cells. It helps to drive production of pro-inflammatory cytokines and stimulate specific antigen-specific T- and B-lymphocytes to produce autoantibodies which is an important pathogenic factor for RA. Competing endogenous RNA (ceRNA) can regulate the expression of mRNA by competitively binding to miRNA. The related ceRNA network is a new regulatory mechanism for RNA interaction. It has been found to be involved in the regulation of abnormal biological processes such as proliferation, apoptosis, invasion and release of inflammatory factors of RA inflammatory cells. Understanding the ceRNA network in 6 kinds of RA common inflammatory cells provides a new idea for further elucidating the pathogenesis of RA, and provides a theoretical basis for the discovery of new biomarkers and effective therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu He
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui 233004.
| | - Haohua He
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui 233004
| | - Yan Zhang
- Department of Clinical Medicine, Bengbu Medical College, Bengbu Anhui 233030
| | - Tianyu Wu
- School of Public Health, Bengbu Medical College, Bengbu Anhui 233030
| | - Yongjie Chen
- School of Public Health, Bengbu Medical College, Bengbu Anhui 233030
| | - Chengzhi Tang
- School of Public Health, Bengbu Medical College, Bengbu Anhui 233030
| | - Tian Xia
- Department of Clinical Medicine, Bengbu Medical College, Bengbu Anhui 233030
| | - Xiaonan Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu Anhui 233030.
| | - Changhao Xie
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui 233004.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu Anhui 233030, China.
| |
Collapse
|
34
|
Feng W, Zhong XQ, Zheng XX, Liu QP, Liu MY, Liu XB, Lin CS, Xu Q. The Underlying Mechanism of Duanteng Yimu Decoction in Inhibiting Synovial Hyperplasia in Rheumatoid Arthritis. J Immunol Res 2023; 2023:2340538. [PMID: 37252680 PMCID: PMC10225272 DOI: 10.1155/2023/2340538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/19/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) is associated with the pathogenesis of rheumatoid arthritis (RA). Our previous studies confirmed that Duanteng Yimu decoction (DTYMT) effectively inhibits RA fibroblast-like synoviocyte (FLS) proliferation. In this study, we investigated the influence of DTYMT on miR-221 in RA individuals. Hematoxylin-eosin (HE) staining was performed to assess histopathological alterations in collagen-induced arthritis (CIA) mice. The expression of miR-221-3p and TLR4 in PBMC, FLS, and cartilage was measured by RT-qPCR. In the in vitro experiments, DTYMT-containing serum was incubated with FLS-transfected miR-221 mimic or inhibitor. CCK-8 was performed to determine FLS proliferation, and the secretion of IL-1β, IL-6, IL-18, and TNF-α was quantified by ELISA assay. In addition, the regulation of miR-221 expression on FLS apoptosis was assessed using flow cytometry. Finally, western blot was employed to reflect TLR4/MyD88 protein levels. HE results showed that DTYMT effectively reduced synovial hyperplasia in the joints of CIA mice. RT-qPCR assay of FLS and cartilage of the model group showed that miR-221-3p and TLR4 significantly increased compared with those in the normal group. All outcomes were improved by DTYMT. The miR-221 mimic reversed the inhibitory effect of DTYMT-containing serum on FLS proliferation, the release of IL-1β, IL-18, IL-6, and TNF-α, and FLS apoptosis, as well as TLR4/MyD88 protein levels. The results showed that miR-221 promotes the activity of RA-FLS by activating TLR4/MyD88 signaling, and DTYMT treats RA by reducing miR-221 in CIA mice.
Collapse
Affiliation(s)
- Wei Feng
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Qin Zhong
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xue-Xia Zheng
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qing-Ping Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Min-Ying Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Bao Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chang-Song Lin
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiang Xu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
35
|
Liu M, Wang J, Chen S, Meng X, Cheng Z, Wang J, Tan Y, Su W, Lu Z, Zhang M, Jia X. Exploring the effect of Er miao San-containing serum on macrophage polarization through miR-33/NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116178. [PMID: 36708884 DOI: 10.1016/j.jep.2023.116178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Er miao San (EMS) has been shown to have good anti-inflammatory effects and is widely used in the clinical treatment of RA. However, the exact mechanism is not completely understood. AIM OF THE STUDY The aim of this study was to explore that EMS-containing serum affects M1/M2 polarization of macrophages and may be mediated through the microRNA (miRNA)-33/NLRP3 pathway, thereby elucidating the molecular mechanism of EMS treatment of RA. MATERIALS AND METHODS We screened for safe concentrations of EMS-containing serum by using CCK-8 measurement. RAW264.7 cells were cultured with lipopolysaccharide (LPS) (100 ng/mL) and interferon-γ (20 ng/mL) for 24 h to induce M1-type macrophages. Adenosine triphosphate (ATP) (5 mM) was added in the last 30 min to activate NLRP3. The content of miR-33 was detected by RT‒qPCR after transfection of the miRNA-33 mimic. The protein expression levels of NLRP3, ASC, caspase-1, Inducible Nitric Oxide Synthase (iNOS) and Arginase-1 (Arg-1) were detected by Western blot. The contents of IL-1β, IL-10, TNF-α, TGF-β and IL-18 in serum and cell supernatant were determined by ELISA. The fluorescence intensity of CD86 and CD206 was detected by immunofluorescence. RESULTS The results showed that EMS-containing serum promoted the protein expression level of Arg-1 and the secretion levels of TGF-β and IL-10, inhibited the levels of iNOS, IL-1β and TNF-α, and regulated the balance of pro-inflammatory factors and anti-inflammatory factors. RT‒qPCR results showed that EMS-containing serum could reduce the level of miRNA-33. EMS-containing serum could reduce the expression of NLRP3 inflammasome-related proteins and downregulate the expression levels of IL-1β and IL-18. These results suggest that EMS exerts its effect on macrophage polarization through the miRNA-33/NLRP3 pathway. CONCLUSION EMS-containing serum inhibits the activation of the NLRP3 inflammasome by downregulating miRNA-33, thus preventing the polarization of M1-type macrophages.
Collapse
Affiliation(s)
- Min Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Jin Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Simeng Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Xiangwen Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Zhiluo Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Jiayu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Yanan Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Wenrui Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Zhiyuan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
36
|
Ouyang Z, Xu J, Liu T, Lin S, Sun Y, Huang Y, Zheng Z, Zeng G, Li C, Li S, Ding Y. STING/TBK1 Regulates Inflammation in Macrophages and Titanium Particles-Induced Osteolysis. ACS Biomater Sci Eng 2023. [PMID: 37134278 DOI: 10.1021/acsbiomaterials.2c01509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inflammatory response in macrophages on account of prostheses-derived wear particles is the leading cause of artificial joint failure. However, the mechanism by which wear particles initiate macrophage inflammation has not been fully elucidated. Previous research studies have identified TANK-binding kinase 1 (TBK1) and stimulator of interferon genes (STING) as potential factors in inflammation and autoimmune diseases. Here, we found that both TBK1 and STING were increased in synovium from aseptic loosening (AL) patients and were activated in titanium particles (TiPs)-stimulated macrophages. Lentivirus-mediated knockdown of TBK or STING significantly inhibited the inflammatory effects of macrophages, while overexpression of TBK or STING exerted opposite results. In concrete, STING/TBK1 promoted the activation of NF-κB and IRF3 pathways and macrophage M1 polarization. For further validation, a mice cranial osteolysis model was constructed for in vivo assays, and we found that STING-overexpressed lentivirus injection exacerbated osteolysis and inflammation, which was counteracted by TBK1-knockdown injection. In conclusion, STING/TBK1 enhanced TiP-induced macrophage inflammation and osteolysis via orchestrating the activation of NF-κB and IRF3 pathways and M1 polarization, which suggested STING/TBK1 as potential therapeutic targets for preventing AL of prostheses.
Collapse
Affiliation(s)
- Zhuji Ouyang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou 510120, China
| | - Jing Xu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou 510120, China
| | - Taihe Liu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou 510120, China
| | - Sipeng Lin
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou 510120, China
| | - Yujun Sun
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou 510120, China
| | - Yuhsi Huang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou 510120, China
| | - Zhongcan Zheng
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou 510120, China
| | - Gang Zeng
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou 510120, China
| | - Changchuan Li
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou 510120, China
| | - Shixun Li
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou 510120, China
| | - Yue Ding
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou 510120, China
| |
Collapse
|
37
|
Deny M, Popotas A, Hanssens L, Lefèvre N, Arroba Nuñez LA, Ouafo GS, Corazza F, Casimir G, Chamekh M. Sex-biased expression of selected chromosome x-linked microRNAs with potent regulatory effect on the inflammatory response in children with cystic fibrosis: A preliminary pilot investigation. Front Immunol 2023; 14:1114239. [PMID: 37077918 PMCID: PMC10106689 DOI: 10.3389/fimmu.2023.1114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Previous studies have reported sex disparity in cystic fibrosis (CF) disease, with females experiencing more pulmonary exacerbations and frequent microbial infections resulting in shorter survival expectancy. This concerns both pubertal and prepubertal females, which is in support to the prominent role of gene dosage rather than the hormonal status. The underlying mechanisms are still poorly understood. The X chromosome codes for a large number of micro-RNAs (miRNAs) that play a crucial role in the post-transcriptional regulation of several genes involved in various biological processes, including inflammation. However, their level of expression in CF males and females has not been sufficiently explored. In this study, we compared in male and female CF patients the expression of selected X-linked miRNAs involved in inflammatory processes. Cytokine and chemokine profiles were also evaluated at both protein and transcript levels and cross-analyzed with the miRNA expression levels. We observed increased expression of miR-223-3p, miR-106a-5p, miR-221-3p and miR-502-5p in CF patients compared to healthy controls. Interestingly, the overexpression of miR-221-3p was found to be significantly higher in CF girls than in CF boys and this correlates positively with IL-1β. Moreover, we found a trend toward lower expression in CF girls than in CF boys of suppressor of cytokine signaling 1 (SOCS1) and the ubiquitin-editing enzyme PDLIM2, two mRNA targets of miR-221-3p that are known to inhibit the NF-κB pathway. Collectively, this clinical study highlights a sex-bias in X-linked miR-221-3p expression in blood cells and its potential contribution to sustaining a higher inflammatory response in CF girls.
Collapse
Affiliation(s)
- Maud Deny
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Université Libre de Bruxelles (ULB) Center for Research in Immunology (U-CRI), Brussels, Belgium
| | - Alexandros Popotas
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Hanssens
- Institut de Mucoviscidose – Unité Pédiatrique, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Lefèvre
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institut de Mucoviscidose – Unité Pédiatrique, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Luis Alexis Arroba Nuñez
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Université Libre de Bruxelles (ULB) Center for Research in Immunology (U-CRI), Brussels, Belgium
| | - Ghislaine Simo Ouafo
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Université Libre de Bruxelles (ULB) Center for Research in Immunology (U-CRI), Brussels, Belgium
| | - Francis Corazza
- Laboratoire de Médecine Translationnelle, Centre Hospitalier Universitaire Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Georges Casimir
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institut de Mucoviscidose – Unité Pédiatrique, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mustapha Chamekh
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Université Libre de Bruxelles (ULB) Center for Research in Immunology (U-CRI), Brussels, Belgium
- *Correspondence: Mustapha Chamekh,
| |
Collapse
|
38
|
Li J, Liu Y, Lai W, Song L, Deng J, Li C, Jiang S. MicroRNA-126 regulates macrophage polarization to prevent the resorption of alveolar bone in diabetic periodontitis. Arch Oral Biol 2023; 150:105686. [PMID: 36947912 DOI: 10.1016/j.archoralbio.2023.105686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVE This study aims to investigate the effects of microRNA-126 (miR-126) on the macrophage polarization in vitro and alveolar bone resorption in vivo. DESIGN The relationship between miR-126 and MEK/ERK kinase 2 (MEKK2) was confirmed by dual-luciferase reporter assay. Real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay or Western blot was used to detect the changes of miR-126, inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1), tumor necrosis factor (TNF)-α, interleukin (IL)-10, MEKK2 and MEKK2-related pathways: mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) in RAW264.7 macrophages challenged with Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) and/or high glucose and/or miR-126 mimic. In mice with diabetic periodontitis, the expressions of iNOS and Arg-1 in gingiva, and alveolar bone level were detected after miR-126 mimic injection. RESULTS MiR-126 could directly bind with MEKK2 3'-untranslated region (UTR). MEKK2, phosphorylation of NF-κB and MAPK signaling proteins, TNF-α and iNOS increased (P < 0.05), while miR-126, Arg-1 and IL-10 were inhibited (P < 0.05) in macrophage challenged with high glucose and/or P. gingivalis LPS, however, miR-126 mimic reversed these effects (P < 0.05). The expressions of iNOS in gingiva and alveolar bone resorption were elevated (P < 0.05), the expression of Arg-1 in gingiva decreased (P < 0.05) in mice with diabetic periodontitis, which could be inhibited by miR-126 mimic. CONCLUSIONS miR-126 might prevent alveolar bone resorption in diabetic periodontitis and inhibit macrophage M1 polarization via regulating MEKK2 signaling pathway.
Collapse
Affiliation(s)
- Jiajun Li
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Yue Liu
- School of Stomatology, Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China; Stomatological Center, Peking University Shenzhen Hospital, Shenzhen 5180036, Guangdong, People's Republic of China; Guangdong Provincial High-level Clinical Key Specialty, Shenzhen 5180036, Guangdong, People's Republic of China; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen 5180036, Guangdong, People's Republic of China
| | - Wen Lai
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Liting Song
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Jiayin Deng
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Changyi Li
- School of Dentistry, Tianjin Medical University, 300070 Tianjin, People's Republic of China.
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen 5180036, Guangdong, People's Republic of China; Guangdong Provincial High-level Clinical Key Specialty, Shenzhen 5180036, Guangdong, People's Republic of China; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen 5180036, Guangdong, People's Republic of China.
| |
Collapse
|
39
|
Wan Y, Mo L, Huang H, Mo L, Zhu W, Li W, Yang G, Chen L, Wu Y, Song J, Yang X. Cadmium contributes to atherosclerosis by affecting macrophage polarization. Food Chem Toxicol 2023; 173:113603. [PMID: 36639048 DOI: 10.1016/j.fct.2023.113603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Chronic cadmium (Cd) exposure contributes to the progression of atherosclerosis, but the direct role of Cd and its mechanisms in atherosclerosis remains incompletely understood. Atherosclerosis is a chronic inflammatory disease promoting macrophage polarization to M1 phenotype and producing pro-inflammations that are vital in regulating the inflammatory response. Herein, through a case-control study, we found that Cd exposure may promote the occurrence of carotid plaque via inflammation, where interleukin-6 (IL-6) may play an important role. We also combined in vivo and in vitro experiments to explore the underlying mechanism of Cd-promoted plaque formation and the production of IL-6. With or without cadmium chloride (CdCl2) fed ApoE-/- mouse and treated RAW264.7 cells, we found Cd accumulated in the aortas which significantly increased the plaque area in atherosclerotic mice, macrophage accumulation, and lipid accumulation, and Cd promoted M1 phenotype macrophage polarization reflected by the increased expression of CD86 which produced tumor necrosis factor-α (TNF-α) and IL-6. However, the influences on M2 phenotype and anti-inflammatory cytokines interleukin-4 (IL-4) and interferon-γ (IFN-γ) were non-significant. Moreover, we found that JAK2/STAT3 pathway was greatly activated in the plaques and CdCl2-treated macrophages. The inhibition of JAK2/STAT3 substantially reversed the Cd-stimulated macrophage M1 phenotype macrophage polarization and the expression of pro-inflammatory cytokines including TNF-α and IL-6. Altogether, Cd intensifies atherosclerosis by modulating macrophage polarization via JAK2/STAT3 to up-regulated the expression of IL-6.
Collapse
Affiliation(s)
- Yu Wan
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lijun Mo
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haibin Huang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lifen Mo
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Wenxue Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Guangyu Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Linquan Chen
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014 Food Safety), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Jia Song
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
40
|
Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int Immunopharmacol 2023; 116:109790. [PMID: 36736223 DOI: 10.1016/j.intimp.2023.109790] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a chronic osteoarthropathy characterized by the progressive degeneration of articular cartilage and synovial inflammation. Early OA clinical treatments involve intra-articular injection of glucocorticoids, oral acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs), which are used for anti-inflammation and pain relief. However, long-term use of these agents will lead to inevitable side effects, even aggravate cartilage loss. At present, there are no disease-modifying OA drugs (DMOADs) yet approved by regulatory agencies. Polarization regulation of synovial macrophages is a new target for OA treatment. Inhibiting M1 polarization and promoting M2 polarization of synovial macrophages can alleviate synovial inflammation, relieve joint pain and inhibit articular cartilage degradation, which is a promising strategy for OA treatment. In this study, we describe the molecular mechanisms of macrophage polarization and its key role in the development of OA. Subsequently, we summarize the latest progress of strategies for OA treatment through macrophage reprogramming, including small molecule compounds (conventional western medicine and synthetic compounds, monomer compounds of traditional Chinese medicine), biomacromolecules, metal/metal oxides, cells, and cell derivatives, and interprets the molecular mechanisms, hoping to provide some information for DMOADs development.
Collapse
|
41
|
Yu MY, Jia HJ, Zhang J, Ran GH, Liu Y, Yang XH. Exosomal miRNAs-mediated macrophage polarization and its potential clinical application. Int Immunopharmacol 2023; 117:109905. [PMID: 36848789 DOI: 10.1016/j.intimp.2023.109905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Macrophages are highly heterogeneous and plastic immune cells that play an important role in the fight against pathogenic microorganisms and tumor cells. After different stimuli, macrophages can polarize to the M1 phenotype to show a pro-inflammatory effect and the M2 phenotype to show an anti-inflammatory effect. The balance of macrophage polarization is highly correlated with disease progression, and therapeutic approaches to reprogram macrophages by targeting macrophage polarization are feasible. There are a large number of exosomes in tissue cells, which can transmit information between cells. In particular, microRNAs (miRNAs) in the exosomes can regulate the polarization of macrophages and further affect the progression of various diseases. At the same time, exosomes are also effective "drug" carriers, laying the foundation for the clinical application of exosomes. This review describes some pathways involved in M1/M2 macrophage polarization and the effects of miRNA carried by exosomes from different sources on the polarization of macrophages. Finally, the application prospects and challenges of exosomes/exosomal miRNAs in clinical treatment are also discussed.
Collapse
Affiliation(s)
- Ming Yun Yu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China
| | - Hui Jie Jia
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jing Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China
| | - Guang He Ran
- Department of Medical Laboratory, Chang shou District Hospital of Traditional Chinese Medicine, No. 1 Xinglin Road, Peach Blossom New Town, Changshou District, 401200 Chongqing, China
| | - Yan Liu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China.
| | - Xiu Hong Yang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China.
| |
Collapse
|
42
|
Expression of O-glycosylated oncofetal fibronectin in alternatively activated human macrophages. Immunol Res 2023; 71:92-104. [PMID: 36197587 DOI: 10.1007/s12026-022-09321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/11/2022] [Indexed: 01/28/2023]
Abstract
Macrophage (Mϕ) polarization is an essential phenomenon for the maintenance of homeostasis and tissue repair, and represents the event by which Mϕ reach divergent functional phenotypes as a result to specific stimuli and/or microenvironmental signals. Mϕ can be polarized into two main phenotypes, M1 or classically activated and M2 or alternatively activated. These two categories diverge in many aspects, such as secreted cytokines, markers of cell surface, and biological functions. Over the last 10 years, many potential markers have been proposed for both M1 and M2 human Mϕ. However, there is scarce information regarding the glycophenotype adopted by these cells. Here, we show that M2- but not M1-polarized Mϕ expresses high levels of an unusual glycoform of fibronectin (FN), named O-glycosylated oncofetal FN (onf-FN), found in fetal/cancer cells, but not in healthy tissues. The onf-FN expression was confirmed in vitro by Western blot and real-time RT-qPCR in primary and cell line monocyte-derived Mϕ. onf-FN was induced by IL-4 and IL-13, but not by pro-inflammatory stimuli (LPS and INF-γ). RNA and protein analysis clearly demonstrated that it is specifically associated with the M2 polarization. In conclusion, we show by the first time that O-glycosylated onf-FN is expressed by M2-polarized Mϕ.
Collapse
|
43
|
Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, Yang H, Bai J, Geng D. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11:8. [PMID: 36690624 PMCID: PMC9870909 DOI: 10.1038/s41413-023-00244-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaole Peng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Qing Wang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Wenming Li
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Gaoran Ge
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiachen Peng
- grid.413390.c0000 0004 1757 6938Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, P. R. China
| | - Yaozeng Xu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Huilin Yang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiaxiang Bai
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Dechun Geng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| |
Collapse
|
44
|
Hui L, Ziyue Z, Chao L, Bin Y, Aoyu L, Haijing W. Epigenetic Regulations in Autoimmunity and Cancer: from Basic Science to Translational Medicine. Eur J Immunol 2023; 53:e2048980. [PMID: 36647268 DOI: 10.1002/eji.202048980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Epigenetics, as a discipline that aims to explain the differential expression of phenotypes arising from the same gene sequence and the heritability of epigenetic expression, has received much attention in medicine. Epigenetic mechanisms are constantly being discovered, including DNA methylation, histone modifications, noncoding RNAs and m6A. The immune system mainly achieves an immune response through the differentiation and functional expression of immune cells, in which epigenetic modification will have an important impact. Because of immune infiltration in the tumor microenvironment, immunotherapy has become a research hotspot in tumor therapy. Epigenetics plays an important role in autoimmune diseases and cancers through immunology. An increasing number of drugs targeting epigenetic mechanisms, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and drug combinations, are being evaluated in clinical trials for the treatment of various cancers (including leukemia and osteosarcoma) and autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis). This review summarizes the progress of epigenetic regulation for cancers and autoimmune diseases to date, shedding light on potential therapeutic strategies.
Collapse
Affiliation(s)
- Li Hui
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Zhao Ziyue
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Liu Chao
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Yu Bin
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Li Aoyu
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Wu Haijing
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
45
|
Peng S, Liu C, Fan X, Zhu J, Zhang S, Zhou X, Wang T, Gao F, Zhu W. Analysis of aberrant miRNA-mRNA interaction networks in prostate cancer to conjecture its molecular mechanisms. Cancer Biomark 2022; 35:395-407. [PMID: 36373308 DOI: 10.3233/cbm-220051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) capable of post-transcriptionally regulating mRNA expression are essential to tumor occurrence and progression. OBJECTIVE This study aims to find negatively regulatory miRNA-mRNA pairs in prostate adenocarcinoma (PRAD). METHODS Combining The Cancer Genome Atlas (TCGA) RNA-Seq data with Gene Expression Omnibus (GEO) mRNA/miRNA expression profiles, differently expressed miRNA/mRNA (DE-miRNAs/DE-mRNAs) were identified. MiRNA-mRNA pairs were screened by miRTarBase and TarBase, databases collecting experimentally confirmed miRNA-mRNA pairs, and verified in 30 paired prostate specimens by real-time reverse transcription polymerase chain reaction (RT-qPCR). The diagnostic values of miRNA-mRNA pairs were measured by receiver operation characteristic (ROC) curve and Decision Curve Analysis (DCA). DAVID-mirPath database and Connectivity Map were employed in GO/KEGG analysis and compounds research. Interactions between miRNA-mRNA pairs and phenotypic features were analyzed with correlation heatmap in hiplot. RESULTS Based on TCGA RNA-Seq data, 22 miRNA and 14 mRNA GEO datasets, 67 (20 down and 47 up) miRNAs and 351 (139 up and 212 down) mRNAs were selected. After screening from 2 databases, 8 miRNA (up)-mRNA (down) and 7 miRNA (down)-mRNA (up) pairs were identified with Pearson's correlation in TCGA. By external validation, miR-221-3p (down)/GALNT3 (up) and miR-20a-5p (up)/FRMD6 (down) were chosen. The model combing 4 signatures possessed better diagnostic value. These two miRNA-mRNA pairs were significantly connected with immune cells fraction and tumor immune microenvironment. CONCLUSIONS The diagnostic model containing 2 negatively regulatory miRNA-mRNA pairs was established to distinguish PRADs from normal controls.
Collapse
Affiliation(s)
- Shuang Peng
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Liu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingchen Fan
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingfeng Zhu
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shiyu Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tongshan Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Gao
- Department of Osteology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
46
|
Fu SP, Chen SY, Pang QM, Zhang M, Wu XC, Wan X, Wan WH, Ao J, Zhang T. Advances in the research of the role of macrophage/microglia polarization-mediated inflammatory response in spinal cord injury. Front Immunol 2022; 13:1014013. [PMID: 36532022 PMCID: PMC9751019 DOI: 10.3389/fimmu.2022.1014013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
It is often difficult to regain neurological function following spinal cord injury (SCI). Neuroinflammation is thought to be responsible for this failure. Regulating the inflammatory response post-SCI may contribute to the recovery of neurological function. Over the past few decades, studies have found that macrophages/microglia are one of the primary effector cells in the inflammatory response following SCI. Growing evidence has documented that macrophages/microglia are plastic cells that can polarize in response to microenvironmental signals into M1 and M2 macrophages/microglia. M1 produces pro-inflammatory cytokines to induce inflammation and worsen tissue damage, while M2 has anti-inflammatory activities in wound healing and tissue regeneration. Recent studies have indicated that the transition from the M1 to the M2 phenotype of macrophage/microglia supports the regression of inflammation and tissue repair. Here, we will review the role of the inflammatory response and macrophages/microglia in SCI and repair. In addition, we will discuss potential molecular mechanisms that induce macrophage/microglia polarization, with emphasis on neuroprotective therapies that modulate macrophage/microglia polarization, which will provide new insights into therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ming Pang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei-Hong Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,*Correspondence: Tao Zhang,
| |
Collapse
|
47
|
Li N, Chen Z, Feng W, Gong Z, Lin C, Chen J, Chu C, Xu Q. Triptolide improves chondrocyte proliferation and secretion via down-regulation of miR-221 in synovial cell exosomes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154479. [PMID: 36194972 DOI: 10.1016/j.phymed.2022.154479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA), the most common type of inflammatory arthritis, can cause bone damage and disability. Triptolide, a prominent treatment for RA, has satisfactory anti-inflammatory effects. However, the mechanism of action of triptolide in RA remains unknown. PURPOSE This study aimed to explore the molecular mechanisms underlying triptolide-mediated improvements in RA and identify the miRNA pathway responsible for these effects. METHODS We identified various dysregulated miRNAs associated with RA by mining previously described microarray data and verified and screened these candidates using RT-qPCR. Hematoxylin-eosin staining was then applied to identify pathological changes in the affected joints, and cell counting kit-8 analysis and flow cytometry were employed to examine cell proliferation and apoptosis, respectively. Extracted exosomes were verified using transmission electron microscopy. RESULTS Our results revealed that the legs of rats with collagen-induced arthritis presented with obvious swelling and bone damage, a high degree of inflammatory cell infiltration into the synovium, and structural changes to the cartilage. Data mining identified 39 dysregulated miRNAs in these tissues, and RT-qPCR further refined these observations to highlight miR-221 as a potential RA biomarker. Subsequent evaluations revealed that fibroblast-like synovial (FLS) cells secrete Exs carrying dysregulated miR-221 in vitro. These Exs mediate miR-221 levels, inflammation, and TLR4/MyD88 signaling via their fusion with chondrocytes, leading to changes in chondrocyte growth and metabolic factor levels. Additionally, the addition of triptolide impaired miR-221 expression, cell proliferation, inflammatory factors, and the protein levels of TLR4/MyD88 in RA-FLS and promoted the apoptosis of FLS. The therapeutic effect of triptolide on miR-221 Exs was reversed by miR-221 inhibitor in both normal and RA FLS. CONCLUSION Our research shows that effective treatment with triptolide is mediated by its regulation of growth and secretory functions of chondrocytes via the inhibition of miR-221 secretion by FLS, providing a new target and natural medicinal candidate for future RA treatments.
Collapse
Affiliation(s)
- Nan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, China
| | - Zhixin Chen
- Chinese Medicine Department, South China Agricultural University Hospital, 510642, Guangzhou, China
| | - Wei Feng
- Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Zhaohui Gong
- Guangzhou University of Chinese Medicine, 510405, Guangzhou, China; Department of Cardiovascular, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Changsong Lin
- Guangzhou University of Chinese Medicine, 510405, Guangzhou, China; Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, China.
| | - Congqiu Chu
- Oregon Health & Science University, 97239, Portland, OR, United States of America.
| | - Qiang Xu
- Guangzhou University of Chinese Medicine, 510405, Guangzhou, China; Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China.
| |
Collapse
|
48
|
Shen J, Zhao X, Zhong Y, Yang P, Gao P, Wu X, Wang X, An W. Exosomal ncRNAs: The pivotal players in diabetic wound healing. Front Immunol 2022; 13:1005307. [PMID: 36420273 PMCID: PMC9677725 DOI: 10.3389/fimmu.2022.1005307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Diabetes is the most prevalent metabolic disease in the world today. In addition to elevated blood glucose, it also causes serious complications, which has a significant effect on the quality of life of patients. Diabetic trauma is one of complications as a result of the interaction of diabetic neuropathy, peripheral vascular disease, infection, trauma, and other factors. Diabetic trauma usually leads to poor healing of the trauma and even to severe foot ulcers, wound gangrene, and even amputation, causing serious psychological, physical, and financial burdens to diabetic patients. Non-coding RNAs (ncRNAs) carried by exosomes have been demonstrated to be relevant to the development and treatment of diabetes and its complications. Exosomes act as vehicle, which contain nucleic acids such as mRNA and microRNA (miRNA), and play a role in the intercellular communication and the exchange of substances between cells. Because exosomes are derived from cells, there are several advantages over synthetic nanoparticle including good biocompatibility and low immunogenicity. Exosomal ncRNAs could serve as markers for the clinical diagnosis of diabetes and could also be employed to accelerate diabetic wound healing via the regulation of the immune response and modulation of cell function. ncRNAs in exosomes can be employed to promote diabetic wound healing by regulating inflammation and accelerating re-vascularization, re-epithelialization, and extracellular matrix remodeling. Herein, exosomes in terms of ncRNA (miRNA, lncRNA, and circRNA) to accelerate diabetic wounds healing were summarized, and we discussed the challenge of the loading strategy of ncRNA into exosomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenlin An
- *Correspondence: Xudong Wang, ; Wenlin An,
| |
Collapse
|
49
|
Fang Z, Hu Y, Dai J, He L, He J, Xu B, Han X, Zhong F, Lan H, Wang Q. CS12192, a Novel JAK3/JAK1/TBK1 Inhibitor, Synergistically Enhances the Anti-Inflammation Effect of Methotrexate in a Rat Model of Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms232113394. [PMID: 36362183 PMCID: PMC9658750 DOI: 10.3390/ijms232113394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common disease worldwide and is treated commonly with methotrexate (MTX). CS12192 is a novel JAK3 inhibitor discovered by Chipscreen Biosciences for the treatment of autoimmune diseases. In the present study, we examined the therapeutic effect of CS12192 against RA and explored if the combinational therapy of CS12192 and MTX produced a synergistic effect against RA in rat collagen-induced arthritis (CIA). Arthritis was induced in male Sprague-Dawley rats by two intradermal injections of bovine type II collagen (CII) and treated with MTX, CS12192, or the combination of CS12192 and MTX daily for two weeks. Effects of different treatments on arthritis score, X-ray score, pathology, and expression of inflammatory cytokines and biomarkers were examined. We found that treatment with either CS12192 or MTX produced a comparable therapeutic effect on CIA including: (1) significantly lowering the arthritis score, X-ray score, serum levels of rheumatic factor (RF), C-reactive protein (CRP), and anti-nuclear antibodies (ANA); (2) largely alleviating histopathological damage, reducing infiltration of Th17 cells while promoting Treg cells; (3) inhibiting the expression of inflammatory cytokines and chemokines such as IL-1β, TNF-α, IL-6, CCL2, and CXCL1. All these inhibitory effects were further improved by the combinational therapy with MTX and CS12192. Of importance, the combinational treatment also resulted in a marked switching of the Th17 to Treg and the M1 to M2 immune responses in synovial tissues of CIA. Thus, when compared to the monotherapy, the combination treatment with CS12192 and MTX produces a better therapeutic effect against CIA with a greater suppressive effect on T cells and macrophage-mediated joint inflammation.
Collapse
Affiliation(s)
- Zhengyu Fang
- Department of Rheumatism and Immunology, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yiping Hu
- Department of Rheumatism and Immunology, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jiajing Dai
- Clinical Research Institute, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Lianhua He
- Department of Rheumatism and Immunology, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Juan He
- Department of Rheumatism and Immunology, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Bihua Xu
- Department of Rheumatism and Immunology, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xinle Han
- Clinical Research Institute, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Fubo Zhong
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Clinical Research Institute, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Huiyao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (H.L.); (Q.W.)
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (H.L.); (Q.W.)
| |
Collapse
|
50
|
Coutinho-Wolino KS, Almeida PP, Mafra D, Stockler-Pinto MB. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: pathways involved and future perspectives. Nutr Res 2022; 107:96-116. [PMID: 36209684 DOI: 10.1016/j.nutres.2022.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 12/27/2022]
Abstract
Chronic inflammation is associated with the development and progression of several noncommunicable diseases, such as diabetes, cardiovascular disease, chronic kidney disease, cancer, and nonalcoholic fatty liver disease. Evidence suggests that pattern recognition receptors that identify pathogen-associated molecular patterns and danger-associated molecular patterns are crucial in chronic inflammation. Among the pattern recognition receptors, Toll-like receptor 4 (TLR4) stimulates several inflammatory pathway agonists, such as nuclear factor-κB, interferon regulator factor 3, and nod-like receptor pyrin domain containing 3 pathways, which consequently trigger the expression of pro-inflammatory biomarkers, increasing the risk of noncommunicable disease development and progression. Studies have focused on the antagonistic potential of bioactive compounds, following the concept of food as a medicine, in which nutritional strategies may mitigate inflammation via TLR4 modulation. Thus, this review discusses preclinical evidence concerning bioactive compounds from fruit, vegetable, spice, and herb extracts (curcumin, resveratrol, catechin, cinnamaldehyde, emodin, ginsenosides, quercetin, allicin, and caffeine) that may regulate the TLR4 pathway and reduce the inflammatory response. Bioactive compounds can inhibit TLR4-mediated inflammation through gut microbiota modulation, improvement of intestinal permeability, inhibition of lipopolysaccharide-TLR4 binding, and decreasing TLR4 expression by modulation of microRNAs and antioxidant pathways. The responses directly mitigated inflammation, especially nuclear factor-κB activation and inflammatory cytokines release. These findings should be considered for further clinical studies on inflammation-mediated diseases.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Patricia P Almeida
- Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil; Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Pathology, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|