1
|
Gu S, Tang L, Guo L, Zhong C, Fu X, Ye G, Zhong S, Li X, Wen C, Zhou Y, Wei J, Chen H, Novikov N, Fletcher SP, Moody MA, Hou J, Li Y. Circulating HBsAg-specific B cells are partially rescued in chronically HBV-infected patients with functional cure. Emerg Microbes Infect 2024; 13:2409350. [PMID: 39470771 PMCID: PMC11523254 DOI: 10.1080/22221751.2024.2409350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024]
Abstract
It is well established that humoral immunity targeting hepatitis B virus surface antigen (HBsAg) plays a critical role in viral clearance and clinical cure. However, the functional changes in HBsAg-specific B cells before and after achieving functional cure remain poorly understood. In this study, we characterized circulating HBsAg-specific B cells and identified functional shifts and B-cell epitopes directly associated with HBsAg loss. The phenotypes and functions of HBV-specific B cells in patients with chronic HBV infection were investigated using a dual staining method and the ELISpot assay. Epitope mapping was performed to identify B cell epitopes associated with functional cure. Hyperactivated HBsAg-specific B cells in patients who achieved HBsAg loss were composed of enriched resting memory and contracted atypical memory fractions, accompanied by sustained co-expression of multiple inhibitory receptors and increased IL-6 secretion. The frequency of HBsAb-secreting B cells was significantly increased after achieving a functional cure. The rHBsAg displayed a weaker immunomodulatory effect on B cells than rHBeAg and rHBcAg in vitro. Notably, sera from patients with HBsAg loss reacted mainly with peptides S60, S61, and S76, suggesting that these are dominant linear B-cell epitopes relevant for functional cure. Intriguingly, patients reactive with S76 showed a higher frequency of the HLA class II DQB1*05:01 allele. Taken together, HBsAg-specific B cells were partially restored in patients after achieving a functional cure. Functional cure-related epitopes may be promising targets for developing therapeutic vaccines to treat HBV infection and promote functional cure.
Collapse
Affiliation(s)
- Shuqin Gu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Infectious Diseases Division, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Libo Tang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Ling Guo
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chunxiu Zhong
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Xin Fu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Guofu Ye
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Shihong Zhong
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Xiaoyi Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunhua Wen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Department of Hematology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yang Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Infectious Diseases Division, Department of Pediatrics, Duke University, Durham, NC, USA
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jinling Wei
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Haitao Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Nikolai Novikov
- Department of Biology, Gilead Sciences, Foster City, CA, USA
| | | | - M. Anthony Moody
- Infectious Diseases Division, Department of Pediatrics, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Jinlin Hou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| |
Collapse
|
2
|
Taru V, Szabo G, Mehal W, Reiberger T. Inflammasomes in chronic liver disease: Hepatic injury, fibrosis progression and systemic inflammation. J Hepatol 2024; 81:895-910. [PMID: 38908436 DOI: 10.1016/j.jhep.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Chronic liver disease leads to hepatocellular injury that triggers a pro-inflammatory state in several parenchymal and non-parenchymal hepatic cell types, ultimately resulting in liver fibrosis, cirrhosis, portal hypertension and liver failure. Thus, an improved understanding of inflammasomes - as key molecular drivers of liver injury - may result in the development of novel diagnostic or prognostic biomarkers and effective therapeutics. In liver disease, innate immune cells respond to hepatic insults by activating cell-intrinsic inflammasomes via toll-like receptors and NF-κB, and by releasing pro-inflammatory cytokines (such as IL-1β, IL-18, TNF-α and IL-6). Subsequently, cells of the adaptive immune system are recruited to fuel hepatic inflammation and hepatic parenchymal cells may undergo gasdermin D-mediated programmed cell death, termed pyroptosis. With liver disease progression, there is a shift towards a type 2 inflammatory response, which promotes tissue repair but also fibrogenesis. Inflammasome activation may also occur at extrahepatic sites, such as the white adipose tissue in MASH (metabolic dysfunction-associated steatohepatitis). In end-stage liver disease, flares of inflammation (e.g., in severe alcohol-related hepatitis) that spark on a dysfunctional immune system, contribute to inflammasome-mediated liver injury and potentially result in organ dysfunction/failure, as seen in ACLF (acute-on-chronic liver failure). This review provides an overview of current concepts regarding inflammasome activation in liver disease progression, with a focus on related biomarkers and therapeutic approaches that are being developed for patients with liver disease.
Collapse
Affiliation(s)
- Vlad Taru
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Iuliu Hatieganu University of Medicine and Pharmacy, 4(th) Dept. of Internal Medicine, Cluj-Napoca, Romania
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Wajahat Mehal
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA; West Haven Veterans Medical Center, West Haven, CT, USA.
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Science, Vienna, Austria
| |
Collapse
|
3
|
Vecchi A, Rossi M, Tiezzi C, Fisicaro P, Doselli S, Gabor EA, Penna A, Montali I, Ceccatelli Berti C, Reverberi V, Montali A, Fletcher SP, Degasperi E, Sambarino D, Laccabue D, Facchetti F, Schivazappa S, Loggi E, Coco B, Cavallone D, Rosselli Del Turco E, Massari M, Pedrazzi G, Missale G, Verucchi G, Andreone P, Brunetto MR, Lampertico P, Ferrari C, Boni C. HBcrAg values may predict virological and immunological responses to pegIFN-α in NUC-suppressed HBeAg-negative chronic hepatitis B. Gut 2024; 73:1737-1748. [PMID: 39033025 PMCID: PMC11423235 DOI: 10.1136/gutjnl-2024-332290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE Selected populations of patients with chronic hepatitis B (CHB) may benefit from a combined use of pegylated interferon-alpha (pegIFN-α) and nucleos(t)ides (NUCs). The aim of our study was to assess the immunomodulatory effect of pegIFN-α on T and natural killer (NK) cell responses in NUC-suppressed patients to identify cellular and/or serological parameters to predict better T cell-restoring effect and better control of infection in response to pegIFN-α for a tailored application of IFN-α add-on. DESIGN 53 HBeAg-negative NUC-treated patients with CHB were randomised at a 1:1 ratio to receive pegIFN-α-2a for 48 weeks, or to continue NUC therapy and then followed up for at least 6 months maintaining NUCs. Serum hepatitis B surface antigen (HBsAg) and hepatitis B core-related antigen (HBcrAg) levels as well as peripheral blood NK cell phenotype and function and HBV-specific T cell responses upon in vitro stimulation with overlapping HBV peptides were measured longitudinally before, during and after pegIFN-α therapy. RESULTS Two cohorts of pegIFN-α treated patients were identified according to HBsAg decline greater or less than 0.5 log at week 24 post-treatment. PegIFN-α add-on did not significantly improve HBV-specific T cell responses during therapy but elicited a significant multispecific and polyfunctional T cell improvement at week 24 post-pegIFN-α treatment compared with baseline. This improvement was maximal in patients who had a higher drop in serum HBsAg levels and a lower basal HBcrAg values. CONCLUSIONS PegIFN-α treatment can induce greater functional T cell improvement and HBsAg decline in patients with lower baseline HBcrAg levels. Thus, HBcrAg may represent an easily and reliably applicable parameter to select patients who are more likely to achieve better response to pegIFN-α add-on to virally suppressed patients.
Collapse
Affiliation(s)
- Andrea Vecchi
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
| | - Sara Doselli
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
| | | | - Amalia Penna
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
| | - Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Anna Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simon P Fletcher
- Department of Biology, Gilead Sciences, Foster City, California, USA
| | - Elisabetta Degasperi
- Division of Gastroenterology and Hepatology, IRCCS Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Dana Sambarino
- Division of Gastroenterology and Hepatology, IRCCS Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Floriana Facchetti
- Division of Gastroenterology and Hepatology, IRCCS Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Simona Schivazappa
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
| | - Elisabetta Loggi
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Coco
- Hepatology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Elena Rosselli Del Turco
- Department of Infectious Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna Policlinico di Sant'Orsola, Bologna, Italy
| | - Marco Massari
- Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giuseppe Pedrazzi
- Department of Medicine and Surgery, Unit of Neuroscience, Interdepartmental Center of Robust Statistics (Ro.S.A.), University of Parma, Parma, Italy
| | - Gabriele Missale
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriella Verucchi
- Department of Infectious Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna Policlinico di Sant'Orsola, Bologna, Italy
| | - Pietro Andreone
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizia Rossana Brunetto
- Hepatology Unit, Pisa University Hospital, Pisa, Italy
- Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, IRCCS Foundation Maggiore Policlinico Hospital, Milan, Italy
- CRC "A. M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carlo Ferrari
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carolina Boni
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Hu Y, Yang A, Li H, Zhao R, Bao C, Yu Y, Wang Y, Wang Z, Zhuo L, Han Q, Zhang Z, Zhang J, Zhao H. Lymph node-targeted STING agonist nanovaccine against chronic HBV infection. Cell Mol Life Sci 2024; 81:372. [PMID: 39196331 PMCID: PMC11358573 DOI: 10.1007/s00018-024-05404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is a global health problem that substantially increases the risk of developing liver disease. The development of a novel strategy to induce anti-HB seroconversion and achieve a long-lasting immune response against chronic HBV infection remains challenging. Here, we found that chronic HBV infection affected the signaling pathway involved in STING-mediated induction of host immune responses in dendritic cells (DCs) and then generated a lymph node-targeted nanovaccine that co-delivered hepatitis B surface antigen (HBsAg) and cyclic diguanylate monophosphate (c-di-GMP) (named the PP-SG nanovaccine). The feasibility and efficiency of the PP-SG nanovaccine for CHB treatment were evaluated in HBV-carrier mice. Serum samples were analyzed for HBsAg, anti-HBs, HBV DNA, and alanine aminotransferase levels, and liver samples were evaluated for HBV DNA and RNA and HBcAg, accompanied by an analysis of HBV-specific cellular and humoral immune responses during PP-SG nanovaccine treatment. The PP-SG nanovaccine increased antigen phagocytosis and DC maturation, efficiently and safely eliminated HBV, achieved a long-lasting immune response against HBV reinjection, and disrupted chronic HBV infection-induced immune tolerance, as characterized by the generation and multifunctionality of HBV-specific CD8+ T and CD4+ T cells and the downregulation of immune checkpoint molecules. HBV-carrier mice immunized with the PP-SG nanovaccine achieved partial anti-HBs seroconversion. The PP-SG nanovaccine can induce sufficient and persistent viral suppression and achieve anti-HBs seroconversion, rendering it a promising vaccine candidate for clinical chronic hepatitis B therapy.
Collapse
Affiliation(s)
- Yifei Hu
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ailu Yang
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong, China
| | - Cuiping Bao
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yating Yu
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yucan Wang
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zixuan Wang
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Jiang Q, Zhang Y, Duan D, Retout S, Upmanyu R, Glavini K, Triyatni M, Zhu Y, Grippo JF, Jin Y. Using exploratory pharmacokinetic and pharmacodynamic analyses to predict the probability of flu-like symptoms in healthy volunteers and patients with chronic hepatitis B treated with the toll-like receptor 7 agonist ruzotolimod. Clin Transl Sci 2024; 17:e13896. [PMID: 39119977 PMCID: PMC11310849 DOI: 10.1111/cts.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Ruzotolimod (Toll-like receptor 7 (TLR7) agonist, RG7854) is an oral, small molecule immuno-modulator activating the TLR 7 and is being evaluated in patients with CHB. As with other TLR7 agonists, the study drug-related adverse events of flu-like symptoms have been reported in some participants during phase I studies with ruzotolimod. An exploratory analysis of the relationship between pharmacokinetic (PK)/pharmacodynamic (PD) and flu-like symptoms was performed in participants from two phase I studies including both healthy volunteers and NUC-suppressed CHB patients who received either single or multiple ascending doses of orally administered ruzotolimod. Linear and logistic regression were used to explore potential relationships between dose, flu-like symptoms, PK, and PD. Generalized linear regression was performed to predict the probability of flu-like symptoms of all intensities at different RO7011785 (the active metabolite of the double prodrug ruzotolimod) PK exposure. This analysis showed that single or multiple doses of ruzotolimod at ⩾100 mg, the immune PD (IFN-α, neopterin, IP-10, and the transcriptional expression of ISG15, OAS-1, MX1, and TLR7) responses increase with the RO7011785 PK exposure, which increases linearly with the doses from 3 mg to 170 mg of ruzotolimod. The analysis also showed that the probability of flu-like symptoms occurrence increases with PD responses (IFN-α and IP-10). Dose reduction of ruzotolimod can be an effective way to reduce the magnitude of PD response, thus reducing the probability of study drug-related flu-like symptoms occurrence at all intensity in the participants who are highly sensitive to PD activation and intolerant to flu-like symptoms.
Collapse
Affiliation(s)
| | | | - Dan Duan
- Roche Innovation CenterShanghaiChina
| | | | | | | | | | | | | | - Yuyan Jin
- Roche Innovation CenterShanghaiChina
| |
Collapse
|
6
|
Andreata F, Laura C, Ravà M, Krueger CC, Ficht X, Kawashima K, Beccaria CG, Moalli F, Partini B, Fumagalli V, Nosetto G, Di Lucia P, Montali I, Garcia-Manteiga JM, Bono EB, Giustini L, Perucchini C, Venzin V, Ranucci S, Inverso D, De Giovanni M, Genua M, Ostuni R, Lugli E, Isogawa M, Ferrari C, Boni C, Fisicaro P, Guidotti LG, Iannacone M. Therapeutic potential of co-signaling receptor modulation in hepatitis B. Cell 2024; 187:4078-4094.e21. [PMID: 38897196 PMCID: PMC11290321 DOI: 10.1016/j.cell.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Reversing CD8+ T cell dysfunction is crucial in treating chronic hepatitis B virus (HBV) infection, yet specific molecular targets remain unclear. Our study analyzed co-signaling receptors during hepatocellular priming and traced the trajectory and fate of dysfunctional HBV-specific CD8+ T cells. Early on, these cells upregulate PD-1, CTLA-4, LAG-3, OX40, 4-1BB, and ICOS. While blocking co-inhibitory receptors had minimal effect, activating 4-1BB and OX40 converted them into antiviral effectors. Prolonged stimulation led to a self-renewing, long-lived, heterogeneous population with a unique transcriptional profile. This includes dysfunctional progenitor/stem-like (TSL) cells and two distinct dysfunctional tissue-resident memory (TRM) populations. While 4-1BB expression is ubiquitously maintained, OX40 expression is limited to TSL. In chronic settings, only 4-1BB stimulation conferred antiviral activity. In HBeAg+ chronic patients, 4-1BB activation showed the highest potential to rejuvenate dysfunctional CD8+ T cells. Targeting all dysfunctional T cells, rather than only stem-like precursors, holds promise for treating chronic HBV infection.
Collapse
Affiliation(s)
- Francesco Andreata
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Laura
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Caroline C Krueger
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Xenia Ficht
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Keigo Kawashima
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristian G Beccaria
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Moalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bianca Partini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Nosetto
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - José M Garcia-Manteiga
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa B Bono
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Perucchini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Venzin
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Ranucci
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Donato Inverso
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Marco De Giovanni
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Genua
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Renato Ostuni
- Vita-Salute San Raffaele University, Milan, Italy; San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Enrico Lugli
- IRCSS Humanitas Research Hospital, Rozzano, Italy
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
7
|
Liu L, Wang H, Liu L, Cheng F, Aisa HA, Li C, Meng S. Rupestonic Acid Derivative YZH-106 Promotes Lysosomal Degradation of HBV L- and M-HBsAg via Direct Interaction with PreS2 Domain. Viruses 2024; 16:1151. [PMID: 39066313 PMCID: PMC11281537 DOI: 10.3390/v16071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B surface antigen (HBsAg) is not only the biomarker of hepatitis B virus (HBV) infection and expression activity in hepatocytes, but it also contributes to viral specific T cell exhaustion and HBV persistent infection. Therefore, anti-HBV therapies targeting HBsAg to achieve HBsAg loss are key approaches for an HBV functional cure. In this study, we found that YZH-106, a rupestonic acid derivative, inhibited HBsAg secretion and viral replication. Further investigation demonstrated that YZH-106 promoted the lysosomal degradation of viral L- and M-HBs proteins. A mechanistic study using Biacore and docking analysis revealed that YZH-106 bound directly to the PreS2 domain of L- and M-HBsAg, thereby blocking their entry into the endoplasmic reticulum (ER) and promoting their degradation in cytoplasm. Our work thereby provides the basis for the design of a novel compound therapy to target HBsAg against HBV infection.
Collapse
Affiliation(s)
- Lanlan Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Haoyu Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lulu Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Fang Cheng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Changfei Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Songdong Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Laaribi AB, Mehri A, Yahia HB, Chaouch H, Babay W, Letaief A, Ouzari HI, Hannachi N, Boukadida J, Zidi I. Association of HLA-G 3'UTR polymorphisms with hepatitis B virus infection in Tunisian population. Immunol Res 2024:10.1007/s12026-024-09516-2. [PMID: 38970627 DOI: 10.1007/s12026-024-09516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Hepatitis B virus (HBV) infection is a major public health burden. The mechanisms of immune evasion during chronic HBV (CHB) infection are poorly understood. Human leukocyte antigen (HLA)-G, an immune checkpoint molecule, plays a crucial role in the tolerance mechanisms of various infectious diseases. The 3' untranslated region (3'UTR), including the HLA-G + 3142 C > G polymorphism (rs1063320) and the 14-pb Ins/Del (rs66554220) has been strongly suggested to influence HLA-G expression. This study conducted a case-control analysis to evaluate the potential correlation between the HLA-G + 3142 C > G polymorphism and HBV infection outcome in a Tunisian cohort. The HLA-G + 3142 C > G polymorphism was analysed by PCR-RFLP in 242 patients with chronic HBV infection (116 males and 126 females), 241 healthy controls (116 males and 125 females), and 100 spontaneously resolved subjects (52 males and 48 females). Patients with chronic HBV infection showed a higher frequency of the + 3142G allele compared to healthy controls and spontaneously resolved subjects (p = 0.001 and p = 0.002, respectively). An association between the + 3142G allele and high HBV DNA levels was observed when HBV patients were stratified based on their HBV DNA levels (p = 0.016). Furthermore, the dominant model (GG + GC vs CC) was associated with liver function parameters, including AST, ALT, and high HBV DNA levels (p = 0.04, p < 0.001 and p = 0.002, respectively). However, there was no significant association found between this polymorphism and the fibrosis stage (p = 0.32). The haplotype analysis, using a subset of previously published data on the HLA-G 14-pb Ins/Del polymorphism, revealed an association between the Ins/G haplotype and chronic HBV infection (H1: InsG, p < 0.001). Our findings suggest that the + 3142G allele is a risk factor for the persistence and progression of HBV infection, while the + 3142C allele serves as a protective allele associated with the spontaneous resolution of the infection. Additionally, the HLA-G 3'UTR haplotype Ins/G is associated with chronic HBV infection in the Tunisian population.
Collapse
Affiliation(s)
- Ahmed Baligh Laaribi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| | - Asma Mehri
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hamza Ben Yahia
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Houda Chaouch
- Department of Internal Medicine and Infectious Diseases, University Hospital Farhat Hached, Sousse, Tunisia
| | - Wafa Babay
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amel Letaief
- Department of Internal Medicine and Infectious Diseases, University Hospital Farhat Hached, Sousse, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Naila Hannachi
- Laboratory of Microbiology (UR12SP34), Faculty of Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Jalel Boukadida
- Laboratory of Microbiology (UR12SP34), Faculty of Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Ines Zidi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
9
|
Yue B, Gao Y, Hu Y, Zhan M, Wu Y, Lu L. Harnessing CD8 + T cell dynamics in hepatitis B virus-associated liver diseases: Insights, therapies and future directions. Clin Transl Med 2024; 14:e1731. [PMID: 38935536 PMCID: PMC11210506 DOI: 10.1002/ctm2.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Hepatitis B virus (HBV) infection playsa significant role in the etiology and progression of liver-relatedpathologies, encompassing chronic hepatitis, fibrosis, cirrhosis, and eventual hepatocellularcarcinoma (HCC). Notably, HBV infection stands as the primary etiologicalfactor driving the development of HCC. Given the significant contribution ofHBV infection to liver diseases, a comprehensive understanding of immunedynamics in the liver microenvironment, spanning chronic HBV infection,fibrosis, cirrhosis, and HCC, is essential. In this review, we focused on thefunctional alterations of CD8+ T cells within the pathogenic livermicroenvironment from HBV infection to HCC. We thoroughly reviewed the roles ofhypoxia, acidic pH, metabolic reprogramming, amino acid deficiency, inhibitory checkpointmolecules, immunosuppressive cytokines, and the gut-liver communication in shapingthe dysfunction of CD8+ T cells in the liver microenvironment. Thesefactors significantly impact the clinical prognosis. Furthermore, we comprehensivelyreviewed CD8+ T cell-based therapy strategies for liver diseases,encompassing HBV infection, fibrosis, cirrhosis, and HCC. Strategies includeimmune checkpoint blockades, metabolic T-cell targeting therapy, therapeuticT-cell vaccination, and adoptive transfer of genetically engineered CD8+ T cells, along with the combined usage of programmed cell death protein-1/programmeddeath ligand-1 (PD-1/PD-L1) inhibitors with mitochondria-targeted antioxidants.Given that targeting CD8+ T cells at various stages of hepatitis Bvirus-induced hepatocellular carcinoma (HBV + HCC) shows promise, we reviewedthe ongoing need for research to elucidate the complex interplay between CD8+ T cells and the liver microenvironment in the progression of HBV infection toHCC. We also discussed personalized treatment regimens, combining therapeuticstrategies and harnessing gut microbiota modulation, which holds potential forenhanced clinical benefits. In conclusion, this review delves into the immunedynamics of CD8+ T cells, microenvironment changes, and therapeuticstrategies within the liver during chronic HBV infection, HCC progression, andrelated liver diseases.
Collapse
Affiliation(s)
- Bing Yue
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yuxia Gao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yi Hu
- Microbiology and Immunology DepartmentSchool of MedicineFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| |
Collapse
|
10
|
Galasso L, Cerrito L, Maccauro V, Termite F, Mignini I, Esposto G, Borriello R, Ainora ME, Gasbarrini A, Zocco MA. Inflammatory Response in the Pathogenesis and Treatment of Hepatocellular Carcinoma: A Double-Edged Weapon. Int J Mol Sci 2024; 25:7191. [PMID: 39000296 PMCID: PMC11241080 DOI: 10.3390/ijms25137191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent among primary liver tumors (90%) and one of the main causes of cancer-related death. It develops usually in a chronically inflamed environment, ranging from compensatory parenchymal regeneration to fibrosis and cirrhosis: carcinogenesis can potentially happen in each of these stages. Inflammation determined by chronic viral infection (hepatitis B, hepatitis C, and hepatitis delta viruses) represents an important risk factor for HCC etiology through both viral direct damage and immune-related mechanisms. The deregulation of the physiological liver immunological network determined by viral infection can lead to carcinogenesis. The recent introduction of immunotherapy as the gold-standard first-line treatment for HCC highlights the role of the immune system and inflammation as a double-edged weapon in both HCC carcinogenesis and treatment. In this review we highlight how the inflammation is the key for the hepatocarcinogenesis in viral, alcohol and metabolic liver diseases.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Valeria Maccauro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Irene Mignini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Giorgio Esposto
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
11
|
Tang L, Remiszewski S, Snedeker A, Chiang LW, Shenk T. An allosteric inhibitor of sirtuin 2 blocks hepatitis B virus covalently closed circular DNA establishment and its transcriptional activity. Antiviral Res 2024; 226:105888. [PMID: 38641024 DOI: 10.1016/j.antiviral.2024.105888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
296 million people worldwide are predisposed to developing severe end-stage liver diseases due to chronic hepatitis B virus (HBV) infection. HBV forms covalently closed circular DNA (cccDNA) molecules that persist as episomal DNA in the nucleus of infected hepatocytes and drive viral replication. Occasionally, the HBV genome becomes integrated into host chromosomal DNA, a process that is believed to significantly contribute to circulating HBsAg levels and HCC development. Neither cccDNA accumulation nor expression from integrated HBV DNA are directly targeted by current antiviral treatments. In this study, we investigated the antiviral properties of a newly described allosteric modulator, FLS-359, that targets sirtuin 2 (SIRT2), an NAD+-dependent deacylase. Our results demonstrate that SIRT2 modulation by FLS-359 and by other tool compounds inhibits cccDNA synthesis following de novo infection of primary human hepatocytes and HepG2 (C3A)-NTCP cells, and FLS-359 substantially reduces cccDNA recycling in HepAD38 cells. While pre-existing cccDNA is not eradicated by short-term treatment with FLS-359, its transcriptional activity is substantially impaired, likely through inhibition of viral promoter activities. Consistent with the inhibition of viral transcription, HBsAg production by HepG2.2.15 cells, which contain integrated HBV genomes, is also suppressed by FLS-359. Our study provides further insights on SIRT2 regulation of HBV infection and supports the development of potent SIRT2 inhibitors as HBV antivirals.
Collapse
Affiliation(s)
- Liudi Tang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA; Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA.
| | - Stacy Remiszewski
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | | | - Lillian W Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Thomas Shenk
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| |
Collapse
|
12
|
Abe-Chayama H, Kawase T, Ichinohe T, Ishida Y, Tateno C, Hijikata M, Chayama K. Hepatitis B virus-specific human stem cell memory T cells differentiate into cytotoxic T cells and eradicate HBV-infected hepatocytes in mice. FEBS Lett 2024; 598:1354-1365. [PMID: 38594179 DOI: 10.1002/1873-3468.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/25/2023] [Accepted: 02/08/2024] [Indexed: 04/11/2024]
Abstract
Chronic infection with the hepatitis B virus (HBV) induces progressive hepatic impairment. Achieving complete eradication of the virus remains a formidable challenge. Cytotoxic T lymphocytes, specific to viral antigens, either exhibit a numerical deficiency or succumb to an exhausted state in individuals chronically afflicted with HBV. The comprehension of the genesis and dissemination of stem cell memory T cells (TSCMs) targeting HBV remains inadequately elucidated. We identified TSCMs in subjects with chronic HBV infection and scrutinized their efficacy in a murine model with human hepatocyte transplants, specifically the TK-NOG mice. TSCMs were discerned in all subjects under examination. Introduction of TSCMs into the HBV mouse model precipitated a severe necro-inflammatory response, resulting in the elimination of human hepatocytes. TSCMs may constitute a valuable tool in the pursuit of a remedial therapy for HBV infection.
Collapse
Affiliation(s)
- Hiromi Abe-Chayama
- Center for Medical Specialist Graduate Education and Research, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Takakazu Kawase
- Department of Immune Regenerative Medicine, International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Japan
| | | | | | | | - Kazuaki Chayama
- Hiroshima Institute of Life Sciences, Japan
- Collaborative Research Laboratory of Medical Innovation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
13
|
Mooney AH, Draper SL, Burn OK, Anderson RJ, Compton BJ, Tang C, Farrand KJ, Di Lucia P, Ravà M, Fumagalli V, Giustini L, Bono E, Godfrey DI, Heath WR, Yuan W, Chisari FV, Guidotti LG, Iannacone M, Sidney J, Sette A, Gulab SA, Painter GF, Hermans IF. Preclinical evaluation of therapeutic vaccines for chronic hepatitis B that stimulate antiviral activities of T cells and NKT cells. JHEP Rep 2024; 6:101038. [PMID: 38694959 PMCID: PMC11061331 DOI: 10.1016/j.jhepr.2024.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 05/04/2024] Open
Abstract
Background & Aims Liver diseases resulting from chronic HBV infection are a significant cause of morbidity and mortality. Vaccines that elicit T-cell responses capable of controlling the virus represent a treatment strategy with potential for long-term effects. Here, we evaluated vaccines that induce the activity of type I natural killer T (NKT) cells to limit viral replication and license stimulation of conventional antiviral T-cells. Methods Vaccines were prepared by conjugating peptide epitopes to an NKT-cell agonist to promote co-delivery to antigen-presenting cells, encouraging NKT-cell licensing and stimulation of T cells. Activity of the conjugate vaccines was assessed in transgenic mice expressing the complete HBV genome, administered intravenously to maximise access to NKT cell-rich tissues. Results The vaccines induced only limited antiviral activity in unmanipulated transgenic hosts, likely attributable to NKT-cell activation as T-cell tolerance to viral antigens is strong. However, in a model of chronic hepatitis B involving transfer of naive HBcAg-specific CD8+ T cells into the transgenic mice, which typically results in specific T-cell dysfunction without virus control, vaccines containing the targeted HBcAg epitope induced prolonged antiviral activity because of qualitatively improved T-cell stimulation. In a step towards a clinical product, vaccines were prepared using synthetic long peptides covering clusters of known HLA-binding epitopes and shown to be immunogenic in HLA transgenic mice. Predictions based on HLA distribution suggest a product containing three selected SLP-based vaccines could give >90 % worldwide coverage, with an average of 3.38 epitopes targeted per individual. Conclusions The novel vaccines described show promise for further clinical development as a treatment for chronic hepatitis B. Impact and Implications Although there are effective prophylactic vaccines for HBV infection, it is estimated that 350-400 million people worldwide have chronic hepatitis B, putting these individuals at significant risk of life-threatening liver diseases. Therapeutic vaccination aimed at activating or boosting HBV-specific T-cell responses holds potential as a strategy for treating chronic infection, but has so far met with limited success. Here, we show that a glycolipid-peptide conjugate vaccine designed to coordinate activity of type I NKT cells alongside conventional antiviral T cells has antiviral activity in a mouse model of chronic infection. It is anticipated that a product based on a combination of three such conjugates, each prepared using long peptides covering clusters of known HLA-binding epitopes, could be developed further as a treatment for chronic hepatitis B with broad global HLA coverage.
Collapse
Affiliation(s)
- Anna H. Mooney
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sarah L. Draper
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Olivia K. Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Regan J. Anderson
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Benjamin J. Compton
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Chingwen Tang
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Bono
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - William R. Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francis V. Chisari
- Department of Immunology & Microbial Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Luca G. Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shivali A. Gulab
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
- Avalia Immunotherapies Limited, Wellington, New Zealand
| | - Gavin F. Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
14
|
De Battista D, Yakymi R, Scheibe E, Sato S, Gerstein H, Markowitz TE, Lack J, Mereu R, Manieli C, Zamboni F, Farci P. Identification of Two Distinct Immune Subtypes in Hepatitis B Virus (HBV)-Associated Hepatocellular Carcinoma (HCC). Cancers (Basel) 2024; 16:1370. [PMID: 38611048 PMCID: PMC11011136 DOI: 10.3390/cancers16071370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
HBV is the most common risk factor for HCC development, accounting for almost 50% of cases worldwide. Despite significant advances in immunotherapy, there is limited information on the HBV-HCC tumor microenvironment (TME), which may influence the response to checkpoint inhibitors. Here, we characterize the TME in a unique series of liver specimens from HBV-HCC patients to identify who might benefit from immunotherapy. By combining an extensive immunohistochemistry analysis with the transcriptomic profile of paired liver samples (tumor vs. nontumorous tissue) from 12 well-characterized Caucasian patients with HBV-HCC, we identified two distinct tumor subtypes that we defined immune-high and immune-low. The immune-high subtype, seen in half of the patients, is characterized by a high number of infiltrating B and T cells in association with stromal activation and a transcriptomic profile featuring inhibition of antigen presentation and CTL activation. All the immune-high tumors expressed high levels of CTLA-4 and low levels of PD-1, while PD-L1 was present only in four of six cases. In contrast, the immune-low subtype shows significantly lower lymphocyte infiltration and stromal activation. By whole exome sequencing, we documented that four out of six individuals with the immune-low subtype had missense mutations in the CTNNB1 gene, while only one patient had mutations in this gene in the immune-high subtype. Outside the tumor, there were no differences between the two subtypes. This study identifies two distinctive immune subtypes in HBV-associated HCC, regardless of the microenvironment observed in the surrounding nontumorous tissue, providing new insights into pathogenesis. These findings may be instrumental in the identification of patients who might benefit from immunotherapy.
Collapse
Affiliation(s)
- Davide De Battista
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Rylee Yakymi
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Evangeline Scheibe
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Shinya Sato
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Hannah Gerstein
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Roberto Mereu
- Department of Surgery, Liver Transplantation Center, Azienda Ospedaliera Brotzu, 09047 Cagliari, Italy; (R.M.); (F.Z.)
| | - Cristina Manieli
- Sevizio di Anatomia Patologica, Azienda Ospedaliera Brotzu, 09047 Cagliari, Italy;
| | - Fausto Zamboni
- Department of Surgery, Liver Transplantation Center, Azienda Ospedaliera Brotzu, 09047 Cagliari, Italy; (R.M.); (F.Z.)
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| |
Collapse
|
15
|
Ma H, Yan QZ, Ma JR, Li DF, Yang JL. Overview of the immunological mechanisms in hepatitis B virus reactivation: Implications for disease progression and management strategies. World J Gastroenterol 2024; 30:1295-1312. [PMID: 38596493 PMCID: PMC11000084 DOI: 10.3748/wjg.v30.i10.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatitis B virus (HBV) reactivation is a clinically significant challenge in disease management. This review explores the immunological mechanisms underlying HBV reactivation, emphasizing disease progression and management. It delves into host immune responses and reactivation's delicate balance, spanning innate and adaptive immunity. Viral factors' disruption of this balance, as are interactions between viral antigens, immune cells, cytokine networks, and immune checkpoint pathways, are examined. Notably, the roles of T cells, natural killer cells, and antigen-presenting cells are discussed, highlighting their influence on disease progression. HBV reactivation's impact on disease severity, hepatic flares, liver fibrosis progression, and hepatocellular carcinoma is detailed. Management strategies, including anti-viral and immunomodulatory approaches, are critically analyzed. The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation. In conclusion, this comprehensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation. With a dedicated focus on understanding its implications for disease progression and the prospects of efficient management strategies, this article contributes significantly to the knowledge base. The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches, ultimately enhancing disease management and elevating patient outcomes. The dynamic landscape of management strategies is critically scrutinized, spanning anti-viral and immunomodulatory approaches. The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
Collapse
Affiliation(s)
- Hui Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Qing-Zhu Yan
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jing-Ru Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Dong-Fu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jun-Ling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
16
|
Zhang A, Lao X, Liang J, Xia X, Ma L, Liang J. Case Report: Pneumonia Caused by Chlamydia Psittaci and Cryptococcus Co-Infection. Infect Drug Resist 2024; 17:845-849. [PMID: 38463387 PMCID: PMC10924924 DOI: 10.2147/idr.s445920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
This study presents a rare case of pneumonia caused by a co-infection of Chlamydia psittaci and Cryptococcus, confirmed by metagenomic next-generation sequencing (mNGS). The patient, who had underlying chronic hepatitis B, had adopted a stray pigeon before the onset of the disease. The primary symptoms were fever, and a productive cough. The patient recovered following treatment with moxifloxacin and itraconazole. C. psittaci and Cryptococcus infections may both have been transmitted from the stray pigeon. This report highlights the potential for infections caused by multiple zoonotic pathogens and the value of mNGS for making the diagnosis of these infections.
Collapse
Affiliation(s)
- Anbing Zhang
- Department of Respiratory and Critical Care Medicine, Zhongshan People’s Hospital, Zhongshan, People’s Republic of China
| | - Xiaoli Lao
- Department of Respiratory and Critical Care Medicine, Zhongshan People’s Hospital, Zhongshan, People’s Republic of China
- Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Jinguang Liang
- Department of Respiratory and Critical Care Medicine, Zhongshan Huangpu People’s Hospital, Zhongshan, People’s Republic of China
| | - Xiuqiong Xia
- Department of Respiratory and Critical Care Medicine, Zhongshan People’s Hospital, Zhongshan, People’s Republic of China
| | - Lei Ma
- Department of Respiratory and Critical Care Medicine, Fuyang Second People’s Hospital, Fuyang, People’s Republic of China
| | - Jianping Liang
- Department of Respiratory and Critical Care Medicine, Zhongshan People’s Hospital, Zhongshan, People’s Republic of China
- Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| |
Collapse
|
17
|
Xu R, Wu Y, Xiang X, Lv X, He M, Xu C, Lai G, Xiang T. Sulforaphane effectively inhibits HBV by altering Treg/Th17 immune balance and the MIF-macrophages polarizing axis in vitro and in vivo. Virus Res 2024; 341:199316. [PMID: 38215982 PMCID: PMC10825640 DOI: 10.1016/j.virusres.2024.199316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a major public health problem. After HBV infection, viral antigens shift the immune balance in favor of viral escape. Sulforaphane (SFN) is a traditional Chinese medicine.It regulates multi-biological activities, including anti-inflammation, anticancer, and antiviral. However, few studies reported that SFN can inhibit HBV infection before. METHODS An immunocompetent HBV CBA/CaJ mouse model and a co-culture model were used to explore the effect of SFN on HBV and whether SFN altered the immune balance after HBV infection. RESULTS We found that SFN was able to reduce HBV DNA, cccDNA, HBsAg, HBeAg, and HBcAg levels in serum and liver tissues of HBV-infected mice. In vitro and in vivo experiments showed that SFN could significantly increase the expression of Cd86 and iNOS and inhibit the expression of Arg1 on macrophages after HBV infection. After SFN administration, Th17 markers in liver tissue and serum were significantly increased. There was no significant changes in the proportion of Treg cells in peripheral blood, but a significant increase in the proportion of Th17 cells and decrease of the Treg/Th17 ratio. Using a network pharmacology approach, we predicted macrophage migration inhibitory factor (MIF) as a potential target of SFN and further validated that MIF expression was significantly increased after HBV infection and SFN significantly inhibited MIF expression both in vitro and in vivo. There was an upward trend in HBV markers (p>0.05) after MIF overexpression. Overexpression of MIF combined with the use of SFN resulted in a significant reversion in the expression of HBV markers and polarization of macrophages towards the M1 phenotype. CONCLUSION Our results indicated that immunocompetent HBV CBA/CaJ mouse model is a good model to evaluate HBV infection. SFN could inhibit the expression of HBV markers, promote polarization of macrophages towards the M1 phenotype after HBV infection, change the proportion of Treg and Th17 cells. Our findings demonstrate that SFN inhibit HBV infection by inhibiting the expression of MIF and promoting the polarization of macrophages towards the M1 phenotype, which illustrates a promising therapeutic approach in HBV infection.
Collapse
Affiliation(s)
- Ruqing Xu
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Xiang
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| | - Xiaoqin Lv
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| | - Miao He
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| | - Chang Xu
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| | - Guoqi Lai
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China.
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Translational Research for Cancer metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China; Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Van Gulck E, Conceição-Neto N, Aerts L, Pierson W, Verschueren L, Vleeschouwer M, Krishna V, Nájera I, Pauwels F. Retreatment with HBV siRNA Results in Additional Reduction in HBV Antigenemia and Immune Stimulation in the AAV-HBV Mouse Model. Viruses 2024; 16:347. [PMID: 38543713 PMCID: PMC10975807 DOI: 10.3390/v16030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND AND AIMS Treatment with siRNAs that target HBV has demonstrated robust declines in HBV antigens. This effect is also observed in the AAV-HBV mouse model, which was used to investigate if two cycles of GalNAc-HBV-siRNA treatment could induce deeper declines in HBsAg levels or prevent rebound, and to provide insights into the liver immune microenvironment. METHODS C57Bl/6 mice were transduced with one of two different titers of AAV-HBV for 28 days, resulting in stable levels of HBsAg of about 103 or 105 IU/mL. Mice were treated for 12 weeks (four doses q3wk) per cycle with 3 mg/kg of siRNA-targeting HBV or an irrelevant sequence either once (single treatment) or twice (retreatment) with an 8-week treatment pause in between. Blood was collected to evaluate viral parameters. Nine weeks after the last treatment, liver samples were collected to perform phenotyping, bulk RNA-sequencing, and immunohistochemistry. RESULTS Independent of HBsAg baseline levels, treatment with HBV-siRNA induced a rapid decline in HBsAg levels, which then plateaued before gradually rebounding 12 weeks after treatment stopped. A second cycle of HBV-siRNA treatment induced a further decline in HBsAg levels in serum and the liver, reaching undetectable levels and preventing rebound when baseline levels were 103 IU/mL. This was accompanied with a significant increase in inflammatory macrophages in the liver and significant upregulation of regulatory T-cells and T-cells expressing immune checkpoint receptors. CONCLUSIONS Retreatment induced an additional decline in HBsAg levels, reaching undetectable levels when baseline HBsAg levels were 3log10 or less. This correlated with T-cell activation and upregulation of Trem2.
Collapse
Affiliation(s)
- Ellen Van Gulck
- Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium; (N.C.-N.)
| | - Nádia Conceição-Neto
- Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium; (N.C.-N.)
| | - Liese Aerts
- Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium; (N.C.-N.)
| | - Wim Pierson
- Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium; (N.C.-N.)
| | - Lore Verschueren
- Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium; (N.C.-N.)
| | - Mara Vleeschouwer
- Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium; (N.C.-N.)
| | - Vinod Krishna
- Infectious Diseases and Vaccines, Janssen Research and Development, 1400 McKean Road, Springhouse, PA 19002, USA
| | - Isabel Nájera
- Infectious Diseases and Vaccines, Janssen Research and Development, 1600 Sierra Point Parkway, South San Fransisco, CA 94005, USA
| | - Frederik Pauwels
- Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium; (N.C.-N.)
| |
Collapse
|
19
|
Beudeker BJB, Osmani Z, van Oord GW, Groothuismink ZMA, de Knegt RJ, Hoogenboezem RM, Bindels EMJ, van de Werken HJG, Boonstra A. Association of HBsAg levels with differential gene expression in NK, CD8 T, and memory B cells in treated patients with chronic HBV. JHEP Rep 2024; 6:100980. [PMID: 38314025 PMCID: PMC10835465 DOI: 10.1016/j.jhepr.2023.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 02/06/2024] Open
Abstract
Background & Aims HBsAg secretion may impact immune responses to chronic HBV infection. Thus, therapeutic approaches to suppress HBsAg production are being investigated. Our study aims to examine the immunomodulatory effects of high and low levels of circulating HBsAg and thereby improve our understanding of anti-HBV immunity. Methods An optimized 10x Genomics single-cell RNA sequencing workflow was applied to blood samples and liver fine-needle aspirates from 18 patients undergoing tenofovir/entecavir (NUC) treatment for chronic HBV infection. They were categorized based on their HBsAg levels: high (920-12,447 IU/ml) or low (1-100 IU/ml). Cluster frequencies, differential gene expression, and phenotypes were analyzed. Results In the blood of HBV-infected patients on NUC, the proportion of KLRC2+ "adaptive" natural killer (NK) cells was significantly lower in the HBsAg-high group and, remarkably, both KLRC2+ NK and KLRG1+ CD8 T cells display enrichment of lymphocyte activation-associated gene sets in the HBsAg-low group. High levels of HBsAg were associated with mild immune activation in the liver. However, no suppression of liver-resident CXCR6+ NCAM1+ NK or CXCR6+ CD69+ CD8 T cells was detected, while memory B cells showed signs of activation in both the blood and liver. Conclusions Among NUC-treated patients, we observed a minimal impact of HBsAg on leukocyte populations in the blood and liver. However, for the first time, we found that HBsAg has distinct effects, restricted to NK-, CD8 T-, and memory B-cell subsets, in the blood and liver. Our findings are highly relevant for current clinical studies evaluating treatment strategies aimed at suppressing HBsAg production and reinvigorating immunity to HBV. Impact and implications This study provides unique insight into the impact of HBsAg on gene expression levels of immune cell subsets in the blood and liver, particularly in the context of NUC-treated chronic HBV infection. It holds significant relevance for current and future clinical studies evaluating treatment strategies aimed at suppressing HBsAg production and reinvigorating immunity to HBV. Our findings raise questions about the effectiveness of such treatment strategies and challenge the previously hypothesized immunomodulatory effects of HBsAg on immune responses against HBV.
Collapse
Affiliation(s)
- Boris J B Beudeker
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Zgjim Osmani
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gertine W van Oord
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Zwier M A Groothuismink
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | | | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
20
|
Dong H, Liao Y, Shang M, Fu Y, Zhang H, Luo M, Hu B. Effects of co-infection with Clonorchis sinensis on T cell exhaustion levels in patients with chronic hepatitis B. J Helminthol 2024; 98:e13. [PMID: 38263743 DOI: 10.1017/s0022149x23000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
To investigate the effects of co-infection with Clonorchis sinensis (C. sinensis) on T cell exhaustion levels in patients with chronic hepatitis B, we enrolled clinical cases in this study, including the patients with concomitant C. sinensis and HBV infection. In this study, we detected inhibitory receptors and cytokine expression in circulating CD4+ and CD8+ T cells by flow cytometry. PD-1 and TIM-3 expression levels were significantly higher on CD4+ T and CD8+ T cells from co-infected patients than on those from the HBV patients. In addition, CD4+ T cells and CD8+ T cells function were significantly inhibited by C. sinensis and HBV co-infection compared with HBV single infection, secreting lower levels of Interferon gamma (IFN-γ), Interleukin-2 (IL-2), and TNF-α. Our current results suggested that C. sinensis co-infection could exacerbate T cell exhaustion in patients with chronic hepatitis B. PD-1 and TIM-3 could be novel biomarkers for T cell exhaustion in patients with Clonorchis sinensis and chronic hepatitis B co-infection. Furthermore, it may be one possible reason for the weaker response to antiviral therapies and the chronicity of HBV infection in co-infected patients. We must realize the importance of C. sinensis treatment for HBV-infected patients. It might provide useful information for clinical doctors to choose the right treatment plans.
Collapse
Affiliation(s)
- Huimin Dong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan Liao
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Mei Shang
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuechun Fu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongbin Zhang
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Minqi Luo
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Timmerman AL, Schönert ALM, van der Hoek L. Anelloviruses versus human immunity: how do we control these viruses? FEMS Microbiol Rev 2024; 48:fuae005. [PMID: 38337179 PMCID: PMC10883694 DOI: 10.1093/femsre/fuae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
One continuous companion and one of the major players in the human blood virome are members of the Anelloviridae family. Anelloviruses are probably found in all humans, infection occurs early in life and the composition (anellome) is thought to remain stable and personal during adulthood. The stable anellome implies a great balance between the host immune system and the virus. However, the lack of a robust culturing system hampers direct investigation of interactions between virus and host cells. Other techniques, however, including next generation sequencing, AnelloScan-antibody tests, evolution selection pressure analysis, and virus protein structures, do provide new insights into the interactions between anelloviruses and the host immune system. This review aims at providing an overview of the current knowledge on the immune mechanisms acting on anelloviruses and the countering viral mechanisms allowing immune evasion.
Collapse
Affiliation(s)
- Anne L Timmerman
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Antonia L M Schönert
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Lia van der Hoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Pan B, Wang Z, Chen R, Zhang X, Qiu J, Wu X, Yao Y, Luo Y, Wang X, Tang N. Single-cell atlas reveals characteristic changes in intrahepatic HBV-specific leukocytes. Microbiol Spectr 2024; 12:e0286023. [PMID: 38032223 PMCID: PMC10782979 DOI: 10.1128/spectrum.02860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Hepatitis B virus (HBV)-specific CD8+ T cells play a central role in the clearance of virus and HBV-related liver injury. Acute infection with HBV induces a vigorous, multifunctional CD8+ T cell response, whereas chronic one exhibits a weaker response. Our study elucidated HBV-specific T cell responses in terms of viral abundance rather than the timing of infection. We showed that in the premalignant stage, the degree of impaired T cell function was not synchronized with the viral surface antigen, which was attributed the liver's tolerance to the virus. However, after the development of hepatocellular carcinoma, T cell exhaustion was inevitable, and it was marked by the exhaustion of the signature transcription factor TOX.
Collapse
Affiliation(s)
- Banglun Pan
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zengbin Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Rui Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxuan Wu
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yue Luo
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
23
|
Wang L, Zeng X, Wang Z, Fang L, Liu J. Recent advances in understanding T cell activation and exhaustion during HBV infection. Virol Sin 2023; 38:851-859. [PMID: 37866815 PMCID: PMC10786656 DOI: 10.1016/j.virs.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major public health concern globally, and T cell responses are widely believed to play a pivotal role in mediating HBV clearance. Accordingly, research on the characteristics of HBV-specific T cell responses, from activation to exhaustion, has advanced rapidly. Here, we summarize recent developments in characterizing T cell immunity in HBV infection by reviewing basic and clinical research published in the last five years. We provide a comprehensive summary of the mechanisms that induce effective anti-HBV T cell immunity, as well as the latest developments in understanding T cell dysfunction in chronic HBV infection. Furthermore, we briefly discuss current novel treatment strategies aimed at restoring anti-HBV T cell responses.
Collapse
Affiliation(s)
- Lu Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zida Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Fang
- Central Sterile Supply Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
24
|
Cargill T, Cicconi P, Brown A, Holland L, Karanth B, Rutkowski K, Ashwin E, Mehta R, Chinnakannan S, Sebastian S, Bussey L, Sorensen H, Klenerman P, Evans T, Barnes E. HBV001: Phase I study evaluating the safety and immunogenicity of the therapeutic vaccine ChAdOx1-HBV. JHEP Rep 2023; 5:100885. [PMID: 37791379 PMCID: PMC10543776 DOI: 10.1016/j.jhepr.2023.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/23/2023] [Accepted: 07/22/2023] [Indexed: 10/05/2023] Open
Abstract
Background & Aims Millions of people worldwide are infected chronically with HBV, which results in significant morbidity and mortality. Therapeutic vaccination is a strategy that aims to induce functional cure by restoring cellular immunity to HBV. Previously we have shown the candidate HBV immunotherapeutic vaccine ChAdOx1-HBV, encoding all major HBV antigens and a genetic adjuvant (shark invariant chain), is highly immunogenic in mice. Methods Here we report the results of HBV001, a first-in-human, phase I, non-randomised, dose-escalation trial of ChAdOx1-HBV assessed in healthy volunteers and patients with chronic HBV (CHB). Results Vaccination with a single dose of ChAdOx1-HBV was safe and well tolerated in both healthy and CHB cohorts. Vaccination induced high magnitude HBV-specific T cell responses against all major HBV antigens (core, polymerase, and surface) in healthy volunteers. Responses were detected but lower in patients with CHB. T cells generated by vaccination were cross-reactive between HBV C and D genotypes. Conclusions ChAdOx1-HBV is safe and immunogenic in healthy volunteers and patients with CHB. In further studies, ChAdOx1-HBV will be used in combination with other therapeutic strategies with an aim to overcome the attenuated immunogenicity in patients with CHB. Impact and implications Therapeutic vaccine ChAdOx1-HBV, a novel treatment for chronic hepatitis B infection (CHB), has been shown to be immunogenic in preclinical studies. In HBV001, a first-in-human phase I study, we show vaccination with ChAdOx1-HBV is safe and generates high magnitude T cell responses in healthy volunteers and lower levels of responses in patients with CHB. This is an important first step in the development of ChAdOx1-HBV as part of a wider therapeutic strategy to induce hepatitis B functional cure, and is of great interest to patients CHB and clinicians treating the condition. Clinical Trials Registration This study is registered at ClinicalTrials.gov (NCT04297917).
Collapse
Affiliation(s)
- Tamsin Cargill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paola Cicconi
- Jenner Vaccine Trials Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Louise Holland
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Jenner Vaccine Trials Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | | | | | - Emily Ashwin
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Jenner Vaccine Trials Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | | | - Senthil Chinnakannan
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, The Joint Research Office, OUH Cowley, Oxford, UK
| | | | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, The Joint Research Office, OUH Cowley, Oxford, UK
| |
Collapse
|
25
|
Rossi M, Vecchi A, Tiezzi C, Barili V, Fisicaro P, Penna A, Montali I, Daffis S, Fletcher SP, Gaggar A, Medley J, Graupe M, Lad L, Loglio A, Soffredini R, Borghi M, Pollicino T, Musolino C, Alfieri A, Brillo F, Laccabue D, Massari M, Boarini C, Abbati G, Pedrazzi G, Missale G, Lampertico P, Ferrari C, Boni C. Phenotypic CD8 T cell profiling in chronic hepatitis B to predict HBV-specific CD8 T cell susceptibility to functional restoration in vitro. Gut 2023; 72:2123-2137. [PMID: 36717219 PMCID: PMC10579518 DOI: 10.1136/gutjnl-2022-327202] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Exhausted hepatitis B virus (HBV)-specific CD8 T cells in chronic HBV infection are broadly heterogeneous. Characterisation of their functional impairment may allow to distinguish patients with different capacity to control infection and reconstitute antiviral function. DESIGN HBV dextramer+CD8 T cells were analysed ex vivo for coexpression of checkpoint/differentiation markers, transcription factors and cytokines in 35 patients with HLA-A2+chronic hepatitis B (CHB) and in 29 control HBsAg negative CHB patients who seroconverted after NUC treatment or spontaneously. Cytokine production was also evaluated in HBV peptide-stimulated T cell cultures, in the presence or absence of antioxidant, polyphenolic, PD-1/PD-L1 inhibitor and TLR-8 agonist compounds and the effect on HBV-specific responses was further validated on additional 24 HLA-A2 negative CHB patients. RESULTS Severely exhausted HBV-specific CD8 T cell subsets with high expression of inhibitory receptors, such as PD-1, TOX and CD39, were detected only in a subgroup of chronic viraemic patients. Conversely, a large predominance of functionally more efficient HBV-specific CD8 T cell subsets with lower expression of coinhibitory molecules and better response to in vitro immune modulation, typically detected after resolution of infection, was also observed in a proportion of chronic viraemic HBV patients. Importantly, the same subset of patients who responded more efficiently to in vitro immune modulation identified by HBV-specific CD8 T cell analysis were also identified by staining total CD8 T cells with PD-1, TOX, CD127 and Bcl-2. CONCLUSIONS The possibility to distinguish patient cohorts with different capacity to respond to immune modulatory compounds in vitro by a simple analysis of the phenotypic CD8 T cell exhaustion profile deserves evaluation of its clinical applicability.
Collapse
Affiliation(s)
- Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Anuj Gaggar
- Gilead Sciences Inc, Foster City, California, USA
| | | | | | - Latesh Lad
- Gilead Sciences Inc, Foster City, California, USA
| | - Alessandro Loglio
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Roberta Soffredini
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marta Borghi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Teresa Pollicino
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Cristina Musolino
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Arianna Alfieri
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Federica Brillo
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marco Massari
- Unit of Infectious Diseases, IRCCS, Reggio Emilia, Italy
| | - Chiara Boarini
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Abbati
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Pedrazzi
- Department of Neuroscience - Biophysics and Medical Physics Unit, University of Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milano, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
26
|
Boni C, Rossi M, Montali I, Tiezzi C, Vecchi A, Penna A, Doselli S, Reverberi V, Ceccatelli Berti C, Montali A, Schivazappa S, Laccabue D, Missale G, Fisicaro P. What Is the Current Status of Hepatitis B Virus Viro-Immunology? Clin Liver Dis 2023; 27:819-836. [PMID: 37778772 DOI: 10.1016/j.cld.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The natural history of hepatitis B virus (HBV) infection is closely dependent on the dynamic interplay between the host immune response and viral replication. Spontaneous HBV clearance in acute self-limited infection is the result of an adequate and efficient antiviral immune response. Instead, it is widely recognized that in chronic HBV infection, immunologic dysfunction contributes to viral persistence. Long-lasting exposure to high viral antigens, upregulation of multiple co-inhibitory receptors, dysfunctional intracellular signaling pathways and metabolic alterations, and intrahepatic regulatory mechanisms have been described as features ultimately leading to a hierarchical loss of effector functions up to full T-cell exhaustion.
Collapse
Affiliation(s)
- Carolina Boni
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sara Doselli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Reverberi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Anna Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Schivazappa
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Missale
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
27
|
Cai Y, Ji H, Zhou X, Zhao K, Zhang X, Pan L, Shi R. Interleukin-21 modulates balance between regulatory T cells and T-helper 17 cells in chronic hepatitis B virus infection. BMC Infect Dis 2023; 23:719. [PMID: 37875903 PMCID: PMC10594809 DOI: 10.1186/s12879-023-08723-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Chronic HBV infection is always accompanied by differences in the balance between regulatory T cells (Tregs) and T-helper 17 (Th17) cells in infection phases. IL-21 plays an important role in the progression of chronic HBV infection. Thus, the aim of our study was to investigate the role of the regulatory function of IL-21 in maintaining the balance between Tregs and Th17 cells in chronic HBV infection. METHODS Twenty-five chronic HBV-infected patients in the immune-tolerant (IT) phase and 23 chronic hepatitis B (CHB) patients were recruited in this study. Cytokines production was measured by ELISA. The mRNA expression levels were determined by qPCR. CD4+T cells were stimulated with or without IL-21. Tregs and Th17 cells were measured by flow cytometry. pSTAT3 and STAT3 expression was assessed by Western blotting. RESULTS The concentration of IL-21 in the serum of CHB were significantly higher than that in the serum from IT patients, and IL-21 and IL-21R levels in the PBMCs from CHB were higher than those from IT patients. IL-21 promoted Th17 cells differentiation and function but inhibited Treg cells differentiation and function by activating STAT3 signaling pathways, upregulating RORγt expression, downregulating Foxp3 expression, by increasing IL-17and IL-22 secretion, and decreasing TGF-β secretion in chronic HBV infection. The proportion of Tregs and TGF-β concentrations in CHB was significantly lower than that in IT patients. Furthermore, the percentage of Th17 cells and the IL-17 concentration in CHB was markedly higher than that in IT patients, causing a reduction in the Tregs/Th17 ratio in CHB patients. CONCLUSIONS Our results suggest that IL-21 may contribute to inflammation in chronic HBV infection by modulating the balance between Treg and Th17 cells.
Collapse
Affiliation(s)
- Yun Cai
- Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
- Department of Gastroenterology Disease, The First People's Hospital of Jintan District, Changzhou, 213200, China
| | - Hailei Ji
- Department of Infections Disease, The Third People's Hospital of Zhenjiang, Zhenjiang, 212000, China
| | - Xin Zhou
- Department of Gastroenterology Disease, The First People's Hospital of Jintan District, Changzhou, 213200, China
| | - Kai Zhao
- Department of Gastroenterology Disease, The First People's Hospital of Jintan District, Changzhou, 213200, China
| | - Xiaoping Zhang
- Department of Gastroenterology Disease, The First People's Hospital of Jintan District, Changzhou, 213200, China
| | - Liang Pan
- Department of Gastroenterology Disease, The First People's Hospital of Jintan District, Changzhou, 213200, China
| | - Ruihua Shi
- Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.
- Department of Gastroenterology Disease, The Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| |
Collapse
|
28
|
Fu YL, Zhou SN, Hu W, Li J, Zhou MJ, Li XY, Wang YY, Zhang P, Chen SY, Fan X, Song JW, Jiao YM, Xu R, Zhang JY, Zhen C, Zhou CB, Yuan JH, Shi M, Wang FS, Zhang C. Metabolic interventions improve HBV envelope-specific T-cell responses in patients with chronic hepatitis B. Hepatol Int 2023; 17:1125-1138. [PMID: 36976426 PMCID: PMC10522531 DOI: 10.1007/s12072-023-10490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/16/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Restoration of HBV-specific T cell immunity is a promising approach for the functional cure of chronic Hepatitis B (CHB), necessitating the development of valid assays to boost and monitor HBV-specific T cell responses in patients with CHB. METHODS We analyzed hepatitis B virus (HBV) core- and envelope (env)-specific T cell responses using in vitro expanded peripheral blood mononuclear cells (PBMCs) from patients with CHB exhibiting different immunological phases, including immune tolerance (IT), immune activation (IA), inactive carrier (IC), and HBeAg-negative hepatitis (ENEG). Additionally, we evaluated the effects of metabolic interventions, including mitochondria-targeted antioxidants (MTA), polyphenolic compounds, and ACAT inhibitors (iACAT), on HBV-specific T-cell functionality. RESULTS We found that HBV core- and env-specific T cell responses were finely coordinated and more profound in IC and ENEG than in the IT and IA stages. HBV env-specific T cells were more dysfunctional but prone to respond to metabolic interventions using MTA, iACAT, and polyphenolic compounds than HBV core-specific T-cells. The responsiveness of HBV env-specific T cells to metabolic interventions can be predicted by the eosinophil (EO) count and the coefficient of variation of red blood cell distribution width (RDW-CV). CONCLUSION These findings may provide valuable information for metabolically invigorating HBV-specific T-cells to treat CHB.
Collapse
Affiliation(s)
- Yu-Long Fu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuang-Nan Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Hu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming-Ju Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Yu Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - You-Yuan Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Si-Yuan Chen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Hong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
29
|
Jiang B, Zhou Y, Liu Y, He S, Liao B, Peng T, Yao L, Qi L. Research Progress on the Role and Mechanism of IL-37 in Liver Diseases. Semin Liver Dis 2023; 43:336-350. [PMID: 37582401 PMCID: PMC10620037 DOI: 10.1055/a-2153-8836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Cytokines are important components of the immune system that can predict or influence the development of liver diseases. IL-37, a new member of the IL-1 cytokine family, exerts potent anti-inflammatory and immunosuppressive effects inside and outside cells. IL-37 expression differs before and after liver lesions, suggesting that it is associated with liver disease; however, its mechanism of action remains unclear. This article mainly reviews the biological characteristics of IL-37, which inhibits hepatitis, liver injury, and liver fibrosis by inhibiting inflammation, and inhibits the development of hepatocellular carcinoma (HCC) by regulating the immune microenvironment. Based on additional evidence, combining IL-37 with liver disease markers for diagnosis and treatment can achieve more significant effects, suggesting that IL-37 can be developed into a powerful tool for the clinical adjuvant treatment of liver diseases, especially HCC.
Collapse
Affiliation(s)
- Baoyi Jiang
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yulin Zhou
- Department of Clinical Laboratory, Shunde New Rongqi Hospital, Foshan, China
| | - Yanting Liu
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Siqi He
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Baojian Liao
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Tieli Peng
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Leyi Yao
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ling Qi
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
30
|
Laupèze B, Vassilev V, Badur S. A role for immune modulation in achieving functional cure for chronic hepatitis B among current changes in the landscape of new treatments. Expert Rev Gastroenterol Hepatol 2023; 17:1135-1147. [PMID: 37847193 DOI: 10.1080/17474124.2023.2268503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Chronic hepatitis B (CHB) is rarely cured using available treatments. Barriers to cure are: 1) persistence of reservoirs of hepatitis B virus (HBV) replication and antigen production (HBV DNA); 2) high burden of viral antigens that promote T cell exhaustion with T cell dysfunction; 3) CHB-induced impairment of immune responses. AREAS COVERED We discuss options for new therapies that could address one or more of the barriers to functional cure, with particular emphasis on the potential role of immunotherapy. EXPERT OPINION/COMMENTARY Ideally, a sterilizing cure for CHB would translate into finite therapies that result in loss of HBV surface antigen and eradication of HBV DNA. Restoration of a functional adaptive immune response, a key facet of successful CHB treatment, remains elusive. Numerous strategies targeting the high viral DNA and antigen burden and aiming to restore the host immune responses will enter clinical development in coming years. Most patients are likely to require combinations of several drugs, personalized according to virologic and disease characteristics, patient preference, accessibility, and affordability. The management of CHB is a global health priority. Expedited drug development requires collaborations between regulatory agencies, scientists, clinicians, and within the industry to facilitate testing of the best drug combinations.
Collapse
|
31
|
Zheng P, Dou Y, Wang Q. Immune response and treatment targets of chronic hepatitis B virus infection: innate and adaptive immunity. Front Cell Infect Microbiol 2023; 13:1206720. [PMID: 37424786 PMCID: PMC10324618 DOI: 10.3389/fcimb.2023.1206720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major global public health risk that threatens human life and health, although the number of vaccinated people has increased. The clinical outcome of HBV infection depends on the complex interplay between viral replication and the host immune response. Innate immunity plays an important role in the early stages of the disease but retains no long-term immune memory. However, HBV evades detection by the host innate immune system through stealth. Therefore, adaptive immunity involving T and B cells is crucial for controlling and clearing HBV infections that lead to liver inflammation and damage. The persistence of HBV leads to immune tolerance owing to immune cell dysfunction, T cell exhaustion, and an increase in suppressor cells and cytokines. Although significant progress has been made in HBV treatment in recent years, the balance between immune tolerance, immune activation, inflammation, and fibrosis in chronic hepatitis B remains unknown, making a functional cure difficult to achieve. Therefore, this review focuses on the important cells involved in the innate and adaptive immunity of chronic hepatitis B that target the host immune system and identifies treatment strategies.
Collapse
Affiliation(s)
- Peiyu Zheng
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China
- Graduate School of Shanxi Medical University, Taiyuan, China
| | - Yongqing Dou
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qinying Wang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
32
|
Ahn SY, Lee J, Lee DH, Ho TL, Le CTT, Ko EJ. Chronic allergic asthma induces T-cell exhaustion and impairs virus clearance in mice. Respir Res 2023; 24:160. [PMID: 37424011 DOI: 10.1186/s12931-023-02448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/11/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Allergic asthma, one of the most common types of asthma, is thought to be highly susceptible to respiratory viral infections; however, its pathological mechanism needs to be elucidated. Recent studies have found impaired T-cell function in asthmatic mice. Therefore, we aimed to investigate the way by which asthma induction affects T-cell exhaustion in the lungs and assess the relationship between T-cell exhaustion and influenza viral infection. METHODS Chronic allergic asthma mice were induced by intranasal injection of ovalbumin for 6 weeks and asthmatic features and T cell populations in lung or airway were assessed. To determine the influenza virus susceptibility, control and asthma mice were challenged with the human influenza virus strain A/Puerto Rico/8/1934 H1N1 and evaluated the survival rate, lung damage, and virus titer. RESULTS Six weeks of OVA sensitization and challenge successfully induced chronic allergic asthma in a mouse model showing significant increase of sera IgE level and broncho-pathological features. A significant decrease in interferon-γ-producing T-cell populations and an increase in exhausted T-cell populations in the lungs of OVA-induced asthmatic mice were observed. Asthmatic mice were more susceptible to influenza virus infection than control mice showing lower survival rate and higher virus titer in lung, and a positive correlation existed between T-cell exhaustion in the lung and virus titer. CONCLUSIONS Asthma induction in mice results in the exhaustion of T-cell immunity, which may contribute to the defective capacity of viral protection. This study demonstrates a correlation between asthma conditions and viral susceptibility by investigating the functional characteristics of T-cells in asthma. Our results provide insights into the development of strategies to overcome the dangers of respiratory viral disease in patients with asthma.
Collapse
Affiliation(s)
- So Yeon Ahn
- Veterinary Medical Research Institute, Jeju National University, 63243, Jeju, Republic of Korea
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, 63243, Jeju, Republic of Korea
| | - Jueun Lee
- Veterinary Medical Research Institute, Jeju National University, 63243, Jeju, Republic of Korea
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, 63243, Jeju, Republic of Korea
| | - Dong-Ha Lee
- Veterinary Medical Research Institute, Jeju National University, 63243, Jeju, Republic of Korea
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, 63243, Jeju, Republic of Korea
| | - Thi Len Ho
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 63243, Jeju, Republic of Korea
| | - Chau Thuy Tien Le
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 63243, Jeju, Republic of Korea
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798, Singapore, Singapore
| | - Eun-Ju Ko
- Veterinary Medical Research Institute, Jeju National University, 63243, Jeju, Republic of Korea.
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, 63243, Jeju, Republic of Korea.
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 63243, Jeju, Republic of Korea.
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 30303, Atlanta, USA.
| |
Collapse
|
33
|
Li Z, Ouyang H, Zhu J. Traditional Chinese medicines and natural products targeting immune cells in the treatment of metabolic-related fatty liver disease. Front Pharmacol 2023; 14:1195146. [PMID: 37361209 PMCID: PMC10289001 DOI: 10.3389/fphar.2023.1195146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver disease affecting one-third of adults worldwide, and is strongly associated with obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of conditions ranging from simple liver fat accumulation to advanced stages like chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular carcinoma. With limited approved drugs for MAFLD, identifying promising drug targets and developing effective treatment strategies is essential. The liver plays a critical role in regulating human immunity, and enriching innate and adaptive immune cells in the liver can significantly improve the pathological state of MAFLD. In the modern era of drug discovery, there is increasing evidence that traditional Chinese medicine prescriptions, natural products and herb components can effectively treat MAFLD. Our study aims to review the current evidence supporting the potential benefits of such treatments, specifically targeting immune cells that are responsible for the pathogenesis of MAFLD. By providing new insights into the development of traditional drugs for the treatment of MAFLD, our findings may pave the way for more effective and targeted therapeutic approaches.
Collapse
|
34
|
Osmani Z, Boonstra A. Recent Insights into the Role of B Cells in Chronic Hepatitis B and C Infections. Pathogens 2023; 12:815. [PMID: 37375505 DOI: 10.3390/pathogens12060815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic viral hepatitis infections, caused by the hepatitis B or C virus, are a major global health problem causing an estimated one million deaths each year. Immunological studies have classically focused on T cells, while B cells have largely been neglected. Emerging evidence, however, highlights a role for B cells in the immunopathogenesis of chronic hepatitis B and C infections. B cell responses appear to be altered across different clinical phases of chronic HBV infection and across stages of disease in chronic HCV infection. These B cell responses show signs of a more activated state with a simultaneous enrichment of phenotypically exhausted atypical memory B cells. Despite the fact that studies show an activating B cell signature in chronic viral hepatitis infection, antibody responses to HBsAg remain impaired in chronic HBV infection, and glycoprotein E2-specific neutralizing antibody responses remain delayed in the acute phase of HCV infection. At the same time, studies have reported that a subset of HBV- and HCV-specific B cells exhibit an exhausted phenotype. This may, at least in part, explain why antibody responses in chronic HBV and HCV patients are suboptimal. Here, we summarize recent findings and discuss upcoming research questions while looking forward to how new single-cell technologies could provide novel insights into the role of B cells in chronic viral hepatitis infections.
Collapse
Affiliation(s)
- Zgjim Osmani
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
35
|
Yuen MF, Balabanska R, Cottreel E, Chen E, Duan D, Jiang Q, Patil A, Triyatni M, Upmanyu R, Zhu Y, Canducci F, Gane EJ. TLR7 agonist RO7020531 versus placebo in healthy volunteers and patients with chronic hepatitis B virus infection: a randomised, observer-blind, placebo-controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:496-507. [PMID: 36509100 DOI: 10.1016/s1473-3099(22)00727-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Toll-like receptor 7 (TLR7) agonists augment immune activity and have potential for the treatment of chronic hepatitis B virus (HBV) infection. We aimed to assess the safety and tolerability of RO7020531 (also called RG7854), a prodrug of the TLR7 agonist RO7011785, in healthy volunteers and patients with chronic HBV infection. METHODS This randomised, observer-blind, placebo-controlled, phase 1 study was done in two parts. Part 1 was done at one site in New Zealand and part 2 was done at 12 sites in Bulgaria, Hong Kong, Italy, New Zealand, the Netherlands, Taiwan, Thailand, and the UK. In part 1, healthy volunteers were randomly assigned (4:1) within one of eight dose cohorts (3 mg, 10 mg, 20 mg, 40 mg, 60 mg, 100 mg, 140 mg, or 170 mg) to receive a single RO7020531 dose or placebo or randomly assigned (4:1) within one of three dose cohorts (100 mg, 140 mg, or 170 mg) to receive either RO7020531 or placebo every other day for 13 days. In part 2, nucleoside or nucleotide analogue-suppressed patients with chronic HBV infection were randomly assigned (4:1) within cohorts 1-3 (150 mg, 150 mg, or 170 mg) to receive either RO7020531 or placebo and treatment-naive patients with chronic HBV infection were randomly assigned (3:1) in cohort 4 to receive either 150 mg of RO7020531 or placebo. Patients were treated every other day for 6 weeks. Study medication was administered orally to participants after they had fasted. Study participants and investigational staff were masked to treatment allocation. The primary outcome was the safety and tolerability of RO7020531, as measured by the incidence and severity of adverse events and the incidence of laboratory, vital sign, and electrocardiogram abnormalities, and was analysed in all participants who received at least one dose of the study medication. This trial is registered with ClinicalTrials.gov, NCT02956850, and the study is complete. FINDINGS Between Dec 12, 2016, and March 21, 2021, 340 healthy volunteers were screened in part 1, of whom 80 were randomly assigned in the single ascending dose study (eight assigned RO7020531 in each cohort and 16 assigned placebo) and 30 were randomly assigned in the multiple ascending dose study (eight assigned RO7020531 in each cohort and six assigned placebo), and 110 patients were screened in part 2, of whom 30 were randomly assigned in cohorts 1-3 (16 assigned RO7020531 150 mg, eight assigned RO7020531 170 mg, and six assigned placebo) and 20 were randomly assigned in cohort 4 (15 assigned RO7020531 and five assigned placebo). All randomly assigned participants received at least one dose of a study drug and were included in the safety analysis. All tested doses of RO7020531 were safe and had acceptable tolerability in healthy volunteers and patients. The most frequent treatment-related adverse events among the total study population were headache (15 [9%] of 160 participants), influenza-like illness (seven [4%] of 160 participants), and pyrexia (ten [6%] of 160 participants). Most adverse events were mild and transient. There were no severe or serious adverse events in healthy volunteers. In the patient cohorts, there was one severe adverse event (influenza-like illness with 170 mg of RO7020531) and one serious adverse event (moderate influenza-like illness with a 3-day hospitalisation in a treatment-naive patient receiving RO7020531). There were no treatment-related deaths. INTERPRETATION Due to acceptable safety and tolerability, RO7020531 should continue to be developed for the treatment of patients with chronic HBV infection. FUNDING F Hoffmann-La Roche.
Collapse
Affiliation(s)
- Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine and State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Rozalina Balabanska
- Clinic of Gastroenterology, Acibadem City Clinic Tokuda Hospital, Sofia, Bulgaria
| | - Emmanuelle Cottreel
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ethan Chen
- Roche Pharma Product Development China, Shanghai, China
| | - Dan Duan
- Roche Pharma Research and Early Development, Roche Innovation Center, Shanghai, China
| | - Qiudi Jiang
- Roche Pharma Research and Early Development, Roche Innovation Center, Shanghai, China
| | - Avinash Patil
- Product Development Data Science Department, Roche Products, Welwyn, UK
| | - Miriam Triyatni
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ruchi Upmanyu
- Product Development Data Science Department, Roche Products, Welwyn, UK
| | - Yonghong Zhu
- Roche Pharma Research and Early Development, Roche Innovation Center, Shanghai, China
| | - Filippo Canducci
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland.
| | - Edward J Gane
- Faculty of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Dumolard L, Aspord C, Marche PN, Macek Jilkova Z. Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Front Immunol 2023; 14:1148111. [PMID: 37056774 PMCID: PMC10086248 DOI: 10.3389/fimmu.2023.1148111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.
Collapse
Affiliation(s)
- Lucile Dumolard
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhone-Alpes, Grenoble, France
| | - Patrice N. Marche
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
- *Correspondence: Zuzana Macek Jilkova,
| |
Collapse
|
37
|
Abstract
Hepatitis B virus (HBV) infection is a major public health problem, with an estimated 296 million people chronically infected and 820 000 deaths worldwide in 2019. Diagnosis of HBV infection requires serological testing for HBsAg and for acute infection additional testing for IgM hepatitis B core antibody (IgM anti-HBc, for the window period when neither HBsAg nor anti-HBs is detected). Assessment of HBV replication status to guide treatment decisions involves testing for HBV DNA, whereas assessment of liver disease activity and staging is mainly based on aminotransferases, platelet count, and elastography. Universal infant immunisation, including birth dose vaccination is the most effective means to prevent chronic HBV infection. Two vaccines with improved immunogenicity have recently been approved for adults in the USA and EU, with availability expected to expand. Current therapies, pegylated interferon, and nucleos(t)ide analogues can prevent development of cirrhosis and hepatocellular carcinoma, but do not eradicate the virus and rarely clear HBsAg. Treatment is recommended for patients with cirrhosis or with high HBV DNA levels and active or advanced liver disease. New antiviral and immunomodulatory therapies aiming to achieve functional cure (ie, clearance of HBsAg) are in clinical development. Improved vaccination coverage, increased screening, diagnosis and linkage to care, development of curative therapies, and removal of stigma are important in achieving WHO's goal of eliminating HBV infection by 2030.
Collapse
Affiliation(s)
- Wen-Juei Jeng
- Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - George V Papatheodoridis
- Academic Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Anna S F Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Wang WX, Jia R, Jin XY, Li X, Zhou SN, Zhang XN, Zhou CB, Wang FS, Fu J. Serum cytokine change profile associated with HBsAg loss during combination therapy with PEG-IFN-α in NAs-suppressed chronic hepatitis B patients. Front Immunol 2023; 14:1121778. [PMID: 36756119 PMCID: PMC9899895 DOI: 10.3389/fimmu.2023.1121778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Objective The aim of this study was to explore the profile of cytokine changes during the combination therapy with pegylated interferon alpha (PEG-IFN-α) and its relationship with HBsAg loss in nucleos(t)ide analogs (NAs)-suppressed chronic hepatitis B patients. Methods Seventy-six patients with chronic hepatitis B with HBsAg less than 1,500 IU/ml and HBV DNA negative after receiving ≥ 1-year NAs therapy were enrolled. Eighteen patients continued to take NAs monotherapy (the NAs group), and 58 patients received combination therapy with NAs and PEG-IFN-α (the Add-on group). The levels of IFNG, IL1B, IL1RN, IL2, IL4, IL6, IL10, IL12A, IL17A, CCL2, CCL3, CCL5, CXCL8, CXCL10, TNF, and CSF2 in peripheral blood during treatment were detected. Results At week 48, 0.00% (0/18) in the NAs group and 25.86% (15/58) in the Add-on group achieved HBsAg loss. During 48 weeks of combined treatment, there was a transitory increase in the levels of ALT, IL1RN, IL2, and CCL2. Compared to the NAs group, CXCL8 and CXCL10 in the Add-on group remain higher after rising, yet CCL3 showed a continuously increasing trend. Mild and early increases in IL1B, CCL3, IL17A, IL2, IL4, IL6, and CXCL8 were associated with HBsAg loss or decrease >1 log, while sustained high levels of CCL5 and CXCL10 were associated with poor responses to Add-on therapy at week 48. Conclusions The serum cytokine change profile is closely related to the response to the combination therapy with PEG-IFN-α and NAs, and may help to reveal the mechanism of functional cure and discover new immunological predictors and new therapeutic targets.
Collapse
Affiliation(s)
- Wen-Xin Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Rui Jia
- Department of Gastroenterology, The 985th Hospital of Joint Logistic Support Force of Chinese PLA, Taiyuan, China
| | - Xue-Yuan Jin
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiaoyan Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China
| | - Shuang-Nan Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Ning Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China,*Correspondence: Junliang Fu, ; Fu-Sheng Wang,
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China,*Correspondence: Junliang Fu, ; Fu-Sheng Wang,
| |
Collapse
|
39
|
The scientific basis of combination therapy for chronic hepatitis B functional cure. Nat Rev Gastroenterol Hepatol 2023; 20:238-253. [PMID: 36631717 DOI: 10.1038/s41575-022-00724-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 01/13/2023]
Abstract
Functional cure of chronic hepatitis B (CHB) - or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy - is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available.
Collapse
|
40
|
Profiling of Peripheral TRBV and CD4+CD25+ Treg in CHB Patients with HBeAg SC during TDF Treatment. J Immunol Res 2023; 2023:1914036. [PMID: 36660247 PMCID: PMC9845053 DOI: 10.1155/2023/1914036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Background It is lacking that markers could predict the prognosis of chronic hepatitis B (CHB) subjects during antiviral treatment, and the related cellular immune mechanism is not fully evaluated. Aim To explore the comprehensive profile of T cell receptor β-chain (TRBV) and CD4+CD25+ regulatory T cell (Treg) in peripheral blood of CHB patients with HBeAg seroconverting (SC) during tenofovir disoproxil fumarate (TDF) treatment. Methods The frequency of CD4+CD25high+ Treg and number of skewed TRBV in 20 HBeAg positive patients were determined at baseline and following every 12 weeks during 96-week TDF treatment. The relationship among serum alanine aminotransferase (ALT) level, HBV DNA load, Treg frequency, and the number of skewed TRBV, respectively, was analyzed for CHB patients. Receiver operative characteristic curve was applied to analyze their diagnostic value for HBeAg SC. Results The number of skewed TRBV at week 48, Treg frequency at week 72, and ALT level at baseline could predict the HBeAg SC or non-SC in CHB patients during 96-week TDF treatment. Moreover, the positive correlation between ALT or HBV DNA and Treg levels or skewed TRBVs was significant in the SC group, but not in non-SC. Conclusions The predictive cutoff value of ALT for HBeAg SC was 178 U/L at baseline. Moreover, the ALT, Treg, and TRBV families would be associated with the prognosis and pathogenesis of CHB patients during TDF treatment.
Collapse
|
41
|
Zhang L, Jiang T, Yang Y, Deng W, Lu H, Wang S, Liu R, Chang M, Wu S, Gao Y, Hao H, Shen G, Xu M, Chen X, Hu L, Yang L, Bi X, Lin Y, Lu Y, Jiang Y, Li M, Xie Y. Postpartum hepatitis and host immunity in pregnant women with chronic HBV infection. Front Immunol 2023; 13:1112234. [PMID: 36685527 PMCID: PMC9846060 DOI: 10.3389/fimmu.2022.1112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
In order to develop immune tolerant to the fetal, maternal immune system will have some modification comparing to the time before pregnancy. Immune tolerance starts and develops at the maternal placental interface. In innate immunity, decidual natural killer (dNK) cells, macrophages and dendritic cells play a key role in immue tolerance. In adaptive immunity, a moderate increase of number and immune inhibition function of regulatory T cells (Treg) are essential for immune tolerance. The trophoblast cells and immune cells expressing indoleamine 2,3-dioxygenase (IDO), the trophoblast cells expressing HLA-G, and Th1/Th2 shifting to Th2 dominant and Th17/Treg shifting to Treg domiant are in favor of maternal fetal immune tolerance. Steroids (estrogen and progesterone) and human chorionic gonadotropin (HCG) also participate in immune tolerance by inducing Treg cells or upregulating immunosuppressive cytokines. Most of the patients with chronic HBV infection are in the "HBV immune tolerance period" before pregnancy, and the liver disease is relatively stable during pregnancy. In chronic HBV infection women, after delivery, the relative immunosuppression in vivo is reversed, and Th1 is dominant in Th1/Th2 and Th17 is dominant in Th17/Treg balance. After delivery, the number of Treg decrease and NK cells increase in quantity and cytotoxicity in peripheral blood. Liver NK cells may cause liver inflammation through a non-antigen specific mechanism. After delivery, the number of CD8+ T cells will increase and HBV specific T cell response recovers from the disfunction in pregnancy. Under the background of postpartum inflammation, the rapid decrease of cortisol after delivery, and especially the enhancement of HBV specific T cell response induced by HBV DNA and cytokines, are the main reasons for postpartum hepatitis. HBeAg positive, especially HBeAg<700 S/CO, and HBV DNA>3-5Log10IU/ml are risk factors for postpartum hepatitis. Antiviral treatment in late pregnancy can reduce the incidence of mother to child transmission (MTCT) in chronic HBV infection women. Chronic HBV infection women have hepatitis both during pregnancy and more often in 12 weeks postpartum. It is generally agreed that postpartum hepatitis is mild symptoms and self-limited. Delaying drug withdrawal to 48 weeks can increase the seroconversion rate of HBeAg in delivery women with elevated alanine aminotransferase (ALT) in pregnancy.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Yang
- Hepatology Department 2, Xingtai Second Hospital, Xingtai, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huihui Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China,Department of Obstetrics and Gynecology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Chang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuanjiao Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxiao Hao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ge Shen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoxue Chen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leiping Hu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China,*Correspondence: Yao Lu, ; Yuyong Jiang, ; Minghui Li, ; Yao Xie,
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China,*Correspondence: Yao Lu, ; Yuyong Jiang, ; Minghui Li, ; Yao Xie,
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China,*Correspondence: Yao Lu, ; Yuyong Jiang, ; Minghui Li, ; Yao Xie,
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China,*Correspondence: Yao Lu, ; Yuyong Jiang, ; Minghui Li, ; Yao Xie,
| |
Collapse
|
42
|
Chen YF, Wang Y, Wang Y, Luo YL, Lu ZD, Du XJ, Xu CF, Wang J. Optimized Cationic Lipid-assisted Nanoparticle for Delivering CpG Oligodeoxynucleotides to Treat Hepatitis B Virus Infection. Pharm Res 2023; 40:145-156. [PMID: 36002611 DOI: 10.1007/s11095-022-03307-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Hepatitis B virus (HBV) infection is such a global health problem that hundreds of millions of people are HBV carriers. Current anti-viral agents can inhibit HBV replication, but can hardly eradicate HBV. Cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs) are an adjuvant that can activate plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs) to induce therapeutic immunity for HBV eradication. However, efficient delivery of CpG ODNs into pDCs and cDCs remains a challenge. In this study, we constructed a series of cationic lipid-assisted nanoparticles (CLANs) using different cationic lipids to screen an optimal nanoparticle for delivering CpG ODNs into pDCs and cDCs. METHODS We constructed different CLANCpG using six cationic lipids and analyzed the cellular uptake of different CLANCpG by pDCs and cDCs in vitro and in vivo, and further analyzed the efficiency of different CLANCpG for activating pDCs and cDCs in both wild type mice and HBV-carrier mice. RESULTS We found that CLAN fabricated with 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP) showed the highest efficiency for delivering CpG ODNs into pDCs and cDCs, resulting in strong therapeutic immunity in HBV-carrier mice. By using CLANCpG as an immune adjuvant in combination with the injection of recombinant hepatitis B surface antigen (rHBsAg), HBV was successfully eradicated and the chronic liver inflammation in HBV-carrier mice was reduced. CONCLUSION We screened an optimized CLAN fabricated with DOTAP for efficient delivery of CpG ODNs to pDCs and cDCs, which can act as a therapeutic vaccine adjuvant for treating HBV infection.
Collapse
Affiliation(s)
- Yi-Fang Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, People's Republic of China
| | - Yan Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yue Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Ying-Li Luo
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zi-Dong Lu
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiao-Jiao Du
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, People's Republic of China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
43
|
Chen X, Liu X, Jiang Y, Xia N, Liu C, Luo W. Abnormally primed CD8 T cells: The Achilles' heel of CHB. Front Immunol 2023; 14:1106700. [PMID: 36936922 PMCID: PMC10014547 DOI: 10.3389/fimmu.2023.1106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a significant public health challenge, and more than 250 million people around world are infected with HBV. The clearance of HBV with virus-specific CD8 T cells is critical for a functional cure. However, naïve HBV-specific CD8 T cells are heavily hindered during the priming process, and this phenomenon is closely related to abnormal cell and signal interactions in the complex immune microenvironment. Here, we briefly summarize the recent progress in understanding the abnormal priming of HBV-specific CD8 T cells and some corresponding immunotherapies to facilitate their functional recovery, which provides a novel perspective for the design and development of immunotherapy for chronic HBV infection (CHB). Finally, we also highlight the balance between viral clearance and pathological liver injury induced by CD8 T-cell activation that should be carefully considered during drug development.
Collapse
Affiliation(s)
- Xiaoqing Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- The Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| |
Collapse
|
44
|
Costante F, Stella L, Santopaolo F, Gasbarrini A, Pompili M, Asselah T, Ponziani FR. Molecular and Clinical Features of Hepatocellular Carcinoma in Patients with HBV-HDV Infection. J Hepatocell Carcinoma 2023; 10:713-724. [PMID: 37128594 PMCID: PMC10148646 DOI: 10.2147/jhc.s384751] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
Hepatitis D virus (HDV) infection affects more than 10 million people worldwide, with an estimated prevalence of nearly 4.5% among HBsAg-positive individuals. Epidemiological studies have shown a significant increase in the prevalence of hepatocellular carcinoma (HCC) in patients with chronic HDV infection compared to those with chronic hepatitis B virus (HBV) mono-infection. Despite the clinical findings, data on molecular oncogenic mechanisms are limited and fragmentary. Moreover, the role of HDV in promoting the development of HCC has so far been controversial, because it is difficult to weigh the respective contributions of the two viruses. In this review, we focused on the direct oncogenic action of HDV, its role in modifying the tumor microenvironment, and the genetic signature of HDV-related HCC, comparing these features with HBV-related HCC.
Collapse
Affiliation(s)
- Federico Costante
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Leonardo Stella
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, 00168, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, 00168, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, 00168, Italy
| | - Tarik Asselah
- Service d’Hépatologie, Hôpital Beaujon UMR 1149 Inserm - Université de Paris, Clichy, France
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, 00168, Italy
- Correspondence: Francesca Romana Ponziani; Federico Costante, Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, Rome, 00168, Italy, Tel +390630156264, Email ;
| |
Collapse
|
45
|
Wu C, Zhang J, Wang H, Zhang W, Liu J, Zhou N, Chen K, Wang Y, Peng S, Fu L. TRAF2 as a key candidate gene in clinical hepatitis B-associated liver fibrosis. Front Mol Biosci 2023; 10:1168250. [PMID: 37091870 PMCID: PMC10113534 DOI: 10.3389/fmolb.2023.1168250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Objectives: Approximately 240 million individuals are infected with chronic hepatitis B virus (HBV) worldwide. HBV infection can develop into liver fibrosis. The mechanism of HBV-related liver fibrosis has not been fully understood, and there are few effective treatment options. The goal of this study was to use transcriptomics in conjunction with experimental validation to identify new targets to treat HBV-related liver fibrosis. Methods: To identify differentially expressed genes (DEGs), five liver tissues were collected from both healthy individuals and patients with chronic hepatitis B. NovoMagic and Java GSEA were used to screen DEGs and key genes, respectively. Immunocell infiltration analysis of RNA-seq data was, and the results were confirmed by Western blotting (WB), real-time quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry. Results: We evaluated 1,105 genes with differential expression, and 462 and 643 genes showed down- and upregulation, respectively. The essential genes, such as tumor necrosis factor (TNF) receptor-associated factor-2 (TRAF2), were screened out of DEGs. TRAF2 expression was abnormally high in hepatic fibrosis in patients with hepatitis B compared with healthy controls. The degree of hepatic fibrosis and serum levels of glutamate transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) were positively linked with TRAF2 expression. TRAF2 may be crucial in controlling T lymphocyte-mediated liver fibrosis. Conclusion: Our findings imply that TRAF2 is essential for HBV-induced liver fibrosis progression, and it may potentially be a promising target for the treatment of hepatic fibrosis in hepatitis B.
Collapse
Affiliation(s)
- Cichun Wu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Huiwen Wang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Jingqing Liu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Nianqi Zhou
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Keyu Chen
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital Central South University, Changsha, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Lei Fu, ; Shifang Peng,
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Lei Fu, ; Shifang Peng,
| |
Collapse
|
46
|
Yardeni D, Chang KM, Ghany MG. Current Best Practice in Hepatitis B Management and Understanding Long-term Prospects for Cure. Gastroenterology 2023; 164:42-60.e6. [PMID: 36243037 PMCID: PMC9772068 DOI: 10.1053/j.gastro.2022.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023]
Abstract
The hepatitis B virus (HBV) is a major cause of cirrhosis and hepatocellular carcinoma worldwide. Despite an effective vaccine, the prevalence of chronic infection remains high. Current therapy is effective at achieving on-treatment, but not off-treatment, viral suppression. Loss of hepatitis B surface antigen, the best surrogate marker of off-treatment viral suppression, is associated with improved clinical outcomes. Unfortunately, this end point is rarely achieved with current therapy because of their lack of effect on covalently closed circular DNA, the template of viral transcription and genome replication. Major advancements in our understanding of HBV virology along with better understanding of immunopathogenesis have led to the development of a multitude of novel therapeutic approaches with the prospect of achieving functional cure (hepatitis B surface antigen loss) and perhaps complete cure (clearance of covalently closed circular DNA and integrated HBV DNA). This review will cover current best practice for managing chronic HBV infection and emerging novel therapies for HBV infection and their prospect for cure.
Collapse
Affiliation(s)
- David Yardeni
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marc G Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
47
|
Fisicaro P. Engineered IFN-α and anti-PDL1 containing compounds to target the liver and restore antiviral protection for HBV cure. Gut 2022; 72:gutjnl-2022-328902. [PMID: 36591618 DOI: 10.1136/gutjnl-2022-328902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
48
|
Zhao H, Yu Y, Wang Y, Zhao L, Yang A, Hu Y, Pan Z, Wang Z, Yang J, Han Q, Tian Z, Zhang J. Cholesterol accumulation on dendritic cells reverses chronic hepatitis B virus infection-induced dysfunction. Cell Mol Immunol 2022; 19:1347-1360. [PMID: 36369367 PMCID: PMC9708651 DOI: 10.1038/s41423-022-00939-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/11/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic hepatitis B (CHB) infection remains a serious public health problem worldwide; however, the relationship between cholesterol levels and CHB remains unclear. We isolated peripheral blood mononuclear cells from healthy blood donors and CHB patients to analyze free cholesterol levels, lipid raft formation, and cholesterol metabolism-related pathways. Hepatitis B virus (HBV)-carrier mice were generated and used to confirm changes in cholesterol metabolism and cell-surface lipid raft formation in dendritic cells (DCs) in the context of CHB. Additionally, HBV-carrier mice were immunized with a recombinant HBV vaccine (rHBVvac) combined with lipophilic statins and evaluated for vaccine efficacy against HBV. Serum samples were analyzed for HBsAg, anti-HBs, and alanine aminotransferase levels, and liver samples were evaluated for HBV DNA and RNA and HBcAg. CHB reduced free cholesterol levels and suppressed lipid raft formation on DCs in patients with CHB and HBV-carrier mice, whereas administration of lipophilic statins promoted free cholesterol accumulation and restored lipid rafts on DCs accompanied by an enhanced antigen-presentation ability in vitro and in vivo. Cholesterol accumulation on DCs improved the rHBVvac-mediated elimination of serum HBV DNA and intrahepatic HBV DNA, HBV RNA, and HBcAg and promoted the rHBVvac-mediated generation and polyfunctionality of HBV-specific CD11ahi CD8αlo cells, induction of the development of memory responses against HBV reinfection, and seroconversion from HBsAg to anti-HBs. The results demonstrated the important role of cholesterol levels in DC dysfunction during CHB, suggesting that strategies to increase cholesterol accumulation on DCs might enhance therapeutic vaccine efficacy against HBV and support development toward clinical CHB treatment.
Collapse
Affiliation(s)
- Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yating Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yucan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lianhui Zhao
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ailu Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yifei Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaoyi Pan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zixuan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jiarui Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zhigang Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, 230000, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
49
|
Kramvis A, Chang KM, Dandri M, Farci P, Glebe D, Hu J, Janssen HLA, Lau DTY, Penicaud C, Pollicino T, Testoni B, Van Bömmel F, Andrisani O, Beumont-Mauviel M, Block TM, Chan HLY, Cloherty GA, Delaney WE, Geretti AM, Gehring A, Jackson K, Lenz O, Maini MK, Miller V, Protzer U, Yang JC, Yuen MF, Zoulim F, Revill PA. A roadmap for serum biomarkers for hepatitis B virus: current status and future outlook. Nat Rev Gastroenterol Hepatol 2022; 19:727-745. [PMID: 35859026 PMCID: PMC9298709 DOI: 10.1038/s41575-022-00649-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/13/2022]
Abstract
Globally, 296 million people are infected with hepatitis B virus (HBV), and approximately one million people die annually from HBV-related causes, including liver cancer. Although there is a preventative vaccine and antiviral therapies suppressing HBV replication, there is no cure. Intensive efforts are under way to develop curative HBV therapies. Currently, only a few biomarkers are available for monitoring or predicting HBV disease progression and treatment response. As new therapies become available, new biomarkers to monitor viral and host responses are urgently needed. In October 2020, the International Coalition to Eliminate Hepatitis B Virus (ICE-HBV) held a virtual and interactive workshop on HBV biomarkers endorsed by the International HBV Meeting. Various stakeholders from academia, clinical practice and the pharmaceutical industry, with complementary expertise, presented and participated in panel discussions. The clinical utility of both classic and emerging viral and immunological serum biomarkers with respect to the course of infection, disease progression, and response to current and emerging treatments was appraised. The latest advances were discussed, and knowledge gaps in understanding and interpretation of HBV biomarkers were identified. This Roadmap summarizes the strengths, weaknesses, opportunities and challenges of HBV biomarkers.
Collapse
Affiliation(s)
- Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz Veterans Affairs Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner site, Hamburg, Germany
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Philadelphia, PA, USA
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, University of Toronto, Toronto, Canada
| | - Daryl T Y Lau
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Capucine Penicaud
- Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Teresa Pollicino
- Laboratory of Molecular Hepatology, Department of Human Pathology, University Hospital "G. Martino" of Messina, Messina, Italy
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
| | - Florian Van Bömmel
- Department of Hepatology, Leipzig University Medical Center, Leipzig, Germany
| | - Ourania Andrisani
- Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | - Henry L Y Chan
- Chinese University of Hong Kong, Shatin, Hong Kong
- Union Hospital, Shatin, Hong Kong
| | | | | | - Anna Maria Geretti
- Roche Pharma Research & Early Development, Basel, Switzerland
- Department of Infectious Diseases, Fondazione PTV, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Adam Gehring
- Toronto Centre for Liver Disease, University Health Network, Toronto, Canada
| | - Kathy Jackson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Mala K Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Veronica Miller
- Forum for Collaborative Research, University of California Berkeley School of Public Health, Washington DC Campus, Washington, DC, USA
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | | | - Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Fabien Zoulim
- INSERM Unit 1052 - Cancer Research Center of Lyon, Hospices Civils de Lyon, Lyon University, Lyon, France
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
50
|
Aliabadi E, Urbanek-Quaing M, Maasoumy B, Bremer B, Grasshoff M, Li Y, Niehaus CE, Wedemeyer H, Kraft ARM, Cornberg M. Impact of HBsAg and HBcrAg levels on phenotype and function of HBV-specific T cells in patients with chronic hepatitis B virus infection. Gut 2022; 71:2300-2312. [PMID: 34702717 PMCID: PMC9554084 DOI: 10.1136/gutjnl-2021-324646] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hepatitis B virus (HBV)-specific T cells are main effector cells in the control of HBV infection and hepatitis B surface antigen (HBsAg) is suggested to be a critical factor in the impaired immune response, a hallmark of chronic HBV infection. In addition to HBsAg, other viral markers such as hepatitis B core-related antigen (HBcrAg) are available, but their potential association with HBV-specific immune responses is not defined yet, which will be important if these markers are used for patient stratification for novel therapies aimed at functional HBV cure. DESIGN We analysed T cell responses in 92 patients with hepatitis B e antigen negative chronic HBV infection with different HBsAg and HBcrAg levels. Overlapping peptides were used for in vitro response analyses (n=57), and HBV core18-specific and polymerase (pol)455-specific CD8+ T cells were assessed in human leukocyte antigen (HLA)-A*02 patients (n=35). In addition, in vitro responsiveness to anti-programmed cell death-ligand 1 (anti-PD-L1) was investigated. RESULTS HBV-specific T cell responses were not affected by HBsAg levels, but rather by age and CD4+ T cell responses were highest in patients with low HBcrAg levels. The phenotypes and functionality of HBV core18-specific and pol455-specific CD8+ T cells differed, but HBsAg and HBcrAg levels did not affect their profiles. Blocking with anti-PD-L1 could restore HBV-specific T cells, but the effect was significantly higher in T cells isolated from patients with low HBsAg and in particular low HBcrAg. CONCLUSION Our data suggest that age and HBcrAg rather than HBsAg, are associated with HBV-specific T cell responses. Finally, very low antigen levels indicated by HBsAg and in particular HBcrAg may influence T cell response to checkpoint inhibition.
Collapse
Affiliation(s)
- Elmira Aliabadi
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany,German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Melanie Urbanek-Quaing
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany,German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Birgit Bremer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Martin Grasshoff
- Computational Biology for Individualised Medicine, Helmholtz Centre for Infection Research (HZI), c/o CRC, Hannover, Germany
| | - Yang Li
- TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany,Computational Biology for Individualised Medicine, Helmholtz Centre for Infection Research (HZI), c/o CRC, Hannover, Germany,Centre for Individualized Infection Medicine (CiiM), c/o CRC, Hannover, Germany
| | - Christian E Niehaus
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany,German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany .,TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany.,German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany.,Centre for Individualized Infection Medicine (CiiM), c/o CRC, Hannover, Germany.,Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|