1
|
Sainatham C, Yadav D, Dilli Babu A, Tallapalli JR, Kanagala SG, Filippov E, Murillo Chavez F, Ahmed N, Lutfi F. The current socioeconomic and regulatory landscape of immune effector cell therapies. Front Med (Lausanne) 2024; 11:1462307. [PMID: 39697210 PMCID: PMC11652178 DOI: 10.3389/fmed.2024.1462307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Immune cell effector therapies, including chimeric antigen receptor (CAR)-T cells, T-cell receptor (TCR) T cells, natural killer (NK) cells, and macrophage-based therapies, represent a transformative approach to cancer treatment, harnessing the immune system to target and eradicate malignant cells. CAR-T cell therapy, the most established among these, involves engineering T cells to express CARs specific to cancer cell antigens, showing remarkable efficacy in hematologic malignancies like leukemias, B-cell lymphomas, and multiple myeloma. Similarly, TCR-modified therapies, which reprogram T cells to recognize intracellular tumor antigens presented by major histocompatibility complex (MHC) molecules, offer promise for a range of solid tumors. NK-cell therapies leverage NK cells' innate cytotoxicity, providing an allogeneic approach that avoids some of the immune-related complications associated with T-cell-based therapies. Macrophage-based therapies, still in early stages of the development, focus on reprogramming macrophages to stimulate an immune response against cancer cells in the tumor microenvironment. Despite their promise, socioeconomic and regulatory challenges hinder the accessibility and scalability of immune cell effector therapies. These treatments are costly, with CAR-T therapies currently exceeding $400,000 per patient, creating significant disparities in access based on socioeconomic status and geographic location. The high manufacturing costs stem from the personalized, labor-intensive processes of harvesting, modifying, and expanding patients' cells. Moreover, complex logistics for manufacturing and delivering these therapies limit their reach, particularly in low-resource settings. Regulatory pathways further complicate the landscape. In the United States., the Food and Drug Administrations' (FDA) accelerated approval processes for cell-based therapies facilitate innovation but do not address cost-related barriers. In Europe, the European Medicines Agency (EMA) offers adaptive pathways, yet decentralized reimbursement systems create uneven access across member states. Additionally, differing regulatory standards for manufacturing and quality control worldwide pose hurdles for global harmonization and access. To expand the reach of immune effector cell therapies, a multipronged approach is needed-streamlined regulatory frameworks, policies to reduce treatment costs, and international collaborations to standardize manufacturing. Addressing these socioeconomic and regulatory obstacles is essential to make these life-saving therapies accessible to a broader patient population worldwide. We present a literature review on the current landscape of immune effector cell therapies and barriers of access to currently approved standard of care therapy at various levels.
Collapse
Affiliation(s)
- Chiranjeevi Sainatham
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Devvrat Yadav
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Aravind Dilli Babu
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Jayanth Reddy Tallapalli
- Division of Infectious Diseases, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Sai Gautham Kanagala
- Department of Internal Medicine, New York Medical College/Metropolitan Hospital Center, New York, NY, United States
| | - Evgenii Filippov
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Franco Murillo Chavez
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Nausheen Ahmed
- Department of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Forat Lutfi
- Department of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
2
|
Keyer V, Syzdykova L, Ingirbay B, Sedova E, Zauatbayeva G, Kulatay T, Shevtsov A, Shustov AV. Non-industrial production of therapeutic lentiviral vectors: How to provide vectors to academic CAR-T. Biotechnol Bioeng 2024; 121:3252-3268. [PMID: 38963234 DOI: 10.1002/bit.28794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Bringing effective cancer therapy in the form of chimeric antigen receptor technology to untapped markets faces numerous challenges, including a global shortage of therapeutic lentiviral or retroviral vectors on which all current clinical therapies using genetically modified T cells are based. Production of these lentiviral vectors in academic settings in principle opens the way to local production of therapeutic cells, which is the only economically viable approach to make this therapy available to patients in developing countries. The conditions for obtaining and concentrating lentiviral vectors have been optimized and described. The calcium phosphate precipitation method was found to be suitable for transfecting high cell-density cultures, a prerequisite for high titers. We describe protocols for gradually increasing production from 6-well plates to P100 plates, T-175 flasks, and 5-layer stacks while maintaining high titers, >108 transducing units. Concentration experiments using ultracentrifugation revealed the advantage of lower centrifugation speeds compared to competing protocols. The resulting batches of lentiviral vectors had a titer of 1010 infectious particles and were used to transduce primary human T lymphocytes generating chimeric antigen receptor T cells, the quality of which was checked and found potential applicability for treatment.
Collapse
Affiliation(s)
- Viktoriya Keyer
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Laura Syzdykova
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Bakytkali Ingirbay
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Elena Sedova
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Gulzat Zauatbayeva
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Tolganay Kulatay
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Alexandr Shevtsov
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| | - Alexandr V Shustov
- Laboratory for Genetic Engineering, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
3
|
Barzegari A, Salemi F, Kamyab A, Aratikatla A, Nejati N, Valizade M, Eltouny E, Ebrahimi A. The efficacy and applicability of chimeric antigen receptor (CAR) T cell-based regimens for primary bone tumors: A comprehensive review of current evidence. J Bone Oncol 2024; 48:100635. [PMID: 39381633 PMCID: PMC11460493 DOI: 10.1016/j.jbo.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Primary bone tumors (PBT), although rare, could pose significant mortality and morbidity risks due to their high incidence of lung metastasis. Survival rates of patients with PBTs may vary based on the tumor type, therapeutic interventions, and the time of diagnosis. Despite advances in the management of patients with these tumors over the past four decades, the survival rates seem not to have improved significantly, implicating the need for novel therapeutic interventions. Surgical resection with wide margins, radiotherapy, and systemic chemotherapy are the main lines of treatment for PBTs. Neoadjuvant and adjuvant chemotherapy, along with emerging immunotherapeutic approaches such as chimeric antigen receptor (CAR)-T cell therapy, have the potential to improve the treatment outcomes for patients with PBTs. CAR-T cell therapy has been introduced as an option in hematologic malignancies, with FDA approval for several CD19-targeting CAR-T cell products. This review aims to highlight the potential of immunotherapeutic strategies, specifically CAR T cell therapy, in managing PBTs.
Collapse
Affiliation(s)
| | - Fateme Salemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Adarsh Aratikatla
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, County Dublin, Ireland
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Iran
| | - Mojgan Valizade
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehab Eltouny
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alireza Ebrahimi
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Jagadeesan D, Sathasivam KV, Fuloria NK, Balakrishnan V, Khor GH, Ravichandran M, Solyappan M, Fuloria S, Gupta G, Ahlawat A, Yadav G, Kaur P, Husseen B. Comprehensive insights into oral squamous cell carcinoma: Diagnosis, pathogenesis, and therapeutic advances. Pathol Res Pract 2024; 261:155489. [PMID: 39111016 DOI: 10.1016/j.prp.2024.155489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is considered the most common type of head and neck squamous cell carcinoma (HNSCC) as it holds 90 % of HNSCC cases that arise from multiple locations in the oral cavity. The last three decades witnessed little progress in the diagnosis and treatment of OSCC the aggressive tumor. However, in-depth knowledge about OSCC's pathogenesis, staging & grading, hallmarks, and causative factors is a prime requirement in advanced diagnosis and treatment for OSCC patients. Therefore present review was intended to comprehend the OSCCs' prevalence, staging & grading, molecular pathogenesis including premalignant stages, various hallmarks, etiology, diagnostic methods, treatment (including FDA-approved drugs with the mechanism of action and side effects), and theranostic agents. The current review updates that for a better understanding of OSCC progress tumor-promoting inflammation, sustained proliferative signaling, and growth-suppressive signals/apoptosis capacity evasion are the three most important hallmarks to be considered. This review suggests that among all the etiology factors the consumption of tobacco is the major contributor to the high incidence rate of OSCC. In OSCC diagnosis biopsy is considered the gold standard, however, toluidine blue staining is the easiest and non-invasive method with high accuracy. Although there are various therapeutic agents available for cancer treatment, however, a few only are approved by the FDA specifically for OSCC treatment. The present review recommends that among all available OSCC treatments, the antibody-based CAR-NK is a promising therapeutic approach for future cancer treatment. Presently review also suggests that theranostics have boosted the advancement of cancer diagnosis and treatment, however, additional work is required to refine the role of theranostics in combination with different modalities in cancer treatment.
Collapse
Affiliation(s)
- Dharshini Jagadeesan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Kathiresan V Sathasivam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia,11800 USM, Pulau Pinang, Malaysia
| | - Goot Heah Khor
- Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, SungaiBuloh, Selangor 47000, Malaysia; Oral and Maxillofacial Cancer Research Group, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia
| | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Maheswaran Solyappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Abhilasha Ahlawat
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Geeta Yadav
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Pandeep Kaur
- National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
5
|
Patel RP, Ghilardi G, Zhang Y, Chiang YH, Xie W, Guruprasad P, Kim KH, Chun I, Angelos MG, Pajarillo R, Hong SJ, Lee YG, Shestova O, Shaw C, Cohen I, Gupta A, Vu T, Qian D, Yang S, Nimmagadda A, Snook AE, Siciliano N, Rotolo A, Inamdar A, Harris J, Ugwuanyi O, Wang M, Carturan A, Paruzzo L, Chen L, Ballard HJ, Blanchard T, Xu C, Abdel-Mohsen M, Gabunia K, Wysocka M, Linette GP, Carreno B, Barrett DM, Teachey DT, Posey AD, Powell DJ, Sauter CT, Pileri S, Pillai V, Scholler J, Rook AH, Schuster SJ, Barta SK, Porazzi P, Ruella M. CD5 deletion enhances the antitumor activity of adoptive T cell therapies. Sci Immunol 2024; 9:eadn6509. [PMID: 39028827 DOI: 10.1126/sciimmunol.adn6509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
Most patients treated with US Food and Drug Administration (FDA)-approved chimeric antigen receptor (CAR) T cells eventually experience disease progression. Furthermore, CAR T cells have not been curative against solid cancers and several hematological malignancies such as T cell lymphomas, which have very poor prognoses. One of the main barriers to the clinical success of adoptive T cell immunotherapies is CAR T cell dysfunction and lack of expansion and/or persistence after infusion. In this study, we found that CD5 inhibits CAR T cell activation and that knockout (KO) of CD5 using CRISPR-Cas9 enhances the antitumor effect of CAR T cells in multiple hematological and solid cancer models. Mechanistically, CD5 KO drives increased T cell effector function with enhanced cytotoxicity, in vivo expansion, and persistence, without apparent toxicity in preclinical models. These findings indicate that CD5 is a critical inhibitor of T cell function and a potential clinical target for enhancing T cell therapies.
Collapse
Affiliation(s)
- Ruchi P Patel
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yunlin Zhang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Hao Chiang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei Xie
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Puneeth Guruprasad
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ki Hyun Kim
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Inkook Chun
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathew G Angelos
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Seok Jae Hong
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Olga Shestova
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
| | - Carolyn Shaw
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Cohen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Aasha Gupta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Trang Vu
- viTToria Biotherapeutics, Philadelphia, PA, USA
| | - Dean Qian
- viTToria Biotherapeutics, Philadelphia, PA, USA
| | - Steven Yang
- viTToria Biotherapeutics, Philadelphia, PA, USA
| | | | | | | | - Antonia Rotolo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Arati Inamdar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Jaryse Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma Ugwuanyi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Wang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Carturan
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Linhui Chen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Hatcher J Ballard
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Tatiana Blanchard
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Khatuna Gabunia
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Wysocka
- Department of Dermatology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Gerald P Linette
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatriz Carreno
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Barrett
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Oncology, Children's Hospital of Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology, Children's Hospital of Philadelphia, PA, USA
| | - Avery D Posey
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Powell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - C Tor Sauter
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefano Pileri
- Division of Haematopathology, Istituto Europeo di Oncologia IRCCS, Italy
| | - Vinodh Pillai
- Division of Hemato-pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Schuster
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan K Barta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrizia Porazzi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Cheng S, Wang H, Kang X, Zhang H. Immunotherapy Innovations in the Fight against Osteosarcoma: Emerging Strategies and Promising Progress. Pharmaceutics 2024; 16:251. [PMID: 38399305 PMCID: PMC10892906 DOI: 10.3390/pharmaceutics16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Immunosuppressive elements within the tumor microenvironment are the primary drivers of tumorigenesis and malignant advancement. The presence, as well as the crosstalk between myeloid-derived suppressor cells (MDSCs), osteosarcoma-associated macrophages (OS-Ms), regulatory T cells (Tregs), and endothelial cells (ECs) with osteosarcoma cells cause the poor prognosis of OS. In addition, the consequent immunosuppressive factors favor the loss of treatment potential. Nanoparticles offer a means to dynamically and locally manipulate immuno-nanoparticles, which present a promising strategy for transforming OS-TME. Additionally, chimeric antigen receptor (CAR) technology is effective in combating OS. This review summarizes the essential mechanisms of immunosuppressive cells in the OS-TME and the current immune-associated strategies. The last part highlights the limitations of existing therapies and offers insights into future research directions.
Collapse
Affiliation(s)
- Shigao Cheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedics, Hunan Loudi Central Hospital, Loudi 417000, China
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Hui Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
VanderBurgh JA, Corso GT, Levy SL, Craighead HG. A multiplexed microfluidic continuous-flow electroporation system for efficient cell transfection. Biomed Microdevices 2024; 26:10. [PMID: 38194117 DOI: 10.1007/s10544-023-00692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
Cellular therapies have the potential to advance treatment for a broad array of diseases but rely on viruses for genetic reprogramming. The time and cost required to produce viruses has created a bottleneck that constricts development of and access to cellular therapies. Electroporation is a non-viral alternative for genetic reprogramming that bypasses these bottlenecks, but current electroporation technology suffers from low throughput, tedious optimization, and difficulty scaling to large-scale cell manufacturing. Here, we present an adaptable microfluidic electroporation platform with the capability for rapid, multiplexed optimization with 96-well plates. Once parameters are optimized using small volumes of cells, transfection can be seamlessly scaled to high-volume cell manufacturing without re-optimization. We demonstrate optimizing transfection of plasmid DNA to Jurkat cells, screening hundreds of different electrical waveforms of varying shapes at a speed of ~3 s per waveform using ~20 µL of cells per waveform. We selected an optimal set of transfection parameters using a low-volume flow cell. These parameters were then used in a separate high-volume flow cell where we obtained similar transfection performance by design. This demonstrates an alternative non-viral and economical transfection method for scaling to the volume required for producing a cell therapy without sacrificing performance. Importantly, this transfection method is disease-agnostic with broad applications beyond cell therapy.
Collapse
Affiliation(s)
| | - Grant T Corso
- CyteQuest, Inc, 95 Brown Road, Box 1011, Ithaca, NY, 14850, USA
| | - Stephen L Levy
- CyteQuest, Inc, 95 Brown Road, Box 1011, Ithaca, NY, 14850, USA
| | | |
Collapse
|
8
|
Benevolo Savelli C, Clerico M, Botto B, Secreto C, Cavallo F, Dellacasa C, Busca A, Bruno B, Freilone R, Cerrano M, Novo M. Chimeric Antigen Receptor-T Cell Therapy for Lymphoma: New Settings and Future Directions. Cancers (Basel) 2023; 16:46. [PMID: 38201473 PMCID: PMC10778255 DOI: 10.3390/cancers16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In the last decade, anti-CD19 CAR-T cell therapy has led to a treatment paradigm shift for B-cell non-Hodgkin lymphomas, first with the approval for relapsed/refractory (R/R) large B-cell lymphomas and subsequently for R/R mantle cell and follicular lymphoma. Many efforts are continuously being made to extend the therapeutic setting in the lymphoma field. Several reports are supporting the safety and efficacy of CAR-T cells in patients with central nervous system disease involvement. Anti-CD30 CAR-T cells for the treatment of Hodgkin lymphoma are in development and early studies looking for the optimal target for T-cell malignancies are ongoing. Anti-CD19/CD20 and CD19/CD22 dual targeting CAR-T cells are under investigation in order to increase anti-lymphoma activity and overcome tumor immune escape. Allogeneic CAR product engineering is on the way, representing a rapidly accessible 'off-the-shelf' and potentially more fit product. In the present manuscript, we will focus on recent advances in CAR-T cell therapy for lymphomas, including new settings and future perspectives in the field, reviewing data reported in literature in the last decade up to October 2023.
Collapse
Affiliation(s)
- Corrado Benevolo Savelli
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (B.B.); (R.F.); (M.C.)
| | - Michele Clerico
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (M.C.); (F.C.); (B.B.)
| | - Barbara Botto
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (B.B.); (R.F.); (M.C.)
| | - Carolina Secreto
- Stem Cell Transplant Center, AOU Città della Salute e della Scienza di Torino, C.so Bramente 88, 10126 Turin, Italy; (C.S.); (C.D.); (A.B.)
| | - Federica Cavallo
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (M.C.); (F.C.); (B.B.)
| | - Chiara Dellacasa
- Stem Cell Transplant Center, AOU Città della Salute e della Scienza di Torino, C.so Bramente 88, 10126 Turin, Italy; (C.S.); (C.D.); (A.B.)
| | - Alessandro Busca
- Stem Cell Transplant Center, AOU Città della Salute e della Scienza di Torino, C.so Bramente 88, 10126 Turin, Italy; (C.S.); (C.D.); (A.B.)
| | - Benedetto Bruno
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (M.C.); (F.C.); (B.B.)
| | - Roberto Freilone
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (B.B.); (R.F.); (M.C.)
| | - Marco Cerrano
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (B.B.); (R.F.); (M.C.)
| | - Mattia Novo
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (B.B.); (R.F.); (M.C.)
| |
Collapse
|
9
|
Zhang Y, Patel RP, Kim KH, Cho H, Jo JC, Jeong SH, Oh SY, Choi YS, Kim SH, Lee JH, Angelos M, Guruprasad P, Cohen I, Ugwuanyi O, Lee YG, Pajarillo R, Cho JH, Carturan A, Paruzzo L, Ghilardi G, Wang M, Kim S, Kim SM, Lee HJ, Park JH, Cui L, Lee TB, Hwang IS, Lee YH, Lee YJ, Porazzi P, Liu D, Lee Y, Kim JH, Lee JS, Yoon DH, Chung J, Ruella M. Safety and efficacy of a novel anti-CD19 chimeric antigen receptor T cell product targeting a membrane-proximal domain of CD19 with fast on- and off-rates against non-Hodgkin lymphoma: a first-in-human study. Mol Cancer 2023; 22:200. [PMID: 38066564 PMCID: PMC10709913 DOI: 10.1186/s12943-023-01886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Commercial anti-CD19 chimeric antigen receptor T-cell therapies (CART19) are efficacious against advanced B-cell non-Hodgkin lymphoma (NHL); however, most patients ultimately relapse. Several mechanisms contribute to this failure, including CD19-negative escape and CAR T dysfunction. All four commercial CART19 products utilize the FMC63 single-chain variable fragment (scFv) specific to a CD19 membrane-distal epitope and characterized by slow association (on) and dissociation (off) rates. We hypothesized that a novel anti-CD19 scFv that engages an alternative CD19 membrane-proximal epitope independent of FMC63 and that is characterized by faster on- and off-rates could mitigate CART19 failure and improve clinical efficacy. METHODS We developed an autologous CART19 product with 4-1BB co-stimulation using a novel humanized chicken antibody (h1218). This antibody is specific to a membrane-proximal CD19 epitope and harbors faster on/off rates compared to FMC63. We tested h1218-CART19 in vitro and in vivo using FMC63-CART19-resistant models. We conducted a first-in-human multi-center phase I clinical trial to test AT101 (clinical-grade h1218-CART19) in patients with relapsed or refractory (r/r) NHL. RESULTS Preclinically, h1218- but not FMC63-CART19 were able to effectively eradicate lymphomas expressing CD19 point mutations (L174V and R163L) or co-expressing FMC63-CAR19 as found in patients relapsing after FMC63-CART19. Furthermore, h1218-CART19 exhibited enhanced killing of B-cell malignancies in vitro and in vivo compared with FMC63-CART19. Mechanistically, we found that h1218-CART19 had reduced activation-induced cell death (AICD) and enhanced expansion compared to FMC63-CART19 owing to faster on- and off-rates. Based on these preclinical results, we performed a phase I dose-escalation trial, testing three dose levels (DL) of AT101 (the GMP version of h1218) using a 3 + 3 design. In 12 treated patients (7 DLBCL, 3 FL, 1 MCL, and 1 MZL), AT101 showed a promising safety profile with 8.3% grade 3 CRS (n = 1) and 8.3% grade 4 ICANS (n = 1). In the whole cohort, the overall response rate was 91.7%, with a complete response rate of 75.0%, which improved to 100% in DL-2 and -3. AT101 expansion correlates with CR and B-cell aplasia. CONCLUSIONS We developed a novel, safe, and potent CART19 product that recognizes a membrane-proximal domain of CD19 with fast on- and off-rates and showed significant efficacy and promising safety in patients with relapsed B-cell NHL. TRIAL REGISTRATION NCT05338931; Date: 2022-04-01.
Collapse
Affiliation(s)
- Yunlin Zhang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ruchi P Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ki Hyun Kim
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Hyungwoo Cho
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Korea
| | - Jae-Cheol Jo
- Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | | | - Sung Yong Oh
- Division of Hematology-Oncology, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | | | - Sung Hyun Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Ji Hyun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Mathew Angelos
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Puneeth Guruprasad
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Cohen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma Ugwuanyi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Cho
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Alberto Carturan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Wang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Soohwan Kim
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Sung-Min Kim
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Hyun-Jong Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Ji-Ho Park
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Leiguang Cui
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Tae Bum Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - In-Sik Hwang
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Young-Ha Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Yong-Jun Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Patrizia Porazzi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yoon Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Jong-Hoon Kim
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea
| | - Jong-Seo Lee
- Biopharmaceutical Research Center, AbClon Inc., #1401, Ace Twin Tower1, 285 Digital-Ro, Guro-Gu, Seoul, Korea.
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Korea.
| | - Junho Chung
- Cancer Research Institute, Seoul National University College of Medicine, Suite 510, Samsung Cancer Research Building, 103 Daehak-Ro, Jongno-Gu, Seoul, Korea.
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA, 19104, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Cao Y, Efetov SK, He M, Fu Y, Beeraka NM, Zhang J, Zhang X, Bannimath N, Chen K. Updated Clinical Perspectives and Challenges of Chimeric Antigen Receptor-T Cell Therapy in Colorectal Cancer and Invasive Breast Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:19. [DOI: https:/doi.org/10.1007/s00005-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/28/2023] [Indexed: 09/20/2024]
|
11
|
VanderBurgh JA, Corso GT, Levy SL, Craighead HG. A multiplexed microfluidic continuous-flow electroporation system for efficient cell transfection. RESEARCH SQUARE 2023:rs.3.rs-3538613. [PMID: 37986928 PMCID: PMC10659555 DOI: 10.21203/rs.3.rs-3538613/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Cellular therapies have the potential to advance treatment for a broad array of diseases but rely on viruses for genetic reprogramming. The time and cost required to produce viruses has created a bottleneck that constricts development of and access to cellular therapies. Electroporation is a non-viral approach for genetic reprogramming that bypasses these bottlenecks, but current electroporation technology suffers from low throughput, tedious optimization, and difficulty scaling to large-scale cell manufacturing. Here, we present an adaptable microfluidic electroporation platform with the capability for rapid, multiplexed optimization with 96-well plates. Once parameters are optimized using small volumes of cells, transfection can be seamlessly scaled to high-volume cell manufacturing without re-optimization. We demonstrate optimizing transfection of plasmid DNA to Jurkat cells, screening hundreds of different electrical waveforms of varying shapes at a speed of ~3 s per waveform using ~ 20 μL of cells per waveform. We selected an optimal set of transfection parameters using a low-volume flow cell. These parameters were then used in a separate high-volume flow cell where we obtained similar transfection performance by design. This demonstrates an economical method for scaling to the volume required for producing a cell therapy without sacrificing performance.
Collapse
|
12
|
Pérez-Moreno MA, Ciudad-Gutiérrez P, Jaramillo-Ruiz D, Reguera-Ortega JL, Abdel-kader Martín L, Flores-Moreno S. Combined or Sequential Treatment with Immune Checkpoint Inhibitors and Car-T Cell Therapies for the Management of Haematological Malignancies: A Systematic Review. Int J Mol Sci 2023; 24:14780. [PMID: 37834228 PMCID: PMC10573092 DOI: 10.3390/ijms241914780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this paper was to review the available evidence on the efficacy and safety of combined or sequential use of PD-1/PD-L1 immune checkpoint inhibitors (ICI) and CAR-T cell therapies in relapsed/refractory (R/R) haematological malignancies. A systematic literature review was performed until 21 November 2022. Inclusion criteria: cohort studies/clinical trials aimed at evaluating the efficacy and/or safety of the combination of CAR-T cell therapy with PD-1/PD-L1 inhibitors in R/R haematological malignancies, which had reported results. Those focusing only on ICI or CAR-T separately or evaluating the combination in other non-hematological solid tumours were excluded. We used a specific checklist for quality assessment of the studies, and then we extracted data on efficacy or efficiency and safety. A total of 1867 articles were identified, and 9 articles were finally included (early phase studies, with small samples of patients and acceptable quality). The main pathologies were B-cell acute lymphoblastic leukaemia (B-ALL) and B-cell non-Hodgkin's lymphoma (B-NHL). The most studied combination was tisagenlecleucel with pembrolizumab. In terms of efficacy, there is great variability: the combination could be a promising option in B-ALL, with modest data, and in B-NHL, although hopeful responses were received, the combination does not appear better than CAR-T cell monotherapy. The safety profile could be considered comparable to that described for CAR-T cell monotherapy.
Collapse
Affiliation(s)
| | | | | | - Juan Luis Reguera-Ortega
- Department of Haematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, University of Seville, 41012 Seville, Spain
| | - Laila Abdel-kader Martín
- Department of Pharmacy, University Hospital Virgen del Rocío, 41013 Seville, Spain
- Department of Pharmacy and Pharmaceutical Technology, University of Seville, 41012 Seville, Spain
| | - Sandra Flores-Moreno
- Department of Pharmacy, University Hospital Virgen del Rocío, 41013 Seville, Spain
| |
Collapse
|
13
|
Shahabifard H, Zarei M, Kookli K, Esmalian Afyouni N, Soltani N, Maghsoodi S, Adili A, Mahmoudi J, Shomali N, Sandoghchian Shotorbani S. An updated overview of the application of CAR-T cell therapy in neurological diseases. Biotechnol Prog 2023; 39:e3356. [PMID: 37198722 DOI: 10.1002/btpr.3356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Genetically modified immune cells, especially CAR-T cells, have captured the attention of scientists over the past 10 years. In the fight against cancer, these cells have a special place. Treatment for hematological cancers, autoimmune disorders, and cancers must include CAR-T cell therapy. Determining the therapeutic targets, side effects, and use of CAR-T cells in neurological disorders, including cancer and neurodegenerative diseases, is the goal of this study. Due to advancements in genetic engineering, CAR-T cells have become crucial in treating some neurological disorders. CAR-T cells have demonstrated a positive role in treating neurological cancers like Glioblastoma and Neuroblastoma due to their ability to cross the blood-brain barrier and use diverse targets. However, CAR-T cell therapy for MS diseases is being researched and could be a potential treatment option. This study aimed to access the most recent studies and scientific articles in the field of CAR-T cells in neurological diseases and/or disorders.
Collapse
Affiliation(s)
- Hesam Shahabifard
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Zarei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Nazgol Esmalian Afyouni
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Sairan Maghsoodi
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences (MUK), Sanandaj, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
14
|
Cao Y, Efetov SK, He M, Fu Y, Beeraka NM, Zhang J, Zhang X, Bannimath N, Chen K. Updated Clinical Perspectives and Challenges of Chimeric Antigen Receptor-T Cell Therapy in Colorectal Cancer and Invasive Breast Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:19. [PMID: 37566162 DOI: 10.1007/s00005-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023]
Abstract
In recent years, the incidence of colorectal cancer (CRC) and breast cancer (BC) has increased worldwide and caused a higher mortality rate due to the lack of selective anti-tumor therapies. Current chemotherapies and surgical interventions are significantly preferred modalities to treat CRC or BC in advanced stages but the prognosis for patients with advanced CRC and BC remains dismal. The immunotherapy technique of chimeric antigen receptor (CAR)-T cells has resulted in significant clinical outcomes when treating hematologic malignancies. The novel CAR-T therapy target antigens include GUCY2C, CLEC14A, CD26, TEM8/ANTXR1, PDPN, PTK7, PODXL, CD44, CD19, CD20, CD22, BCMA, GD2, Mesothelin, TAG-72, CEA, EGFR, B7H3, HER2, IL13Ra2, MUC1, EpCAM, PSMA, PSCA, NKG2D. The significant aim of this review is to explore the recently updated information pertinent to several novel targets of CAR-T for CRC, and BC. We vividly described the challenges of CAR-T therapies when treating CRC or BC. The immunosuppressive microenvironment of solid tumors, the shortage of tumor-specific antigens, and post-treatment side effects are the major hindrances to promoting the development of CAR-T cells. Several clinical trials related to CAR-T immunotherapy against CRC or BC have already been in progress. This review benefits academicians, clinicians, and clinical oncologists to explore more about the novel CAR-T targets and overcome the challenges during this therapy.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Sergey K Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Narasimha M Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh, 515721, India
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Xinliang Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Namitha Bannimath
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, #1 Jianshedong Str., Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
15
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
VanderBurgh JA, Corso TN, Levy SL, Craighead HG. Scalable continuous-flow electroporation platform enabling T cell transfection for cellular therapy manufacturing. Sci Rep 2023; 13:6857. [PMID: 37185305 PMCID: PMC10133335 DOI: 10.1038/s41598-023-33941-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Viral vectors represent a bottleneck in the manufacturing of cellular therapies. Electroporation has emerged as an approach for non-viral transfection of primary cells, but standard cuvette-based approaches suffer from low throughput, difficult optimization, and incompatibility with large-scale cell manufacturing. Here, we present a novel electroporation platform capable of rapid and reproducible electroporation that can efficiently transfect small volumes of cells for research and process optimization and scale to volumes required for applications in cellular therapy. We demonstrate delivery of plasmid DNA and mRNA to primary human T cells with high efficiency and viability, such as > 95% transfection efficiency for mRNA delivery with < 2% loss of cell viability compared to control cells. We present methods for scaling delivery that achieve an experimental throughput of 256 million cells/min. Finally, we demonstrate a therapeutically relevant modification of primary T cells using CRISPR/Cas9 to knockdown T cell receptor (TCR) expression. This study displays the capabilities of our system to address unmet needs for efficient, non-viral engineering of T cells for cell manufacturing.
Collapse
Affiliation(s)
| | - Thomas N Corso
- CyteQuest, Inc, 95 Brown Road, Box 1011, Ithaca, NY, 14850, USA
| | - Stephen L Levy
- CyteQuest, Inc, 95 Brown Road, Box 1011, Ithaca, NY, 14850, USA
| | | |
Collapse
|
17
|
Lee YG, Yang N, Chun I, Porazzi P, Carturan A, Paruzzo L, Sauter CT, Guruprasad P, Pajarillo R, Ruella M. Apoptosis: a Janus bifrons in T-cell immunotherapy. J Immunother Cancer 2023; 11:e005967. [PMID: 37055217 PMCID: PMC10106075 DOI: 10.1136/jitc-2022-005967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 04/15/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of cancer. In particular, immune checkpoint blockade, bispecific antibodies, and adoptive T-cell transfer have yielded unprecedented clinical results in hematological malignancies and solid cancers. While T cell-based immunotherapies have multiple mechanisms of action, their ultimate goal is achieving apoptosis of cancer cells. Unsurprisingly, apoptosis evasion is a key feature of cancer biology. Therefore, enhancing cancer cells' sensitivity to apoptosis represents a key strategy to improve clinical outcomes in cancer immunotherapy. Indeed, cancer cells are characterized by several intrinsic mechanisms to resist apoptosis, in addition to features to promote apoptosis in T cells and evade therapy. However, apoptosis is double-faced: when it occurs in T cells, it represents a critical mechanism of failure for immunotherapies. This review will summarize the recent efforts to enhance T cell-based immunotherapies by increasing apoptosis susceptibility in cancer cells and discuss the role of apoptosis in modulating the survival of cytotoxic T lymphocytes in the tumor microenvironment and potential strategies to overcome this issue.
Collapse
Affiliation(s)
- Yong Gu Lee
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Nicholas Yang
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Inkook Chun
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Patrizia Porazzi
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alberto Carturan
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Luca Paruzzo
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Oncology, University of Turin, Torino, Piemonte, Italy
| | - Christopher Tor Sauter
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Puneeth Guruprasad
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Raymone Pajarillo
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marco Ruella
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
CAR T-Cell Persistence Correlates with Improved Outcome in Patients with B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24065688. [PMID: 36982764 PMCID: PMC10056741 DOI: 10.3390/ijms24065688] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has led to profound and durable tumor responses in a relevant subset of patients with relapsed/refractory (r/r) B-cell lymphomas. Still, some patients show insufficient benefit or relapse after CAR T-cell therapy. We performed a retrospective study to investigate the correlation between CAR T-cell persistence in the peripheral blood (PB) at 6 months, assessed by droplet digital PCR (ddPCR), with CAR T-cell treatment outcome. 92 patients with r/r B-cell lymphomas were treated with CD19-targeting CAR T-cell therapies at our institution between 01/2019–08/2022. Six months post-treatment, 15 (16%) patients had no detectable circulating CAR-T constructs by ddPCR. Patients with CAR T-cell persistence had a significantly higher CAR T-cell peak (5432 vs. 620 copies/ug cfDNA, p = 0.0096), as well as higher incidence of immune effector cell-associated neurotoxicity syndrome (37% vs. 7%, p = 0.0182). After a median follow-up of 8.5 months, 31 (34%) patients relapsed. Lymphoma relapses were less frequent among patients with CAR T-cell persistence (29% vs. 60%, p = 0.0336), and CAR T-cell persistence in the PB at 6 months was associated with longer progression-free survival (PFS) (HR 2.79, 95% CI: 1.09–7.11, p = 0.0319). Moreover, we observed a trend towards improved overall survival (OS) (HR 1.99, 95% CI: 0.68–5.82, p = 0.2092) for these patients. In our cohort of 92 B-cell lymphomas, CAR T-cell persistence at 6 months was associated with lower relapse rates and longer PFS. Moreover, our data confirm that 4-1BB-CAR T-cells have a longer persistence as compared to CD-28-based CAR T-cells.
Collapse
|
19
|
Moscarelli J, Zahavi D, Maynard R, Weiner LM. The Next Generation of Cellular Immunotherapy: Chimeric Antigen Receptor-Natural Killer Cells. Transplant Cell Ther 2022; 28:650-656. [PMID: 35788086 PMCID: PMC9547868 DOI: 10.1016/j.jtct.2022.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
The advent of chimeric antigen receptor (CAR) engineering has led to the development of powerful cellular therapies for cancer. CAR T cell-based treatments have had notable clinical success, but logistical issues and associated toxicities are recognized limitations. There is emerging interest in using other immune effector cell types for CAR therapy. Natural killer (NK) cells are part of the innate immune system, and these lymphocytes play major roles in immunosurveillance and antitumor immune responses. Incorporating CARs into NK cells provides the opportunity to harness and enhance their innate cytotoxic potential toward malignancies. In this review, we discuss the production of CAR-engineered NK cells, highlight data on their preclinical and clinical efficacy, and examine the obstacles and strategies to overcome them.
Collapse
Affiliation(s)
- Jake Moscarelli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC
| | - David Zahavi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC
| | - Rachael Maynard
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC
| | - Louis M Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC.
| |
Collapse
|
20
|
Ascierto PA, Avallone A, Bhardwaj N, Bifulco C, Bracarda S, Brody JD, Buonaguro L, Demaria S, Emens LA, Ferris RL, Galon J, Khleif SN, Klebanoff CA, Laskowski T, Melero I, Paulos CM, Pignata S, Ruella M, Svane IM, Taube JM, Fox BA, Hwu P, Puzanov I. Perspectives in Immunotherapy: meeting report from the Immunotherapy Bridge, December 1st-2nd, 2021. J Transl Med 2022; 20:257. [PMID: 35672823 PMCID: PMC9172186 DOI: 10.1186/s12967-022-03471-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023] Open
Abstract
Over the past decade, immunotherapy has become an increasingly fundamental modality in the treatment of cancer. The positive impact of immune checkpoint inhibition, especially anti-programmed death (PD)-1/PD-ligand (L)1 blockade, in patients with different cancers has focused attention on the potential for other immunotherapeutic approaches. These include inhibitors of additional immune checkpoints, adoptive cell transfer (ACT), and therapeutic vaccines. Patients with advanced cancers who previously had limited treatment options available may now benefit from immunotherapies that can offer durable responses and improved survival outcomes. However, despite this, a significant proportion of patients fail to respond to immunotherapy, especially those with less immunoresponsive cancer types, and there remains a need for new treatment strategies.The virtual Immunotherapy Bridge (December 1st-2nd, 2021), organized by the Fondazione Melanoma Onlus, Naples, Italy in collaboration with the Society for Immunotherapy of Cancer addressed several areas of current research in immunotherapy, including lessons learned from cell therapies, drivers of immune response, and trends in immunotherapy across different cancers, and these are summarised here.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlo Bifulco
- Providence Genomics and Earle A. Chiles Research Institute, Portland, OR, USA
| | - Sergio Bracarda
- Medical and Translational Oncology Unit, Department of Oncology, Azienda Ospedaliera Santa Maria, Terni, Italy
| | - Joshua D Brody
- Department of Medicine, Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luigi Buonaguro
- Department of Experimental Oncology, Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College; Sandra and Edward Meyer Cancer Center; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Leisha A Emens
- Magee Women's Hospital/UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology/Equipe Labellisée Ligue Contre Le Cancer/Centre de Recherche Des Cordeliers, Sorbonne Université, Université Paris Cité, Marseille, France
| | - Samir N Khleif
- The Loop Immuno Oncology Laboratory, Georgetown University Medical School, Washington, DC, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center (MSKCC)/Center for Cell Engineering, MSKCC/Parker Institute for Cancer Immunotherapy/Weill Cornell Medical College, New York, NY, USA
| | - Tamara Laskowski
- Head of New Therapeutic Products - Personalized Medicine, Lonza Global, Houston, TX, USA
| | - Ignacio Melero
- Department of Immunology and Immunotherapy, Clinica Universidad de Navarra and CIBERONC, Pamplona, Spain
| | | | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Marco Ruella
- Center for Cellular Immunotherapies and Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Janis M Taube
- Department of Dermatology, Johns Hopkins University SOM, Baltimore, MD, USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Cancer Institute, Portland, OR, USA
| | | | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
21
|
Drumheller B, Gebre K, Lockhart B, Margolskee E, Obstfeld A, Paessler M, Pillai V. Haematology laboratory parameters to assess efficacy of CD19-, CD22-, CD33-, and CD123-directed chimeric antigen receptor T-cell therapy in haematological malignancies. Int J Lab Hematol 2022; 44:750-758. [PMID: 35419923 DOI: 10.1111/ijlh.13850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/01/2022] [Accepted: 03/27/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T cell products are available to treat relapsed/refractory B-lymphoblastic leukaemia/lymphoma (B-ALL), diffuse large B-cell lymphoma, mantle-cell lymphoma, and myeloma. CAR products vary by their target epitope and constituent molecules. Hence, there are no common laboratory assays to assess CAR T cell expansion in the clinical setting. We investigated the utility of common haematology laboratory parameters to measure CAR T cell expansion and response. METHODS Archived CellaVision images, absolute lymphocyte counts, and Sysmex CPD parameters spanning 1 month after CD19-CAR, UCAR19, CD22-CAR, CD33-CAR, and UCAR123 therapy were compared against donor lymphocyte infused control patients. Additionally, CellaVision images gathered during acute EBV infection were analysed. RESULTS CellaVision images revealed a distinct sequence of three lymphocyte morphologies, common among CD19-CAR, CD22-CAR and UCAR19. This lymphocyte sequence was notably absent in CAR T cell non-responders and stem-cell transplantation controls, but shared some features seen during acute EBV infection. CD19-CAR engraftment kinetics monitored by quantitative PCR show an expansion and persistence phase and mirror CD19-CAR ALC kinetics. We show other novel CAR T cell therapies (UCAR19, CD22-CAR, CD33-CAR and UCAR123) display similar ALC expansion in responders and diminished ALC expansion in non-responders. Furthermore, the CPD parameter LY_WY fluorescence increased within the first week after CD19-CAR infusion, preceding the peak absolute lymphocyte count (ALC) by 3.7 days. CONCLUSION Autologous and allogeneic CAR T cell therapy produce unique changes in common haematology laboratory parameters and could be a useful surrogate to follow CAR T-cell expansion after infusion.
Collapse
Affiliation(s)
- Bradley Drumheller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirubel Gebre
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Lockhart
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth Margolskee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amrom Obstfeld
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michele Paessler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
23
|
Hanssens H, Meeus F, De Veirman K, Breckpot K, Devoogdt N. The antigen-binding moiety in the driver's seat of CARs. Med Res Rev 2022; 42:306-342. [PMID: 34028069 PMCID: PMC9292017 DOI: 10.1002/med.21818] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Immuno-oncology has been at the forefront of cancer treatment in recent decades. In particular immune checkpoint and chimeric antigen receptor (CAR)-T cell therapy have achieved spectacular results. Over the years, CAR-T cell development has followed a steady evolutionary path, focusing on increasing T cell potency and sustainability, which has given rise to different CAR generations. However, there was less focus on the mode of interaction between the CAR-T cell and the cancer cell; more specifically on the targeting moiety used in the CAR and its specific properties. Recently, the importance of optimizing this domain has been recognized and the possibilities have been exploited. Over the last 10 years-in addition to the classical scFv-based CARs-single domain CARs, natural receptor-ligand CARs, universal CARs and CARs targeting more than one antigen have emerged. In addition, the specific parameters of the targeting domain and their influence on T cell activation are being examined. In this review, we concisely present the history of CAR-T cell therapy, and then expand on various developments in the CAR ectodomain. We discuss different formats, each with their own advantages and disadvantages, as well as the developments in affinity tuning, avidity effects, epitope location, and influence of the extracellular spacer.
Collapse
Affiliation(s)
- Heleen Hanssens
- In Vivo Cellular and Molecular Imaging LaboratoryVrije Universiteit BrusselBrusselsBelgium
- Laboratory of Hematology and ImmunologyVrije Universiteit BrusselBrusselsBelgium
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Fien Meeus
- In Vivo Cellular and Molecular Imaging LaboratoryVrije Universiteit BrusselBrusselsBelgium
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Kim De Veirman
- Laboratory of Hematology and ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging LaboratoryVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
24
|
Messéant O, Houot R. [CAR-T cells in lymphomas: Current and evolving role]. Bull Cancer 2021; 108:S28-S39. [PMID: 34920805 DOI: 10.1016/j.bulcan.2021.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/31/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
Three CD19 CAR-T cells (Yescarta®, Kymriah® and Breyanzi®), have been approved in relapsed or refractory diffuse large B cell lymphomas (DLBCL) after at least two previous lines of therapy. These immunotherapies have transformed the prognosis of these lymphomas, which can't be cured by conventional treatments. Long-term updates of registration studies as well as the first real-life data allow a better knowledge of the efficacy of these emerging therapies, their toxicity and their resistance mechanisms. These advances have also led to consider the earlier use of CAR-T cells in the therapeutic strategy and to extend it to other B lymphomas such as mantle cell and indolent lymphomas. Indeed, Yescarta® and Tecartus® have been recently approved in those malignancies, Furthermore, other strategies are being investigated to develop new CAR-T cells to target Hodgkin's lymphomas and T-cell lymphomas, although data in these settings still have to be completed. In this article, we review the latest data on the use of CAR-T cells in lymphomas.
Collapse
Affiliation(s)
- Ondine Messéant
- CHU de Rennes, University of Rennes, Department of Hematology, 2, rue Henri-le-Guilloux, 35000 Rennes, France
| | - Roch Houot
- CHU de Rennes, University of Rennes, Department of Hematology, 2, rue Henri-le-Guilloux, 35000 Rennes, France.
| |
Collapse
|
25
|
Bister A, Ibach T, Haist C, Smorra D, Roellecke K, Wagenmann M, Scheckenbach K, Gattermann N, Wiek C, Hanenberg H. A novel CD34-derived hinge for rapid and efficient detection and enrichment of CAR T cells. Mol Ther Oncolytics 2021; 23:534-546. [PMID: 34901395 PMCID: PMC8640169 DOI: 10.1016/j.omto.2021.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/08/2021] [Indexed: 11/03/2022] Open
Abstract
Immunotherapy including chimeric antigen receptor (CAR) T cell therapy has revolutionized modern cancer therapy and has achieved remarkable remission and survival rates for several malignancies with historically dismal outcomes. The hinge of the CAR connects the antigen binding to the transmembrane domain and can be exploited to confer features to CAR T cells including additional stimulation, targeted elimination or detection and enrichment of the genetically modified cells. For establishing a novel hinge derived from human CD34, we systematically tested CD34 fragments of different lengths, all containing the binding site of the QBend-10 monoclonal antibody, in a FMC63-based CD19 CAR lentiviral construct. A final construct of 99 amino acids called C6 proved to be the best candidate for flow cytometry-based detection of CAR T cells and >95% enrichment of genetically modified T cells on MACS columns. The C6 hinge was functionally indistinguishable from the commonly used CD8α hinge in vitro as well as in in vivo experiments in NSG mice. We also showed that the C6 hinge can be used for a variety of different CARs and mediates high killing efficacy without unspecific activation by target antigen-negative cells, thus making C6 ideally suited as a universal hinge for CARs for clinical applications.
Collapse
Affiliation(s)
- Arthur Bister
- Department of Otorhinolaryngology, Head & Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
- Department of Pediatrics III, University Children's Hospital, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Tabea Ibach
- Department of Otorhinolaryngology, Head & Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Corinna Haist
- Department of Otorhinolaryngology, Head & Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
- Department of Pediatrics III, University Children's Hospital, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Denise Smorra
- Department of Pediatrics III, University Children's Hospital, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Katharina Roellecke
- Department of Otorhinolaryngology, Head & Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Martin Wagenmann
- Department of Otorhinolaryngology, Head & Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kathrin Scheckenbach
- Department of Otorhinolaryngology, Head & Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology, Head & Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology, Head & Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
- Department of Pediatrics III, University Children's Hospital, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
26
|
Lin H, Cheng J, Mu W, Zhou J, Zhu L. Advances in Universal CAR-T Cell Therapy. Front Immunol 2021; 12:744823. [PMID: 34691052 PMCID: PMC8526896 DOI: 10.3389/fimmu.2021.744823] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy achieved extraordinary achievements results in antitumor treatments, especially against hematological malignancies, where it leads to remarkable, long-term antineoplastic effects with higher target specificity. Nevertheless, some limitations persist in autologous CAR-T cell therapy, such as high costs, long manufacturing periods, and restricted cell sources. The development of a universal CAR-T (UCAR-T) cell therapy is an attractive breakthrough point that may overcome most of these drawbacks. Here, we review the progress and challenges in CAR-T cell therapy, especially focusing on comprehensive comparison in UCAR-T cell therapy to original CAR-T cell therapy. Furthermore, we summarize the developments and concerns about the safety and efficiency of UCAR-T cell therapy. Finally, we address other immune cells, which might be promising candidates as a complement for UCAR-T cells. Through a detailed overview, we describe the current landscape and explore the prospect of UCAR-T cell therapy.
Collapse
Affiliation(s)
- Haolong Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Kharfan-Dabaja MA, Yassine F, Gadd ME, Qin H. Driving Out Chronic Lymphocytic Leukemia With CAR T Cells. Transplant Cell Ther 2021; 28:5-17. [PMID: 34656807 DOI: 10.1016/j.jtct.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent leukemia in the Western hemisphere. The recent availability of novel targeted therapies, namely Bruton's tyrosine kinase, phosphoinositide-3 kinase, and BCL-2 inhibitors, have revolutionized the treatment algorithm for CLL but have not yet resulted in cure. Advances in the field of immuno-oncology and T cell engineering brought chimeric antigen receptor (CAR) T cell therapy from the laboratory to the clinic for treatment of B cell lymphoid malignancies and has improved the disease response and survival outcomes of various types of relapsed and/or refractory B cell lymphomas. While acknowledging that there are no approved CAR T cell therapies for CLL at this time, in this comprehensive review we explore novel targets for CAR T cell therapy in CLL and highlight the promising results of CAR T cell trials reported to date. Furthermore, we shed light on future areas of development, including multitarget CAR T cell products for this disease.
Collapse
Affiliation(s)
- Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida.
| | - Farah Yassine
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida
| | - Martha E Gadd
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida
| | - Hong Qin
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
28
|
Wang E, Cesano A, Butterfield LH, Marincola F. Improving the therapeutic index in adoptive cell therapy: key factors that impact efficacy. J Immunother Cancer 2021; 8:jitc-2020-001619. [PMID: 33023983 PMCID: PMC7539608 DOI: 10.1136/jitc-2020-001619] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The therapeutic index (TI) is a quantitative assessment of a drug safety proportional to its effectiveness. The estimation is intuitive when the engagement of the product with its target is dependent on stable chemistry and predictable pharmacokinetics as is the case for small molecules or antibodies. But for therapeutics with complex biodistribution and context-dependent potency such as adoptive cell therapy (ACT) products, TI estimations need to consider a broader array of factors. These include product-dependent variability such as functional fitness, unpredictable pharmacokinetics due to non-specific trapping, sequestration and extravasation into normal tissues and variable rates of in vivo expansion. In the case of solid malignancies, additional modifiers dependent on individual tumor immune biology may affect pharmacodynamics, including differential trafficking to benign compared with cancer tissue, hampered engagement with target cells, immune suppression and cellular dysfunction due to unfavorable metabolic conditions. Here, we propose a patient-specific assessment of factors affecting on-tumor from off-tumor activity in disparate immunologic environments that impact ACT’s clinical efficacy and may favorably balance the TI. for ACT products.
Collapse
Affiliation(s)
- Ena Wang
- Allogene Therapeutics, San Francisco, California, USA
| | | | - Lisa H Butterfield
- Research, Parker Institute for Cancer Immunotherapy, San Francisco, California, USA.,Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
29
|
Zhang A, Sun Y, Du J, Dong Y, Pang H, Ma L, Si S, Zhang Z, He M, Yue Y, Zhang X, Zhao W, Pi J, Chang M, Wang Q, Zhang Y. Reducing Hinge Flexibility of CAR-T Cells Prolongs Survival In Vivo With Low Cytokines Release. Front Immunol 2021; 12:724211. [PMID: 34675920 PMCID: PMC8524077 DOI: 10.3389/fimmu.2021.724211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/17/2021] [Indexed: 01/11/2023] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate unparalleled responses in B cell malignancies. However, high tumor burden limits clinical efficacy and increases the risk of cytokine release syndrome and neurotoxicity, which is associated with over-activation of the CAR-T cells. The hinge domain plays an important role in the function of CAR-T cells. We hypothesized that deletion of glycine, an amino acid with good flexibility, may reduce the flexibility of the hinge region, thereby mitigating CAR-T cell over-activation. This study involved generating a novel CAR by deletion of two consecutive glycine residues in the CD8 hinge domain of second-generation (2nd) CAR, thereafter named 2nd-GG CAR. The 2nd-GG CAR-T cells showed similar efficacy of CAR expression but lower hinge flexibility, and its protein affinity to CD19 protein was lower than that of 2nd CAR-T cells. Compared to the 2nd CAR-T cells, 2nd-GG CAR-T cells reduced proinflammatory cytokine secretion without diminishing the specific cytotoxicity toward tumor cells in vitro. Furthermore, 2nd-GG CAR-T cells prolonged overall survival in an immunodeficient mouse model bearing NALM-6 when tumor burden was high. This study demonstrated that a lower-flexibility of CD8α hinge improved survival under high tumor burden and reduced proinflammatory cytokines in preclinical studies. While there is potential for improved safety and efficacy, yet this needs validation with clinical trials.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphocyte Transfusion
- Mice
- Mice, SCID
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Survival Analysis
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transduction, Genetic
- Tumor Burden
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ang Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| | - Yao Sun
- Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jie Du
- SAFE Pharmaceutical Research Institute Co. Ltd, HeBei, China
| | - Yansheng Dong
- SAFE Pharmaceutical Research Institute Co. Ltd, HeBei, China
| | - Honggang Pang
- Department of Emergency, Affiliated Zhongshan Hospital, Dalian University, Dalian, China
| | - Lei Ma
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Shaoyan Si
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- Comprehensive Basic Experiment, Beijing, China
| | - Zhong Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Cardiovascular Medicine, Beijing, China
| | - Mingyi He
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| | - Yang Yue
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| | - Xiaoli Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| | - Weichao Zhao
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Respiratory Medicine, Beijing, China
| | - Jianjun Pi
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Respiratory Medicine, Beijing, China
| | - Mindong Chang
- Strategic Support Force Medical Center, The Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Quanjun Wang
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory of Medical Countermeasures and Toxicology, Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Yikun Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| |
Collapse
|
30
|
Messéant O, Houot R, Manson G. T-cell Redirecting Therapies for the Treatment of B-cell Lymphomas: Recent Advances. Cancers (Basel) 2021; 13:cancers13174274. [PMID: 34503084 PMCID: PMC8428367 DOI: 10.3390/cancers13174274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary B-cell non-Hodgkin lymphomas (NHL) include many diseases with distincts pathogenic mechanisms, prognoses and management. Most patients benefit generally from efficient therapies allowing cure or prolonged remission. However, when they are refractory or relapse after standard therapy, they harbor a poor prognosis. In last decades, numerous novel immunotherapies have been developed with the aim of redirecting T-cell specificity against tumor antigens. Latest data on CAR T-cells confirm their efficacy and their safety in this setting. In addition, trials with bispecific antibodies are also ongoing for these patients, with encouraging premiminary findings, whether before or after CAR T-cells treatment. Here, we review the main results of CAR T-cells and bispecific T-cell engagers studies in the B-cell non-Hodgkin lymphomas setting. These advances in immunotherapies have transformed diffuse large B-cell lymphomas prognosis and will process indolent NHL’s future. Results with such treatments could lead to a new standard of care for those patients who are often heavily pretreated. Abstract T-cell specificity can be redirected against tumor antigens either ex vivo using engineered chimeric antigen receptor (CAR) T-cells or in vivo by bridging natural T-cells and tumor cells with bispecific T-cell engager (TCE) antibodies. Currently, four CAR T-cells have been approved by the FDA for the treatment of B-cell lymphomas, including diffuse large B cell lymphomas (DLBCL), mantle cell lymphoma (MCL), and follicular lymphoma (FL). No TCE have yet been approved for the treatment of B-cell lymphomas. However, at least four of them are in clinical development and show promising activity. Here, we review the most recent advances of CAR T-cells and TCE in the treatment of B-cell lymphomas.
Collapse
|
31
|
Abken H. Building on Synthetic Immunology and T Cell Engineering: A Brief Journey Through the History of Chimeric Antigen Receptors. Hum Gene Ther 2021; 32:1011-1028. [PMID: 34405686 PMCID: PMC10112879 DOI: 10.1089/hum.2021.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advancement in our understanding of immune cell recognition and emerging cellular engineering technologies during the last decades made active manipulation of the T cell response possible. Synthetic immunology is providing us with an expanding set of composite receptor molecules capable to reprogram immune cell function in a predefined fashion. Since the first prototypes in the late 1980s, the design of chimeric antigen receptors (CARs; T-bodies, immunoreceptors), has followed a clear line of stepwise improvements from antigen-redirected targeting to designed "living factories" delivering transgenic products on demand. Building on basic research and creative clinical exploration, CAR T cell therapy has been achieving spectacular success in the treatment of hematologic malignancies, now beginning to improve the outcome of cancer patients. In this study, we briefly review the history of CARs and outline how the progress in the basic understanding of T cell recognition and of cell engineering technologies made novel therapies possible.
Collapse
Affiliation(s)
- Hinrich Abken
- Department of Genetic Immunotherapy, Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
32
|
Anderson MK, Torosyan A, Halford Z. Brexucabtagene Autoleucel: A Novel Chimeric Antigen Receptor T-cell Therapy for the Treatment of Mantle Cell Lymphoma. Ann Pharmacother 2021; 56:609-619. [PMID: 34340597 DOI: 10.1177/10600280211026338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To identify and assess the current literature surrounding the safety, efficacy, and practical considerations of brexucabtagene autoleucel (brexu-cel) for the treatment of relapsed or refractory (r/r) mantle cell lymphoma (MCL). DATA SOURCES An English-based literature search was conducted using the terms "brexucabtagene autoleucel" AND "mantle cell lymphoma" OR "KTE-X19"in PubMed (inception through May 1, 2021), EMBASE (inception through May 1, 2021), and ClinicalTrials.gov. STUDY SELECTION AND DATA EXTRACTION All studies evaluating the use of brexu-cel in MCL were considered for inclusion. DATA SYNTHESIS In the pivotal ZUMA-2 trial, brexu-cel demonstrated objective response and complete response rates of 85% and 59%, respectively. These results were consistent among high-risk subgroups. Noteworthy treatment-related adverse effects included grade ≥3 cytopenias (94%), immune effector cell-associated neurotoxicity syndrome (31%), and cytokine release syndrome (15%). Brexu-cel elicited a toxicity profile similar to that of other novel chimeric antigen receptor (CAR) T-cell products, with no new safety signals. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE There are currently no head-to-head clinical trials evaluating brexu-cel against other approved subsequent-line options in r/r MCL. In a relatively small phase II trial, brexu-cel demonstrated impressive response rates in heavily pretreated patients, with few viable alternatives. Long-term safety and efficacy outcomes with brexu-cel are unknown. The prevention, identification, and management of unique CAR T-cell toxicities requires expert care from a well-trained interdisciplinary team. CONCLUSION Brexu-cel has emerged as a viable treatment option in MCL. Additional studies are required to determine the optimal sequencing and place in therapy for brexu-cel in this highly heterogeneous, pathobiologically distinct, and incurable malignancy.
Collapse
|
33
|
Bruno B, Wäsch R, Engelhardt M, Gay F, Giaccone L, D'Agostino M, Rodríguez-Lobato LG, Danhof S, Gagelmann N, Kröger N, Popat R, Van de Donk NWCJ, Terpos E, Dimopoulos MA, Sonneveld P, Einsele H, Boccadoro M. European Myeloma Network perspective on CAR T-Cell therapies for multiple myeloma. Haematologica 2021; 106:2054-2065. [PMID: 33792221 PMCID: PMC8327729 DOI: 10.3324/haematol.2020.276402] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells (CAR-T) have dramatically changed the treatment landscape of B-cell malignancies, providing a potential cure for relapsed/refractory patients. Long-term responses in patients with acute lymphoblastic leukemia and non Hodgkin lymphomas have encouraged further development in myeloma. In particular, B-cell maturation antigen (BCMA)-targeted CAR-T have established very promising results in heavily pre-treated patients. Moreover, CAR-T targeting other antigens (i.e., SLAMF7 and CD44v6) are currently under investigation. However, none of these current autologous therapies have been approved, and despite high overall response rates across studies, main issues such as long-term outcome, toxicities, treatment resistance, and management of complications limit as yet their widespread use. Here, we critically review the most important pre-clinical and clinical findings, recent advances in CAR-T against myeloma, as well as discoveries in the biology of a still incurable disease, that, all together, will further improve safety and efficacy in relapsed/refractory patients, urgently in need of novel treatment options.
Collapse
Affiliation(s)
- Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy; Division of Hematology and Medical Oncology, Perlmutter Cancer Center, Grossman School of Medicine, NYU Langone Health, New York, NY.
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Monika Engelhardt
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Francesca Gay
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino
| | - Luisa Giaccone
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino
| | - Mattia D'Agostino
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino
| | - Luis-Gerardo Rodríguez-Lobato
- Unit of Amyloidosis and Multiple Myeloma, Department of Hematology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Division of Medicine II, University Hospital Würzburg, Würzburg
| | - Sophia Danhof
- Division of Medicine II, University Hospital Würzburg, Würzburg
| | - Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Rakesh Popat
- Department of Hematology, University College London Hospitals, London
| | - Niels W C J Van de Donk
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam
| | - Evangelos Terpos
- Stem Cell Transplantation Unit, Plasma Cell Dyscrasias Unit, Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens
| | - Meletios A Dimopoulos
- Stem Cell Transplantation Unit, Plasma Cell Dyscrasias Unit, Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens
| | | | - Hermann Einsele
- Division of Medicine II, University Hospital Würzburg, Würzburg
| | - Mario Boccadoro
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino
| |
Collapse
|
34
|
Sampietro M, Zamai M, Díaz Torres A, Labrador Cantarero V, Barbaglio F, Scarfò L, Scielzo C, Caiolfa VR. 3D-STED Super-Resolution Microscopy Reveals Distinct Nanoscale Organization of the Hematopoietic Cell-Specific Lyn Substrate-1 (HS1) in Normal and Leukemic B Cells. Front Cell Dev Biol 2021; 9:655773. [PMID: 34277604 PMCID: PMC8278786 DOI: 10.3389/fcell.2021.655773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
HS1, the hematopoietic homolog of cortactin, acts as a versatile actin-binding protein in leucocytes. After phosphorylation, it is involved in GTPase and integrin activation, and in BCR, TCR, and CXCR4 downstream signaling. In normal and leukemic B cells, HS1 is a central cytoskeletal interactor and its phosphorylation and expression are prognostic factors in chronic lymphocytic leukemia (CLL) patients. We here introduce for the first time a super-resolution imaging study based on single-cell 3D-STED microscopy optimized for revealing and comparing the nanoscale distribution of endogenous HS1 in healthy B and CLL primary cells. Our study reveals that the endogenous HS1 forms heterogeneous nanoclusters, similar to those of YFP-HS1 overexpressed in the leukemic MEC1 cell line. HS1 nanoclusters in healthy and leukemic B cells form bulky assemblies at the basal sides, suggesting the recruitment of HS1 for cell adhesion. This observation agrees with a phasor-FLIM-FRET and STED colocalization analyses of the endogenous MEC1-HS1, indicating an increased interaction with Vimentin at the cell adhesion sites. In CLL cells isolated from patients with poor prognosis, we observed a larger accumulation of HS1 at the basal region and a higher density of HS1 nanoclusters in the central regions of the cells if compared to good-prognosis CLL and healthy B cells, suggesting a different role for the protein in the cell types analyzed. Our 3D-STED approach lays the ground for revealing tiny differences of HS1 distribution, its functionally active forms, and colocalization with protein partners.
Collapse
Affiliation(s)
- Marta Sampietro
- Malignant B Cells Biology and 3D Modeling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy.,Nanomedicine Center NANOMIB, School of Medicine and Surgery, Università di Milano Bicocca, Milan, Italy.,Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Moreno Zamai
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alfonsa Díaz Torres
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Veronica Labrador Cantarero
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Federica Barbaglio
- Malignant B Cells Biology and 3D Modeling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lydia Scarfò
- B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy.,School of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Scielzo
- Malignant B Cells Biology and 3D Modeling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria R Caiolfa
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
35
|
Banerjee R, Shah N, Dicker AP. Next-Generation Implementation of Chimeric Antigen Receptor T-Cell Therapy Using Digital Health. JCO Clin Cancer Inform 2021; 5:668-678. [PMID: 34110929 DOI: 10.1200/cci.21.00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is a paradigm-shifting immunotherapy modality in oncology; however, unique toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome limit its ability to be implemented more widely in the outpatient setting or at smaller-volume centers. Three operational challenges with CAR-T therapy include the following: (1) the logistics of toxicity monitoring, ie, with frequent vital sign checks and neurologic assessments; (2) the specialized knowledge required for toxicity management, particularly with regard to CRS and immune effector cell-associated neurotoxicity syndrome; and (3) the need for high-quality symptomatic and supportive care during this intensive period. In this review, we explore potential niches for digital innovations that can improve the implementation of CAR-T therapy in each of these domains. These tools include patient-facing technologies and provider-facing platforms: for example, wearable devices and mobile health apps to screen for fevers and encephalopathy, electronic patient-reported outcome assessments-based workflows to assist with symptom management, machine learning algorithms to predict emerging CRS in real time, clinical decision support systems to assist with toxicity management, and digital coaching to help maintain wellness. Televisits, which have grown in prominence since the novel coronavirus pandemic, will continue to play a key role in the monitoring and management of CAR-T-related toxicities as well. Limitations of these strategies include the need to ensure care equity and stakeholder buy-in, both operationally and financially. Nevertheless, once developed and validated, the next-generation implementation of CAR-T therapy using these digital tools may improve both its safety and accessibility.
Collapse
Affiliation(s)
- Rahul Banerjee
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Nina Shah
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Adam P Dicker
- Department of Radiation Oncology, Jefferson University, Philadelphia, PA.,Jefferson Center for Digital Health, Jefferson University, Philadelphia, PA
| |
Collapse
|
36
|
Johansson U, Gallagher K, Burgoyne V, Maus MV, Casey KS, Brini GG, Frigault MJ, Yam JY, Chavda N, Besley C, Lugthart S. Detection of CAR-T19 cells in peripheral blood and cerebrospinal fluid: An assay applicable to routine diagnostic laboratories. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 100:622-631. [PMID: 33915021 DOI: 10.1002/cyto.b.22005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/14/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chimeric antigen receptor-modified T-cells targeting CD19 (CAR-T19) are licensed for treating relapsed/refractory diffuse large B-cell lymphoma and B-acute lymphoblastic leukemia. Predicting treatment responses and toxicity (e.g., cytokine release syndrome and neurotoxicity) remains a big challenge. CAR-T19 monitoring could increase our understanding of treatment responses and be of relevance to patient management. A robust method for accurate CAR-T19 detection is therefore extremely desirable. METHODS An assay that uses fluorochrome-conjugated human recombinant soluble CD19 was tested against two commercially available CAR-T19 therapies and a CAR-T19 cell line developed in-house. Precision, concordance, and analyte stability were tested using peripheral blood obtained from CAR-T19-treated patients and controls. RESULTS The assay showed good accuracy, and had a limit of blank for whole blood samples of 0.13%. Reproducibility and inter-operator concordance were satisfactory (CVs <15%). The assay distinguished CAR-T19 from reactive T-cells in cerebrospinal fluid (CSF) from patients with suspected immune effector cell-associated neurotoxicity syndrome (ICANS), and was adapted to study memory T-cell compartments in treated patients. CONCLUSION The assay enabled routine monitoring of CAR-T19 in blood and CSF samples. Despite profound cytopenia in many lymphoma patients, results were obtained regularly from only 4 ml of blood. The assay can be adapted easily to characterize the memory and exhaustion status of CAR-T19 and native T-cells. Importantly, it does not rely on CAR construct specificity; thus, it can be used to detect any CD19-targeted CAR cell. Finally, our validation process can serve as a blueprint for other fluorochrome proteins used to detect CAR cells.
Collapse
Affiliation(s)
- Ulrika Johansson
- SI-HMDS, University Hospitals and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Kathleen Gallagher
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Victoria Burgoyne
- SI-HMDS, University Hospitals and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Keagan S Casey
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Gabrielle G Brini
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Jennifer Y Yam
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Nikesh Chavda
- Department of Haematology, University Hospitals and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Caroline Besley
- Department of Haematology, University Hospitals and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Sanne Lugthart
- Department of Haematology, University Hospitals and Weston NHS Foundation Trust, Bristol, United Kingdom
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
37
|
Daher M, Melo Garcia L, Li Y, Rezvani K. CAR-NK cells: the next wave of cellular therapy for cancer. Clin Transl Immunology 2021; 10:e1274. [PMID: 33959279 PMCID: PMC8080297 DOI: 10.1002/cti2.1274] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
T cells engineered to express chimeric antigen receptors (CARs) have revolutionised the field of cellular therapy for cancer. Despite its success, this strategy has some recognised limitations and toxicities. Hence, there is growing interest in developing novel cellular therapies based on non-αβ T-cell immune effector cells, including NK cells that offer clear advantages in cancer immunotherapy. As a result, NK cells are being explored as an alternative platform for CAR engineering and are becoming recognised as important players in the next generation of cellular therapies targeting cancer. In this review, we highlight preclinical and clinical studies of CAR-NK cells derived from different sources and discuss strategies under investigation to enhance the antitumor activity of these engineered innate immune cells.
Collapse
Affiliation(s)
- May Daher
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston TX USA
| |
Collapse
|
38
|
Saghafian-Hedengren S, Sverremark-Ekström E, Nilsson A. T Cell Subsets During Early Life and Their Implication in the Treatment of Childhood Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:582539. [PMID: 33763058 PMCID: PMC7982872 DOI: 10.3389/fimmu.2021.582539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
The immune system plays a major role in recognizing and eliminating malignant cells, and this has been exploited in the development of immunotherapies aimed at either activating or reactivating the anti-tumor activity of a patient's immune system. A wide range of therapeutic approaches involving T lymphocytes, such as programmed cell death protein ligand-1 (PDL-1) inhibitors, cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) blockers, and CD19-targeted T-cell therapy through chimeric antigen receptor (CAR)-T cells or CD19/CD3 bi-specific T-cell engagers, have been introduced to the field of oncology, leading to significant improvements in overall survival of adult cancer patients. During the past few years, the availability and approval of T-cell based immunotherapies have become a reality also for the treatment of childhood cancers. However, the distribution, ratio of regulatory to effector cells and the quality of T-cell responses early in life are distinct from those during adolescence and adulthood, raising the possibility that these differences impact the efficacy of immunotherapy. Herein we provide a brief overview of the properties of conventional T cell subsets during early life. Focusing on the most common cancer type during childhood, acute lymphoblastic leukemia (ALL), we describe how current conventional therapies used against ALL influence the T-cell compartment of small children. We describe early life T-cell responses in relation to immunotherapies engaging T-cell anticancer reactivity and present our opinion that it is not only immaturity of the adaptive immune system, but also the impact of an immunosuppressive environment that may prove disadvantageous in the setting of immunotherapies targeting pediatric cancer cells.
Collapse
Affiliation(s)
- Shanie Saghafian-Hedengren
- Division of Paediatric Oncology and Paediatric Surgery, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna Nilsson
- Division of Paediatric Oncology and Paediatric Surgery, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Griggio V, Perutelli F, Salvetti C, Boccellato E, Boccadoro M, Vitale C, Coscia M. Immune Dysfunctions and Immune-Based Therapeutic Interventions in Chronic Lymphocytic Leukemia. Front Immunol 2020; 11:594556. [PMID: 33312177 PMCID: PMC7708380 DOI: 10.3389/fimmu.2020.594556] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by a wide range of tumor-induced alterations, which affect both the innate and adaptive arms of the immune response, and accumulate during disease progression. In recent years, the development of targeted therapies, such as the B-cell receptor signaling inhibitors and the Bcl-2 protein inhibitor venetoclax, has dramatically changed the treatment landscape of CLL. Despite their remarkable anti-tumor activity, targeted agents have some limitations, which include the development of drug resistance mechanisms and the inferior efficacy observed in high-risk patients. Therefore, additional treatments are necessary to obtain deeper responses and overcome drug resistance. Allogeneic hematopoietic stem cell transplantation (HSCT), which exploits immune-mediated graft-versus-leukemia effect to eradicate tumor cells, currently represents the only potentially curative therapeutic option for CLL patients. However, due to its potential toxicities, HSCT can be offered only to a restricted number of younger and fit patients. The growing understanding of the complex interplay between tumor cells and the immune system, which is responsible for immune escape mechanisms and tumor progression, has paved the way for the development of novel immune-based strategies. Despite promising preclinical observations, results from pilot clinical studies exploring the safety and efficacy of novel immune-based therapies have been sometimes suboptimal in terms of long-term tumor control. Therefore, further advances to improve their efficacy are needed. In this context, possible approaches include an earlier timing of immunotherapy within the treatment sequencing, as well as the possibility to improve the efficacy of immunotherapeutic agents by administering them in combination with other anti-tumor drugs. In this review, we will provide a comprehensive overview of main immune defects affecting patients with CLL, also describing the complex networks leading to immune evasion and tumor progression. From the therapeutic standpoint, we will go through the evolution of immune-based therapeutic approaches over time, including i) agents with broad immunomodulatory effects, such as immunomodulatory drugs, ii) currently approved and next-generation monoclonal antibodies, and iii) immunotherapeutic strategies aiming at activating or administering immune effector cells specifically targeting leukemic cells (e.g. bi-or tri-specific antibodies, tumor vaccines, chimeric antigen receptor T cells, and checkpoint inhibitors).
Collapse
Affiliation(s)
- Valentina Griggio
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesca Perutelli
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Salvetti
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elia Boccellato
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mario Boccadoro
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Candida Vitale
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marta Coscia
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
40
|
Coscia M, Bruno B, Neelapu S. Editorial: CAR T-Cell Therapies in Hematologic Tumors. Front Oncol 2020; 10:588134. [PMID: 33178614 PMCID: PMC7596269 DOI: 10.3389/fonc.2020.588134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 01/23/2023] Open
Affiliation(s)
- Marta Coscia
- University Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, and Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Benedetto Bruno
- University Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, and Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
41
|
Perez C, Gruber I, Arber C. Off-the-Shelf Allogeneic T Cell Therapies for Cancer: Opportunities and Challenges Using Naturally Occurring "Universal" Donor T Cells. Front Immunol 2020; 11:583716. [PMID: 33262761 PMCID: PMC7685996 DOI: 10.3389/fimmu.2020.583716] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) engineered T cell therapies individually prepared for each patient with autologous T cells have recently changed clinical practice in the management of B cell malignancies. Even though CARs used to redirect polyclonal T cells to the tumor are not HLA restricted, CAR T cells are also characterized by their endogenous T cell receptor (TCR) repertoire. Tumor-antigen targeted TCR-based T cell therapies in clinical trials are thus far using “conventional” αβ-TCRs that recognize antigens presented as peptides in the context of the major histocompatibility complex. Thus, both CAR- and TCR-based adoptive T cell therapies (ACTs) are dictated by compatibility of the highly polymorphic HLA molecules between donors and recipients in order to avoid graft-versus-host disease and rejection. The development of third-party healthy donor derived well-characterized off-the-shelf cell therapy products that are readily available and broadly applicable is an intensive area of research. While genome engineering provides the tools to generate “universal” donor cells that can be redirected to cancers, we will focus our attention on third-party off-the-shelf strategies with T cells that are characterized by unique natural features and do not require genome editing for safe administration. Specifically, we will discuss the use of virus-specific T cells, lipid-restricted (CD1) T cells, MR1-restricted T cells, and γδ-TCR T cells. CD1- and MR1-restricted T cells are not HLA-restricted and have the potential to serve as a unique source of universal TCR sequences to be broadly applicable in TCR-based ACT as their targets are presented by the monomorphic CD1 or MR1 molecules on a wide variety of tumor types. For each cell type, we will summarize the stage of preclinical and clinical development and discuss opportunities and challenges to deliver off-the-shelf targeted cellular therapies against cancer.
Collapse
Affiliation(s)
- Cynthia Perez
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Isabelle Gruber
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
42
|
Terrén I, Orrantia A, Vitallé J, Astarloa-Pando G, Zenarruzabeitia O, Borrego F. Modulating NK cell metabolism for cancer immunotherapy. Semin Hematol 2020; 57:213-224. [PMID: 33256914 DOI: 10.1053/j.seminhematol.2020.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Natural killer (NK) cells are lymphocytes with potent antitumor functions and, therefore, multiple NK cell-based cancer immunotherapies have been developed and are currently being tested. However, there is a necessity to find new means to improve these therapies, and immunometabolism represents an attractive target. NK cell effector functions are intricately linked to their metabolism, and modulating the latter could be the key to release their full potential. In this review, we have summarized how NK cell metabolism is regulated during some processes, such as maturation, viral infection, and cytokine stimulation. Additionally, we provide an overview of how NK cell metabolism is affected by current therapeutic approaches aimed to promote NK cell expansion and/or to increase their effector functions. We have also recapitulated several strategies that could help alleviating the metabolic impairment that characterizes tumor-infiltrating NK cells, and thus increase or restore their effector functions. Furthermore, we have reviewed several therapeutic approaches targeting cancer metabolism that could synergize with NK cell-based cancer immunotherapies, and thus enhance their efficacy.
Collapse
Affiliation(s)
- Iñigo Terrén
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain
| | - Ane Orrantia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain
| | - Joana Vitallé
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain
| | | | - Olatz Zenarruzabeitia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain.
| | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
43
|
Halford Z, Anderson MK, Bennett LL, Moody J. Tisagenlecleucel in Acute Lymphoblastic Leukemia: A Review of the Literature and Practical Considerations. Ann Pharmacother 2020; 55:466-479. [PMID: 32762363 DOI: 10.1177/1060028020948165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To evaluate the current literature for tisagenlecleucel in the treatment of relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia (ALL). DATA SOURCES A literature search of PubMed (inception to June 18, 2020) and ClinicalTrials.gov was conducted using the following search terms: CTL019, chimeric antigen receptor, CAR-T, and tisagenlecleucel. STUDY SELECTION AND DATA EXTRACTION All trials evaluating the use of tisagenlecleucel in B-cell ALL were reviewed and considered for inclusion. DATA SYNTHESIS Tisagenlecleucel displayed overall remission rates ranging from 69% to 93% in patients who historically respond extremely poorly to salvage therapy. Remissions were durable, with 12-month relapse-free survival (RFS) rates of 55% to 59%. These promising results are tempered by the unique adverse effect profile of chimeric antigen receptor (CAR) T-cell therapy. Potentially life-threatening cytokine release syndrome (CRS) occurred in 77% to 100% of patients, and immune effector cell-associated neurotoxicity syndrome (ICANS) developed in 31% to 45% of patients receiving tisagenlecleucel. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE The successful utilization of tisagenlecleucel therapy requires meticulous planning, prudent patient selection, multidisciplinary collaboration, and expert training to ensure optimal patient care. The complex interplay of patient- and treatment-related factors creates problematic barriers that must be expertly navigated by the health care team and authorized treatment center. CONCLUSIONS As the first US Food and Drug Administration-approved gene therapy, tisagenlecleucel heralds an immunotherapeutic breakthrough for treating pediatric and young adult patients with r/r B-cell ALL. Many questions surrounding patient-specific gene and cellular therapies remain, but their transformative potential in cancer care remains promising.
Collapse
Affiliation(s)
| | | | | | - Jonathan Moody
- ProMedica Toledo Hospital/Russell J. Ebeid Children's Hospital, Toledo, OH, USA
| |
Collapse
|
44
|
Halford Z, Anderson MK, Bennett LL. Axicabtagene Ciloleucel: Clinical Data for the Use of CAR T-cell Therapy in Relapsed and Refractory Large B-cell Lymphoma. Ann Pharmacother 2020; 55:390-405. [PMID: 32698673 DOI: 10.1177/1060028020944233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To evaluate the literature for axicabtagene ciloleucel (axi-cel), a first-in-class chimeric antigen receptor (CAR) T-cell therapy, in the treatment of relapsed/refractory (r/r) large B-cell lymphoma (LBCL). DATA SOURCES We conducted a PubMed (inception to June 22, 2020) and ClinicalTrials.gov search using the following terms: CD19, chimeric antigen receptor, and lymphoma. STUDY SELECTION AND DATA EXTRACTION All retrospective and prospective studies evaluating the use of axi-cel in LBCL were reviewed. DATA SYNTHESIS In the pivotal ZUMA-1 trial, axi-cel exhibited unprecedented overall and complete response rates of 83% and 58%, respectively. With a median follow-up of 27.1 months, 39% of patients had ongoing responses. Furthermore, postmarketing retrospective analyses found similar response rates in a more clinically diverse LBCL patient population. Novel CAR T-cell therapy elicits unique and potentially life-threatening toxicities that include cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Studies reported grade ≥3 CRS in 7% to 14% of patients and grade ≥3 ICANS in 31% to 55% of patients. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Axi-cel was the first US Food and Drug Administration-approved genetically engineered autologous CAR T-cell agent in r/r LBCL, representing an important milestone and paradigm shift in cancer treatment. Adoptive T-cell immunotherapy is a breakthrough treatment modality requiring careful patient selection, multidisciplinary collaboration, comprehensive patient counseling, and expert training to ensure optimal treatment. CONCLUSIONS The initial and ongoing results with axi-cel are encouraging, but long-term safety and efficacy data are lacking. Additional studies are required to identify axi-cel's ideal place in LBCL therapy.
Collapse
|