1
|
Jin J, Zhang M. Research progress on the role of extracellular vesicles in the pathogenesis of diabetic kidney disease. Ren Fail 2024; 46:2352629. [PMID: 38769599 PMCID: PMC11107856 DOI: 10.1080/0886022x.2024.2352629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus (DM) and has become the main cause of end-stage renal disease worldwide. In recent years, with the increasing incidence of DM, the pathogenesis of DKD has received increasing attention. The pathogenesis of DKD is diverse and complex. Extracellular vesicles (EVs) contain cell-derived membrane proteins, nucleic acids (such as DNA and RNA) and other important cellular components and are involved in intercellular information and substance transmission. In recent years, an increasing number of studies have confirmed that EVs play an important role in the development of DKD. The purpose of this paper is to explain the potential diagnostic value of EVs in DKD, analyze the mechanism by which EVs participate in intercellular communication, and explore whether EVs may become drug carriers for targeted therapy to provide a reference for promoting the implementation and application of exosome therapy strategies in clinical practice.
Collapse
Affiliation(s)
- Jiangyuan Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mianzhi Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
2
|
Tang Z, Shu L, Cao Z, Xu Y, Li C. Osteoarthritis rat serum-derived extracellular vesicles aggravate osteoarthritis development by inducing NLRP3-mediated pyroptotic cell death and cellular inflammation. Hum Cell 2024; 37:1624-1637. [PMID: 39141224 DOI: 10.1007/s13577-024-01119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Osteoarthritis (OA), degenerative joint disease, is the most prevalent form of arthritis worldwide. Besides its substantial burden on society, the high OA morbidity greatly diminishes patients' quality of life. According to recent research, patients-derived serum extracellular vesicles (EVs) are critically involved in sustaining the corresponding disease progression. However, limited research has fully explored the specific functions and molecular mechanisms of OA serum-derived EVs in disease progression. Consequently, we aimed to investigate the underlying mechanism of OA rats-derived serum EVs in regulating OA progression. Before constructing the exosome-cell co-culture system, EVs were extracted from OA and control rat serum and co-cultured with bone marrow mesenchymal stem cells (BM-MSCs). Western blotting (WB), RT-qPCR, and enzyme-linked immunosorbent assay (ELISA) results revealed that OA rat serum-derived EVs upregulated cell pyroptosis-related markers, including nod-Like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin D (GSDMD), and cleaved caspase-1. The OA rat-EVs also induced the release of LDH and inflammatory cytokines, including interleukin (IL)-1β, IL-18, IL-6, and TNF-α. Additional experiments revealed that OA rat-EVs delivered miR-133a-3p to BM-MSCs and upregulated miR-133a-3p to degrade sirtuin 1 (SIRT1), and activating the downstream NF-κB signaling pathway. Furthermore, the rescuing experiments confirmed that silencing SIRT1 abrogated the miR-133a-3p-induced protective effects in OA-EVs-treated BM-MSCs. In conclusion, OA rats-derived miR-133a-3p-containing EVs modulated the downstream SIRT1/NF-κB pathway-mediated pyroptotic cell death and inflammation in OA. In other words, this study confirmed the role and underlying mechanisms by which OA-associated serum EVs regulate pyroptosis and inflammation response in OA development.
Collapse
Affiliation(s)
- Zhifang Tang
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Road, Xishan District, Kunming, 650032, Yunnan, China
| | - Longjun Shu
- The First People's Hospital of Dali City, Dali, 671000, China
| | - Zijian Cao
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Yongqing Xu
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Road, Xishan District, Kunming, 650032, Yunnan, China.
| | - Chuan Li
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Road, Xishan District, Kunming, 650032, Yunnan, China.
| |
Collapse
|
3
|
Abbas A, Almaghrbi H, Giordo R, Zayed H, Pintus G. Pathogenic mechanisms, diagnostic, and therapeutic potential of microvesicles in diabetes and its complications. Arch Biochem Biophys 2024; 761:110168. [PMID: 39349130 DOI: 10.1016/j.abb.2024.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Extracellular vesicles (EVs), particularly microvesicles (MVs), have gained significant attention for their role as mediators of intercellular communication in both physiological and pathological contexts, including diabetes mellitus (DM) and its complications. This review provides a comprehensive analysis of the emerging roles of MVs in the pathogenesis of diabetes and associated complications such as nephropathy, retinopathy, cardiomyopathy, and neuropathy. MVs, through their cargo of proteins, lipids, mRNAs, and miRNAs, regulate critical processes like inflammation, oxidative stress, immune responses, and tissue remodeling, all of which contribute to the progression of diabetes and its complications. We examine the molecular mechanisms underlying MVs' involvement in these pathological processes and discuss their potential as biomarkers and therapeutic tools, particularly for drug delivery. Despite promising evidence, challenges remain in isolating and characterizing MVs, understanding their molecular mechanisms, and validating them for clinical use. Advanced techniques such as single-cell RNA sequencing and proteomics are required to gain deeper insights. Improved isolation and purification methods are essential for translating MVs into clinical applications, with potential to develop novel diagnostic and therapeutic strategies to improve patient outcomes in diabetes.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055, Dubai, United Arab Emirates; Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
4
|
Du J, Wu X, Ni L. The roles of G protein-coupled receptor kinase 2 in renal diseases. J Cell Mol Med 2024; 28:e70154. [PMID: 39438268 PMCID: PMC11495970 DOI: 10.1111/jcmm.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
G protein-coupled receptor (GPCR) kinase 2 (GRK2) is an integrative node in many signalling network cascades. An emerging study indicates that GRK2 can interact with GPCRs and non-GPCR substrates in both kinase-dependent and -independent modes. Alterations in the functional levels of GRK2 have been found in a variety of renal diseases, such as hypertension-related kidney injury, sepsis-associated acute kidney injury (S-AKI), cardiorenal syndrome (CRS), acute kidney injury (AKI), age-related kidney injury or hyperglycemia-related kidney injury. Abnormal GRK2 expression contribute to the development of renal diseases, making them promising molecular targets for treating renal diseases. Blocking the prostaglandin E2 (PGE2)-EP1-Gaq-Ca2+ signal pathway in glomerular mesangial cells (GMCs) by internalizing prostaglandin E2 receptor 1 (EP1) with GRK2 may be a potential treatment for diabetic nephropathy (DN). In addition, GRK2 inhibition may have therapeutic effects in a variety of renal diseases, such as SLE-related kidney injury, DN, age-related kidney injury, hypertension-related kidney injury, and CRS. However, there is still a long way to go for the large-scale application of GRK2 inhibition in the field of renal diseases. In this review, we discuss recent updates in understanding the role of GRK2 in kidney dysfunction. Furthermore, we explore the potential of GRK2 as a possible therapeutic target for renal pathologies. We believe it will shed light on the future development of small-molecule inhibitors of GRK, as well as the clinical applications in renal diseases.
Collapse
Affiliation(s)
- Jiayin Du
- Department of NephrologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xiaoyan Wu
- Department of NephrologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Department of General PracticeZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Lihua Ni
- Department of NephrologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
5
|
Cabiati M, Federico G, Del Ry S. Importance of Studying Non-Coding RNA in Children and Adolescents with Type 1 Diabetes. Biomedicines 2024; 12:1988. [PMID: 39335501 PMCID: PMC11429055 DOI: 10.3390/biomedicines12091988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Type 1 diabetes (T1D) mellitus is a chronic illness in children and teens, with rising global incidence rates. It stems from an autoimmune attack on pancreatic β cells, leading to insufficient insulin production. Genetic susceptibility and environmental triggers initiate this process. Early detection is possible by identifying multiple autoantibodies, which aids in predicting future T1D development. A new staging system highlights T1D's onset with islet autoimmunity rather than symptoms. Family members of T1D patients face a significantly increased risk of T1D. Italy recently passed a law mandating national T1D screening for pediatric populations. Measurements of β cell function continue to be essential in assessing efficacy, and different models have been proposed, but more appropriate biomarkers are mandatory for both progression studies before the onset of diabetes and during therapeutic monitoring. Biomarkers like microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) play key roles in T1D pathogenesis by regulating gene expression. Understanding their roles offers insights into T1D mechanisms and potential therapeutic targets. In this review, we summarized recent progress in the roles of some non-coding RNAs (ncRNAs) in the pathogenesis of T1D, with particular attention to miRNAs, lncRNAs, and circRNAs.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Giovanni Federico
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
6
|
Montenegro F, Giannuzzi F, Picerno A, Cicirelli A, Stea ED, Di Leo V, Sallustio F. How Stem and Progenitor Cells Can Affect Renal Diseases. Cells 2024; 13:1460. [PMID: 39273032 PMCID: PMC11393889 DOI: 10.3390/cells13171460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Stem and progenitor cells have been observed to contribute to regenerative processes in acute renal failure and chronic kidney disease. Recent research has delved into the intricate mechanisms by which stem and progenitor cells exert their influence on kidney diseases. Understanding how these cells integrate with the existing renal architecture and their response to injury could pave the way for innovative treatment strategies aimed at promoting kidney repair and regeneration. Overall, the role of stem and progenitor cells in kidney diseases is multifaceted, with their ability to contribute to tissue regeneration, immune modulation, and the maintenance of renal homeostasis. Here, we review the studies that we have available today about the involvement of stem and progenitor cells both in regenerative therapies and in the causes of renal diseases, as well as in natural healing mechanisms, taking into account the main kidney disorders, such as IgA nephropathy, lupus nephritis, diabetic nephropathy, C3 glomerulopathy, focal segmental glomerulosclerosis, idiopathic membranous nephropathy, anti-glomerular basement membrane glomerulonephritis, and ANCA-associated crescentic glomerulonephritis. Moreover, based on the comprehensive data available in the framework of the specific kidney diseases on stem cells and renal progenitors, we hypothesize a possible role of adult renal progenitors in exacerbating or recovering the illness.
Collapse
Affiliation(s)
- Francesca Montenegro
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Emma Diletta Stea
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Vincenzo Di Leo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
7
|
Zhang C, Ren W, Lu X, Feng L, Li J, Zhu B. Empagliflozin's role in early tubular protection for type 2 diabetes patients. Mol Med 2024; 30:112. [PMID: 39085830 PMCID: PMC11293177 DOI: 10.1186/s10020-024-00881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Patients with type 2 diabetes often face early tubular injury, necessitating effective treatment strategies. This study aimed to evaluate the impact of the SGLT2 inhibitor empagliflozin on early tubular injury biomarkers in type 2 diabetes patients with normoalbuminuria. METHODS A randomized controlled clinical study comprising 54 patients selected based on specific criteria was conducted. Patients were divided into an intervention group (empagliflozin, n = 27) and a control group (n = 27) and treated for 6 weeks. Tubular injury biomarkers KIM-1 and NGAL were assessed pre- and post-treatment. RESULTS Both groups demonstrated comparable baseline characteristics. Post-treatment, fasting and postprandial blood glucose levels decreased similarly in both groups. The intervention group exhibited better improvements in total cholesterol, low-density lipoprotein, and blood uric acid levels. Renal function indicators, including UACR and eGFR, showed greater enhancements in the intervention group. Significant reductions in KIM-1 and NGAL were observed in the intervention group. CONCLUSION Treatment with empagliflozin in type 2 diabetes patients with normoalbuminuria led to a notable decrease in tubular injury biomarkers KIM-1 and NGAL. These findings highlight the potential of SGLT2 inhibitors in early tubular protection, offering a new therapeutic approach.
Collapse
Affiliation(s)
- Chuangbiao Zhang
- Department of Endocrinology, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Weiwei Ren
- Department of Endocrinology, Guangzhou Baiyun District Maternal And Child Health Hospital, Guangzhou, 51000, Guangdong Province, China
| | - Xiaohua Lu
- Department of Endocrinology, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Lie Feng
- Department of Endocrinology, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Jiaying Li
- Department of Endocrinology, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China.
| | - Beibei Zhu
- Endoscopy Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
8
|
Wang Q, Zhou Y, Zheng N, Jiang F, Juan C. Identification of hub genes associated with pyroptosis in diabetic nephropathy patients using integrated bioinformatic analysis. Int Urol Nephrol 2024:10.1007/s11255-024-04158-7. [PMID: 39028495 DOI: 10.1007/s11255-024-04158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES To investigate the role of pyroptosis in diabetic nephropathy (DN) and identify potential biomarkers for diagnosis. METHODS We analyzed the GEO dataset GSE96804 to identify differentially expressed genes (DEGs) related to pyroptosis in DN. The CIBERSORT method was used to assess M1 macrophage infiltration in the samples. Using weighted gene co-expression network analysis (WGCNA), we identified gene modules associated with M1 macrophages. The least absolute shrinkage and selection operator (LASSO) method was then applied to screen for key genes. The intersection of key genes identified by LASSO and the gene modules obtained from WGCNA resulted in the identification of ten hub genes as potential biomarkers for DN. RESULTS A total of 366 DEGs were identified, with 310 genes associated with pyroptosis. Increased M1 macrophage infiltration was observed in DN patients. Ten hub genes were identified as potential DN biomarkers: ECM1, LRP2BP, ALKBH7, CDH10, DUSP1, HSPA1A, LPL, NFIL3, PDK4, and TMEM150C. CONCLUSIONS This study highlights the importance of pyroptosis in DN pathophysiology and identifies 10 hub genes as potential biomarkers. These findings may contribute to improved diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Qiuli Wang
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Zhou
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Zheng
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Chenxia Juan
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Xu D, Yuan L, Che M, Lu D, Liu W, Meng F, Yang Y, Du Y, Hou S, Nan Y. Molecular mechanism of Gan-song Yin inhibiting the proliferation of renal tubular epithelial cells by regulating miR-21-5p in adipocyte exosomes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117530. [PMID: 38043753 DOI: 10.1016/j.jep.2023.117530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gan-song Yin is derived from the classic ancient prescription " Gan-song pill " for the treatment of wasting-thirst in Ningxia combined with the characteristic "fragrant medicine". It is clinically used for the treatment of early renal fibrosis caused by diabetic nephropathy. Previous studies have shown that it has a good effect and great potential in the prevention and treatment of diabetic nephropathy, but its mechanism research is still limited. AIM OF THE STUDY To investigate the mechanism of GSY to improve DN by interfering with miR-21-5p and glycolipid metabolism in adipocyte exosomes using 3T3-L1 and TCMK-1 co-culture system. MATERIALS AND METHODS The co-culture system of 3T3-L3 and TCMK-1 was established, the IR model was established, and the stability, lipid drop change, glucose consumption, triglyceride content, cell viability, cell cycle and apoptosis level, protein content and mRNA expression of the IR model were detected. RESULTS GSY inhibited 3T3-L1 activity, increased glucose consumption and decreased TG content. Decreased TCMK-1 cell viability, inhibited apoptosis, cell cycle arrest occurred in G0/G1 phase and S phase. Adipocyte IR model and co-culture system were stable within 48 h. After GSY intervention, lipid droplet decomposition and glucose consumption increased. The TG content of adipocytes increased, while the TG content of co-culture system decreased. GSY can regulate the expression of TGF-β1/SMAD signaling pathway protein in IR state. After GSY intervention, the expression of miR-21-5p was increased in 3T3-L1 and Exo cells, and decreased in TCMK-1 cells. CONCLUSIONS GSY can regulate TGF-β1/SMAD signaling pathway through the secretion of miR-21-5p from adipocytes, protect IR TCMK-1, regulate the protein and mRNA expression levels of PPARγ, GLUT4, FABP4, and improve glucose and lipid metabolism.
Collapse
Affiliation(s)
- Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Mengying Che
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wenjing Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shaozhang Hou
- Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
10
|
Huang X, Zhang H, Liu J, Yang X, Liu Z. Screening candidate diagnostic biomarkers for diabetic kidney disease. J Clin Lab Anal 2024; 38:e25000. [PMID: 38299750 PMCID: PMC10873681 DOI: 10.1002/jcla.25000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/25/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND There are big differences in treatments and prognosis between diabetic kidney disease (DKD) and non-diabetic renal disease (NDRD). However, DKD patients couldn't be diagnosed early due to lack of special biomarkers. Urine is an ideal non-invasive sample for screening DKD biomarkers. This study aims to explore DKD special biomarkers by urinary proteomics. MATERIALS AND METHODS According to the result of renal biopsy, 142 type 2 diabetes mellitus (T2DM) patients were divided into 2 groups: DKD (n = 83) and NDRD (n = 59). Ten patients were selected from each group to define urinary protein profiles by label-free quantitative proteomics. The candidate proteins were further verifyied by parallel reaction monitoring (PRM) methods (n = 40). Proteins which perform the same trend both in PRM and proteomics were verified by enzyme-linked immunosorbent assays (ELISA) with expanding the sample size (n = 82). The area under the receiver operating characteristic curve (AUC) was used to evaluate the accuracy of diagnostic biomarkers. RESULTS We identified 417 peptides in urinary proteins showing significant difference between DKD and NDRD. PRM verification identified C7, SERPINA4, IGHG1, SEMG2, PGLS, GGT1, CDH2, CDH1 was consistent with the proteomic results and p < 0.05. Three potential biomarkers for DKD, C7, SERPINA4, and gGT1, were verified by ELISA. The combinatied SERPINA4/Ucr and gGT1/Ucr (AUC = 0.758, p = 0.001) displayed higher diagnostic efficiency than C7/Ucr (AUC = 0.632, p = 0.048), SERPINA4/Ucr (AUC = 0.661, p = 0.032), and gGT1/Ucr (AUC = 0.661, p = 0.029) respectively. CONCLUSIONS The combined index SERPINA4/Ucr and gGT1/Ucr can be considered as candidate biomarkers for diabetic nephropathy after adjusting by urine creatinine.
Collapse
Affiliation(s)
- Xinying Huang
- Department of Clinical Laboratorythe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
- Yunnan Innovation Team of Clinical Laboratory and DiagnosisFirst Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Hui Zhang
- Department of Clinical Laboratorythe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
- Yunnan Innovation Team of Clinical Laboratory and DiagnosisFirst Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Jihong Liu
- Department of Clinical Laboratorythe Third People's Hospital of KunmingKunmingChina
| | - Xuejiao Yang
- Department of Clinical Laboratorythe People's Hospital of ChuXiong Yi Autonomous PrefectureChuXiongChina
| | - Zijie Liu
- Department of Clinical Laboratorythe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
- Yunnan Innovation Team of Clinical Laboratory and DiagnosisFirst Affiliated Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
11
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. Bridging autoimmunity and epigenetics: The influence of lncRNA MALAT1. Pathol Res Pract 2024; 254:155041. [PMID: 38199135 DOI: 10.1016/j.prp.2023.155041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Autoimmune disorders represent a heterogeneous spectrum of conditions defined by an immune system's atypical reactivity against endogenous constituents. In the complex anatomy of autoimmune pathogenesis, lncRNAs have appeared as pivotal arbiters orchestrating the mechanisms of ailment initiation, immune cascades, and transcriptional modulation. One such lncRNA, MALAT1, has garnered attention for its potential association with the aetiology of several autoimmune diseases. MALAT1 has been shown to influence a wide spectrum of cellular processes, which include cell multiplication and specialization, as well as apoptosis and inflammation. In autoimmune diseases, MALAT1 exhibits both disease-specific and shared patterns of dysregulation, often correlating with disease severity. The molecular mechanisms underlying MALAT1's impact on autoimmune disorders include epigenetic modifications, alternative splicing, and modulation of gene expression networks. Additionally, MALAT1's intricate interactions with microRNAs, other lncRNAs, and protein-coding genes further underscore its role in immune regulation and autoimmune disease progression. Understanding the contribution of MALAT1 in autoimmune pathogenesis across different diseases could offer valuable insights into shared pathways, thereby clearing a path for the creation of innovative and enhanced therapeutic approaches to address these complex disorders. This review aims to elucidate the complex role of MALAT1 in autoimmune disorders, encompassing rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease (Crohn's disease and ulcerative colitis), type 1 diabetes, systemic lupus erythematosus, and psoriasis. Furthermore, it discusses the potential of MALAT1 as a diagnostic biomarker, therapeutic target, and prognostic indicator.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
12
|
Han LL, Wang SH, Yao MY, Zhou H. Urinary exosomal microRNA-145-5p and microRNA-27a-3p act as noninvasive diagnostic biomarkers for diabetic kidney disease. World J Diabetes 2024; 15:92-104. [PMID: 38313849 PMCID: PMC10835498 DOI: 10.4239/wjd.v15.i1.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD), characterized by increased urinary microalbumin levels and decreased renal function, is the primary cause of end-stage renal disease. Its pathological mechanisms are complicated and multifactorial; Therefore, sensitive and specific biomarkers are needed. Urinary exosome originate from diverse renal cells in nephron segments and partially mirror the pathological changes in the kidney. The microRNAs (miRNAs) in urinary exosome are remarkably stable and highly tissue-specific for the kidney. AIM To determine if urinary exosomal miRNAs from diabetic patients can serve as noninvasive biomarkers for early DKD diagnosis. METHODS Type 2 diabetic mellitus (T2DM) patients were recruited from the Second Hospital of Hebei Medical University and were divided into two groups: DM, diabetic patients without albuminuria [urinary albumin to creatinine ratio (UACR) < 30 mg/g] and DKD, diabetic patients with albuminuria (UACR ≥ 30 mg/g). Healthy subjects were the normal control (NC) group. Urinary exosomal miR-145-5p, miR-27a-3p, and miR-29c-3p, were detected using real-time quantitative polymerase chain reaction. The correlation between exosomal miRNAs and the clinical indexes was evaluated. The diagnostic values of exosomal miR-145-5p and miR-27a-3p in DKD were determined using receiver operating characteristic (ROC) analysis. Biological functions of miR-145-5p were investigated by performing Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. RESULTS Urinary exosomal expression of miR-145-5p and miR-27a-3p was more upregulated in the DKD group than in the DM group (miR-145-5p: 4.54 ± 1.45 vs 1.95 ± 0.93, P < 0.001; miR-27a-3p: 2.33 ± 0.79 vs 1.71 ± 0.76, P < 0.05) and the NC group (miR-145-5p: 4.54 ± 1.45 vs 1.55 ± 0.83, P < 0.001; miR-27a-3p: 2.33 ± 0.79 vs 1.10 ± 0.51, P < 0.001). The exosomal miR-145-5p and miR-27a-3p positively correlated with albuminuria and serum creatinine and negatively correlated with the estimated glomerular filtration rate. miR-27a-3p was also closely related to blood glucose, glycosylated hemoglobin A1c, and low-density lipoprotein cholesterol. ROC analysis revealed that miR-145-5p had a better area under the curve of 0.88 [95% confidence interval (CI): 0.784-0.985, P < 0.0001] in diagnosing DKD than miR-27a-3p with 0.71 (95%CI: 0.547-0.871, P = 0.0239). Bioinformatics analysis revealed that the target genes of miR-145-5p were located in the actin filament, cytoskeleton, and extracellular exosome and were involved in the pathological processes of DKD, including apoptosis, inflammation, and fibrosis. CONCLUSION Urinary exosomal miR-145-5p and miR-27a-3p may serve as novel noninvasive diagnostic biomarkers or promising therapeutic targets for DKD.
Collapse
Affiliation(s)
- Lu-Lu Han
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Department of Endocrinology, Baoding No. 1 Central Hospital, Baoding 071000, Hebei Province, China
| | - Sheng-Hai Wang
- Department of Critical Care Medicine, The Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China
| | - Ming-Yan Yao
- Department of Endocrinology, Baoding No. 1 Central Hospital, Baoding 071000, Hebei Province, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
13
|
Zhang S, Li Y, Wang Q. Icariin Attenuates Human Renal Tubular Epithelial Cell Senescence by Targeting PAK2 via miR-23b-3p. Curr Pharm Biotechnol 2024; 25:2278-2289. [PMID: 38375837 DOI: 10.2174/0113892010276372231129105022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Renal tubular epithelial cells (RTECs) senescence is crucial in kidney diseases. Icariin is shown to have protective effects against renal fibrosis, acute kidney injury, and proteinuria. We aimed to explore the role of icariin in protecting RTECs from senescence and the underlying mechanism involved. METHODS An in vitro model of RTEC senescence was established by incubating HK-2 cells with urine exosomes from patients with diabetic kidney disease. Stimulated cells were treated with icariin at various doses to evaluate the compound's therapeutic effects. After RNA transfection, cell cycle arrest and senescence, flow cytometry, and SA-β-Gal staining were analyzed. At the same time, quantitative real-time PCR examined microRNA expression. Biochemical assays. RESULTS Urine exosomes induced senescence and cell cycle arrest in the G1 stage in HK-2 cells, which were inhibited by icariin. Urine exosome stimulation up-regulated miR-23b-3p expression, which in turn suppressed PAK2 expression. Significantly, the induced and inhibited miR- 23b-3p expressions weakened and augmented the resistance of cells against urine exosome stimulation, respectively, while PAK2 overexpression provided additional protection. Icariin suppressed miR-23b-3p expression, and miR-23b-3p induction blocked the effects of icariin and promoted RTEC senescence. CONCLUSION miR-23b-3p and PAK2 form a signaling axis that regulates RTEC senescence upon urine exosome stimulation. Icariin can increase the resistance of RTECs against senescence via miR-23b-3p/PAK2. Our findings shed light on the mechanism of the clinical effects of icariin on renal diseases, which can be exploited to develop effective drugs targeting RTEC senescence in the future.
Collapse
Affiliation(s)
- Suqin Zhang
- Department of Traditional Chinese Medicine, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Yanbin Li
- Department of Traditional Chinese Medicine, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Qiuyue Wang
- Department of Traditional Chinese Medicine, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| |
Collapse
|
14
|
Han L, Wang S, Li J, Zhao L, Zhou H. Urinary exosomes from patients with diabetic kidney disease induced podocyte apoptosis via microRNA-145-5p/Srgap2 and the RhoA/ROCK pathway. Exp Mol Pathol 2023; 134:104877. [PMID: 37952894 DOI: 10.1016/j.yexmp.2023.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease without early diagnostic and specific therapeutic approaches. Podocyte apoptosis and loss play important roles in the pathological process of DKD. This study aimed to explore whether urinary exosomes from type 2 diabetes patients with DKD could induce podocyte apoptosis and the underlying pathological mechanisms. The exosomes were isolated from the urine samples of patients with DKD (DKD-Exo). Later, they were taken up and internalized by MPC5 cells. MPC5 cells were co-cultured with DKD-Exo (45 μg/ml) for 24 h in the presence or absence of microRNA-145-5p (miR-145-5p) inhibitor, fasudil and pcDNA-Srgap2 transfection. MiR-145-5p and Srgap2 expression was evaluated using real-time quantitative PCR. The protein levels of Srgap2, Bcl-2, Bax, and cleaved caspase-3, as well as ROCK activity were determined using Western blotting. Cell apoptosis was measured using flow cytometry and the TUNEL assay. miR-145-5p expression in MPC5 cells exposed to DKD-Exo was markedly upregulated. miR-145-5p negatively regulated Srgap2 levels. Exposure of MPC5 cells to DKD-Exo reduced Srgap2 expression and activated ROCK, which was partly reversed by the presence of the miR-145-5p inhibitor or Srgap2 overexpression. The apoptosis of MPC5 cells exposed to DKD-Exo increased significantly, which was counteracted by the addition of the miR-145-5p inhibitor and fasudil. The results showed that urinary exosomal miR-145-5p from patients with DKD induced podocyte apoptosis by inhibiting Srgap2 and activating the RhoA/ROCK pathway, suggesting that urinary exosomal miR-145-5p is involved in the pathological process of DKD and could become a noninvasive diagnostic biomarker for DKD.
Collapse
Affiliation(s)
- Lulu Han
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Department of Endocrinology, the First Central Hospital of Baoding, Baoding 071000, China
| | - Shenghai Wang
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Juan Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Lulu Zhao
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
15
|
Jiao W, Li W, Li T, Feng T, Wu C, Zhao D. Induced pluripotent stem cell-derived extracellular vesicles overexpressing SFPQ protect retinal Müller cells against hypoxia-induced injury. Cell Biol Toxicol 2023; 39:2647-2663. [PMID: 36790503 DOI: 10.1007/s10565-023-09793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
Splicing factor proline/glutamine-rich (SFPQ) is expressed in induced pluripotent stem cells (iPSCs), which are reported to orchestrate hypoxic injury responses and release extracellular vesicles (EVs). Therefore, this study sought to explore the role of iPSC-derived EVs carrying SFPQ in hypoxia-induced injury to retinal Müller cells. We induced oxygen-glucose deprivation/reoxygenation (OGD/R) in Müller cells. SFPQ was overexpressed or knocked down in iPSCs, from which EVs were extracted. Müller cells were co-cultured with EVs, and the results indicated that SFPQ protein was transferred into retinal Müller cells by iPSC-derived EVs. We identified an interaction of SFPQ with HDAC1 in retinal Müller cells. Specifically, SFPQ recruited HDAC1 to downregulate HIF-2α by regulating its acetylation. The in vitro studies suggested that iPSC-derived EVs, SFPQ or HDAC1 overexpression, or HIF-2α silencing diminished cell injury and apoptosis but elevated proliferation in retinal Müller cells. The in vivo studies indicated that iPSC-derived EVs containing SFPQ curtailed apoptosis of retinal Müller cells, thus alleviating retinal ischemia/reperfusion (I/R) injury of rat model. Taken together, iPSC-derived EVs containing SFPQ upregulated HDAC1 to attenuate OGD/R-induced Müller cell injury via downregulation of HIF-2α.
Collapse
Affiliation(s)
- Wenjun Jiao
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Weifang Li
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Tianyi Li
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Tao Feng
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Cong Wu
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Di Zhao
- Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
16
|
Wang Y, Hu Y, Wang R, Zhang W, Mao H, Yuan C, Hua R. Designing stimuli-responsive upconversion nanoparticles based on a mimetic immunoassay for potential accurate diabetic nephropathy diagnosis. Analyst 2023; 148:5684-5690. [PMID: 37819162 DOI: 10.1039/d3an01041d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Diabetic nephropathy (DN) is the most common microvascular complication associated with incurable diabetes. The gold standard diagnostic method for DN is based on the detection of proteinuria but it overlooks cases of non-proteinuria (NP-DN). To address this limitation, urinary sialic acid (SA) has been confirmed as an effective biomarker for various DNs. Herein, we constructed an ultrasensitive non-proteinuria assay platform to accurately diagnose DN within 20 min. This platform utilized the ninhydrin reaction between acidic ninhydrin and urinary sialic acid (SA) as an effective biomarker for various DNs. A compound with a maximum absorption peak at 470 nm was produced in this reaction and contributed to the fluorescence decrease of the blue-emission core-shell upconverting nanoparticles through the inner filter effect (IFE). By integrating the inner filter effect (IFE) with a mimetic immunoassay, the imperceptible color was converted into highly sensitive fluorescence signals. This protocol shows a stable and high sensitivity with a detection limit of 20 nmol L-1 and provides 100% positive prediction for urine samples, demonstrating its potential for clinical diagnosis and long-term monitoring of DN.
Collapse
Affiliation(s)
- Yiting Wang
- College of Life Sciences, Dalian Minzu University, Dalian 116600, Liaoning, P.R. China.
| | - Yang Hu
- College of Life Sciences, Dalian Minzu University, Dalian 116600, Liaoning, P.R. China.
| | - Ru Wang
- College of Life Sciences, Dalian Minzu University, Dalian 116600, Liaoning, P.R. China.
| | - Wei Zhang
- College of Life Sciences, Dalian Minzu University, Dalian 116600, Liaoning, P.R. China.
| | - Huiting Mao
- College of Life Sciences, Dalian Minzu University, Dalian 116600, Liaoning, P.R. China.
| | - Chuanjun Yuan
- College of Life Sciences, Dalian Minzu University, Dalian 116600, Liaoning, P.R. China.
| | - Ruinian Hua
- College of Life Sciences, Dalian Minzu University, Dalian 116600, Liaoning, P.R. China.
| |
Collapse
|
17
|
Han L, Cai X, Zhou H. Exosomal microRNAs: potential nanotherapeutic targets for diabetic kidney disease. Nanomedicine (Lond) 2023; 18:1669-1680. [PMID: 37909293 DOI: 10.2217/nnm-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is a primary cause for end-stage renal disease, but no specific therapeutic approaches exist. Exosomal miRNAs, a key functional cargo of nanovesicles, play crucial roles in the pathophysiological processes of DKD. Exosomal miRNAs are involved in cell-to-cell transfer of biological information, mediating nephritic inflammation, oxidative stress, apoptosis, autophagy, epithelial-mesenchymal transition and fibrosis. Circulating exosomal miRNAs derived from urine or serum might function as noninvasive prognostic biomarkers for DKD. Exosomal miRNAs from stem cells have been reported to exert beneficial effects on diabetic kidneys, which suggests that these exosomes might function as potential nanotherapy tools for treating DKD. In this review, we have summarized recent studies based on the association between exosomal miRNAs and DKD.
Collapse
Affiliation(s)
- Lulu Han
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Endocrinology, The First Central Hospital of Baoding, Baoding, 071000, China
| | - Xiaoning Cai
- Department of Endocrinology, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
18
|
Liu Y, Li X, Zhao M, Wu Y, Xu Y, Li X, Fu L, Han L, Zhou W, Hu Q, Chen J, Zhou J, Liu X, Lin H, Wu J. Macrophage-derived exosomes promote activation of NLRP3 inflammasome and autophagy deficiency of mesangial cells in diabetic nephropathy. Life Sci 2023; 330:121991. [PMID: 37524161 DOI: 10.1016/j.lfs.2023.121991] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Dysfunction of mesangial cells plays a significant role in the glomerular lesions and is implicated in the pathophysiology of diabetic nephropathy (DN). Macrophages infiltration is the main pathological feature of DN, which can ultimately lead to renal inflammation. Recent studies suggest that the crosstalk between kidney resident cells and inflammatory cells influences the development of DN, and that controlling this crosstalk may help treat DN. Here, we found that DN mice appeared renal pathological damage, including dilation of mesangial matrix and significant infiltration of macrophages, accompanied by increased inflammatory response, NLRP3 inflammasome activation and autophagy deficiency. Additionally, mesangial cells internalized exosomes from high glucose (HG) treated macrophage, resulting the activation of inflammatory cytokines and NLRP3 inflammasome and deficiency of autophagy in vitro and in vivo. Moreover, C57BL/6 mice injected HG-stimulated macrophages-derived exosomes exhibited renal dysfunction and mesangial matrix expansion. Taken together, the present study demonstrated that mesangial cells responded to HG treated macrophage-derived exosomes by promoting the activation of NLRP3 inflammasome and autophagy deficiency, thereby participating in the development of DN.
Collapse
Affiliation(s)
- Yaoyu Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China; Department of Pharmacy, Guangzhou Panyu Maternal and Child Health Hospital, Guangzhou, Guangdong, PR China
| | - Xiaojie Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Minglan Zhao
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yifan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yuan Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Xiuming Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Lizhe Fu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Liqiao Han
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Wei Zhou
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Qinghong Hu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Junqi Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Xusheng Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Hua Lin
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| | - Junbiao Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
19
|
Bruschi M, Candiano G, Angeletti A, Lugani F, Panfoli I. Extracellular Vesicles as Source of Biomarkers in Glomerulonephritis. Int J Mol Sci 2023; 24:13894. [PMID: 37762196 PMCID: PMC10530272 DOI: 10.3390/ijms241813894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney disease is a global health and healthcare burden. Glomerulonephritis (Gn), both primary and secondary, is generally characterized by an inflammatory glomerular injury and may lead to end-stage renal disease. Kidney biopsy is fundamental to the diagnosis; however, kidney biopsy presents some concerns that may partly hamper the clinical process. Therefore, more accurate diagnostic tools are needed. Extracellular vesicles (EVs) are membranous vesicles released by cells and found in bodily fluids, including urine. EVs mediate intercellular signaling both in health and disease. EVs can have both harmful and cytoprotective effects in kidney diseases, especially Gn. Previous findings reported that the specific cargo of urinary EV contains an aerobic metabolic ability that may either restore the recipient cell metabolism or cause oxidative stress production. Here, we provide an overview of the most recent proteomic findings on the role of EVs in several aspects of glomerulopathies, with a focus on this metabolic and redox potential. Future studies may elucidate how the ability of EVs to interfere with aerobic metabolism and redox status can shed light on aspects of Gn etiology which have remained elusive so far.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Andrea Angeletti
- Division of Nephrology and Transplantation, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Francesca Lugani
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, 16148 Genoa, Italy
| |
Collapse
|
20
|
Li S, Zheng S, Li J, Lin S, Li H, Wang P, Chen P, Ma C, Liu Y. Research progress on extracellular vesicles in the renal tubular injury of diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1257430. [PMID: 37732129 PMCID: PMC10507342 DOI: 10.3389/fendo.2023.1257430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes and is a chronic progressive condition. It is also a common cause of end-stage renal disease (ESRD), which is characterized by proteinuria or a progressive decline in the glomerular filtration rate. Due to their dependence on high-energy and aerobic metabolism, renal tubules are more susceptible to the metabolic disturbances associated with DKD, leading to inflammation and fibrosis. Consequently, tubular injury has become a recent research focus, and significant advancements have been made in studying the role of extracellular vesicles in DKD-associated tubular injury. This review aimed to elucidate the mechanisms and potential applications of different types of extracellular vesicles in tubular injury in DKD to provide new insights for the prevention and treatment of DKD.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shanshan Zheng
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiao Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Binzhou People’s Hospital Affiliated to Shandong First Medical University, Binzhou, China
| | - Sen Lin
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Hao Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ping Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Ping Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Chaoqun Ma
- Department of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yipeng Liu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| |
Collapse
|
21
|
Darmayanti S, Lesmana R, Meiliana A, Abdulah R. V-ATPase subunit C 1 and IKBIP as tandem prospective biomarkers for diabetic nephropathy. Diabetes Res Clin Pract 2023; 203:110887. [PMID: 37604283 DOI: 10.1016/j.diabres.2023.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
AIMS The appearance of low-molecular-weight (LMW) protein in the urine indicates any disruption in the structural integrity of the glomerular capillary wall; therefore, the presence of LMW protein may be a potential predictive marker for DN. METHODS The urine proteomic profiling of T2DM patients (n = 94) and control group (n = 32) was compared by liquid chromatography-tandem mass spectrometry, and the untargeted LMW protein was identified by Progenesis Q1 For Proteomics v4.2. RESULTS A total of 73 LMW proteins were identified and quantified, of which, 32 proteins were found to be altered significantly (p < 0.05). Further analysis with heat maps identified two potential proteins with the highest folding alterations in urine. V-ATPase subunit C 1 abundance was significantly inversely correlated with microalbumin and significantly decreased in urine, whereas increased IKBIP was positively correlated with microalbumin. The level of those proteins was significantly different among the control, T2DM, and DN groups, implying an association with the progression of DN. CONCLUSIONS The present findings of our study indicate that the decreasing V-ATPase subunit C 1 together with increasing IKBIP in urine, were found to be closely associated with DN complications and signifying their value as biomarkers for predicting the risk of DN at initial diagnosis.
Collapse
Affiliation(s)
- Siska Darmayanti
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia; Prodia Clinical Laboratory, Jakarta, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia; Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia.
| | - Anna Meiliana
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia; Prodia Clinical Laboratory, Jakarta, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia; Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
22
|
Danilushkina AA, Emene CC, Barlev NA, Gomzikova MO. Strategies for Engineering of Extracellular Vesicles. Int J Mol Sci 2023; 24:13247. [PMID: 37686050 PMCID: PMC10488046 DOI: 10.3390/ijms241713247] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by cells into the extracellular space. EVs mediate cell-to-cell communication through local and systemic transportation of biomolecules such as DNA, RNA, transcription factors, cytokines, chemokines, enzymes, lipids, and organelles within the human body. EVs gained a particular interest from cancer biology scientists because of their role in the modulation of the tumor microenvironment through delivering bioactive molecules. In this respect, EVs represent an attractive therapeutic target and a means for drug delivery. The advantages of EVs include their biocompatibility, small size, and low immunogenicity. However, there are several limitations that restrict the widespread use of EVs in therapy, namely, their low specificity and payload capacity. Thus, in order to enhance the therapeutic efficacy and delivery specificity, the surface and composition of extracellular vesicles should be modified accordingly. In this review, we describe various approaches to engineering EVs, and further discuss their advantages and disadvantages to promote the application of EVs in clinical practice.
Collapse
Affiliation(s)
- Anna A. Danilushkina
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Charles C. Emene
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Nicolai A. Barlev
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana 001000, Kazakhstan
| | - Marina O. Gomzikova
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
23
|
Ren Y, Yu M, Zheng D, He W, Jin J. Lysozyme promotes renal fibrosis through the JAK/STAT3 signal pathway in diabetic nephropathy. Arch Med Sci 2023; 20:233-247. [PMID: 38414445 PMCID: PMC10895955 DOI: 10.5114/aoms/170160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/29/2023] [Indexed: 02/29/2024] Open
Abstract
Introduction Diabetic nephropathy (DN) is a leading cause of kidney failure. Lysozyme (LYZ) is an essential component of innate immunity and exhibits antibacterial properties. However, LYZ has been reported to induce nephropathy, implying a possible association between impaired renal function and lysozyme expression. Material and methods Bioinformatics analysis was used to predict the hub gene associated with DN, and the differential expression of the hub gene was confirmed using a mouse model. A mouse model of streptozotocin (STZ)-induced diabetic nephropathy was established to investigate the correlation between DN and LYZ expression, and the functionality of LYZ was verified through knockdown and overexpression experiments conducted in vivo. Immunohistochemistry (IHC) was utilized to assess fibrosis-related markers and cytokines, while Masson staining was performed to assess renal fibrosis. Fibroblast proliferation was assessed using the Cell Counting Kit-8 (CCK-8) assay. The role of the JAK pathway was confirmed using the JAK inhibitor AG490, and Western blot was used to investigate the underlying mechanisms. Results Mechanistically, 25 mM glucose promotes the expression of LYZ in fibroblastic cells, and LYZ may in turn promote the proliferation of renal interstitial fibroblasts. Western blot shows that glucose can activate STAT3 in an LYZ-dependent manner, and the JAK inhibitor AG490 can partially suppress LYZ-induced STAT3 activation. Furthermore, in vivo observations have revealed that overexpression of LYZ is associated with the senescent phenotype of renal tubular epithelial cells (RTECs). Conclusions Lysozyme promotes kidney fibrosis via the JAK/STAT3 signaling pathway in diabetic nephropathy, and glucose may promote fibroblast proliferation by promoting LYZ auto-secretion.
Collapse
Affiliation(s)
- Yan Ren
- Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mengjie Yu
- Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Danna Zheng
- Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wenfang He
- Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Juan Jin
- Department of Nephrology, The First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
24
|
Sałaga-Zaleska K, Kuchta A, Bzoma B, Chyła-Danił G, Safianowska A, Płoska A, Kalinowski L, Dębska-Ślizień A, Jankowski M. Nanoparticle Tracking Analysis of Urinary Extracellular Vesicle Proteins as a New Challenge in Laboratory Medicine. Int J Mol Sci 2023; 24:12228. [PMID: 37569604 PMCID: PMC10419144 DOI: 10.3390/ijms241512228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Urinary extracellular vesicle (uEV) proteins may be used as specific markers of kidney damage in various pathophysiological conditions. The nanoparticle-tracking analysis (NTA) appears to be the most useful method for the analysis of uEVs due to its ability to analyze particles below 300 nm. The NTA method has been used to measure the size and concentration of uEVs and also allows for a deeper analysis of uEVs based on their protein composition using fluorescence measurements. However, despite much interest in the clinical application of uEVs, their analysis using the NTA method is poorly described and requires meticulous sample preparation, experimental adjustment of instrument settings, and above all, an understanding of the limitations of the method. In the present work, we demonstrate the usefulness of an NTA. We also present problems encountered during analysis with possible solutions: the choice of sample dilution, the method of the presentation and comparison of results, photobleaching, and the adjustment of instrument settings for a specific analysis. We show that the NTA method appears to be a promising method for the determination of uEVs. However, it is important to be aware of potential problems that may affect the results.
Collapse
Affiliation(s)
- Kornelia Sałaga-Zaleska
- Department of Clinical Chemistry, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland; (K.S.-Z.)
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland; (K.S.-Z.)
| | - Beata Bzoma
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Smoluchowskiego Street 17, 80-214 Gdansk, Poland
- Clinical of Nephrology, Transplantology and Internal Diseases, University Clinical Centre in Gdansk, Smoluchowskiego Street 17, 80-214 Gdansk, Poland
| | - Gabriela Chyła-Danił
- Department of Clinical Chemistry, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland; (K.S.-Z.)
| | - Anna Safianowska
- Clinical of Nephrology, Transplantology and Internal Diseases, University Clinical Centre in Gdansk, Smoluchowskiego Street 17, 80-214 Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostic—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostic—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Smoluchowskiego Street 17, 80-214 Gdansk, Poland
- Clinical of Nephrology, Transplantology and Internal Diseases, University Clinical Centre in Gdansk, Smoluchowskiego Street 17, 80-214 Gdansk, Poland
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland; (K.S.-Z.)
| |
Collapse
|
25
|
Li T, Ci Liu T, Liu N, Zhang M. Changes in urinary exosomal protein CALM1 may serve as an early noninvasive biomarker for diagnosing diabetic kidney disease. Clin Chim Acta 2023; 547:117466. [PMID: 37406751 DOI: 10.1016/j.cca.2023.117466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The risk of the development and progression of diabetic kidney disease (DKD) was increased by abnormal calcium release. However, it is still unknown whether calcium signal pathway-related proteins are changed in urinary exosomes. This study aims to explore the changes in urinary exosomal proteins, which may provide novel biomarkers for diagnosing DKD. METHODS Urinary exosomes were isolated from 132 participants by size exclusion chromatography method and 72 participants were tested by LC-MS/MS (Discovery phase). Correlation and multivariate logistics analysis were applied to evaluate selected urinary proteins. Western blot and ELISA were used to validate the selected protein (Validation phase: n = 60). The diagnostic performance of the selected biomarker was evaluated by receiver operating characteristic curve analyses between the discovery and validation phases. RESULTS Sixteen calcium signal pathway-related proteins were identified, however, only Calmodulin-1(CALM1) was continuously increased. Different expression of CALM1 was found in patients with different level of estimated glomerular filtration rate (eGFR) in two cohorts. The level of CALM1 was correlated with eGFR and serum creatinine levels in two cohorts. Multivariate analysis revealed that serum albumin (ALB) levels and CALM1 were independent risk factors for DKD. A diagnostic model based on CALM1 and serum ALB levels that could significantly distinguish DKD was established and validated. CONCLUSIONS Significant changes in calcium signal pathway-related urinary exosomal proteins were observed. The CALM1 may serve as an early noninvasive biomarker for diagnosing DKD.
Collapse
Affiliation(s)
- Tao Li
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing 100038, China
| | - Tian Ci Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing 100038, China
| | - Na Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing 100038, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing 100038, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
26
|
Yalameha B, Reza Nejabati H. Urinary Exosomal Metabolites: Overlooked Clue for Predicting Cardiovascular Risk. Clin Chim Acta 2023:117445. [PMID: 37315726 DOI: 10.1016/j.cca.2023.117445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Over the last decade, increasing research has focused on urinary exosomes (UEs) in biological fluids and their relationship with physiological and pathological processes. UEs are membranous vesicles with a size of 40-100 nm, containing a number of bioactive molecules such as proteins, lipids, mRNAs, and miRNAs. These vesicles are an inexpensive non-invasive source that can be used in clinical settings to differentiate healthy patients from diseased patients, thereby serving as potential biomarkers for the early identification of disease. Recent studies have reported the isolation of small molecules called exosomal metabolites from individuals' urine with different diseases. These metabolites could utilize for a variety of purposes, such as the discovery of biomarkers, investigation of mechanisms related to disease development, and importantly prediction of cardiovascular diseases (CVDs) risk factors, including thrombosis, inflammation, oxidative stress, hyperlipidemia as well as homocysteine. It has been indicated that alteration in urinary metabolites of N1-methylnicotinamide, 4-aminohippuric acid, and citric acid can be valuable in predicting cardiovascular risk factors, providing a novel approach to evaluating the pathological status of CVDs. Since the UEs metabolome has been clearly and precisely so far unexplored in CVDs, the present study has specifically addressed the role of the mentioned metabolites in the prediction of CVDs risk factors.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Dwivedi OP, Barreiro K, Käräjämäki A, Valo E, Giri AK, Prasad RB, Roy RD, Thorn LM, Rannikko A, Holthöfer H, Gooding KM, Sourbron S, Delic D, Gomez MF, Groop PH, Tuomi T, Forsblom C, Groop L, Puhka M. Genome-wide mRNA profiling in urinary extracellular vesicles reveals stress gene signature for diabetic kidney disease. iScience 2023; 26:106686. [PMID: 37216114 PMCID: PMC10193229 DOI: 10.1016/j.isci.2023.106686] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/19/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Urinary extracellular vesicles (uEV) are a largely unexplored source of kidney-derived mRNAs with potential to serve as a liquid kidney biopsy. We assessed ∼200 uEV mRNA samples from clinical studies by genome-wide sequencing to discover mechanisms and candidate biomarkers of diabetic kidney disease (DKD) in Type 1 diabetes (T1D) with replication in Type 1 and 2 diabetes. Sequencing reproducibly showed >10,000 mRNAs with similarity to kidney transcriptome. T1D DKD groups showed 13 upregulated genes prevalently expressed in proximal tubules, correlated with hyperglycemia and involved in cellular/oxidative stress homeostasis. We used six of them (GPX3, NOX4, MSRB, MSRA, HRSP12, and CRYAB) to construct a transcriptional "stress score" that reflected long-term decline of kidney function and could even identify normoalbuminuric individuals showing early decline. We thus provide workflow and web resource for studying uEV transcriptomes in clinical urine samples and stress-linked DKD markers as potential early non-invasive biomarkers or drug targets.
Collapse
Affiliation(s)
- Om Prakash Dwivedi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Karina Barreiro
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPrep Core, University of Helsinki, Helsinki, Finland
| | - Annemari Käräjämäki
- Department of Primary Health Care, Vaasa Central Hospital, Hietalahdenkatu 2-4, 65130 Vaasa, Finland
- Diabetes Center, Vaasa Health Care Center, Sepänkyläntie 14-16, 65100 Vaasa, Finland
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anil K. Giri
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute (FCI), Tukholmankatu 8, 00290 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Rashmi B. Prasad
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, SE 214 28 Malmö, Sweden
| | - Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lena M. Thorn
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Department of Urology, 00014 University of Helsinki, and Helsinki University Hospital, 00100 Helsinki, Finland
| | - Harry Holthöfer
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Kim M. Gooding
- Diabetes and Vascular Research Centre, National Institute for Health Research Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, UK
| | - Steven Sourbron
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- Fifth Department of Medicine, Nephrology/Endocrinology/Rheumatology/Pneumology, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Maria F. Gomez
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, SE 214 28 Malmö, Sweden
| | | | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School Monash University, Melbourne, VIC, Australia
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, SE 214 28 Malmö, Sweden
- Endocrinology, Abdominal Centre, Helsinki University Hospital, Helsinki, Finland
| | - Carol Forsblom
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leif Groop
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, SE 214 28 Malmö, Sweden
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPrep Core, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Zhang S, Zhang S, Wang H, Chen Y. Vitexin ameliorated diabetic nephropathy via suppressing GPX4-mediated ferroptosis. Eur J Pharmacol 2023; 951:175787. [PMID: 37172926 DOI: 10.1016/j.ejphar.2023.175787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Diabetic nephropathy (DN) is common complication of diabetes. Ferroptosis is an atypical form of iron-dependent modulated necrosis and have been proven to contribute to the progress of diabetic nephropathy. Vitexin, a flavonoid monomer derived from medicinal plants that has various biological activities including anti-inflammatory and anticancer effects, has not been investigated in diabetic nephropathy studies. However, whether vitexin has a protective effect on diabetic nephropathy remains unclear. In this study, the roles and mechanism of vitexin on alleviating DN were explored in vivo and in vitro. The protective effect of vitexin in diabetic nephropathy were evaluated by in vitro and in vivo experiment. In this research, we validated that vitexin protect HK-2 against HG-induced damage. Besides, vitexin pretreatment also reduced fibrosis (Collagen type I Col I, TGF-β1). Furthermore, vitexin inhibited ferroptosis induced by HG, accompanied by changes of morphological, decrease of ROS, Fe2+ and MDA, and increased GSH levels. Meanwhile, vitexin up-regulated the protein expression of GPX4 and SLC7A11 in HG-induced HK-2 cells. Moreover, knockdown of GPX4 by shRNA migrated the protective effect of vitexin on HG-challenged HK-2 and reversed the ferroptosis induced by vitexin. Consistent with in vitro, vitexin alleviated renal fibrosis, damage and ferroptosis in DN rat. In conclusion, our findings revealed that vitexin could alleviate diabetic nephropathy by attenuated ferroptosis via activating GPX4.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shuxiao Zhang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hua Wang
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yue Chen
- Department of Endocrinology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
29
|
Liu JL, Zhang L, Huang Y, Li XH, Liu YF, Zhang SM, Zhao YE, Chen XJ, Liu Y, He LY, Dong Z, Liu FY, Sun L, Xiao L. Epsin1-mediated exosomal sorting of Dll4 modulates the tubular-macrophage crosstalk in diabetic nephropathy. Mol Ther 2023; 31:1451-1467. [PMID: 37016580 PMCID: PMC10188907 DOI: 10.1016/j.ymthe.2023.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/18/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Tubular epithelial cells (TECs) play critical roles in the development of diabetic nephropathy (DN), and can activate macrophages through the secretion of exosomes. However, the mechanism(s) of TEC-exosomes in macrophage activation under DN remains unknown. By mass spectrometry, 1,644 differentially expressed proteins, especially Dll4, were detected in the urine exosomes of DN patients compared with controls, which was confirmed by western blot assay. Elevated Epsin1 and Dll4/N1ICD expression was observed in kidney tissues in both DN patients and db/db mice and was positively associated with tubulointerstitial damage. Exosomes from high glucose (HG)-treated tubular cells (HK-2) with Epsin1 knockdown (KD) ameliorated macrophage activation, TNF-α, and IL-6 expression, and tubulointerstitial damage in C57BL/6 mice in vivo. In an in vitro study, enriched Dll4 was confirmed in HK-2 cells stimulated with HG, which was captured by THP-1 cells and promoted M1 macrophage activation. In addition, Epsin1 modulated the content of Dll4 in TEC-exosomes stimulated with HG. TEC-exosomes with Epsin1-KD significantly inhibited N1ICD activation and iNOS expression in THP-1 cells compared with incubation with HG alone. These findings suggested that Epsin1 could modulate tubular-macrophage crosstalk in DN by mediating exosomal sorting of Dll4 and Notch1 activation.
Collapse
Affiliation(s)
- Jia-Lu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Huang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Hui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Fei Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shu-Min Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue-E Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Jun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li-Yu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Fu-You Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
30
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
31
|
Pediatric Diabetic Nephropathy: Novel Insights from microRNAs. J Clin Med 2023; 12:jcm12041447. [PMID: 36835983 PMCID: PMC9961327 DOI: 10.3390/jcm12041447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Diabetic nephropathy (DN) represents the most common microvascular complication in patients with diabetes. This progressive kidney disease has been recognized as the major cause of end-stage renal disease with higher morbidity and mortality. However, its tangled pathophysiology is still not fully known. Due to the serious health burden of DN, novel potential biomarkers have been proposed to improve early identification of the disease. In this complex landscape, several lines of evidence supported a critical role of microRNAs (miRNAs) in regulating posttranscriptional levels of protein-coding genes involved in DN pathophysiology. Indeed, intriguing data showed that deregulation of certain miRNAs (e.g., miRNAs 21, -25, -92, -210, -126, -216, and -377) were pathogenically linked to the onset and the progression of DN, suggesting not only a role as early biomarkers but also as potential therapeutic targets. To date, these regulatory biomolecules represent the most promising diagnostic and therapeutic options for DN in adult patients, while similar pediatric evidence is still limited. More, findings from these elegant studies, although promising, need to be deeper investigated in larger validation studies. In an attempt to provide a comprehensive pediatric overview in the field, we aimed to summarize the most recent evidence on the emerging role of miRNAs in pediatric DN pathophysiology.
Collapse
|
32
|
Younes M, Aquilina G, Castle L, Degen G, Engel K, Fowler PJ, Frutos Fernandez MJ, Fürst P, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wright M, Wölfle D, Dusemund B, Mortensen A, Turck D, Barmaz S, Mech A, Rincon AM, Tard A, Vianello G, Gundert‐Remy U. Re-evaluation of locust bean gum (E 410) as a food additive in foods for infants below 16 weeks of age and follow-up of its re-evaluation as a food additive for uses in foods for all population groups. EFSA J 2023; 21:e07775. [PMID: 36789355 PMCID: PMC9909383 DOI: 10.2903/j.efsa.2023.7775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Locust bean gum (E 410) was re-evaluated in 2017 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to that assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of locust bean gum (E 410) for its uses as a food additive in food for infants below 16 weeks of age belonging to food category 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants). In addition, the FAF Panel was requested to address the issues already identified during the re-evaluation of the food additive when used in food for the general population, including the safety assessment for FC 13.1.5.1 and 13.1.5.2 (Dietary foods for babies and young children for special medical purposes as defined in directive 1999/21/EC). The process involved the publication of a call for data. Based on the received data, the Panel concluded that the technical data provided by the interested business operators support an amendment of the specifications for locust bean gum (E 410) laid down in Commission Regulation (EU) No 231/2012. The Panel identified a reference point of 1,400 mg/kg bw per day based on reduced blood zinc levels in a piglet study. It applied the margin of exposure (MoE) for the safety assessment of locust bean gum (E 410) when used as a food additive in FC 13.1.5.1 and 13.1.5.2. The Panel concluded that a MoE above 1 would not raise a safety concern. A MoE above 1 was obtained for some of the scenarios and exposure levels for infants. For toddlers (consumers only of food for special medical purposes), the MoE was above 1 for all exposure levels.
Collapse
|
33
|
Wu H, Wu R, Liu T, Ma H, Xue G, Liu M. Peroxiredoxin 6 alleviates high glucose-induced inflammation and apoptosis in HK-2 cells by inhibiting TLR4/NF-κB signaling. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:41. [PMID: 36819569 PMCID: PMC9929773 DOI: 10.21037/atm-22-6063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
Background This research sought to elucidate the effects of peroxiredoxin 6 (PRDX6) on the biological processes in diabetic nephropathy (DN) and to identify the underlying regulatory mechanism related to toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling. Methods To induce an in vitro DN cellular model, human kidney 2 (HK-2) cells were treated with high glucose (HG). The mitochondrial membrane potential, adenosine triphosphate level, reactive oxygen species generation, and oxidative stress of the cells were then evaluated. After the PRDX6 level had been determined, the effects of its overexpression on the mitochondrial membrane potential, adenosine triphosphate level, reactive oxygen species generation, and oxidative stress of the cells were assessed. Next, cytochrome c expression, cell viability, cell apoptosis, the inflammatory level, and the TLR4/NF-κB signaling-related factors were assessed. After the addition of the TLR4 activator CRX-527 or the NF-κB activator phorbol 12-myristate 13-acetate (PMA), cell viability, cell apoptosis and the inflammatory level were evaluated again. Results The results revealed that HG exposure triggered mitochondrial dysfunction and oxidative stress and decreased PRDX6 expression in the HK-2 cells. PRDX6 elevation exacerbated cell viability while alleviating mitochondrial membrane potential loss, oxidative stress, apoptosis, and inflammation in the HG-treated HK-2 cells. Further, PRDX6 inhibited HG-induced TLR4/NF-κB activation. The administration of CRX-527 or PMA reversed the effects of PRDX6 on the cell viability, apoptosis, and inflammation of the HG-exposed HK-2 cells. Conclusions To conclude, PRDX6 appears to protect HG-exposed HK-2 cells against inflammation and apoptosis by inhibiting TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Hao Wu
- Department of Nephrology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Rong Wu
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tianxi Liu
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hongbin Ma
- Department of Nephrology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Guozhong Xue
- Department of Nephrology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Minglong Liu
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Bibliometric Analysis and Visualization of Research Progress in the Diabetic Nephropathy Field from 2001 to 2021. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4555609. [PMID: 36718276 PMCID: PMC9884171 DOI: 10.1155/2023/4555609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 12/01/2022] [Indexed: 01/22/2023]
Abstract
Methods The PubMed database was searched to identify all studies related to DN that were published from 2001 to 2021, with these studies being separated into four time-based groups. The characteristics of these studies were analyzed and extracted using BICOMB. Biclustering analyses for each of these groups were then performed using gCLUTO, with these results then being analyzed and GraphPad Prism 5 being used to construct strategy diagrams. The social network analyses (SNAs) for each group of studies were conducted using NetDraw and UCINET. Results In total, 18,889 DN-associated studies published from 2001 to 2021 and included in the PubMed database were incorporated into the present bibliometric analysis. Biclustering analysis and strategy diagrams revealed that active areas of research interest in the DN field include studies of the drug-based treatment, diagnosis, etiology, pathology, physiopathology, and epidemiology of DN. The specific research topics associated with these individual areas, however, have evolved over time in a dynamic manner. Strategy diagrams and SNA results revealed podocyte metabolism as an emerging research hotspot in the DN research field from 2010 to 2015, while DN-related microRNAs, signal transduction, and mesangial cell metabolism have emerged as more recent research hotspots in the interval from 2016 to 2021. Conclusion Through analyses of PubMed-indexed studies pertaining to DN published since 2001, the results of this bibliometric analysis offer a knowledge framework and insight into active and historical research hotspots in the DN research space, enabling investigators to readily understand the dynamic evolution of this field over the past two decades. Importantly, these analyses also enable the prediction of future DN-related research hotspots, thereby potentially guiding more focused and impactful research efforts.
Collapse
|
35
|
Mighty J, Rubio-Navarro A, Shi C, Zhou J, Flores-Bellver M, Heissel S, Onwumere O, Einbond L, Gharbaran R, Casper DS, Benito-Martin A, Redenti S. Extracellular vesicles of human diabetic retinopathy retinal tissue and urine of diabetic retinopathy patients are enriched for the junction plakoglo bin protein. Front Endocrinol (Lausanne) 2023; 13:1077644. [PMID: 36686464 PMCID: PMC9854122 DOI: 10.3389/fendo.2022.1077644] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Diabetic Retinopathy (DR) is a potentially blinding retinal disorder that develops through the pathogenesis of diabetes. The lack of disease predictors implies a poor prognosis with frequent irreversible retinal damage and vision loss. Extracellular Vesicles (EVs) present a novel opportunity for pre-symptomatic disease diagnosis and prognosis, both severely limited in DR. All biological fluids contain EVs, which are currently being studied as disease biomarkers. EV proteins derived from urine have emerged as potential noninvasive biomarkers. Methods In this study, we isolated EVs from DR retinal tissue explants and from DR patients' urine, and characterized the vesicles, finding differences in particle number and size. Next, we performed proteomic analysis on human explanted DR retinal tissue conditioned media, DR retinal EVs and DR urinary EVs and compared to normal human retinal tissue, retinal EVs, and urinary EVs, respectively. Results Our system biology analysis of DR tissue and EV expression profiles revealed biological pathways related to cell-to-cell junctions, vesicle biology, and degranulation processes. Junction Plakoglobin (JUP), detected in DR tissue-derived EVs and DR urinary EVs, but not in controls, was revealed to be a central node in many identified pathogenic pathways. Proteomic results were validated by western blot. Urinary EVs obtained from healthy donors and diabetic patient without DR did not contain JUP. Conclusion The absence of JUP in healthy urinary EVs provide the basis for development of a novel Diabetic Retinopathy biomarker, potentially facilitating diagnosis.
Collapse
Affiliation(s)
- Jason Mighty
- Lehman College, City University of New York, Bronx, NY, United States
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
| | - Alfonso Rubio-Navarro
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Instituto de Investigación Biosanitaria ibs GRANADA, University Hospitals of Granada-University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Cui Shi
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
| | - Jing Zhou
- Lehman College, City University of New York, Bronx, NY, United States
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz- Rodgers Eye Center, University of Colorado, Aurora, CO, United States
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, United States
| | - Onyekwere Onwumere
- Lehman College, City University of New York, Bronx, NY, United States
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
| | - Linda Einbond
- Lehman College, City University of New York, Bronx, NY, United States
| | | | - Daniel S. Casper
- Department of Ophthalmology, Columbia University Vagelos College of Physicians & Surgeons Naomi Berrie Diabetes Center, New York, NY, United States
| | - Alberto Benito-Martin
- Lehman College, City University of New York, Bronx, NY, United States
- Universidad Alfonso X El Sabio, Facultad de Medicina. Unidad de Investigación Biomédica, Madrid, Spain
| | - Stephen Redenti
- Lehman College, City University of New York, Bronx, NY, United States
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
- Department of Ophthalmology, Columbia University Vagelos College of Physicians & Surgeons Naomi Berrie Diabetes Center, New York, NY, United States
| |
Collapse
|
36
|
Hou Z, Lin Y, Yang X, Chen J, Li G. Therapeutics of Extracellular Vesicles in Cardiocerebrovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:187-205. [PMID: 37603281 DOI: 10.1007/978-981-99-1443-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale membranous vesicles containing DNA, RNA, lipids, and proteins, which play versatile roles in intercellular communications. EVs are increasingly being recognized as the promising therapeutic agents for many diseases, including cardiocerebrovascular and metabolic diseases, due to their ability to deliver functional and therapeutical molecules. In this chapter, the biological characteristics and functions of EVs are briefly summarized. Importantly, the current state of applying EVs in the prevention and treatment of cardiocerebrovascular and metabolic diseases, including myocardial infarction, atrial fibrillation, myocardial hypertrophy, stroke, diabetes, Alzheimer's disease, fatty liver, obesity, thyroid diseases, and osteoporosis, is discussed. Lastly, the challenges and prospects related to the preclinical and clinical application of EVs receive a particular focus.
Collapse
Affiliation(s)
- Zhitao Hou
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing, China
| | - Yiyan Lin
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing, China
- Fangshan Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Rai B, Pande A, Tiwari S. TRAIL and EGFR Pathways Targeting microRNAs are Predominantly Regulated in Human Diabetic Nephropathy. Microrna 2023; 12:143-155. [PMID: 37098997 DOI: 10.2174/2211536612666230407093841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Unbiased microRNA profiling of renal tissue and urinary extracellular vesicles (uEVs) from diabetic nephropathy (DN) subjects may unravel novel targets with diagnostic and therapeutic potential. Here we used the miRNA profile of uEVs and renal biopsies from DN subjects available on the GEO database. METHODS The miR expression profiles of kidney tissue (GSE51674) and urinary exosomes (GSE48318) from DN and control subjects were obtained by GEO2R tools from Gene Expression Omnibus (GEO) databases. Differentially expressed miRNAs in DN samples, relative to controls, were identified using a bioinformatic pipeline. Targets of miRs commonly regulated in both sample types were predicted by miRWalk, followed by functional gene enrichment analysis. Gene targets were identified by MiRTarBase, TargetScan and MiRDB. RESULTS Eight miRs, including let-7c, miR-10a, miR-10b and miR-181c, were significantly regulated in kidney tissue and uEVs in DN subjects versus controls. The top 10 significant pathways targeted by these miRs included TRAIL, EGFR, Proteoglycan syndecan, VEGF and Integrin Pathway. Gene target analysis by miRwalk upon validation using ShinyGO 70 targets with significant miRNA-mRNA interaction. CONCLUSION In silico analysis showed that miRs targeting TRAIL and EGFR signaling are predominately regulated in uEVs and renal tissue of DN subjects. After wet-lab validation, the identified miRstarget pairs may be explored for their diagnostic and/or therapeutic potential in diabetic nephropathy.
Collapse
Affiliation(s)
- Bhuvnesh Rai
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Akshara Pande
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
38
|
Li J, Zheng S, Ma C, Chen X, Li X, Li S, Wang P, Chen P, Wang Z, Li W, Liu Y. Research progress on exosomes in podocyte injury associated with diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1129884. [PMID: 37020588 PMCID: PMC10067864 DOI: 10.3389/fendo.2023.1129884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 03/22/2023] Open
Abstract
Diabetic kidney disease (DKD), a common cause of end-stage renal disease, is a serious complication that develops with the progression of chronic diabetes. Its main clinical manifestations are persistent proteinuria and/or a progressive decline in the estimated glomerular filtration rate. Podocytes, terminally differentiated glomerular visceral epithelial cells, constitute the glomerular filtration barrier together with the basement membrane and endothelial cells, and the structural and functional barrier integrity is closely related to proteinuria. In recent years, an increasing number of studies have confirmed that podocyte injury is the central target of the occurrence and development of DKD, and research on exosomes in podocyte injury associated with DKD has also made great progress. The aim of this review is to comprehensively describe the potential diagnostic value of exosomes in podocyte injury associated with DKD, analyze the mechanism by which exosomes realize the communication between podocytes and other types of cells and discuss the possibility of exosomes as targeted therapy drug carriers to provide new targets for and insights into delaying the progression of and treating DKD.
Collapse
Affiliation(s)
- Jiao Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shanshan Zheng
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chaoqun Ma
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xuexun Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xuan Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Shengjie Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ping Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Ping Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Zunsong Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Wenbin Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
- *Correspondence: Yipeng Liu, ; Wenbin Li,
| | - Yipeng Liu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
- *Correspondence: Yipeng Liu, ; Wenbin Li,
| |
Collapse
|
39
|
Martin-Lorenzo M, Molero D, Alvarez-Llamas G. Metabolomics Analysis of Urinary Extracellular Vesicles by Nuclear Magnetic Resonance and Liquid Chromatography-Mass Spectrometry. Methods Mol Biol 2023; 2668:57-68. [PMID: 37140790 DOI: 10.1007/978-1-0716-3203-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extracellular vesicle (EV) release and their content are influenced by diverse clinical conditions. EVs participate in inter-cellular communication and have been postulated as reflectors of the pathophysiology of the cells, tissues, organs or the whole system with which they are in contact. Urinary EVs have been proved to reflect pathophysiology not only of renal system related diseases constituting an additional source of potential biomarkers easily accessible in a non-invasive way. The interest in EVs cargo has been mostly focused on proteins and nucleic acids and more recently it has been extended to metabolites. Metabolites represent the downstream changes in the genome, transcriptome, and proteome as a reflection of processes occurring in living organisms. For their study, nuclear magnetic resonance (NMR) and mass spectrometry in tandem (LC-MS/MS) are widely used. NMR is a reproducible and non-destructive technique and we show here methodological protocols for the metabolomics analysis of urinary EVs by NMR. Additionally, we also describe the workflow for a targeted LC-MS/MS analysis that is extensible to untargeted studies.
Collapse
Affiliation(s)
| | | | - Gloria Alvarez-Llamas
- Immunology Department, IIS-Fundacion Jimenez Diaz, Madrid, Spain.
- RICORS2040, Fundacion Jimenez Diaz, Madrid, Spain.
- Biochemistry and Molecular Biology Department, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
40
|
Zhang M, Lu Y, Wang L, Mao Y, Hu X, Chen Z. Current Status of Research on Small Extracellular Vesicles for the Diagnosis and Treatment of Urological Tumors. Cancers (Basel) 2022; 15:cancers15010100. [PMID: 36612097 PMCID: PMC9817817 DOI: 10.3390/cancers15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of communication between tumor cells and normal cells. These vesicles are rich in a variety of contents such as RNA, DNA, and proteins, and can be involved in angiogenesis, epithelial-mesenchymal transition, the formation of pre-metastatic ecological niches, and the regulation of the tumor microenvironment. Small extracellular vesicles (sEVs) are a type of EVs. Currently, the main treatments for urological tumors are surgery, radiotherapy, and targeted therapy. However, urological tumors are difficult to diagnose and treat due to their high metastatic rate, tendency to develop drug resistance, and the low sensitivity of liquid biopsies. Numerous studies have shown that sEVs offer novel therapeutic options for tumor treatment, such as tumor vaccines and tumor drug carriers. sEVs have attracted a great deal of attention owing to their contribution to in intercellular communication, and as novel biomarkers, and role in the treatment of urological tumors. This article reviews the research and applications of sEVs in the diagnosis and treatment of urological tumors.
Collapse
Affiliation(s)
- Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: ; Tel.: +86-150-8373-7280
| |
Collapse
|
41
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Therapy for Diabetes Mellitus and Diabetic Complications. Pharmaceutics 2022; 14:pharmaceutics14102208. [PMID: 36297643 PMCID: PMC9607185 DOI: 10.3390/pharmaceutics14102208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
As a novel cell-free strategy, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) inherit the therapeutic potential of donor cells, and are widely used for the treatment of many diseases. Increasing studies have shown that MSC-EVs transfer various bioactive molecules to create a beneficial microenvironment, thus exerting protective roles in diabetic mellitus (DM) and diabetic complications. To overcome the limitations of natural MSC-EVs such as heterogeneity and insufficient function, several modification methods have been established for constructing engineered MSC-EVs with elevated repairing efficiency. In this review, the PubMed library was searched from inception to August 2022, using a combination of Medical Subject Headings (MeSH) and keywords related to MSC-EVs, DM, and diabetic complications. We provide an overview of the major characteristics of MSC-EVs and summarize the recent advances of MSC-EV-based therapy for hyperglycemia-induced tissue damage with an emphasis on MSC-EV-mediated delivery of functional components. Moreover, the potential applications of engineered MSC-EVs in DM-related diseases therapy are discussed by presenting examples, and the opportunities and challenges for the clinical translation of MSC-EVs, especially engineered MSC-EVs, are evaluated.
Collapse
|
42
|
Fan Z, Gao Y, Jiang N, Zhang F, Liu S, Li Q. Immune-related SERPINA3 as a biomarker involved in diabetic nephropathy renal tubular injury. Front Immunol 2022; 13:979995. [DOI: 10.3389/fimmu.2022.979995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and has become a serious medical issue globally. Although it is known to be associated with glomerular injury, tubular injury has been found to participate in DN in recent years. However, mechanisms of diabetic renal tubular injury remain unclear. Here, we investigated the differentially expressed genes in the renal tubules of patients with DN by analyzing three RNA-seq datasets downloaded from the Gene Expression Omnibus database. Gene set enrichment analysis and weighted gene co-expression network analysis showed that DN is highly correlated with the immune system. The immune-related gene SERPINA3 was screened out with lasso regression and Kaplan–Meier survival analyses. Considering that SERPINA3 is an inhibitor of mast cell chymase, we examined the expression level of SERPINA3 and chymase in human renal tubular biopsies and found that SERPINA3 was upregulated in DN tubules, which is consistent with the results of the differential expression analysis. Besides, the infiltration and degranulation rates of mast cells are augmented in DN. By summarizing the biological function of SERPINA3, chymase, and mast cells in DN based on our results and those of previous studies, we speculated that SERPINA3 is a protective immune-related molecule that prevents renal tubular injury by inhibiting the proliferation and activation of mast cells and downregulating the activity of chymase.
Collapse
|
43
|
Wu Y, Lan H, Zhang D, Hu Z, Zhang J, Li Z, Xia P, Tang X, Cai X, Yu P. Research progress on ncRNAs regulation of mitochondrial dynamics in diabetes. J Cell Physiol 2022; 237:4112-4131. [PMID: 36125936 DOI: 10.1002/jcp.30878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus and its complications are major health concerns worldwide that should be routinely monitored for evaluating disease progression. And there is currently much evidence to suggest a critical role for mitochondria in the common pathogenesis of diabetes and its complications. Mitochondrial dynamics are involved in the development of diabetes through mediating insulin signaling and insulin resistance, and in the development of diabetes and its complications through mediating endothelial impairment and other closely related pathophysiological mechanisms of diabetic cardiomyopathy (DCM). noncoding RNAs (ncRNAs) are closely linked to mitochondrial dynamics by regulating the expression of mitochondrial dynamic-associated proteins, or by regulating key proteins in related signaling pathways. Therefore, this review summarizes the research progress on the regulation of Mitochondrial Dynamics by ncRNAs in diabetes and its complications, which is a promising area for future antibodies or targeted drug development.
Collapse
Affiliation(s)
- Yifan Wu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Huixin Lan
- Huankui College, Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ziyan Hu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
44
|
Wang J, Li L, Zhang Z, Zhang X, Zhu Y, Zhang C, Bi Y. Extracellular vesicles mediate the communication of adipose tissue with brain and promote cognitive impairment associated with insulin resistance. Cell Metab 2022; 34:1264-1279.e8. [PMID: 36070680 DOI: 10.1016/j.cmet.2022.08.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes with obesity-related insulin resistance as the main manifestation is associated with an increased risk of cognitive impairment. Adipose tissue plays an important role in this process. Here, we demonstrated that adipose tissue-derived extracellular vesicles (EVs) and their cargo microRNAs (miRNAs) mediate inter-organ communication between adipose tissue and the brain, which can be transferred into the brain in a membrane protein-dependent manner and enriched in neurons, especially in the hippocampus. Further investigation suggests that adipose tissue-derived EVs from high-fat diet (HFD)-fed mice or patients with diabetes induce remarkable synaptic loss and cognitive impairment. Depletion of miRNA cargo in these EVs significantly alleviates their detrimental effects on cognitive function. Collectively, these data suggest that targeting adipose tissue-derived EVs or their cargo miRNAs may provide a promising strategy for pharmaceutical interventions for cognitive impairment in diabetes.
Collapse
Affiliation(s)
- Jin Wang
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhou Zhang
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Xuhong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Ye Zhu
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Chenyu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China.
| |
Collapse
|
45
|
Franzin R, Stasi A, Sallustio F, Bruno S, Merlotti G, Quaglia M, Grandaliano G, Pontrelli P, Thurman JM, Camussi G, Stallone G, Cantaluppi V, Gesualdo L, Castellano G. Extracellular vesicles derived from patients with antibody-mediated rejection induce tubular senescence and endothelial to mesenchymal transition in renal cells. Am J Transplant 2022; 22:2139-2157. [PMID: 35583104 PMCID: PMC9546277 DOI: 10.1111/ajt.17097] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
Abstract
Extracellular vesicles (EV) are emerging mediators in several diseases. However, their role in the pathophysiology of antibody-mediated allograft rejection (AMR) has been poorly investigated. Here, we investigated the role of EV isolated from AMR patients in inducing tubular senescence and endothelial to mesenchymal transition (EndMT) and analyzed their miRNA expression profile. By multiplex bead flow cytometry, we characterized the immunophenotype of plasma AMR-derived EV and found a prevalent platelet and endothelial cell origin. In vitro, AMR-derived EV induced tubular senescence by upregulating SA-β Gal and CDKN1A mRNA. Furthermore, AMR-derived EV induced EndMT. The occurrence of tubular senescence and EndMT was confirmed by analysis of renal biopsies from the same AMR patients. Moreover, AMR-derived EV induced C3 gene upregulation and CFH downregulation in tubular epithelial cells, with C4d deposition on endothelial cells. Interestingly, RNase-mediated digestion of EV cargo completely abrogated tubular senescence and EndMT. By microarray analysis, miR-604, miR-515-3p, miR-let-7d-5p, and miR-590-3p were significantly upregulated in EV from AMR group compared with transplant controls, whereas miR-24-3p and miR-29a-3p were downregulated. Therefore, EV-associated miRNA could act as active player in AMR pathogenesis, unraveling potential mechanisms of accelerated graft senescence, complement activation and early fibrosis that might lead to new therapeutic intervention.
Collapse
Affiliation(s)
- Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
| | - Fabio Sallustio
- Interdisciplinary Department of Medicine (DIM)University of Bari "Aldo Moro"BariItaly
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTorinoItaly
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD)University of Piemonte Orientale (UPO)NovaraItaly
| | - Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD)University of Piemonte Orientale (UPO)NovaraItaly
| | - Giuseppe Grandaliano
- Department Translational Medicine and SurgeryUniversità Cattolica Sacro CuoreRomeItaly
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
| | - Joshua M. Thurman
- Department of MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Giovanni Camussi
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTorinoItaly
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical SciencesUniversity of FoggiaFoggiaItaly
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD)University of Piemonte Orientale (UPO)NovaraItaly
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
| | - Giuseppe Castellano
- Unit of NephrologyDialysis and Renal Transplantation ‐ Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico di MilanoMilanItaly
| |
Collapse
|
46
|
Wang Z, Chen Z, Wang X, Hu Y, Kong J, Lai J, Li T, Hu B, Zhang Y, Zheng X, Liu X, Wang S, Ye S, Zhou Q, Zheng C. Sappanone a prevents diabetic kidney disease by inhibiting kidney inflammation and fibrosis via the NF-κB signaling pathway. Front Pharmacol 2022; 13:953004. [PMID: 36052141 PMCID: PMC9426375 DOI: 10.3389/fphar.2022.953004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Low grade of sterile inflammation plays detrimental roles in the progression of diabetic kidney disease (DKD). Sappanone A (SA), a kind of homoisoflavanone isolated from the heartwood of Caesalpinia sappan, exerts anti-inflammatory effects in acute kidney injury. However, whether SA has beneficial effects on diabetic kidney disease remains further exploration. Methods and Results: In the present study, uninephrectomized male mice were treated with Streptozotocin (STZ, 50 mg/kg) for five consecutive days to induce diabetes. Next, the diabetic mice were administered orally with SA (10, 20, or 30 mg/kg) or vehicle once per day. Our results showed that STZ treatment significantly enhanced damage in the kidney, as indicated by an increased ratio of kidney weight/body weight, elevated serum creatinine and blood urea nitrogen (BUN), as well as increased 24-h urinary protein excretion, whereas SA-treated mice exhibited a markedly amelioration in these kidney damages. Furthermore, SA attenuated the pathological changes, alleviated fibrotic molecules transforming growth factor-β1 (TGF-β1) and Collagen-IV (Col-IV) production, decreased inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) expression in STZ-treated mice. Similarly, in glomerular mesangial cells, SA pretreatment decreased high glucose (HG)-induced proliferation, inflammatory cytokines excretion, and fibrotic molecules expression. Mechanistically, SA decreased the expression of nuclear factor kappa B (NF-κB) and restored the expression of total NF-κB inhibitor alpha (IκBα) both in vivo and in vitro. Conclusion: Our data suggest that SA may prevent diabetes-induced kidney inflammation and fibrosis by inhibiting the NF-κB pathway. Hence, SA can be potential and specific therapeutic value in DKD.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhida Chen
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Wang
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yepeng Hu
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Kong
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiabin Lai
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tiekun Li
- Nanjing Kingmed Center for Clinical Laboratory Co., Ltd., Nanjing, China
| | - Bibi Hu
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yikai Zhang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xianan Zheng
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxian Liu
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengyao Wang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shu Ye
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiao Zhou
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Zheng
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Chao Zheng,
| |
Collapse
|
47
|
Li Q, Wang X, Guo A, Zheng W, Bi J, He Y, Luo Q. The promising significance of liraglutide combined with dapagliflozin or empagliflozin in the prevention of early diabetic nephropathy. Am J Transl Res 2022; 14:5622-5629. [PMID: 36105007 PMCID: PMC9452308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To explore the significance of liraglutide combined with dapagliflozin or empagliflozin in the prevention of early diabetic nephropathy (DN) and its effects on renal function indices. METHODS Three hundred patients with type 2 diabetes mellitus (T2DM) treated in our hospital from April 2019 to April 2020 were retrospectively included and divided into two groups according to different treatment regimens. Among them, 150 patients who received liraglutide alone were included in the single-drug group, and 150 patients treated with liraglutide combined with dapagliflozin or empagliflozin were included in the combination group. The baseline data and the improvement of inflammatory indices, blood glucose indices and renal function-related indices were compared between the two groups of patients. RESULTS The baseline data such as age, body mass index, retinopathy, and course of disease had no significant difference between the two groups (P > 0.05). After treatment, the waist-to-hip ratio, total body fat percentage, total body fat mass, total body lean mass, and A/G ratio were significantly decreased in both groups (P < 0.05) compared with before treatment, and were significantly lower in the combination group than in the single-drug group (P < 0.05). The combination group had significantly lower urinary transferrin (Tf), neutrophil gelatinase-associated lipocalin (NGAL) and tumor necrosis factor (TNF)-α, insulin-like growth factor 1 (IGF-1), retinol-binding protein (RBP), homocysteine (Hcy), brain natriuretic peptide (BNP), 24 h urinary albumin excretion ratio (UAER), urine albumin to creatinine ratio (UACR) and urinary liver-type fatty acid binding protein (L-FABP) levels, and higher secretory frizzled-related protein 5 levels than the single-drug group after treatment (P < 0.05). CONCLUSION Liraglutide combined with dapagliflozin or empagliflozin treatment can effectively reduce the levels of Tf, NGAL and TNF-α in patients with T2DM, and improve the renal function in terms of IGF-1, RBP, Hcy, BNP, UAER, UACR, L-FABP, showing high treatment safety.
Collapse
Affiliation(s)
- Qin Li
- Department of Endocrinology, General Hospital of The Yangtze River ShippingWuhan 430010, Hubei Province, China
| | - Xing Wang
- Department of Endocrinology, Shanghai Pudong New Area Gongli HospitalShanghai 200135, China
| | - Aili Guo
- Department of Endocrinology, General Hospital of The Yangtze River ShippingWuhan 430010, Hubei Province, China
| | - Wenxia Zheng
- Department of Endocrinology, General Hospital of The Yangtze River ShippingWuhan 430010, Hubei Province, China
| | - Jin Bi
- Department of Endocrinology, General Hospital of The Yangtze River ShippingWuhan 430010, Hubei Province, China
| | - Yan He
- Department of Endocrinology, General Hospital of The Yangtze River ShippingWuhan 430010, Hubei Province, China
| | - Qiong Luo
- Department of Endocrinology, General Hospital of The Yangtze River ShippingWuhan 430010, Hubei Province, China
| |
Collapse
|
48
|
Diagnostic and Therapeutic Roles of Extracellular Vesicles in Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6742792. [PMID: 35979398 PMCID: PMC9377967 DOI: 10.1155/2022/6742792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 01/10/2023]
Abstract
Aging shows a decline in overall physical function, and cellular senescence is the powerful catalyst leading to aging. Considering that aging will be accompanied with the emergence of various aging-related diseases, research on new antiaging drugs is still valuable. Extracellular vesicles (EVs), as tools for intercellular communication, are important components of the senescence-associated secretory phenotype (SASP), and they can play pathological roles in the process of cellular senescence. In addition, EVs are similar to their original cells in functions. Therefore, EVs derived from pathological tissues or body fluids may be closely related to the progression of diseases and become potential biomarkers, while those from healthy cells may have therapeutic effects. Moreover, EVs are satisfactory drug carriers. At present, numerous studies have supported the idea that engineered EVs could improve drug targeting ability and utilization efficiency. Here, we summarize the characteristics of EVs and cellular senescence and focus on the diagnostic and therapeutic potential of EVs in various aging-related diseases, including Alzheimer disease, osteoporosis, cardiovascular disease, diabetes mellitus and its complications, and skin aging.
Collapse
|
49
|
Dong R, Xu Y. Glomerular cell cross talk in diabetic kidney diseases. J Diabetes 2022; 14:514-523. [PMID: 35999686 PMCID: PMC9426281 DOI: 10.1111/1753-0407.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes mellitus. It is the leading inducement of end-stage renal disease (ESRD), and its global incidence has been increasing at an alarming rate. The strict control of blood pressure and blood glucose can delay the progression of DKD, but intensive treatment is challenging to maintain. Studies to date have failed to find a complete cure. The glomerulus's alterations and injuries play a pivotal role in the initiation and development of DKD. A wealth of data indicates that the interdependent relationship between resident cells in the glomerulus will provide clues to the mechanism of DKD and new ways for therapeutic intervention. This review summarizes the significant findings of glomerular cell cross talk in DKD, focusing on cellular signaling pathways, regulators, and potential novel avenues for treating progressive DKD.
Collapse
Affiliation(s)
- Ruixue Dong
- Faculty of Pharmacy, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
| | - Youhua Xu
- Faculty of Pharmacy, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- Department of Endocrinology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, People's Republic of China
| |
Collapse
|
50
|
Lu X, Li L, Suo L, Huang P, Wang H, Han S, Cao M. Single-Cell RNA Sequencing Profiles Identify Important Pathophysiologic Factors in the Progression of Diabetic Nephropathy. Front Cell Dev Biol 2022; 10:798316. [PMID: 35620059 PMCID: PMC9129094 DOI: 10.3389/fcell.2022.798316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Single-cell RNA sequencing (scRNA-seq) analyses have provided a novel insight into cell-specific gene expression changes in diseases. Here, this study was conducted to identify cell types and pathophysiologic factors in diabetic nephropathy. Methods: Single-cell RNA sequencing data of three human diabetic kidney specimens and three controls were retrieved from the GSE131882 dataset. Following preprocessing and normalization, cell clustering was presented and cell types were identified. Marker genes of each cell type were identified by comparing with other cell types. A ligand–receptor network analysis of immune cells was then conducted. Differentially expressed marker genes of immune cells were screened between diabetic nephropathy tissues and controls and their biological functions were analyzed. Diabetic nephropathy rat models were established and key marker genes were validated by RT-qPCR and Western blot. Results: Here, 10 cell types were clustered, including tubular cells, endothelium, parietal epithelial cells, podocytes, collecting duct, mesangial cells, immune cells, distal convoluted tubule, the thick ascending limb, and proximal tubule in the diabetic kidney specimens and controls. Among them, immune cells had the highest proportion in diabetic nephropathy. Immune cells had close interactions with other cells by receptor–ligand interactions. Differentially expressed marker genes of immune cells EIF4B, RICTOR, and PRKCB were significantly enriched in the mTOR pathway, which were confirmed to be up-regulated in diabetic nephropathy. Conclusion: Our findings identified immune cells and their marker genes (EIF4B, RICTOR, and PRKCB) as key pathophysiologic factors that might contribute to diabetic nephropathy progression.
Collapse
Affiliation(s)
- Xi Lu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luolan Suo
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ping Huang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjie Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Su Han
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Mingming Cao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|