1
|
Fialho S, Trieu-Cuot P, Ferreira P, Oliveira L. Could P2X7 receptor be a potencial target in neonatal sepsis? Int Immunopharmacol 2024; 142:112969. [PMID: 39241519 DOI: 10.1016/j.intimp.2024.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
The United Nations Inter-Agency Group for Child Mortality Estimation (UNIGME) estimates that every year 2.5 million neonates die in their first month of life, accounting for nearly one-half of deaths in children under 5 years of age. Neonatal sepsis is the third leading cause of neonatal mortality. The worldwide burden of bacterial sepsis is expected to increase in the next decades due to the lack of effective molecular therapies to replace the administration of antibiotics whose efficacy is compromised by the emergence of resistant strains. In addition, prolonged exposure to antibiotics can have negative effects by increasing the risk of infection by other organisms. With the global burden of sepsis increasing and no vaccine nor other therapeutic approaches proved efficient, the World Health Organization (WHO) stresses the need for new therapeutic targets for sepsis treatment and infection prevention (WHO, A73/32). In response to this unresolved clinical issue, the P2X7 receptor (P2X7R), a key component of the inflammatory cascade, has emerged as a potential target for treating inflammatory/infection diseases. Indeed numerous studies have demonstrated the relevance of the purinergic system as a pharmacological target in addressing immune-mediated inflammatory diseases by regulating immunity, inflammation, and organ function. In this review, we analyze key features of sepsis immunopathophysiology focusing in neonatal sepsis and on how the immunomodulatory role of P2X7R could be a potential pharmacological target for reducing the burden of neonatal sepsis.
Collapse
Affiliation(s)
- Sales Fialho
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal
| | - Patrick Trieu-Cuot
- Institut Pasteur, Université Paris Cité, Unité de Biologie des Bactéries Pathogènes à Gram-positif, Paris, France
| | - Paula Ferreira
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; Institute of Research and Innovation in Health (i3S), University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Laura Oliveira
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP)/Rise Health, University of Porto, Portugal.
| |
Collapse
|
2
|
Dunker C, Vinnenberg L, Isaak A, Karabatak E, Hundehege P, Budde T, Murakami K, Junker A. Exploring P2X receptor activity: A journey from cellular impact to electrophysiological profiling. Biochem Pharmacol 2024; 229:116543. [PMID: 39304104 DOI: 10.1016/j.bcp.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The development of in vitro pharmacological assays relies on creating genetically modified cell lines that overexpress the target protein of interest. However, the choice of the host cell line can significantly impact the experimental outcomes. This study explores the functional characterization of P2X7 and P2X4 receptor modulators through cellular assays and advanced electrophysiological techniques. The influence of different host cell lines (HEK-293, HEK-293FT, and 1321N1) on the activity of reference agonists and antagonists targeting human and murine P2X4 and P2X7 receptors was systematically investigated, highlighting the significant impact of the host cell on experimental results. The 1321N1 cell line was identified as the preferred host cell line when investigating the human P2X4 receptor due to more consistent agonist activities, antagonist potencies, and a more stable assay signal window. Furthermore, a patch-clamp protocol that allows for the repetitive recording of ATP-mediated inward currents from isolated human CD4+ T-cells was established, revealing that both P2X7 and P2X4 receptors are crucial for immune cell regulation, positioning them as promising therapeutic targets for managing inflammatory disorders.
Collapse
Affiliation(s)
- Calvin Dunker
- European Institute for Molecular Imaging (EIMI), Roentgenstr 16, University of Muenster, 48149 Muenster, Germany; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Laura Vinnenberg
- University Hospital Muenster, Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Andreas Isaak
- European Institute for Molecular Imaging (EIMI), Roentgenstr 16, University of Muenster, 48149 Muenster, Germany
| | - Elif Karabatak
- Institute of Physiology I, University of Muenster, Robert-Koch-Str. 27a, 48149 Muenster, Germany
| | - Petra Hundehege
- University Hospital Muenster, Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Thomas Budde
- Institute of Physiology I, University of Muenster, Robert-Koch-Str. 27a, 48149 Muenster, Germany
| | - Kazuhiro Murakami
- Division of Epithelial Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI), Roentgenstr 16, University of Muenster, 48149 Muenster, Germany; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Roentgenweg 13, 72076, Tuebingen, Germany.
| |
Collapse
|
3
|
Russo C, Raiden S, Algieri S, Bruera MJ, De Carli N, Sarli M, Cairoli H, De Lillo L, Morales I, Seery V, Otero A, Sananez I, Simaz N, Alfiero G, Rubino G, Moya N, Aedo Portela L, Herrero M, Blanco M, Salcedo Pereira M, Ferrero F, Geffner J, Arruvito L. ATP-P2X7R pathway activation limits the Tfh cell compartment during pediatric RSV infection. Front Immunol 2024; 15:1397098. [PMID: 39044830 PMCID: PMC11263008 DOI: 10.3389/fimmu.2024.1397098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024] Open
Abstract
Background Follicular helper T cells (Tfh) are pivotal in B cell responses. Activation of the purinergic receptor P2X7 on Tfh cells regulates their activity. We investigated the ATP-P2X7R axis in circulating Tfh (cTfh) cells during Respiratory Syncytial Virus (RSV) infection. Methods We analyzed two cohorts: children with RSV infection (moderate, n=30; severe, n=21) and healthy children (n=23). We utilized ELISA to quantify the levels of PreF RSV protein-specific IgG antibodies, IL-21 cytokine, and soluble P2X7R (sP2X7R) in both plasma and nasopharyngeal aspirates (NPA). Additionally, luminometry was employed to determine ATP levels in plasma, NPA and supernatant culture. The frequency of cTfh cells, P2X7R expression, and plasmablasts were assessed by flow cytometry. To evaluate apoptosis, proliferation, and IL-21 production by cTfh cells, we cultured PBMCs in the presence of Bz-ATP and/or P2X7R antagonist (KN-62) and a flow cytometry analysis was performed. Results In children with severe RSV disease, we observed diminished titers of neutralizing anti-PreF IgG antibodies. Additionally, severe infections, compared to moderate cases, were associated with fewer cTfh cells and reduced plasma levels of IL-21. Our investigation revealed dysregulation in the ATP-P2X7R pathway during RSV infection. This was characterized by elevated ATP levels in both plasma and NPA samples, increased expression of P2X7R on cTfh cells, lower levels of sP2X7R, and heightened ATP release from PBMCs upon stimulation, particularly evident in severe cases. Importantly, ATP exposure decreased cTfh proliferative response and IL-21 production, while promoting their apoptosis. The P2X7R antagonist KN-62 mitigated these effects. Furthermore, disease severity positively correlated with ATP levels in plasma and NPA samples and inversely correlated with cTfh frequency. Conclusion Our findings indicate that activation of the ATP-P2X7R pathway during RSV infection may contribute to limiting the cTfh cell compartment by promoting cell death and dysfunction, ultimately leading to increased disease severity.
Collapse
Affiliation(s)
- Constanza Russo
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Silvina Raiden
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Silvia Algieri
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - María José Bruera
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Norberto De Carli
- Servicio de Pediatría, Clínica del Niño de Quilmes, Buenos Aires, Argentina
| | - Mariam Sarli
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Héctor Cairoli
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Leonardo De Lillo
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Ivanna Morales
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Vanesa Seery
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Adrián Otero
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Inés Sananez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nancy Simaz
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Gisela Alfiero
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Gabriela Rubino
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Néstor Moya
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Luisa Aedo Portela
- Servicio de Pediatría, Clínica del Niño de Quilmes, Buenos Aires, Argentina
| | - Mauro Herrero
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marina Blanco
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Fernando Ferrero
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde, Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lourdes Arruvito
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
4
|
Diercks BP. The importance of Ca 2+ microdomains for the adaptive immune response. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119710. [PMID: 38522726 DOI: 10.1016/j.bbamcr.2024.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024]
Abstract
Calcium signaling stands out as the most widespread and universally used signaling system and is of utmost importance for immunity. Controlled elevations in cytosolic and organellar Ca2+ concentrations in T cells control complex and essential effector functions including proliferation, differentiation, cytokine secretion, and cytotoxicity, among others. Additionally, disruptions in Ca2+ regulation in T cells contribute to diverse autoimmune, inflammatory, and immunodeficiency conditions. Among the initial intracellular signals, which occurring even before T cell receptor (TCR) stimulation are highly localized, spatially and temporally restricted so-called Ca2+ microdomains, caused by adhesion to extracellular matrix proteins (ECM proteins). The Ca2+ microdomains present both before and within the initial seconds following TCR stimulation are likely to play a crucial role in fine-tuning the downstream activity of T cell activation and thus, shaping an adaptive immune response. In this review, the emphasis is on the recent advances of adhesion-dependent Ca2+ microdomains (ADCM) in the absence of TCR stimulation, initial Ca2+ microdomains evoked by TCR stimulation (TDCM), the downstream signaling processes as well as possible therapeutic targets for interventions.
Collapse
Affiliation(s)
- Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
5
|
Zou YT, Li JY, Chai JY, Hu YS, Zhang WJ, Zhang Q. The impact of the P2X7 receptor on the tumor immune microenvironment and its effects on tumor progression. Biochem Biophys Res Commun 2024; 707:149513. [PMID: 38508051 DOI: 10.1016/j.bbrc.2024.149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/22/2024]
Abstract
Cancer is a significant global health concern, and finding effective methods to treat it has been a focus of scientific research. It has been discovered that the growth, invasion, and metastasis of tumors are closely related to the environment in which they exist, known as the tumor microenvironment (TME). The immune response interacting with the tumor occurring within the TME constitutes the tumor immune microenvironment, and the immune response can lead to anti-tumor and pro-tumor outcomes and has shown tremendous potential in immunotherapy. A channel called the P2X7 receptor (P2X7R) has been identified within the TME. It is an ion channel present in various immune cells and tumor cells, and its activation can lead to inflammation, immune responses, angiogenesis, immunogenic cell death, and promotion of tumor development. This article provides an overview of the structure, function, and pharmacological characteristics of P2X7R. We described the concept and components of tumor immune microenvironment and the influence immune components has on tumors. We also outlined the impact of P2X7R regulation and how it affects the development of tumors and summarized the effects of drugs targeting P2X7R on tumor progression, both past and current, assisting researchers in treating tumors using P2X7R as a target.
Collapse
Affiliation(s)
- Yu-Ting Zou
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jin-Yuan Li
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jun-Yi Chai
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yu-Shan Hu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China; The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| |
Collapse
|
6
|
Guo Y, Mao T, Fang Y, Wang H, Yu J, Zhu Y, Shen S, Zhou M, Li H, Hu Q. Comprehensive insights into potential roles of purinergic P2 receptors on diseases: Signaling pathways involved and potential therapeutics. J Adv Res 2024:S2090-1232(24)00123-1. [PMID: 38565403 DOI: 10.1016/j.jare.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Purinergic P2 receptors, which can be divided into ionotropic P2X receptors and metabotropic P2Y receptors, mediate cellular signal transduction of purine or pyrimidine nucleoside triphosphates and diphosphate. Based on the wide expression of purinergic P2 receptors in tissues and organs, their significance in homeostatic maintenance, metabolism, nociceptive transmission, and other physiological processes is becoming increasingly evident, suggesting that targeting purinergic P2 receptors to regulate biological functions and signal transmission holds significant promise for disease treatment. AIM OF REVIEW This review highlights the detailed mechanisms by which purinergic P2 receptors engage in physiological and pathological progress, as well as providing prospective strategies for discovering clinical drug candidates. KEY SCIENTIFIC CONCEPTS OF REVIEW The purinergic P2 receptors regulate complex signaling and molecular mechanisms in nervous system, digestive system, immune system and as a result, controlling physical health states and disease progression. There has been a significant rise in research and development focused on purinergic P2 receptors, contributing to an increased number of drug candidates in clinical trials. A few influential pioneers have laid the foundation for advancements in the evaluation, development, and of novel purinergic P2 receptors modulators, including agonists, antagonists, pharmaceutical compositions and combination strategies, despite the different scaffolds of these drug candidates. These advancements hold great potential for improving therapeutic outcomes by specifically targeting purinergic P2 receptors.
Collapse
Affiliation(s)
- Yanshuo Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Jiayue Yu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Qinghua Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
7
|
Brock VJ, Lory NC, Möckl F, Birus M, Stähler T, Woelk LM, Jaeckstein M, Heeren J, Koch-Nolte F, Rissiek B, Mittrücker HW, Guse AH, Werner R, Diercks BP. Time-resolved role of P2X4 and P2X7 during CD8 + T cell activation. Front Immunol 2024; 15:1258119. [PMID: 38426095 PMCID: PMC10902106 DOI: 10.3389/fimmu.2024.1258119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
CD8+ T cells are a crucial part of the adaptive immune system, responsible for combating intracellular pathogens and tumor cells. The initial activation of T cells involves the formation of highly dynamic Ca2+ microdomains. Recently, purinergic signaling was shown to be involved in the formation of the initial Ca2+ microdomains in CD4+ T cells. In this study, the role of purinergic cation channels, particularly P2X4 and P2X7, in CD8+ T cell signaling from initial events to downstream responses was investigated, focusing on various aspects of T cell activation, including Ca2+ microdomains, global Ca2+ responses, NFAT-1 translocation, cytokine expression, and proliferation. While Ca2+ microdomain formation was significantly reduced in the first milliseconds to seconds in CD8+ T cells lacking P2X4 and P2X7 channels, global Ca2+ responses over minutes were comparable between wild-type (WT) and knockout cells. However, the onset velocity was reduced in P2X4-deficient cells, and P2X4, as well as P2X7-deficient cells, exhibited a delayed response to reach a certain level of free cytosolic Ca2+ concentration ([Ca2+]i). NFAT-1 translocation, a crucial transcription factor in T cell activation, was also impaired in CD8+ T cells lacking P2X4 and P2X7. In addition, the expression of IFN-γ, a major pro-inflammatory cytokine produced by activated CD8+ T cells, and Nur77, a negative regulator of T cell activation, was significantly reduced 18h post-stimulation in the knockout cells. In line, the proliferation of T cells after 3 days was also impaired in the absence of P2X4 and P2X7 channels. In summary, the study demonstrates that purinergic signaling through P2X4 and P2X7 enhances initial Ca2+ events during CD8+ T cell activation and plays a crucial role in regulating downstream responses, including NFAT-1 translocation, cytokine expression, and proliferation on multiple timescales. These findings suggest that targeting purinergic signaling pathways may offer potential therapeutic interventions.
Collapse
Affiliation(s)
- Valerie J. Brock
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Niels Christian Lory
- Department of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Möckl
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Melina Birus
- Department of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Stähler
- Department of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lena-Marie Woelk
- Department of Applied Medical Informatics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Department of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - René Werner
- Department of Applied Medical Informatics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Computational Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Zhang GP, Liao JX, Liu YY, Zhu FQ, Huang HJ, Zhang WJ. Ion channel P2X7 receptor in the progression of cancer. Front Oncol 2024; 13:1297775. [PMID: 38273855 PMCID: PMC10808724 DOI: 10.3389/fonc.2023.1297775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
P2X7 receptor (P2X7) is a non-selective and ATP-sensitive ligand-gated cation channel. Studies have confirmed that it is expressed in a variety of cells and correlates with their function, frequently in immune cells and tumor cells. We found increased expression of this receptor in many tumor cells, and it has a role in tumor survival and progression. In immune cells, upregulation of the receptor has a double effect on tumor suppression as well as tumor promotion. This review describes the structure of P2X7 and its role in the tumor microenvironment and presents possible mechanisms of P2X7 in tumor invasion and metastasis. Understanding the potential of P2X7 for tumor treatment, we also present several therapeutic agents targeting P2X7 and their mechanisms of action. In conclusion, the study of P2X7 is an important guideline for the use of clinical tumor therapy and may be able to provide a new idea for tumor treatment, but considering the complexity of the biological effects of P2X7, the drugs should be used with caution in clinical practice.
Collapse
Affiliation(s)
- Guang-ping Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Critical Medicine, Ganzhou people’s Hospital, Ganzhou, Jiangxi, China
| | - Jun-xiang Liao
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fu-qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hui-jin Huang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Abad C, Demeules M, Guillou C, Gondé H, Zoubairi R, Tan YV, Pinto-Espinoza C, Schäfer W, Mann AM, Vouret-Craviari V, Koch-Nolte F, Adriouch S. Administration of an AAV vector coding for a P2X7-blocking nanobody-based biologic ameliorates colitis in mice. J Nanobiotechnology 2024; 22:27. [PMID: 38212782 PMCID: PMC10785547 DOI: 10.1186/s12951-023-02285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The pro-inflammatory ATP-gated P2X7 receptor is widely expressed by immune and non-immune cells. Nanobodies targeting P2X7, with potentiating or antagonistic effects, have been developed. Adeno-associated virus (AAV)-mediated gene transfer represents an efficient approach to achieve long-term in vivo expression of selected nanobody-based biologics. This approach (AAVnano) was used to validate the relevance of P2X7 as a target in dextran sodium sulfate (DSS)-induced colitis in mice. RESULTS Mice received an intramuscular injection of AAV vectors coding for potentiating (14D5-dimHLE) or antagonistic (13A7-Fc) nanobody-based biologics targeting P2X7. Long-term modulation of P2X7 activity was evaluated ex vivo from blood samples. Colitis was induced with DSS in mice injected with AAV vectors coding for nanobody-based biologics. Severity of colitis, colon histopathology and expression of chemokines and cytokines were determined to evaluate the impact of P2X7 modulation. A single injection of an AAV vector coding for 13A7-Fc or 14D5-dimHLE efficiently modulated P2X7 function in vivo from day 15 up to day 120 post-injection in a dose-dependent manner. An AAV vector coding for 13A7-Fc significantly ameliorated DSS-induced colitis and significantly reduced immune cell infiltration and expression of chemokines and proinflammatory cytokines in colonic tissue. CONCLUSIONS We have demonstrated the validity of AAVnano methodology to modulate P2X7 functions in vivo. Applying this methodological approach to a DSS-induced colitis model, we have shown that P2X7 blockade reduces inflammation and disease severity. Hence, this study confirms the importance of P2X7 as a pharmacological target and suggests the use of nanobody-based biologics as potential therapeutics in inflammatory bowel disease.
Collapse
Affiliation(s)
- Catalina Abad
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Mélanie Demeules
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Charlotte Guillou
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Henri Gondé
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Rachid Zoubairi
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Yossan-Var Tan
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | | | - Waldemar Schäfer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Marei Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France.
- Faculty of Medicine and Pharmacy, INSERM U1234 - PANTHER Lab, 22 Boulevard Gambetta, CS 76183, University of Rouen, 76000, Rouen, France.
| |
Collapse
|
10
|
Hernandez CA, Eugenin EA. The role of Pannexin-1 channels, ATP, and purinergic receptors in the pathogenesis of HIV and SARS-CoV-2. Curr Opin Pharmacol 2023; 73:102404. [PMID: 37734241 PMCID: PMC10838406 DOI: 10.1016/j.coph.2023.102404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Infectious agents such as human immune deficiency virus-1 (HIV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) use host proteins to infect, replicate, and induce inflammation within the host. A critical component of these diseases is the axis between pannexin-1 channels, extracellular ATP, and purinergic receptors. Here, we describe the potential therapeutic role of Pannexin-1/purinergic approaches to prevent or reduce the devastating consequences of these pathogens.
Collapse
Affiliation(s)
- Cristian A Hernandez
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Eliseo A Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA.
| |
Collapse
|
11
|
Keshavarz S, Wall JR, Keshavarz S, Vojoudi E, Jafari-Shakib R. Breast cancer immunotherapy: a comprehensive review. Clin Exp Med 2023; 23:4431-4447. [PMID: 37658246 DOI: 10.1007/s10238-023-01177-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Cancer remains a major health problem despite numerous new medical interventions that have been introduced in recent years. One of the major choices for cancer therapy is so-called adoptive cell therapy (ACT). ACT can be performed using both innate immune cells, including dendritic cells (DCs), natural killer (NK) cells, and γδ T cells and acquired immune T cells. It has become possible to utilize these cells in both their native and modified states in clinical studies. Because of considerable success in cancer treatment, ACT now plays a role in advanced therapy protocols. Genetic engineering of autologous and allogeneic immune cells (T lymphocytes, NK cells, macrophages, etc.) with chimeric antigen receptors (CAR) is a powerful new tool to target specific antigens on cancer cells. The Food and Drug Administration (FDA) in the US has approved certain CAR-T cells for hematologic malignancies and it is hoped that their use can be extended to incorporate a variety of cells, in particular NK cells. However, the ACT method has some limitations, such as the risk of rejection in allogeneic engrafts. Accordingly, numerous efforts are being made to eliminate or minimize this and other complications. In the present review, we have developed a guide to breast cancer (BC) therapy from conventional therapy, through to cell-based approaches, in particular novel technologies including CAR with emphasis on NK cells as a new and safer candidate in this field as well as the more recent aptamer technology, which can play a major role in BC immunotherapy.
Collapse
Affiliation(s)
- Samaneh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Jack R Wall
- University of Notre Dame Australia, Sydney, Australia
| | - Somayeh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Vojoudi
- Regenerative Medicine, Organ Procurement and Transplantation Multidisciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Reza Jafari-Shakib
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
12
|
Sainz RM, Rodriguez-Quintero JH, Maldifassi MC, Stiles BM, Wennerberg E. Tumour immune escape via P2X7 receptor signalling. Front Immunol 2023; 14:1287310. [PMID: 38022596 PMCID: PMC10643160 DOI: 10.3389/fimmu.2023.1287310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
While P2X7 receptor expression on tumour cells has been characterized as a promotor of cancer growth and metastasis, its expression by the host immune system is central for orchestration of both innate and adaptive immune responses against cancer. The role of P2X7R in anti-tumour immunity is complex and preclinical studies have described opposing roles of the P2X7R in regulating immune responses against tumours. Therefore, few P2X7R modulators have reached clinical testing in cancer patients. Here, we review the prognostic value of P2X7R in cancer, how P2X7R have been targeted to date in tumour models, and we discuss four aspects of how tumours skew immune responses to promote immune escape via the P2X7R; non-pore functional P2X7Rs, mono-ADP-ribosyltransferases, ectonucleotidases, and immunoregulatory cells. Lastly, we discuss alternative approaches to offset tumour immune escape via P2X7R to enhance immunotherapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Ricardo M. Sainz
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Jorge Humberto Rodriguez-Quintero
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Maria Constanza Maldifassi
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Brendon M. Stiles
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
13
|
Grassi F, Salina G. The P2X7 Receptor in Autoimmunity. Int J Mol Sci 2023; 24:14116. [PMID: 37762419 PMCID: PMC10531565 DOI: 10.3390/ijms241814116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated nonselective cationic channel that, upon intense stimulation, can progress to the opening of a pore permeable to molecules up to 900 Da. Apart from its broad expression in cells of the innate and adaptive immune systems, it is expressed in multiple cell types in different tissues. The dual gating property of P2X7R is instrumental in determining cellular responses, which depend on the expression level of the receptor, timing of stimulation, and microenvironmental cues, thus often complicating the interpretation of experimental data in comprehensive settings. Here we review the existing literature on P2X7R activity in autoimmunity, pinpointing the different functions in cells involved in the immunopathological processes that can make it difficult to model as a druggable target.
Collapse
Affiliation(s)
- Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
| | | |
Collapse
|
14
|
Golia MT, Gabrielli M, Verderio C. P2X 7 Receptor and Extracellular Vesicle Release. Int J Mol Sci 2023; 24:9805. [PMID: 37372953 DOI: 10.3390/ijms24129805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Extensive evidence indicates that the activation of the P2X7 receptor (P2X7R), an ATP-gated ion channel highly expressed in immune and brain cells, is strictly associated with the release of extracellular vesicles. Through this process, P2X7R-expressing cells regulate non-classical protein secretion and transfer bioactive components to other cells, including misfolded proteins, participating in inflammatory and neurodegenerative diseases. In this review, we summarize and discuss the studies addressing the impact of P2X7R activation on extracellular vesicle release and their activities.
Collapse
Affiliation(s)
- Maria Teresa Golia
- National Research Council of Italy, Institute of Neuroscience, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy
| | - Martina Gabrielli
- National Research Council of Italy, Institute of Neuroscience, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy
| | - Claudia Verderio
- National Research Council of Italy, Institute of Neuroscience, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy
| |
Collapse
|
15
|
Janho Dit Hreich S, Hofman P, Vouret-Craviari V. The Role of IL-18 in P2RX7-Mediated Antitumor Immunity. Int J Mol Sci 2023; 24:ijms24119235. [PMID: 37298187 DOI: 10.3390/ijms24119235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is the leading cause of death worldwide despite the variety of treatments that are currently used. This is due to an innate or acquired resistance to therapy that encourages the discovery of novel therapeutic strategies to overcome the resistance. This review will focus on the role of the purinergic receptor P2RX7 in the control of tumor growth, through its ability to modulate antitumor immunity by releasing IL-18. In particular, we describe how the ATP-induced receptor activities (cationic exchange, large pore opening and NLRP3 inflammasome activation) modulate immune cell functions. Furthermore, we recapitulate our current knowledge of the production of IL-18 downstream of P2RX7 activation and how IL-18 controls the fate of tumor growth. Finally, the potential of targeting the P2RX7/IL-18 pathway in combination with classical immunotherapies to fight cancer is discussed.
Collapse
Affiliation(s)
- Serena Janho Dit Hreich
- Faculty of Medicine, Université Côte d'Azur, CNRS, INSERM, IRCAN, 06108 Nice, France
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- FHU OncoAge, 06108 Nice, France
| | - Paul Hofman
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, 06108 Nice, France
- Hospital-Related Biobank, Pasteur Hospital, 06108 Nice, France
| | - Valérie Vouret-Craviari
- Faculty of Medicine, Université Côte d'Azur, CNRS, INSERM, IRCAN, 06108 Nice, France
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- FHU OncoAge, 06108 Nice, France
| |
Collapse
|
16
|
Sluyter R, Cuthbertson P, Elhage A, Sligar C, Watson D. Purinergic signalling in graft-versus-host disease. Curr Opin Pharmacol 2023; 68:102346. [PMID: 36634595 DOI: 10.1016/j.coph.2022.102346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is used to treat blood cancers, but often results in lethal graft-versus-host disease (GVHD). GVHD is an inflammatory disorder mediated by donor leukocytes that damage host tissues. Purinergic signalling plays important roles in GVHD development in mice but studies of these pathways in human GVHD remain limited. P2X7 receptor activation by ATP on host antigen presenting cells contributes to the induction of GVHD, while activation of this receptor on regulatory T cells, myeloid-derived suppressor cells and possibly type 3 innate lymphoid cells results in their loss to promote GVHD progression. In contrast, A2A receptor activation by adenosine on donor T cells serves to restrict GVHD development. These and other purinergic signalling molecules remain potential biomarkers and therapeutic targets in GVHD.
Collapse
Affiliation(s)
- Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Amal Elhage
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chloe Sligar
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
17
|
Kozlovskiy SA, Pislyagin EA, Menchinskaya ES, Chingizova EA, Sabutski YE, Polonik SG, Likhatskaya GN, Aminin DL. Anti-Inflammatory Activity of 1,4-Naphthoquinones Blocking P2X7 Purinergic Receptors in RAW 264.7 Macrophage Cells. Toxins (Basel) 2023; 15:47. [PMID: 36668867 PMCID: PMC9864473 DOI: 10.3390/toxins15010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
P2X7 receptors are ligand-gated ion channels activated by ATP and play a significant role in cellular immunity. These receptors are considered as a potential therapeutic target for the treatment of multiple inflammatory diseases. In the present work, using spectrofluorimetry, spectrophotometry, Western blotting and ELISA approaches, the ability of 1,4-naphthoquinone thioglucoside derivatives, compounds U-286 and U-548, to inhibit inflammation induced by ATP/LPS in RAW 264.7 cells via P2X7 receptors was demonstrated. It has been established that the selected compounds were able to inhibit ATP-induced calcium influx and the production of reactive oxygen species, and they also exhibited pronounced antioxidant activity in mouse brain homogenate. In addition, compounds U-286 and U-548 decreased the LPS-induced activity of the COX-2 enzyme, the release of pro-inflammatory cytokines TNF-α and IL-1β in RAW 264.7 cells, and significantly protected macrophage cells against the toxic effects of ATP and LPS. This study highlights the use of 1,4-naphthoquinones as promising purinergic P2X7 receptor antagonists with anti-inflammatory activity. Based on the data obtained, studied synthetic 1,4-NQs can be considered as potential scaffolds for the development of new anti-inflammatory and analgesic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
18
|
Jiang ZF, Wu W, Hu HB, Li ZY, Zhong M, Zhang L. P2X7 receptor as the regulator of T-cell function in intestinal barrier disruption. World J Gastroenterol 2022; 28:5265-5279. [PMID: 36185635 PMCID: PMC9521516 DOI: 10.3748/wjg.v28.i36.5265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
The intestinal mucosa is a highly compartmentalized structure that forms a direct barrier between the host intestine and the environment, and its dysfunction could result in a serious disease. As T cells, which are important components of the mucosal immune system, interact with gut microbiota and maintain intestinal homeostasis, they may be involved in the process of intestinal barrier dysfunction. P2X7 receptor (P2X7R), a member of the P2X receptors family, mediates the effects of extracellular adenosine triphosphate and is expressed by most innate or adaptive immune cells, including T cells. Current evidence has demonstrated that P2X7R is involved in inflammation and mediates the survival and differentiation of T lymphocytes, indicating its potential role in the regulation of T cell function. In this review, we summarize the available research about the regulatory role and mechanism of P2X7R on the intestinal mucosa-derived T cells in the setting of intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Zhi-Feng Jiang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Wei Wu
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Han-Bing Hu
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Zheng-Yang Li
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| |
Collapse
|
19
|
Janho dit Hreich S, Benzaquen J, Hofman P, Vouret-Craviari V. The Purinergic Landscape of Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14081926. [PMID: 35454832 PMCID: PMC9025794 DOI: 10.3390/cancers14081926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the most common cancer worldwide. Despite recent therapeutic advances, including targeted therapies and immune checkpoint inhibitors, the disease progresses in almost all advanced lung cancers and in up to 50% of early-stage cancers. The purpose of this review is to discuss whether purinergic checkpoints (CD39, CD73, P2RX7, and ADORs), which shape the immune response in the tumor microenvironment, may represent novel therapeutic targets to combat progression of non-small cell lung cancer by enhancing the antitumor immune response.
Collapse
Affiliation(s)
- Serena Janho dit Hreich
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
| | - Jonathan Benzaquen
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
| | - Paul Hofman
- CHU Nice, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France;
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM, Team 4), Université Côte d’Azur, 06100 Nice, France
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Université Côte d’Azur, 06000 Nice, France
| | - Valérie Vouret-Craviari
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
- Correspondence: ; Tel.: +33-492-031-223
| |
Collapse
|
20
|
Franciosi MLM, do Carmo TIT, Zanini D, Cardoso AM. Inflammatory profile in cervical cancer: influence of purinergic signaling and possible therapeutic targets. Inflamm Res 2022; 71:555-564. [PMID: 35376994 DOI: 10.1007/s00011-022-01560-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Cervical cancer is the fourth most prevalent type of cancer in the world. The tumor microenvironment of this disease is associated with the production of several cytokines, pro and anti-inflammatory, and with the purinergic signaling system so that changes in these components are observed throughout the pathological process. The aim of this review is to understand the pathophysiology of cervical cancer based on immunological processes and purinergic signaling pathways, in addition to suggesting possibilities of therapeutic targets. MATERIALS AND METHODS To make up this review, studies covering topics of cervical cancer, inflammation and purinergic system were selected from the Pubmed. RESULTS The main pro-inflammatory cytokines involved are IL-17, IL-1β, IL-6, and IL-18, and among the anti-inflammatory ones, IL-10 and TGF-β stand out. As new therapeutic targets, P2X7 and A2A receptors have been suggested, since blocking P2X7 would lead to reduced release of pro-inflammatory cytokines, and blocking A2A would increase activation of cytotoxic T lymphocytes in the context of tumor combat. The association between the immune system and the purinergic system, already known in other types of disease, also presents possibilities for a better understanding of biomolecular processes and therapeutic possibilities in the context of cervical cancer.
Collapse
Affiliation(s)
- Maria Luiza Mukai Franciosi
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484-Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | | | - Daniela Zanini
- Graduate Program in Biomedical Sciences, Medicine Course, Federal University of Fronteira Sul, Fronteira Sul, Campus Chapecó, Rodovia SC 484-Km 02, Chapecó, SC, 89815-899, Brazil
| | - Andréia Machado Cardoso
- Graduate Program in Biomedical Sciences, Medicine Course, Member of the Brazilian Purine Club, Federal University of Fronteira Sul, Fronteira Sul, Campus Chapecó, Rodovia SC 484-Km 02, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
21
|
Chen Z, Wang N, Yao Y, Yu D. Context-dependent regulation of follicular helper T cell survival. Trends Immunol 2022; 43:309-321. [DOI: 10.1016/j.it.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023]
|
22
|
Requirement of Xk and Vps13a for the P2X7-mediated phospholipid scrambling and cell lysis in mouse T cells. Proc Natl Acad Sci U S A 2022; 119:2119286119. [PMID: 35140185 PMCID: PMC8851519 DOI: 10.1073/pnas.2119286119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
A high extracellular adenosine triphosphate (ATP) concentration rapidly and reversibly exposes phosphatidylserine (PtdSer) in T cells by binding to the P2X7 receptor, which ultimately leads to necrosis. Using mouse T cell transformants expressing P2X7, we herein performed CRISPR/Cas9 screening for the molecules responsible for P2X7-mediated PtdSer exposure. In addition to Eros, which is required for the localization of P2X7 to the plasma membrane, this screening identified Xk and Vps13a as essential components for this process. Xk is present at the plasma membrane, and its paralogue, Xkr8, functions as a phospholipid scramblase. Vps13a is a lipid transporter in the cytoplasm. Blue-native polyacrylamide gel electrophoresis indicated that Xk and Vps13a interacted at the membrane. A null mutation in Xk or Vps13a blocked P2X7-mediated PtdSer exposure, the internalization of phosphatidylcholine, and cytolysis. Xk and Vps13a formed a complex in mouse splenic T cells, and Xk was crucial for ATP-induced PtdSer exposure and cytolysis in CD25+CD4+ T cells. XK and VPS13A are responsible for McLeod syndrome and chorea-acanthocytosis, both characterized by a progressive movement disorder and cognitive and behavior changes. Our results suggest that the phospholipid scrambling activity mediated by XK and VPS13A is essential for maintaining homeostasis in the immune and nerve systems.
Collapse
|
23
|
Brock VJ, Wolf IMA, Er-Lukowiak M, Lory N, Stähler T, Woelk LM, Mittrücker HW, Müller CE, Koch-Nolte F, Rissiek B, Werner R, Guse AH, Diercks BP. P2X4 and P2X7 are essential players in basal T cell activity and Ca 2+ signaling milliseconds after T cell activation. SCIENCE ADVANCES 2022; 8:eabl9770. [PMID: 35119925 PMCID: PMC8816335 DOI: 10.1126/sciadv.abl9770] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/14/2021] [Indexed: 05/20/2023]
Abstract
Initial T cell activation is triggered by the formation of highly dynamic, spatiotemporally restricted Ca2+ microdomains. Purinergic signaling is known to be involved in Ca2+ influx in T cells at later stages compared to the initial microdomain formation. Using a high-resolution Ca2+ live-cell imaging system, we show that the two purinergic cation channels P2X4 and P2X7 not only are involved in the global Ca2+ signals but also promote initial Ca2+ microdomains tens of milliseconds after T cell stimulation. These Ca2+ microdomains were significantly decreased in T cells from P2rx4-/- and P2rx7-/- mice or by pharmacological inhibition or blocking. Furthermore, we show a pannexin-1-dependent activation of P2X4 in the absence of T cell receptor/CD3 stimulation. Subsequently, upon T cell receptor/CD3 stimulation, ATP release is increased and autocrine activation of both P2X4 and P2X7 then amplifies initial Ca2+ microdomains already in the first second of T cell activation.
Collapse
Affiliation(s)
- Valerie J. Brock
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Insa M. A. Wolf
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Er-Lukowiak
- Department of Neurology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Niels Lory
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Tobias Stähler
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Lena-Marie Woelk
- Department of Computational Neuroscience, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | | | - Friedrich Koch-Nolte
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Andreas H. Guse
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Björn-Philipp Diercks
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Corresponding author.
| |
Collapse
|
24
|
Nation CS, Da’dara AA, Elzoheiry M, Skelly PJ. Schistosomes Impede ATP-Induced T Cell Apoptosis In Vitro: The Role of Ectoenzyme SmNPP5. Pathogens 2022; 11:pathogens11020155. [PMID: 35215099 PMCID: PMC8878264 DOI: 10.3390/pathogens11020155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023] Open
Abstract
Schistosomes (blood flukes) can survive in the bloodstream of their hosts for many years. We hypothesize that proteins on their host-interactive surface impinge on host biochemistry to help ensure their long-term survival. Here, we focus on a surface ectoenzyme of Schistosoma mansoni, designated SmNPP5. This ~53 kDa glycoprotein is a nucleotide pyrophosphatase/phosphodiesterase that has been previously shown to: (1) cleave adenosine diphosphate (ADP) and block platelet aggregation; and (2) cleave nicotinamide adenine dinucleotide (NAD) and block NAD-induced T cell apoptosis in vitro. T cell apoptosis can additionally be driven by extracellular adenosine triphosphate (ATP). In this work, we show that adult S. mansoni parasites can inhibit this process. Further, we demonstrate that recombinant SmNPP5 alone can both cleave ATP and impede ATP-induced T cell killing. As immunomodulatory regulatory T cells (Tregs) are especially prone to the induction of these apoptotic pathways, we hypothesize that the schistosome cleavage of both NAD and ATP promotes Treg survival and this helps to create a less immunologically hostile environment for the worms in vivo.
Collapse
|
25
|
Souza RDC, Louvain de Souza T, Ferreira CDS, Nascimento LS, Nahn EP, Peixoto-Rangel AL. Associations Between the Purinergic Receptor P2X7 and Leprosy Disease. Front Genet 2021; 12:730991. [PMID: 34795692 PMCID: PMC8593470 DOI: 10.3389/fgene.2021.730991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Leprosy is an infectious disease still highly prevalent in Brazil, having been detected around 27,863 new cases in 2019. Exposure to Mycobacterium leprae may not be sufficient to trigger the disease, which seems to be influenced by host immunogenetics to determine resistance or susceptibility. The purinergic receptor P2X7 plays a crucial role in immunity, inflammation, neurological function, bone homeostasis, and neoplasia and is associated with several infectious and non-infectious diseases. Here, we first compare the P2RX7 expression in RNA-seq experiments from 16 leprosy cases and 16 healthy controls to establish the magnitude of allele-specific expression for single-nucleotide polymorphisms of the gene P2RX7 and to determine the level of gene expression in healthy and diseased skin. In addition, we also evaluated the association of two P2RX7 single-nucleotide polymorphisms (c.1513A>C/rs3751143 and c.1068A>G/rs1718119) with leprosy risk. The expression of P2RX7 was found significantly upregulated at macrophage cells from leprosy patients compared with healthy controls, mainly in macrophages from lepromatous patients. Significant risk for leprosy disease was associated with loss function of rs3751143 homozygous mutant CC [CC vs. AA: p = 0.001; odds ratio (OR) = 1.676, 95% CI = 1.251–2.247] but not with heterozygous AC (AC vs. AA: p = 0.001; OR = 1.429, 95% CI = 1.260–1.621). Contrary, the polymorphic A allele from the gain function of rs1718119 was associated with protection for the development of leprosy, as observed in the dominant model (AA + AG × GG p = 0.0028; OR = 0.03516; CI = 0.1801–0.6864). So, our results suggest that the functional P2X7 purinergic receptor may exert a key role in the Mycobacterium death inside macrophages and inflammatory response, which is necessary to control the disease.
Collapse
Affiliation(s)
- Rebeka da Conceição Souza
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thaís Louvain de Souza
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Brazil.,Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Cristina Dos Santos Ferreira
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Letícia Silva Nascimento
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | | - Alba Lucínia Peixoto-Rangel
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
26
|
Reina-Campos M, Scharping NE, Goldrath AW. CD8 + T cell metabolism in infection and cancer. Nat Rev Immunol 2021; 21:718-738. [PMID: 33981085 PMCID: PMC8806153 DOI: 10.1038/s41577-021-00537-8] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Cytotoxic CD8+ T cells play a key role in the elimination of intracellular infections and malignant cells and can provide long-term protective immunity. In the response to infection, CD8+ T cell metabolism is coupled to transcriptional, translational and epigenetic changes that are driven by extracellular metabolites and immunological signals. These programmes facilitate the adaptation of CD8+ T cells to the diverse and dynamic metabolic environments encountered in the circulation and in the tissues. In the setting of disease, both cell-intrinsic and cell-extrinsic metabolic cues contribute to CD8+ T cell dysfunction. In addition, changes in whole-body metabolism, whether through voluntary or disease-induced dietary alterations, can influence CD8+ T cell-mediated immunity. Defining the metabolic adaptations of CD8+ T cells in specific tissue environments informs our understanding of how these cells protect against pathogens and tumours and maintain tissue health at barrier sites. Here, we highlight recent findings revealing how metabolic networks enforce specific CD8+ T cell programmes and discuss how metabolism is integrated with CD8+ T cell differentiation and function and determined by environmental cues.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E. Scharping
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.,
| |
Collapse
|
27
|
Jayaprakash P, Vignali PDA, Delgoffe GM, Curran MA. Hypoxia Reduction Sensitizes Refractory Cancers to Immunotherapy. Annu Rev Med 2021; 73:251-265. [PMID: 34699264 DOI: 10.1146/annurev-med-060619-022830] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to fuel their relentless expansion, cancers must expand their vasculature to augment delivery of oxygen and essential nutrients. The disordered web of irregular vessels that results, however, leaves gaps in oxygen delivery that foster tumor hypoxia. At the same time, tumor cells increase their oxidative metabolism to cope with the energetic demands of proliferation, which further worsens hypoxia due to heightened oxygen consumption. In these hypoxic, nutrient-deprived environments, tumors and suppressive stroma evolve to flourish while antitumor immunity collapses due to a combination of energetic deprivation, toxic metabolites, acidification, and other suppressive signals. Reversal of cancer hypoxia thus has the potential to increase the survival and effector function of tumor-infiltrating T cells, as well as to resensitize tumors to immunotherapy. Early clinical trials combining hypoxia reduction with immune checkpoint blockade have shown promising results in treating patients with advanced, metastatic, and therapeutically refractory cancers. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Priyamvada Jayaprakash
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
| | - Paolo Dario Angelo Vignali
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, Pennsylvania 15232, USA
| | - Greg M Delgoffe
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, Pennsylvania 15232, USA
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
| |
Collapse
|
28
|
Ferrari D, Casciano F, Secchiero P, Reali E. Purinergic Signaling and Inflammasome Activation in Psoriasis Pathogenesis. Int J Mol Sci 2021; 22:ijms22179449. [PMID: 34502368 PMCID: PMC8430580 DOI: 10.3390/ijms22179449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory disease of the skin associated with systemic and joint manifestations and accompanied by comorbidities, such as metabolic syndrome and increased risk of cardiovascular disease. Psoriasis has a strong genetic basis, but exacerbation requires additional signals that are still largely unknown. The clinical manifestations involve the interplay between dendritic and T cells in the dermis to generate a self-sustaining inflammatory loop around the TNFα/IL-23/IL-17 axis that forms the psoriatic plaque. In addition, in recent years, a critical role of keratinocytes in establishing the interplay that leads to psoriatic plaques’ formation has re-emerged. In this review, we analyze the most recent evidence of the role of keratinocytes and danger associates molecular patterns, such as extracellular ATP in the generation of psoriatic skin lesions. Particular attention will be given to purinergic signaling in inflammasome activation and in the initiation of psoriasis. In this phase, keratinocytes’ inflammasome may trigger early inflammatory pathways involving IL-1β production, to elicit the subsequent cascade of events that leads to dendritic and T cell activation. Since psoriasis is likely triggered by skin-damaging events and trauma, we can envisage that intracellular ATP, released by damaged cells, may play a role in triggering the inflammatory response underlying the pathogenesis of the disease by activating the inflammasome. Therefore, purinergic signaling in the skin could represent a new and early step of psoriasis; thus, opening the possibility to target single molecular actors of the purinome to develop new psoriasis treatments.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
| | - Eva Reali
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
29
|
Reinmuth L, Hsiao CC, Hamann J, Rosenkilde M, Mackrill J. Multiple Targets for Oxysterols in Their Regulation of the Immune System. Cells 2021; 10:cells10082078. [PMID: 34440846 PMCID: PMC8391951 DOI: 10.3390/cells10082078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis. These cellular processes play critical roles in both the innate and adaptive immune systems. This review will survey the two broad classes of cell-surface receptors for oxysterols (G-protein coupled receptors (GPCRs) and ion channels), the mechanisms by which cholesterol oxidation products act on them, and their presence and functions in the different cell types of the immune system. Overall, this review will highlight the potential of oxysterols, synthetic derivatives and their receptors for physiological and therapeutic modulation of the immune system.
Collapse
Affiliation(s)
- Lisa Reinmuth
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Mette Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| | - John Mackrill
- Department of Physiology, School of Medicine, BioSciences Institute, University College Cork, College Road, Cork T12 YT20, Ireland
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| |
Collapse
|
30
|
Oliveira-Giacomelli Á, Petiz LL, Andrejew R, Turrini N, Silva JB, Sack U, Ulrich H. Role of P2X7 Receptors in Immune Responses During Neurodegeneration. Front Cell Neurosci 2021; 15:662935. [PMID: 34122013 PMCID: PMC8187565 DOI: 10.3389/fncel.2021.662935] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 01/16/2023] Open
Abstract
P2X7 receptors are ion-gated channels activated by ATP. Under pathological conditions, the extensive release of ATP induces sustained P2X7 receptor activation, culminating in induction of proinflammatory pathways with inflammasome assembly and cytokine release. These inflammatory conditions, whether occurring peripherally or in the central nervous system (CNS), increase blood-brain-barrier (BBB) permeability. Besides its well-known involvement in neurodegeneration and neuroinflammation, the P2X7 receptor may induce BBB disruption and chemotaxis of peripheral immune cells to the CNS, resulting in brain parenchyma infiltration. For instance, despite common effects on cytokine release, P2X7 receptor signaling is also associated with metalloproteinase secretion and activation, as well as migration and differentiation of T lymphocytes, monocytes and dendritic cells. Here we highlight that peripheral immune cells mediate the pathogenesis of Multiple Sclerosis and Parkinson's and Alzheimer's disease, mainly through T lymphocyte, neutrophil and monocyte infiltration. We propose that P2X7 receptor activation contributes to neurodegenerative disease progression beyond its known effects on the CNS. This review discusses how P2X7 receptor activation mediates responses of peripheral immune cells within the inflamed CNS, as occurring in the aforementioned diseases.
Collapse
Affiliation(s)
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Natalia Turrini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jean Bezerra Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
31
|
Ferrari D, la Sala A, Milani D, Celeghini C, Casciano F. Purinergic Signaling in Controlling Macrophage and T Cell Functions During Atherosclerosis Development. Front Immunol 2021; 11:617804. [PMID: 33664731 PMCID: PMC7921745 DOI: 10.3389/fimmu.2020.617804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a hardening and narrowing of arteries causing a reduction of blood flow. It is a leading cause of death in industrialized countries as it causes heart attacks, strokes, and peripheral vascular disease. Pathogenesis of the atherosclerotic lesion (atheroma) relies on the accumulation of cholesterol-containing low-density lipoproteins (LDL) and on changes of artery endothelium that becomes adhesive for monocytes and lymphocytes. Immunomediated inflammatory response stimulated by lipoprotein oxidation, cytokine secretion and release of pro-inflammatory mediators, worsens the pathological context by amplifying tissue damage to the arterial lining and increasing flow-limiting stenosis. Formation of thrombi upon rupture of the endothelium and the fibrous cup may also occur, triggering thrombosis often threatening the patient’s life. Purinergic signaling, i.e., cell responses induced by stimulation of P2 and P1 membrane receptors for the extracellular nucleotides (ATP, ADP, UTP, and UDP) and nucleosides (adenosine), has been implicated in modulating the immunological response in atherosclerotic cardiovascular disease. In this review we will describe advancements in the understanding of purinergic modulation of the two main immune cells involved in atherogenesis, i.e., monocytes/macrophages and T lymphocytes, highlighting modulation of pro- and anti-atherosclerotic mediated responses of purinergic signaling in these cells and providing new insights to point out their potential clinical significance.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
| | - Andrea la Sala
- Certification Unit, Health Directorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Daniela Milani
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
32
|
Regulatory T Cell Stability and Plasticity in Atherosclerosis. Cells 2020; 9:cells9122665. [PMID: 33322482 PMCID: PMC7764358 DOI: 10.3390/cells9122665] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Tregs) express the lineage-defining transcription factor FoxP3 and play crucial roles in self-tolerance and immune homeostasis. Thymic tTregs are selected based on affinity for self-antigens and are stable under most conditions. Peripheral pTregs differentiate from conventional CD4 T cells under the influence of TGF-β and other cytokines and are less stable. Treg plasticity refers to their ability to inducibly express molecules characteristic of helper CD4 T cell lineages like T-helper (Th)1, Th2, Th17 or follicular helper T cells. Plastic Tregs retain FoxP3 and are thought to be specialized regulators for “their” lineage. Unstable Tregs lose FoxP3 and switch to become exTregs, which acquire pro-inflammatory T-helper cell programs. Atherosclerosis with systemic hyperlipidemia, hypercholesterolemia, inflammatory cytokines, and local hypoxia provides an environment that is likely conducive to Tregs switching to exTregs.
Collapse
|
33
|
Di Virgilio F, Vultaggio-Poma V, Sarti AC. P2X receptors in cancer growth and progression. Biochem Pharmacol 2020; 187:114350. [PMID: 33253643 DOI: 10.1016/j.bcp.2020.114350] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that ion channels have a crucial role in tumors, either as promoters of cancer cell growth, or modulators of immune cell functions, or both. Among ion channels, P2X receptors have a special status because they are gated by ATP, a common and abundant component of the tumor microenvironment. Furthermore, one P2X receptor, i.e. P2X7, may also function as a conduit for ATP release, thus fuelling the increased extracellular ATP level in the tumor interstitium. These findings show that P2X receptors and extracellular ATP are indissoluble partners and key regulators of tumor growth, and suggest the exploitation of the extracellular ATP-P2X partnership to develop innovative therapeutic approaches to cancer.
Collapse
|
34
|
Ledderose C, Junger WG. Mitochondria Synergize With P2 Receptors to Regulate Human T Cell Function. Front Immunol 2020; 11:549889. [PMID: 33133068 PMCID: PMC7550529 DOI: 10.3389/fimmu.2020.549889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Intracellular ATP is the universal energy carrier that fuels many cellular processes. However, immune cells can also release a portion of their ATP into the extracellular space. There, ATP activates purinergic receptors that mediate autocrine and paracrine signaling events needed for the initiation, modulation, and termination of cell functions. Mitochondria contribute to these processes by producing ATP that is released. Here, we summarize the synergistic interplay between mitochondria and purinergic signaling that regulates T cell functions. Specifically, we discuss how mitochondria interact with P2X1, P2X4, and P2Y11 receptors to regulate T cell metabolism, cell migration, and antigen recognition. These mitochondrial and purinergic signaling mechanisms are indispensable for host immune defense. However, they also represent an Achilles heel that can render the host susceptible to infections and inflammatory disorders. Hypoxia and mitochondrial dysfunction deflate the purinergic signaling mechanisms that regulate T cells, while inflammation and tissue damage generate excessive systemic ATP levels that distort autocrine purinergic signaling and impair T cell function. An improved understanding of the metabolic and purinergic signaling mechanisms that regulate T cells may lead to novel strategies for the diagnosis and treatment of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|