1
|
Zhang J, Li N, Hu X. Metabolic Reprograming of Macrophages: A New Direction in Traditional Chinese Medicine for Treating Liver Failure. J Immunol Res 2024; 2024:5891381. [PMID: 39741958 PMCID: PMC11688140 DOI: 10.1155/jimr/5891381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Acute liver failure (ALF) is a fulminant clinical syndrome that usually leads to multiple organ failure and high mortality. Macrophages play a crucial role in the initiation, development, and recovery of ALF. Targeting macrophages through immunotherapy holds significant promise as a therapeutic strategy. These cells exhibit remarkable plasticity, enabling them to differentiate into various subtypes based on changes in their surrounding microenvironment. M1-type macrophages are associated with a pro-inflammatory phenotype and primarily rely predominantly on glycolysis. In contrast, M2-type macrophages, which are characterized by anti-inflammatory phenotype, predominantly obtain their energy from oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Shifting macrophage metabolism from glycolysis to OXPHOS inhibits M1 macrophage activation and promotes M2 macrophage activation, thereby exerting anti-inflammatory and reparative effects. This study elucidates the relationship between macrophage activation and glucose metabolism reprograming from an immunometabolism perspective. A comprehensive literature review revealed that several signaling pathways may regulate macrophage polarization through energy metabolism, including phosphatidyl-inositol 3-kinase/protein kinase B (PI3K/AKT), mammalian target of rapamycin (mTOR)/hypoxia-inducible factor 1α (HIF-1α), nuclear factor-κB (NF-κB), and AMP-activated protein kinase (AMPK), which exhibit crosstalk with one another. Additionally, we systematically reviewed several traditional Chinese medicine (TCM) monomers that can modulate glucose metabolism reprograming and influence the polarization states of M1 and M2 macrophages. This review aimed to provide valuable insights that could contribute to the development of new therapies or drugs for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Li L, Wang J, Li J, Li M, Wang J, Long T, Zhengliu Y, Tan X, Peng Y, Hong X. Effect of plasma homocysteine on cardiometabolic multimorbidity among Chinese adults: a population-based and real-world evidence study. Front Nutr 2024; 11:1522212. [PMID: 39758316 PMCID: PMC11695421 DOI: 10.3389/fnut.2024.1522212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Aims To explore the effect of plasma homocysteine (Hcy) on cardiometabolic multimorbidity (CMM) among Chinses adults. Methods This study combined a community-based cross-sectional study with a 1:1 matched case-control study using propensity score method among adults aged over 30 years in six districts randomly selected from Hunan Province, China. We recruited 5,258 people, of whom 4,012 met the study criteria were enrolled. CMM was defined as the coexistence of two or more cardiometabolic diseases, including diabetes, hypertension, coronary heart disease and stroke. The plasma Hcy and other laboratory data was measured by chemical automatic detector. Lifestyles and personal characteristics were collected by a questionnaire. Multivariate models were used to explore the associations. We calculated the attributable risk proportion (ARP) for the association of Hcy with CMM. The dose-response relationship was evaluated using restricted cubic splines method. Results Of the 4,012 adults, 436 had CMM, with a population prevalence of 10.9%. In the propensity-score-matched case-control study, 828 (414 cases and 414 controls) were included, and those with high plasma Hcy level (>16.2 μmol/L) had a higher risk of CMM than those with lowest level (<10.4 μmol/L) (adjusted OR = 2.83, 95% CI: 1.84-4.36, p < 0.001), with a multivariate ARP of high level of exposure was 64.66% (95% CI: 46.24-77.06%). The largest effect combination of CMM was the coexisting of diabetes, hypertension and coronary heart disease (adjusted OR = 2.26, 95%CI: 1.43-3.57, p < 0.001). An inverse association and dose-response relationship were observed between CMM and plasma Hcy levels. Notably, we recognized a significant mediation effect by C-reactive protein, total cholesterol, triglyceride and waist circumference, and they mediated approximately 8 ~ 23% of the effect of Hcy on risk of CMM. Conclusion Our findings add new evidence to this field that of high level of plasma Hcy was consistently associated with higher risk of CMM among Chinses adults, with the largest effect combination of being coexisting diabetes, hypertension and coronary heart disease. These findings have implications for cardiologists that CMM can be attributable to high level of plasma Hcy, and for decision makers that Hcy has become a public threat that persistently affects cardiovascular health in humans.
Collapse
Affiliation(s)
- Ling Li
- Clinical Epidemiology Research Office, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jia Wang
- Cerebral Vascular Disease Rehabilitation Clinical Research Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jing Li
- Department of Scientific Research, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Minqi Li
- Key Laboratory of Molecular Epidemiology, Hunan Normal University, Changsha, China
| | - Jie Wang
- Key Laboratory of Molecular Epidemiology, Hunan Normal University, Changsha, China
| | - Tianyao Long
- Key Laboratory of Molecular Epidemiology, Hunan Normal University, Changsha, China
| | - Yangyi Zhengliu
- Key Laboratory of Molecular Epidemiology, Hunan Normal University, Changsha, China
| | - Xuan Tan
- Key Laboratory of Molecular Epidemiology, Hunan Normal University, Changsha, China
| | - Yiwei Peng
- Key Laboratory of Molecular Epidemiology, Hunan Normal University, Changsha, China
| | - Xiuqin Hong
- Clinical Epidemiology Research Office, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Key Laboratory of Molecular Epidemiology, Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Wang WL, Tam PKH, Chen Y. Abnormally activated wingless/integrated signaling modulates tumor-associated macrophage polarization and potentially promotes hepatocarcinoma cell growth. World J Gastroenterol 2024; 30:4490-4495. [PMID: 39534418 PMCID: PMC11551672 DOI: 10.3748/wjg.v30.i41.4490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
In this article, we comment on the article by Huang et al. The urgent development of new therapeutic strategies targeting macrophage polarization is critical in the fight against liver cancer. Tumor-associated macrophages (TAMs), primarily of the M2 subtype, are instrumental in cellular communication within the tumor microenvironment and are influenced by various signaling pathways, including the wingless/integrated (Wnt) pathway. Activation of the Wnt signaling pathway is pivotal in promoting M2 TAMs polarization, which in turn can exacerbate hepatocarcinoma cell proliferation and migration. This manuscript emphasizes the burgeoning significance of the Wnt signaling pathway and M2 TAMs polarization in the pathogenesis and progression of liver cancer, highlighting the potential therapeutic benefits of inhibiting the Wnt pathway. Lastly, we point out areas in Huang et al's study that require further research, providing guidance and new directions for similar studies.
Collapse
Affiliation(s)
- Wei-Lu Wang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Paul Kwong Hang Tam
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yan Chen
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
4
|
Fang R, Zhou R, Ju D, Li M, Wang H, Pan L, Wang X, Han M, Yu Y. Zhen-wu-tang protects against myocardial fibrosis by inhibiting M1 macrophage polarization via the TLR4/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155719. [PMID: 38763013 DOI: 10.1016/j.phymed.2024.155719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Myocardial fibrosis is a risk factor that contributes to the increase in the incidence of cardiovascular disease and death, posing a significant threat to human health. Zhen-wu-tang (ZWT) is a classical Chinese medicinal recipe that has been extensively used to manage cardiovascular disorders throughout history. However, the fundamental processes involved in its effects were not clear. OBJECTIVE This study examined the therapeutic effects of ZWT on myocardial fibrosis induced by isoproterenol (ISO) in mice, the effect of regulation and underlying mechanism on the polarization of M1 macrophage. METHODS In vivo, a myocardial fibrosis mouse model was induced via intraperitoneal infusion of isoproterenol (ISO). ZWT or captopril (CAP) was administered intragastrically for 30 days. Cardiac function was evaluated by electrocardiogram (ECG) and echocardiography. By analysing myocardial fibrosis pathomorphologically and identifying fibrosis-related indicators, the protective effect of the ZWT on the heart was evaluated. A model of macrophage polarization was established in vitro by activating RAW264.7 cells with lipopolysaccharide (LPS). The regulatory effects of ZWT on macrophage polarization and the signalling pathways involved were examined by immunofluorescence staining, Western blotting (WB), quantitative real-time PCR (qRT-PCR) and siRNA transfection. RESULTS ZWT improved cardiac function; reduced fibrotic deposition in cardiac tissues; decreased α-SMA, collagen I, and collagen III levels; and inhibited myocardial fibrosis in mice with ISO-induced myocardial fibrosis. Furthermore, the results showed that ZWT could suppress M1 macrophage polarization by downregulating the expression of CD86 and iNOS in vitro and in vivo. Finally, the results confirmed that ZWT could significantly reduce TLR4/NF-κB signalling pathway activation. CONCLUSION ZWT showed therapeutic effects on ISO-induced myocardial fibrosis mice, and reduced M1 macrophages polarization through inhibiting TLR4/NF-κB pathway, suggesting that ZWT is a promising drug for myocardial fibrosis treatment.
Collapse
Affiliation(s)
- Rong Fang
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Rui Zhou
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Di Ju
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Mi Li
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Haifang Wang
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Liangliang Pan
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Xueqing Wang
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China
| | - Man Han
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China.
| | - Yuanwang Yu
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang 712083, PR China.
| |
Collapse
|
5
|
Ying LN, Sun Y, Cui LY, Zhang ZY, Li RF, Zhang J. Recent advances in the knowledge of the mechanism of reflux hypersensitivity. Scand J Gastroenterol 2024; 59:518-523. [PMID: 38343278 DOI: 10.1080/00365521.2024.2310177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 04/26/2024]
Abstract
Reflux hypersensitivity (RH) is a subtype of gastroesophageal reflux disease. The Rome IV criteria separated RH from the original nonerosive reflux disease subgroup and classified it as a new functional oesophageal disease. Recently, the pathogenesis of RH has become the focus of research. According to the latest research reports, upregulation of acid-sensitive receptors, distribution of calcitonin gene-related peptide-positive nerve fibres, and psychiatric comorbidity have key roles in the pathogenesis of RH. This work reviews the latest findings regarding RH mechanisms.
Collapse
Affiliation(s)
- Li Na Ying
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Yan Sun
- Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, P.R. China
| | - Li Yang Cui
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Zhen Yu Zhang
- Graduate School of Bengbu Medical University, Bengbu, Anhui, P.R. China
| | - Rui Fang Li
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Jun Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
6
|
Costa TFR, Catta-Preta CMC, Goundry A, Carvalho DB, Rodrigues NS, Vivarini AC, de Abreu MF, Reis FCG, Lima APCA. The ecotin-like peptidase inhibitor of Trypanosoma cruzi prevents TMPRSS2-PAR2-TLR4 crosstalk downmodulating infection and inflammation. FASEB J 2024; 38:e23566. [PMID: 38526868 DOI: 10.1096/fj.202302091rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.
Collapse
Affiliation(s)
- Tatiana F R Costa
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M C Catta-Preta
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amy Goundry
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle B Carvalho
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia S Rodrigues
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aislan C Vivarini
- Departamento de Biologia Celular e Molecular, Insituto de Biologia, Universidade Federal Fluminense, Niteroi, Brazil
| | - Mayra Fonseca de Abreu
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia C G Reis
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula C A Lima
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Jiang Y, Lu L. New insight into the agonism of protease-activated receptors as an immunotherapeutic strategy. J Biol Chem 2024; 300:105614. [PMID: 38159863 PMCID: PMC10810747 DOI: 10.1016/j.jbc.2023.105614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
The activation and mobilization of immune cells play a crucial role in immunotherapy. Existing therapeutic interventions, such as cytokines administration, aim to enhance immune cell activity. However, these approaches usually result in modest effectiveness and toxic side effects, thereby restricting their clinical application. Protease-activated receptors (PARs), a subfamily of G protein-coupled receptors, actively participate in the immune system by directly activating immune cells. The activation of PARs by proteases or synthetic ligands can modulate immune cell behavior, signaling, and responses to treat immune-related diseases, suggesting the significance of PARs agonism in immunotherapy. However, the agonism of PARs in therapeutical applications remains rarely discussed, since it has been traditionally considered that PARs activation facilitates disease progressions. This review aims to comprehensively summarize the activation, rather than inhibition, of PARs in immune-related physiological responses and diseases. Additionally, we will discuss the emerging immunotherapeutic potential of PARs agonism, providing a new strategic direction for PARs-mediated immunotherapy.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Lei Lu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Xiang Y, Jiang Y, Lu L. Low-Dose Trypsin Accelerates Wound Healing via Protease-Activated Receptor 2. ACS Pharmacol Transl Sci 2024; 7:274-284. [PMID: 38230283 PMCID: PMC10789143 DOI: 10.1021/acsptsci.3c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
The management of wounds remains a significant healthcare challenge, highlighting the need for effective wound healing strategies. To address this, it is crucial to explore the molecular mechanisms underlying tissue repair as well as explore potential therapeutic approaches. Trypsin, as a serine protease, has been clinically utilized for wound healing for decades; however, it still lacks systemic investigation on its role and related mechanism. This study aimed to investigate the effects of low-dose trypsin on wound healing both in vitro and in vivo. While trypsin is an endogenous stimulus for protease-activated receptor 2 (PAR2), we discovered that both low-dose trypsin and synthesized PAR2 agonists significantly enhanced the migration, adhesion, and proliferation of fibroblasts and macrophages, similar to the natural repair mechanism mediated by mast cell tryptase. Moreover, such cell functions induced by trypsin were largely inhibited by PAR2 blockade, indicating the participation of trypsin via PAR2 activation. Additionally, low-dose trypsin notably expedited healing and regeneration while enhancing collagen deposition in skin wounds in vivo. Importantly, upon stimulation of trypsin or PAR2 agonists, there were significant upregulations of genes including claudin-7 (Cldn7), occludin (Ocln), and interleukin-17A (IL-17A) associated with proliferation and migration, extracellular matrix (ECM), tight junction, and focal adhesion, which contributed to wound healing. In summary, our study suggested that a low-dose trypsin could be a promising strategy for wound healing, and its function was highly dependent on PAR2 activation.
Collapse
Affiliation(s)
- Yuxin Xiang
- Sichuan
Engineering Research Center for Biomimetic Synthesis of Natural Drugs,
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan China
- School
& Hospital of Stomatology, Wenzhou Medical
University, Wenzhou 325027, Zhejiang China
| | - Yuhong Jiang
- Sichuan
Engineering Research Center for Biomimetic Synthesis of Natural Drugs,
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan China
| | - Lei Lu
- School
& Hospital of Stomatology, Wenzhou Medical
University, Wenzhou 325027, Zhejiang China
| |
Collapse
|
9
|
Eftekhari R, Ewanchuk BW, Rawji KS, Yates RM, Noorbakhsh F, Kuipers HF, Hollenberg MD. Blockade of Proteinase-Activated Receptor 2 (PAR2) Attenuates Neuroinflammation in Experimental Autoimmune Encephalomyelitis. J Pharmacol Exp Ther 2024; 388:12-22. [PMID: 37699708 DOI: 10.1124/jpet.123.001685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Proteinase-activated receptor-2 (PAR2), which modulates inflammatory responses, is elevated in the central nervous system in multiple sclerosis (MS) and in its murine model, experimental autoimmune encephalomyelitis (EAE). In PAR2-null mice, disease severity of EAE is markedly diminished. We therefore tested whether inhibiting PAR2 activation in vivo might be a viable strategy for the treatment of MS. Using the EAE model, we show that a PAR2 antagonist, the pepducin palmitoyl-RSSAMDENSEKKRKSAIK-amide (P2pal-18S), attenuates EAE progression by affecting immune cell function. P2pal-18S treatment markedly diminishes disease severity and reduces demyelination, as well as the infiltration of T-cells and macrophages into the central nervous system. Moreover, P2pal-18S decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) production and T-cell activation in cultured splenocytes and prevents macrophage polarization in vitro. We conclude that PAR2 plays a key role in regulating neuroinflammation in EAE and that PAR2 antagonists represent promising therapeutic agents for treating MS and other neuroinflammatory diseases. SIGNIFICANCE STATEMENT: Proteinase-activated receptor-2 modulates inflammatory responses and is increased in multiple sclerosis lesions. We show that the proteinase-activated receptor-2 antagonist palmitoyl-RSSAMDENSEKKRKSAIK-amide reduces disease in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis by inhibiting T-cell and macrophage activation and infiltration into the central nervous system, making it a potential treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Rahil Eftekhari
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Benjamin W Ewanchuk
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Khalil S Rawji
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Robin M Yates
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Farshid Noorbakhsh
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Hedwich F Kuipers
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| |
Collapse
|
10
|
Lee HS, Kwon YJ, Seo EB, Kim SK, Lee H, Lee JT, Chang PS, Choi YJ, Lee SH, Ye SK. Anti-inflammatory effects of Allium cepa L. peel extracts via inhibition of JAK-STAT pathway in LPS-stimulated RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116851. [PMID: 37385574 DOI: 10.1016/j.jep.2023.116851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allium cepa L. (A. cepa) is one of the oldest cultivated plants in the world. A. cepa has been used in traditional folk medicine to treat inflammatory disease in several regions, such as Palestine and Serbia. A. cepa peel has a higher content of flavonoids, such as quercetin, than the edible parts. These flavonoids alleviate inflammatory diseases. However, the anti-inflammatory effects of A. cepa peel extract-obtained using various extraction methods-and their underlying mechanisms require further investigation. AIM OF THE STUDY Although research to find safe anti-inflammatory substances in various natural products has been actively conducted for many years, it is important to continue identifying potential anti-inflammatory effects in natural materials. The purpose of this study was to investigate the ethnopharmacological properties of the A. cepa peel extract, whose efficacy when obtained through different extraction methods and underlying action mechanisms is not well known. The present study specifically aimed to observe the anti-inflammatory effects of the A. cepa peel extracts obtained using various extraction methods and the related detailed mechanisms of A. cepa peel extracts in lipopolysaccharide (LPS)-induced RAW264.7 cells. MATERIALS AND METHODS The total flavonoid content of the A. cepa peel extracts was determined the diethylene glycol colorimetric method and measured using a calibration curve prepared using quercetin as a standard solution. The antioxidant activity was evaluated using the ABTS assay, and cytotoxicity was measured using the MTT assay. NO production was measured using Griess reagent. Protein levels were measured by western blotting, and mRNA expression was measured by RT-qPCR. Secreted cytokines were analyzed using ELISA or cytokine arrays. In the GSE160086 dataset, we calculated Z-scores for individual genes of interest and displayed using a heat map. RESULTS Of the three A. cepa peel extracts obtained using different extraction methods, the A. cepa peel 50% EtOH extract (AP50E) was the most effective at inhibiting LPS-induced nitric oxide (NO) and inducible nitric oxide synthase (iNOS). Furthermore, AP50E significantly reduced the levels of pro-inflammation cytokines interleukin (IL)-1α, IL-1β, IL-6, and IL-27. Additionally, AP50E directly inhibited the Janus kinase-signaling transducer and activator of transcription (JAK-STAT) pathway. CONCLUSIONS These results showed that AP50E exhibited an anti-inflammatory effect in LPS-induced RAW264.7 mouse macrophages by directly inhibiting JAK-STAT signaling. Based on these findings, we propose AP50E as a potential candidate for the development of preventive or therapeutic agents against inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Seung Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea.
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Jin-Tae Lee
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea.
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sung-Hyen Lee
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| |
Collapse
|
11
|
Sun H, Meng S, Xu Z, Cai H, Pei X, Wan Q, Chen J. Vascular and lymphatic heterogeneity and age-related variations of dental pulps. J Dent 2023; 138:104695. [PMID: 37714450 DOI: 10.1016/j.jdent.2023.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVES Dental pulp tissue is highly vascularized. However, age-related vascular changes of the dental pulp in mice and humans remain poorly understood. We modified a novel tissue clearing method, mapped the vasculature, pericytes, and perivascular matrix in the dental pulp via high-resolution 3D imaging. METHODS We isolated young and aged pulps from mouse teeth, and mapped vasculature through a high-resolution thick frozen sections imaging method and a modified tissue clearing method. Human dental pulps were also mapped for vasculature studying. Furthermore, young and aged human dental pulps were collected and were compared with mouse pulps through RNA- sequencing. RESULTS Five vascular subtypes of blood vessels were found in the mouse dental pulp, which constituted the arterioles-capillaries-venules network. The density of capillaries and venules of molars declined obviously in aged mice. Among the age-dependent changes in the perivascular pulp matrix, the perivascular macrophages remarkably increased, lymphatic capillaries increased, while the nerves and extracellular matrix remained unchanged. Furthermore, the vascular patterns of human formed a complex vascular network. Both mouse and human dental pulps exhibited an inflammaging state. TNF pathway and Rap1 pathway might become promising targets for combating inflammaging and promoting angiogenesis. CONCLUSIONS Five subtypes of blood vessels were identified within the dental pulp of mice. Notably, the density of capillaries and venules in pulps of aged mice was reduced. Furthermore, partial similarities were observed in the vascular patterns between the dental pulps of humans and mice. RNA-sequencing analysis revealed that both mouse and human dental pulps exhibit indications of an inflammaging state. CLINICAL SIGNIFICANCE This study may contribute to unraveling potential therapeutic targets in the pulp regeneration and treatment of relevant diseases in the elderly.
Collapse
Affiliation(s)
- Haiyang Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuhuai Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - He Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Khadri L, Ziraksaz MH, Barekzai AB, Ghauri B. T cell responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:183-217. [PMID: 38237986 DOI: 10.1016/bs.pmbts.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides a comprehensive analysis of T cell responses in COVID-19, focusing on T cell differentiation, specificity, and functional characteristics during SARS-CoV-2 infection. The differentiation of T cells in COVID-19 is explored, highlighting the key factors that influence T cell fate and effector functions. The immunology of the spike protein, a critical component of SARS-CoV-2, is discussed in detail, emphasizing its role in driving T-cell responses. The cellular immune responses against SARS-CoV-2 during acute infection are examined, including the specificity, phenotype, and functional attributes of SARS-CoV-2-specific T-cell responses. Furthermore, the chapter explores T-cell cross-recognition against other human coronaviruses (HCoVs) and the mechanisms of immune regulation mediated by spike proteins. This includes the induction of regulation through the innate immune system, the activation of self-spike protein-cross-reactive regulatory T cells, and the impact of self-tolerance on the regulation of spike proteins. The chapter investigates T cell responses to self-spike proteins and their implications in disease. The role of spike proteins as immunological targets in the context of COVID-19 is examined, shedding light on potential therapeutic interventions and clinical trials in autoimmune diseases. In conclusion, this chapter provides a comprehensive understanding of T cell responses in COVID-19, highlighting their differentiation, immune regulation, and clinical implications. This knowledge contributes to the development of targeted immunotherapies, vaccine strategies, and diagnostic approaches for COVID-19 and other related diseases.
Collapse
Affiliation(s)
- Laiqha Khadri
- Department of Biotechnology, Immune Inspired, Bangalore.
| | | | | | - Baber Ghauri
- Department of Biotechnology, Immune Inspired, Bangalore
| |
Collapse
|
13
|
TIAN X, HOU R, LIU X, ZHAO P, TIAN Y, LI J. Yangqing Chenfei formula alleviates crystalline silica induced pulmonary inflammation and fibrosis by suppressing macrophage polarization. J TRADIT CHIN MED 2023; 43:1126-1139. [PMID: 37946475 PMCID: PMC10623247 DOI: 10.19852/j.cnki.jtcm.20230517.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/23/2022] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To explore the underlying mechanisms of the effects of Yangqing Chenfei formula (, YCF) on inflammation and fibrosis in silicosis via inhibition of macrophage polarization. METHODS A silicotic rat model was established via a single intratracheal instillation of silica particles on the first day of week 0. Subsequently, YCF was administered intragastrically to silicotic rats during weeks 0-2 and 5-8 twice daily. The mouse-derived alveolar macrophage cell line was used to investigate the mechanisms of YCF in M1/M2 polarization. RESULTS YCF treatment effectively inhibited lung pathological changes, including inflammatory cell infiltration and tissue damage, and increased the forced expiratory volume in the first 0.3 s, functional residual capacity, and maximal mid-expiratory flow in weeks 2 and 8. Furthermore, the treatment improved lung functions by upregulating tidal volume, pause increase, and expiratory flow at 50% tidal volume from weeks 5 to 8. Moreover, YCF could significantly suppressed the progression of inflammation and fibrosis, by reducing the levels of inflammatory cytokines, as well as collagen- I and III. YCF treatment also decreased the numbers of macrophages and M1/M2 macrophages and the level of transforming growth factor-β (TGF-β). Additionally, YCF5, the effective substance in YCF, decreased lipopolysaccharide and interferon-γ-induced M1 macrophage polarization in a concentration-dependent manner. The mechanism of anti-M1 polarization might be related to a decrease in extracellular signal-regulated kinase, c-JUN N-terminal kinase, P38, and P65 phosphorylation. Furthermore, YCF5 inhibited interleukin-4-induced M2 macrophages by decreasing the protein and mRNA expressions of arginase-1 and CD206 as well as the levels of profibrotic factors, such as TGF-β and connective tissue growth factor. The mechanisms underlying the anti-M2 polarization of YCF5 were primarily associated with the inhibition of the nuclear translocation of phosphorylated signal transducer and activator of transcription 6 (p-STAT6). CONCLUSION YCF significantly inhibits inflammation and fibrosis in silicotic rats probably via the suppression of M1/M2 macrophage polarization mediated by the inhibition of mitogen-activated protein kinase and nuclear factor kappa B signaling pathways and Janus kinase/STAT6 pathways.
Collapse
Affiliation(s)
- Xinrong TIAN
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Runsu HOU
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xinguang LIU
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Peng ZHAO
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yange TIAN
- 1 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 3 Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiansheng LI
- 4 Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, China
- 5 Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co constructed by Henan province and Education Ministry of P.R. China, Zhengzhou 450046, China
- 6 Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
14
|
Joshi JC, Joshi B, Zhang C, Banerjee S, Vellingiri V, Raghunathrao VAB, Zhang L, Amin R, Song Y, Mehta D. RGS2 is an innate immune checkpoint for TLR4 and Gαq-mediated IFNγ generation and lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559016. [PMID: 37790514 PMCID: PMC10542520 DOI: 10.1101/2023.09.22.559016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
IFNγ, a type II interferon secreted by immune cells, augments tissue responses to injury following pathogenic infections leading to lethal acute lung injury (ALI). Alveolar macrophages (AM) abundantly express Toll-like receptor-4 and represent the primary cell type of the innate immune system in the lungs. A fundamental question remains whether AM generation of IFNg leads to uncontrolled innate response and perpetuated lung injury. LPS induced a sustained increase in IFNg levels and unresolvable inflammatory lung injury in the mice lacking RGS2 but not in RGS2 null chimeric mice receiving WT bone marrow or receiving the RGS2 gene in AM. Thus, indicating RGS2 serves as a gatekeeper of IFNg levels in AM and thereby lung's innate immune response. RGS2 functioned by forming a complex with TLR4 shielding Gaq from inducing IFNg generation and AM inflammatory signaling. Thus, inhibition of Gaq blocked IFNg generation and subverted AM transcriptome from being inflammatory to reparative type in RGS2 null mice, resolving lung injury. Highlights RGS2 levels are inversely correlated with IFNγ in ARDS patient's AM.RGS2 in alveolar macrophages regulate the inflammatory lung injury.During pathogenic insult RGS2 functioned by forming a complex with TLR4 shielding Gαq from inducing IFNγ generation and AM inflammatory signaling. eToc Blurb Authors demonstrate an essential role of RGS2 in macrophages in airspace to promoting anti-inflammatory function of alveolar macrophages in lung injury. The authors provided new insight into the dynamic control of innate immune response by Gαq and RGS2 axis to prevent ALI.
Collapse
|
15
|
Si F, Lu Y, Wen Y, Chen T, Zhang Y, Yang Y. Cathelicidin (LL-37) causes expression of inflammatory factors in coronary artery endothelial cells of Kawasaki disease by activating TLR4-NF-κB-NLRP3 signaling. Immun Inflamm Dis 2023; 11:e1032. [PMID: 37773705 PMCID: PMC10521377 DOI: 10.1002/iid3.1032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Kawasaki disease (KD) is a type of vasculitis with an unidentified etiology. Cathelicidin (LL-37) may be involved in the development of the KD process; therefore, further research to investigate the molecular mechanism of LL-37 involvement in KD is warranted. METHODS Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, NLRP3, and LL-37 in the sera of healthy subjects, children with KD, and children with pneumonia. Subsequently, human recombinant LL-37 or/and toll-like receptors 4 (TLR4)-specific inhibitor TAK-242 stimulated human coronary artery endothelial cells (HCAECs), CCK-8 was used to detect cell proliferation, flow cytometry to detect apoptosis, transmission electron microscopy to observe cytoskeletal changes, Transwell to measure cell migration ability, ELISA to detect inflammatory factor levels, Western blot analysis to analyze protein levels of toll-like receptors 4 (TLR4) and NF-κB p-65, and quantitative real-time polymerase chain reaction (qRT-PCR) to determine LL-37, NLRP3 mRNA levels. RESULTS In this study, we found that the level of LL-37 was highly expressed in the serum of children with KD, and after LL-37 stimulation, apoptosis was significantly increased in HCAECs, and the expression levels of TLR4, NLRP3 and inflammatory factors in cells were significantly enhanced. Intervention with the TLR4-specific inhibitor TAK-242 significantly alleviated the LL-37 effects on cellular inflammation, TLR4, NLRP3 promotion effect. CONCLUSIONS Our data suggest that LL-37 induces an inflammatory response in KD coronary endothelial cells via TLR4-NF-κB-NLRP3, providing a potential target for the treatment of KD.
Collapse
Affiliation(s)
- Feifei Si
- Pediatric Cardiovascular Department, Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yaheng Lu
- Pediatric Cardiovascular Department, Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yizhou Wen
- Pediatric Cardiovascular Department, Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Tingting Chen
- Pediatric Cardiovascular Department, Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yingzi Zhang
- Pediatric Cardiovascular Department, Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yanfeng Yang
- Pediatric Cardiovascular Department, Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
16
|
Menon N, Kishen A. Nociceptor-Macrophage Interactions in Apical Periodontitis: How Biomolecules Link Inflammation with Pain. Biomolecules 2023; 13:1193. [PMID: 37627258 PMCID: PMC10452348 DOI: 10.3390/biom13081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Periradicular tissues have a rich supply of peripheral afferent neurons, also known as nociceptive neurons, originating from the trigeminal nerve. While their primary function is to relay pain signals to the brain, these are known to be involved in modulating innate and adaptive immunity by initiating neurogenic inflammation (NI). Studies have investigated neuroanatomy and measured the levels of biomolecules such as cytokines and neuropeptides in human saliva, gingival crevicular fluid, or blood/serum samples in apical periodontitis (AP) to validate the possible role of trigeminal nociceptors in inflammation and tissue regeneration. However, the contributions of nociceptors and the mechanisms involved in the neuro-immune interactions in AP are not fully understood. This narrative review addresses the complex biomolecular interactions of trigeminal nociceptors with macrophages, the effector cells of the innate immune system, in the clinical manifestations of AP.
Collapse
Affiliation(s)
| | - Anil Kishen
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
| |
Collapse
|
17
|
Liu PY, Chen CY, Lin YL, Lin CM, Tsai WC, Tsai YL, Lin GJ, Chen YG, Wang SY, Sun RN, Huang YC, Chang H, Chen YC. RNF128 regulates neutrophil infiltration and myeloperoxidase functions to prevent acute lung injury. Cell Death Dis 2023; 14:369. [PMID: 37344492 DOI: 10.1038/s41419-023-05890-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Acute lung injury (ALI) is characterised by severe pulmonary inflammation, alveolar-capillary barrier disruption, and pulmonary oedema. Therefore, establishing effective therapeutic targets for ALI prevention is crucial. The present study reports a novel function of RNF128 in regulating LPS-induced ALI. Severe lung damage and increased immune cell infiltration were detected in RNF128-deficient mice. In vitro experiments revealed that RNF128 inhibits neutrophil activation by binding to myeloperoxidase (MPO) and reducing its levels and activity. Moreover, RNF128 regulates alveolar macrophage activation and neutrophil infiltration by interacting with TLR4, targeting it for degradation, and inhibiting NF-κB activation, hence decreasing pro-inflammatory cytokines. Our results demonstrate for the first time that RNF128 is a negative regulator of MPO and TLR4 in neutrophils and alveolar macrophages, respectively. However, AAV9-mediated RNF128 overexpression alleviated lung tissue damage and reduced inflammatory cell infiltration. Thus, RNF128 is a promising therapeutic candidate for pharmacological interventions in ALI.
Collapse
Affiliation(s)
- Pei-Yao Liu
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Chih-Yuan Chen
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
- Department of Thoracic surgery, Tri-Service General Hospital Taipei, National Defense Medical Center, Taiwan, Republic of China
| | - Yu-Lung Lin
- The Ph.D. Program for Translational Medicine, College for Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Chien-Ming Lin
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Yu-Guang Chen
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
- Cancer Institute, University College London, London, UK
| | - Shih-Yun Wang
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Rui-Nong Sun
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Yu-Chuan Huang
- School of Pharmacy & Institute Pharmacy, National Defense Medical Center, Taipei, Republic of China
- Department of Research and Development, National Defense Medical Center, Taipei, Republic of China
| | - Hung Chang
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China.
- Department of Thoracic surgery, Tri-Service General Hospital Taipei, National Defense Medical Center, Taiwan, Republic of China.
| | - Ying-Chuan Chen
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China.
| |
Collapse
|
18
|
Huo J, Pei W, Liu G, Sun W, Wu J, Huang M, Lu W, Sun J, Sun B. Huangshui Polysaccharide Exerts Intestinal Barrier Protective Effects through the TLR4/MyD88/NF- κB and MAPK Signaling Pathways in Caco-2 Cells. Foods 2023; 12:foods12030450. [PMID: 36765977 PMCID: PMC9914309 DOI: 10.3390/foods12030450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Several reports have demonstrated that natural polysaccharides exert protective effects on intestinal barrier function. In our previous study, we isolated a polysaccharide named HSP-W from Huangshui (HS). In the present study, the protective role of HSP-W in LPS-induced intestinal barrier dysfunction was determined by several molecular biological techniques. The results showed that HSP-W treatment alleviated the deduced TEER and increased the permeability of intestinal epithelial cells induced by LPS through inhibiting the release of inflammatory cytokines and enhancing the expression of tight junction (TJ) proteins. The underlying molecular mechanisms were elucidated by RNA-seq technique, which indicated that the differentially expressed genes (DEGs) between the LPS-treated and LPS+HSP-W-treated groups were enriched in the "MAPK" signaling pathway. Notably, the overlapping DEGs reversed by HSP-W intervention highlighted the pathways of the "Toll-like receptor" and "NF-κB" signaling pathways. The suppression of p38 and NF-κB were mediated by the inhibition of MyD88. Furthermore, HSP-W treatment prevented the translocation of NF-κB to nucleus, thus inhibiting the release of TNF-α, IL-6, and IL-1β. Overall, HSP-W has beneficial effects on LPS-induced inflammation; it protects the intestinal barrier from injury in Caco-2 cells through inhibiting the TLR4/MyD88/NF-κB and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhao Pei
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Guoying Liu
- Anhui Gujing Distillery Co. Ltd., Bozhou 236820, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-156-5271-2036
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Lu
- Anhui Gujing Distillery Co. Ltd., Bozhou 236820, China
| | - Jinyuan Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
19
|
Xu Y, Liu X, Zhang Z. STV-Na attenuates lipopolysaccharide-induced lung injury in mice via the TLR4/NF-kB pathway. Immun Inflamm Dis 2023; 11:e770. [PMID: 36705406 PMCID: PMC9846117 DOI: 10.1002/iid3.770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a potentially fatal disorder that is largely caused by inflammation. Sodium isostevanol (STV-Na) is a terpenoid produced from stevioside, which possesses anti-inflammatory and antioxidative stress characteristics. nevertheless, it is still unclear how STV-Na affects ALI. Therefore, we investigated the possible STV-Na therapeutic impacts on lipopolysaccharide (LPS)-induced (ALI). METHODS We employed hematoxylin-eosin staining to observe the impact of STV-Na on lung histopathological alterations and used kits to detect the oxidative stress status of lung tissues, such as superoxide dismutase, malondialdehyde, and glutathione. The reactive oxygen species and myeloperoxidase expression in the tissues of lung was assessed by immunofluorescence and immunohistochemistry. Additionally, we detected the impact of STV-Na on inflammatory cell infiltration in lung tissue using Wright-Giemsa staining solution and immunohistochemistry, which was found to reduce inflammation in lung tissue by enzyme-linked immunosorbent assay. Finally, using WB, we examined the impact of STV-Na on the TLR4/NF-kB pathway. RESULTS We observed that STV-Na attenuated lung histopathological alterations in LPS-induced lung damage in mice, reduced infiltration of inflammatory cell and oxidative stress in the tissue of lung, and via the TLR4/NF-kB pathway, there is a reduction in the inflammatory responses in mouse lung tissue. CONCLUSIONS These outcomes indicate that the response of inflammatory cells to LPS-induced ALI in mice was attenuated by STV-Na.
Collapse
Affiliation(s)
- Yanhong Xu
- Department of RespiratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaoming Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Medical UniversityXinjiangUrumqiChina
| | - Zhihui Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Medical UniversityXinjiangUrumqiChina
| |
Collapse
|
20
|
Yu Y, Yue Z, Xu M, Zhang M, Shen X, Ma Z, Li J, Xie X. Macrophages play a key role in tissue repair and regeneration. PeerJ 2022; 10:e14053. [PMID: 36196399 PMCID: PMC9527023 DOI: 10.7717/peerj.14053] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023] Open
Abstract
Tissue regeneration after body injury has always been a complex problem to resolve for mammals. In adult mammals, the repair process after tissue injury is often accompanied by continuous and extensive fibrosis, which leads to scars. This process has been shown to severely hinder regeneration. Macrophages, as widely distributed innate immune cells, not only play an important role in various pathological processes, but also participate in the repair process before tissue regeneration and coordinate the regeneration process after repair. This review will discuss the various forms and indispensability of macrophages involved in repair and regeneration, and how macrophages play a role in the repair and regeneration of different tissues.
Collapse
Affiliation(s)
- Yajie Yu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zhongyu Yue
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Mengli Xu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Meiling Zhang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xue Shen
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zihan Ma
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Juan Li
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xin Xie
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
21
|
Rayees S, Joshi JC, Joshi B, Vellingiri V, Banerjee S, Mehta D. Protease-activated receptor 2 promotes clearance of Pseudomonas aeruginosa infection by inducing cAMP-Rac1 signaling in alveolar macrophages. Front Pharmacol 2022; 13:874197. [PMID: 36204227 PMCID: PMC9530345 DOI: 10.3389/fphar.2022.874197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Efficient phagocytosis of pathogens by the innate immune system during infectious injury is vital for restoring tissue integrity. Impaired phagocytosis, such as in the case of infection with Pseudomonas aeruginosa, a broad-spectrum antibiotic-resistant Gram-negative bacterium, can lead to a life threatening lung disorder, acute lung injury (ALI). Evidence indicates that loss of protease-activated receptor 2 (PAR2) impaired Pseudomonas aeruginosa clearance leading to non-resolvable ALI, but the mechanism remains unclear. Here, we focused on the alveolar macrophages (AMs), the predominant population of lung-resident macrophages involved in sensing bacteria, to understand their role in PAR2-mediated phagocytosis of Pseudomonas aeruginosa. We found that upon binding Pseudomonas aeruginosa, PAR2-expressing but not PAR2-null AMs had increased cAMP levels, which activated Rac1 through protein kinase A. Activated Rac1 increased actin-rich protrusions to augment the phagocytosis of Pseudomonas aeruginosa. Administration of liposomes containing constitutively active Rac1 into PAR2-null mice lungs rescued phagocytosis and enhanced the survival of PAR2-null mice from pneumonia. These studies showed that PAR2 drives the cAMP-Rac1 signaling cascade that activates Pseudomonas aeruginosa phagocytosis in AMs, thereby preventing death from bacterial pneumonia.
Collapse
|
22
|
Blockade of protease-activated receptor 2 (PAR-2) attenuates vascular dyshomeostasis and liver dysfunction induced by dengue virus infection. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Ushakumari CJ, Zhou QL, Wang YH, Na S, Rigor MC, Zhou CY, Kroll MK, Lin BD, Jiang ZY. Neutrophil Elastase Increases Vascular Permeability and Leukocyte Transmigration in Cultured Endothelial Cells and Obese Mice. Cells 2022; 11:cells11152288. [PMID: 35892585 PMCID: PMC9332277 DOI: 10.3390/cells11152288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil elastase (NE) plays a pivotal role in inflammation. However, the mechanism underlying NE-mediated inflammation in obesity remains unclear. Here, we report that NE activates protease-activated receptor-2 (PAR2), stimulates actin filament (F-actin) formation, decreases intercellular junction molecule VE-cadherin expression, and increases the permeability of human arterial endothelial cells (hECs). NE also prompts degradation of VE-cadherin and its binding proteins p120- and β-catenins via MG132-sensitive proteasomes. NE stimulates phosphorylation of myosin light-chain (MLC) and its regulator myosin phosphatase target subunit-1 (MYPT1), a target of Rho kinase (ROCK). Inhibitors of PAR2 and ROCK prohibit NE-induced F-actin formation, MLC phosphorylation, and VE-cadherin reduction in hECs, and impede monocyte transmigration through hEC monolayer pretreated with either neutrophils or NE. Further, administration of an NE inhibitor GW311616A significantly attenuates vascular leakage, leukocyte infiltration, and the expression of proinflammatory cytokines in the white adipose tissue from high-fat diet (HFD)-induced obese mice. Likewise, NE-deficient mice are resistant to HFD-induced vascular leakage in the heart. Together, NE regulates actomyosin cytoskeleton activity and VE-cadherin expression by activating PAR2 signaling in the endothelial cells, leading to increased vascular permeability and leukocyte extravasation. Hence, inhibition of NE is a potential approach to mitigate vascular injury and leukocyte infiltration in obesity-related systemic inflammation.
Collapse
Affiliation(s)
- Chinchu Jagadan Ushakumari
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Qiong L. Zhou
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Yu-Hua Wang
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Sijia Na
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Michael C. Rigor
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Cindy Y. Zhou
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Max K. Kroll
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Benjamin D. Lin
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
| | - Zhen Y. Jiang
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA; (C.J.U.); (Q.L.Z.); (Y.-H.W.); (S.N.)
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 02118, USA; (M.C.R.); (C.Y.Z.); (M.K.K.); (B.D.L.)
- Correspondence: ; Tel.: +1-617-358-8255
| |
Collapse
|
24
|
Tian F, Chen H, Zhang J, He W. Reprogramming Metabolism of Macrophages as a Target for Kidney Dysfunction Treatment in Autoimmune Diseases. Int J Mol Sci 2022; 23:ijms23148024. [PMID: 35887371 PMCID: PMC9316004 DOI: 10.3390/ijms23148024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic kidney disease (CKD), as one of the main complications of many autoimmune diseases, is difficult to cure, which places a huge burden on patients’ health and the economy and poses a great threat to human health. At present, the mainstream view is that autoimmune diseases are a series of diseases and complications caused by immune cell dysfunction leading to the attack of an organism’s tissues by its immune cells. The kidney is the organ most seriously affected by autoimmune diseases as it has a very close relationship with immune cells. With the development of an in-depth understanding of cell metabolism in recent years, an increasing number of scientists have discovered the metabolic changes in immune cells in the process of disease development, and we have a clearer understanding of the characteristics of the metabolic changes in immune cells. This suggests that the regulation of immune cell metabolism provides a new direction for the treatment and prevention of kidney damage caused by autoimmune diseases. Macrophages are important immune cells and are a double-edged sword in the repair process of kidney injury. Although they can repair damaged kidney tissue, over-repair will also lead to the loss of renal structural reconstruction function. In this review, from the perspective of metabolism, the metabolic characteristics of macrophages in the process of renal injury induced by autoimmune diseases are described, and the metabolites that can regulate the function of macrophages are summarized. We believe that treating macrophage metabolism as a target can provide new ideas for the treatment of the renal injury caused by autoimmune diseases.
Collapse
Affiliation(s)
- Feng Tian
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (F.T.); (H.C.)
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (F.T.); (H.C.)
- Haihe Laboratory of Cell Ecosystem, Tianjin 100730, China
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (F.T.); (H.C.)
- Haihe Laboratory of Cell Ecosystem, Tianjin 100730, China
- Correspondence: (J.Z.); (W.H.)
| | - Wei He
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (F.T.); (H.C.)
- Correspondence: (J.Z.); (W.H.)
| |
Collapse
|
25
|
Liu C, He D, Zhang S, Chen H, Zhao J, Li X, Zeng X. Homogeneous Polyporus Polysaccharide Inhibit Bladder Cancer by Resetting Tumor-Associated Macrophages Toward M1 Through NF-κB/NLRP3 Signaling. Front Immunol 2022; 13:839460. [PMID: 35603205 PMCID: PMC9115861 DOI: 10.3389/fimmu.2022.839460] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
Bladder cancer(BC)is one of the most common urinary system tumors, which characterized by a high incidence. Polyporus polysaccharide is the main active component of polyporus, which is clinically used in the treatment of bladder cancer, but the mechanism is not clear. In previous study, we isolated homogeneous polyporus polysaccharide(HPP) with high purity from polyporus. The goal of this study was to assess the polarization of macrophages induced by HPP in the bladder tumor microenvironment and explored its anti-bladder cancer mechanism through BBN bladder cancer rat model and Tumor associated macrophages(TAM). The results suggested that HPP regulates TAM polarization to improve the tumor inflammatory microenvironment, possibly through the NF-κB/NLRP3 signaling pathway. Our results suggested that HPP may be a potential therapeutic agent for bladder tumors.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihui Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiong Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Crosstalk between hemostasis and immunity in cancer pathogenesis. Thromb Res 2022; 213 Suppl 1:S3-S7. [DOI: 10.1016/j.thromres.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022]
|
27
|
Fan T, Du Y, Zhang M, Zhu AR, Zhang J. Senolytics Cocktail Dasatinib and Quercetin Alleviate Human Umbilical Vein Endothelial Cell Senescence via the TRAF6-MAPK-NF-κB Axis in a YTHDF2-Dependent Manner. Gerontology 2022; 68:920-934. [PMID: 35468611 DOI: 10.1159/000522656] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/13/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Senescent cells play a key role in the initiation and development of various age-related diseases. Human umbilical vein endothelial cells (HUVECs) senescence is closely associated with age-related cardiovascular diseases. Accumulating evidence has demonstrated that senolytics, the combination of dasatinib and quercetin (D+Q), could selectively eliminate senescent cells. N6-methyladenosine (m6A), the most abundant internal transcript modification, greatly influences RNA metabolism and modulates gene expression. We aimed to investigate whether RNA m6A functions in lipopolysaccharide (LPS)-induced HUVECs senescence and D+Q suppress HUVECs senescence by regulating RNA m6A. METHODS Senescence-associated β-galactosidase activity, western blot, and real-time quantitative polymerase chain reaction were performed to demonstrate that D+Q suppress HUVECs senescence. Methylated RNA immunoprecipitation (MeRIP)-qPCR assay and RIP-qPCR confirmed that RNA m6A plays a key role in the suppression of HUVECs senescence by D+Q. Chromatin immunoprecipitation and mRNA stability assay were carried out to prove that D+Q alleviate HUVECs senescence in a YTHDF2-dependent manner. RESULTS Here, we demonstrate that D+Q alleviate LPS-induced senescence in HUVECs via inhibiting autocrine and paracrine of the senescence-associated secretory phenotype (SASP). We further confirm that D+Q alleviate HUVECs senescence via the TNF receptor-associated factor 6 (TRAF6)-MAPK pathway. Mechanically, this study validates that D+Q suppress SASP by upregulating m6A reader YTHDF2. Besides, YTHDF2 regulates the stability of MAP2K4 and MAP4K4 mRNAs. CONCLUSION Collectively, we first identified that D+Q alleviate LPS-induced senescence in HUVECs via the TRAF6-MAPK-NF-κB axis in a YTHDF2-dependent manner, providing novel ideas for clinical treatment of age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Ting Fan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yi Du
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Mingwan Zhang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Austin Rui Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jianjun Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
28
|
Bouch S, Litvack ML, Litman K, Luo L, Post A, Williston E, Park AJ, Roach EJ, Berezuk AM, Khursigara CM, Post M. Therapeutic stem cell-derived alveolar-like macrophages display bactericidal effects and resolve Pseudomonas aeruginosa-induced lung injury. J Cell Mol Med 2022; 26:3046-3059. [PMID: 35441437 PMCID: PMC9097833 DOI: 10.1111/jcmm.17324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/24/2021] [Accepted: 01/28/2022] [Indexed: 01/19/2023] Open
Abstract
Bacterial lung infections lead to greater than 4 million deaths per year with antibiotic treatments driving an increase in antibiotic resistance and a need to establish new therapeutic approaches. Recently, we have generated mouse and rat stem cell‐derived alveolar‐like macrophages (ALMs), which like primary alveolar macrophages (1'AMs), phagocytose bacteria and promote airway repair. Our aim was to further characterize ALMs and determine their bactericidal capabilities. The characterization of ALMs showed that they share known 1'AM cell surface markers, but unlike 1'AMs are highly proliferative in vitro. ALMs effectively phagocytose and kill laboratory strains of P. aeruginosa (P.A.), E. coli (E.C.) and S. aureus, and clinical strains of P.A. In vivo, ALMs remain viable, adapt additional features of native 1'AMs, but proliferation is reduced. Mouse ALMs phagocytose P.A. and E.C. and rat ALMs phagocytose and kill P.A. within the lung 24 h post‐instillation. In a pre‐clinical model of P.A.‐induced lung injury, rat ALM administration mitigated weight loss and resolved lung injury observed seven days post‐instillation. Collectively, ALMs attenuate pulmonary bacterial infections and promote airway repair. ALMs could be utilized as an alternative or adjuvant therapy where current treatments are ineffective against antibiotic‐resistant bacteria or to enhance routine antibiotic delivery.
Collapse
Affiliation(s)
- Sheena Bouch
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael L Litvack
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kymberly Litman
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, Ontario, Canada
| | - Lisha Luo
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alex Post
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Emma Williston
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amber J Park
- Department of Molecular and Cellular Biology, The University of Guelph, Ontario, Canada
| | - Elyse J Roach
- Department of Molecular and Cellular Biology, The University of Guelph, Ontario, Canada
| | - Alison M Berezuk
- Department of Molecular and Cellular Biology, The University of Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, The University of Guelph, Ontario, Canada
| | - Martin Post
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Avolio F, Martinotti S, Khavinson VK, Esposito JE, Giambuzzi G, Marino A, Mironova E, Pulcini R, Robuffo I, Bologna G, Simeone P, Lanuti P, Guarnieri S, Trofimova S, Procopio AD, Toniato E. Peptides Regulating Proliferative Activity and Inflammatory Pathways in the Monocyte/Macrophage THP-1 Cell Line. Int J Mol Sci 2022; 23:ijms23073607. [PMID: 35408963 PMCID: PMC8999041 DOI: 10.3390/ijms23073607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
This study evaluates the effects of five different peptides, the Epitalon® tetrapeptide, the Vilon® dipeptide, the Thymogen® dipeptide, the Thymalin® peptide complex, and the Chonluten® tripeptide, as regulators of inflammatory and proliferative processes in the human monocytic THP-1, which is a human leukemia monocytic cell line capable of differentiating into macrophages by PMA in vitro. These peptides (Khavinson Peptides®), characterized by Prof. Khavinson from 1973 onwards, were initially isolated from animal tissues and found to be organ specific. We tested the capacity of the five peptides to influence cell cultures in vitro by incubating THP-1 cells with peptides at certain concentrations known for being effective on recipient cells in culture. We found that all five peptides can modulate key proliferative patterns, increasing tyrosine phosphorylation of mitogen-activated cytoplasmic kinases. In addition, the Chonluten tripeptide, derived from bronchial epithelial cells, inhibited in vitro tumor necrosis factor (TNF) production of monocytes exposed to pro-inflammatory bacterial lipopolysaccharide (LPS). The low TNF release by monocytes is linked to a documented mechanism of TNF tolerance, promoting attenuation of inflammatory action. Therefore, all peptides inhibited the expression of TNF and pro-inflammatory IL-6 cytokine stimulated by LPS on terminally differentiated THP-1 cells. Lastly, by incubating the THP1 cells, treated with the peptides, on a layer of activated endothelial cells (HUVECs activated by LPS), we observed a reduction in cell adhesion, a typical pro-inflammatory mechanism. Overall, the results suggest that the Khavinson Peptides® cooperate as natural inducers of TNF tolerance in monocyte, and act on macrophages as anti-inflammatory molecules during inflammatory and microbial-mediated activity.
Collapse
Affiliation(s)
- Francesco Avolio
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Stefano Martinotti
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Vladimir Kh. Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.K.); (E.M.); (S.T.)
| | - Jessica Elisabetta Esposito
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Giulia Giambuzzi
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Antonio Marino
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Ekaterina Mironova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.K.); (E.M.); (S.T.)
| | - Riccardo Pulcini
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, 66100 Chieti, Italy;
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.S.); (P.L.)
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.S.); (P.L.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.S.); (P.L.)
| | - Simone Guarnieri
- Department of Neuroscience, Center of Advanced Studies and Technology, Imaging and Clinical Sciences, University of Chieti, 66100 Chieti, Italy;
| | - Svetlana Trofimova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.K.); (E.M.); (S.T.)
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Politecnic University of Marche, 60121 Ancona, Italy;
- INRCA-IRCCS, Clinic of Laboratory and Precision Medicine, 60121 Ancona, Italy
| | - Elena Toniato
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
- Unicamillus—Saint Unicamillus of Health Science, 00131 Rome, Italy
- Correspondence:
| |
Collapse
|
30
|
Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7:78. [PMID: 35273164 PMCID: PMC8913803 DOI: 10.1038/s41392-022-00925-z] [Citation(s) in RCA: 287] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.
Collapse
|
31
|
Li B, Li Y, Li S, Li H, Liu L, Xu Y. Inhibition of Protease Activated Receptor 2 Attenuates HBx-Induced Inflammation and Mitochondria Oxidative Stress. Infect Drug Resist 2022; 15:961-973. [PMID: 35299854 PMCID: PMC8921841 DOI: 10.2147/idr.s343864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/19/2022] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is one of the global public problems. Among the known infection cases, HBV X protein (HBx) is one of the key inducements of viral replication and host infection. This study was aimed to uncover the role of protease activated receptor 2 (PAR2) on HBx-induced liver injury. METHODS A PAR2-KO mouse model expressing HBx was constructed using hydrodynamics-based in vivo gene transfection method. In addition, pcDNA3.1-HBx was used to over-express HBx in LO2 cells. The effects of HBx overexpression on inflammation and mitochondria oxidative stress were evaluated. RESULTS We found that PAR2 protein level was increased by HBx overexpression. The enforced HBx inhibited LO2 cells apoptosis. Meanwhile, HBx induced inflammation reactions through promoting the secretion of pro-inflammatory cytokines such as TNF-α, IL-6, and CXCL-2. Overexpressed HBx also resulted in mitochondria oxidative stress by upregulation of ROS level and downregulation of MMP and ATP. However, in FSLLRY-NH2 (PAR2 antagonist) treated LO2 cells or PAR2-KO mice, PAR2 blockade reversed the above adverse effects of HBx on liver cells or tissues. CONCLUSION Inhibition of PAR2 may suppress inflammation and mitochondria oxidative stress caused by HBx, pointing out the potential application values of PAR2 antagonist on the treatment of HBV infection in clinic.
Collapse
Affiliation(s)
- Bin Li
- Laboratory of Immunology and Pathogenic Biology, Experimental Teaching Center of Basic Medicine, Jinzhou Medical University, Jinzhou City, Liaoning Province, 121001, People’s Republic of China
| | - Yonggang Li
- Department of Pathogenic Biology, School of Basic Medicine, Jinzhou Medical University, Jinzhou City, Liaoning Province, 121001, People’s Republic of China
| | - Shuhua Li
- Laboratory of Immunology and Pathogenic Biology, Experimental Teaching Center of Basic Medicine, Jinzhou Medical University, Jinzhou City, Liaoning Province, 121001, People’s Republic of China
| | - Hongwei Li
- Laboratory of Immunology and Pathogenic Biology, Experimental Teaching Center of Basic Medicine, Jinzhou Medical University, Jinzhou City, Liaoning Province, 121001, People’s Republic of China
| | - Ling Liu
- Laboratory of Immunology and Pathogenic Biology, Experimental Teaching Center of Basic Medicine, Jinzhou Medical University, Jinzhou City, Liaoning Province, 121001, People’s Republic of China
| | - Yao Xu
- School of Pharmacy, Jinzhou Medical University, Jinzhou City, Liaoning Province, 121001, People’s Republic of China
| |
Collapse
|
32
|
Sharma P, Vijaykumar A, Raghavan JV, Rananaware SR, Alakesh A, Bodele J, Rehman JU, Shukla S, Wagde V, Nadig S, Chakrabarti S, Visweswariah SS, Nandi D, Gopal B, Jhunjhunwala S. Particle uptake driven phagocytosis in macrophages and neutrophils enhances bacterial clearance. J Control Release 2022; 343:131-141. [PMID: 35085696 PMCID: PMC7615985 DOI: 10.1016/j.jconrel.2022.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Humans are exposed to numerous synthetic foreign particles in the form of drug delivery systems and diagnostic agents. Specialized immune cells (phagocytes) clear these particles by phagocytosing and attempting to degrade them. The process of recognition and internalization of the particles may trigger changes in the function of phagocytes. Some of these changes, especially the ability of a particle-loaded phagocyte to take up and neutralize pathogens, remains poorly studied. Herein, we demonstrate that the uptake of non-stimulatory cargo-free particles enhances the phagocytic ability of monocytes, macrophages and neutrophils. The enhancement in phagocytic ability was independent of particle properties, such as size or the base material constituting the particle. Additionally, we show that the increased phagocytosis was not a result of cellular activation or cellular heterogeneity but was driven by changes in cell membrane fluidity and cellular compliance. A consequence of the enhanced phagocytic activity was that particulate-laden immune cells neutralize Escherichia coli (E. coli) faster in culture. Moreover, when administered in mice as a prophylactic, particulates enable faster clearance of E. coli and Staphylococcus epidermidis. Together, we demonstrate that the process of uptake induces cellular changes that favor additional phagocytic events. This study provides insights into using non-stimulatory cargo-free particles to engineer immune cell functions for applications involving faster clearance of phagocytosable abiotic and biotic material.
Collapse
Affiliation(s)
- Preeti Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Anjali Vijaykumar
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | | | - Alakesh Alakesh
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Janhavi Bodele
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Junaid Ur Rehman
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Shivani Shukla
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Virta Wagde
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Savitha Nadig
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Sveta Chakrabarti
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | | | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
33
|
Chini CCS, Peclat TR, Gomez LS, Zeidler JD, Warner GM, Kashyap S, Mazdeh DZ, Hayat F, Migaud ME, Paulus A, Chanan-Khan AA, Chini EN. Dihydronicotinamide Riboside Is a Potent NAD+ Precursor Promoting a Pro-Inflammatory Phenotype in Macrophages. Front Immunol 2022; 13:840246. [PMID: 35281060 PMCID: PMC8913500 DOI: 10.3389/fimmu.2022.840246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 01/13/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) metabolism plays an important role in the regulation of immune function. However, a complete picture of how NAD, its metabolites, precursors, and metabolizing enzymes work together in regulating immune function and inflammatory diseases is still not fully understood. Surprisingly, few studies have compared the effect of different forms of vitamin B3 on cellular functions. Therefore, we investigated the role of NAD boosting in the regulation of macrophage activation and function using different NAD precursors supplementation. We compared nicotinamide mononucleotide (NMN), nicotinamide riboside (NR), and nicotinamide (NAM) supplementation, with the recently described potent NAD precursor NRH. Our results show that only NRH supplementation strongly increased NAD+ levels in both bone marrow-derived and THP-1 macrophages. Importantly, NRH supplementation activated a pro-inflammatory phenotype in resting macrophages, inducing gene expression of several cytokines, chemokines, and enzymes. NRH also potentiated the effect of lipopolysaccharide (LPS) on macrophage activation and cytokine gene expression, suggesting that potent NAD+ precursors can promote inflammation in macrophages. The effect of NRH in NAD+ boosting and gene expression was blocked by inhibitors of adenosine kinase, equilibrative nucleoside transporters (ENT), and IκB
kinase (IKK). Interestingly, the IKK inhibitor, BMS-345541, blocked the mRNA expression of several enzymes and transporters involved in the NAD boosting effect of NRH, indicating that IKK is also a regulator of NAD metabolism. In conclusion, NAD precursors such as NRH may be important tools to understand the role of NAD and NADH metabolism in the inflammatory process of other immune cells, and to reprogram immune cells to a pro-inflammatory phenotype, such as the M2 to M1 switch in macrophage reprogramming, in the cancer microenvironment.
Collapse
Affiliation(s)
- Claudia C. S. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Thais R. Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Lilian S. Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Julianna D. Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Gina M. Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Sonu Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Delaram Z. Mazdeh
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Marie E. Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Aneel Paulus
- Division of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Asher A. Chanan-Khan
- Division of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- *Correspondence: Eduardo N. Chini,
| |
Collapse
|
34
|
Menichelli D, Carnevale R, Nocella C, Cammisotto V, Castellani V, Bartimoccia S, Frati G, Pignatelli P, Pastori D. Circulating Lipopolysaccharides and Impaired Antioxidant Status in Patients With Atrial Fibrillation. Data From the ATHERO-AF Study. Front Cardiovasc Med 2021; 8:779503. [PMID: 34869693 PMCID: PMC8635698 DOI: 10.3389/fcvm.2021.779503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/26/2021] [Indexed: 01/06/2023] Open
Abstract
Objectives: Atrial fibrillation (AF) is characterized by an oxidative imbalance, which is associated with an increased risk of cardiovascular events (CVEs). It is unclear whether low grade endotoxemia may contribute to the impaired antioxidant status in AF patients. We investigated the relationship between circulating lipopolysaccharides (LPS) and antioxidant status in AF patients. Patients and Methods:Post-hoc analysis from the ongoing prospective observational cohort ATHERO-AF study including 907 patients. Antioxidant status was evaluated by the activity of glutathione peroxidase 3 (GPx3) and superoxide dismutase (SOD). Patients were divided into two groups to evaluate the risk of CVEs: (1) LPS below median and GPx3 above median (n = 254); (2) LPS above median and GPx3 below median (n = 263). Results: The mean age was 73.5 ± 8.3 years, and 43.1% were women. Median LPS and GPx3 were 50.0 pg/ml [interquartile range (IQR) 15–108] and 20.0 U/ml (IQR 10.0–34.0), respectively. Patients of Groups 2 were older, with a higher prevalence of heart failure. LPS above the median was associated with reduced GPx3 [Odds Ratio for LPS 1.752, 95% Confidence Interval (CI) 1.344–2.285, p < 0.001] and SOD (OR 0.525, 95%CI 0.403–0.683) activity after adjustment for CHA2DS2VASc score. In a mean follow-up of 54.0 ± 36.8 months, 118 CVEs occurred, 42 in Group 1 and 76 in Group 2 (Log-Rank test p = 0.001). At multivariable Cox regression analysis, Group 2 was associated with a higher risk of CVEs [Hazard Ratio (HR) 1.644, 95%CI 1.117–2,421, p = 0.012], along with age ≥ 75 years (HR 2.035, 95%CI 1.394–2.972, p < 0.001), diabetes (HR 1.927, 95%CI 1.280–2.900, p = 0.002), and previous cerebrovascular disease (HR 1.895, 95%CI 1.251–2.870, p = 0.003) and previous cardiovascular disease (HR 1.708, 95%CI 1.149–2.538, p = 0.008). Conclusions: Our study indicates that circulating LPS may contribute to impaired antioxidant status in patients with AF. Patients with coincidentally high LPS and reduced GPx3 activity showed the highest risk of CVEs.
Collapse
Affiliation(s)
- Danilo Menichelli
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Department of Angio-Cardio-Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Località Camerelle, Pozzilli, Italy
| | - Cristina Nocella
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Department of Angio-Cardio-Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Località Camerelle, Pozzilli, Italy
| | - Vittoria Cammisotto
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Valentina Castellani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Simona Bartimoccia
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Department of Angio-Cardio-Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Località Camerelle, Pozzilli, Italy
| | - Pasquale Pignatelli
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.,Mediterranea Cardiocentro, Naples, Italy
| | - Daniele Pastori
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
Wu YX, Wang YY, Gao ZQ, Chen D, Liu G, Wan BB, Jiang FJ, Wei MX, Zuo J, Zhu J, Chen YQ, Qian F, Pang QF. Ethyl ferulate protects against lipopolysaccharide-induced acute lung injury by activating AMPK/Nrf2 signaling pathway. Acta Pharmacol Sin 2021; 42:2069-2081. [PMID: 34417573 DOI: 10.1038/s41401-021-00742-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ethyl ferulate (EF) is abundant in Rhizoma Chuanxiong and grains (e.g., rice and maize) and possesses antioxidative, antiapoptotic, antirheumatic, and anti-inflammatory properties. However, its effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) is still unknown. In the present study, we found that EF significantly alleviated LPS-induced pathological damage and neutrophil infiltration and inhibited the gene expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in murine lung tissues. Moreover, EF reduced the gene expression of TNF-α, IL-1β, IL-6, and iNOS and decreased the production of NO in LPS-stimulated RAW264.7 cells and BMDMs. Mechanistic experiments revealed that EF prominently activated the AMPK/Nrf2 pathway and promoted Nrf2 nuclear translocation. AMPK inhibition (Compound C) and Nrf2 inhibition (ML385) abolished the beneficial effect of EF on the inflammatory response. Furthermore, the protective effect of EF on LPS-induced ALI was not observed in Nrf2 knockout mice. Taken together, the results of our study suggest that EF ameliorates LPS-induced ALI in an AMPK/Nrf2-dependent manner. These findings provide a foundation for developing EF as a new anti-inflammatory agent for LPS-induced ALI/ARDS therapy.
Collapse
|
36
|
Wang L, Tan Y, Zhu Z, Chen J, Sun Q, Ai Z, Ai C, Xing Y, He G, Liu Y. ATP2B1-AS1 Promotes Cerebral Ischemia/Reperfusion Injury Through Regulating the miR-330-5p/TLR4-MyD88-NF-κB Signaling Pathway. Front Cell Dev Biol 2021; 9:720468. [PMID: 34712659 PMCID: PMC8545896 DOI: 10.3389/fcell.2021.720468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
We aim to explore the expression and function of long non-coding RNA (lncRNA) ATP2B1-AS1 in a cerebral ischemia/reperfusion (I/R) injury. In this study, we established a middle cerebral artery occlusion/reperfusion (MCAO/IR) rat model and an OGD/R PC12 cell model to evaluate the expression and role of ATP2B1-AS1 in the cerebral I/R injury. We found that the expression of ATP2B1-AS1 was upregulated in both in vitro and in vivo cerebral I/R injury models. Knockdown of ATP2B1-AS1 increased the cell viability, inhibited apoptosis, and decreased the expressions of inflammation cytokines. The target of ATP2B1-AS1 was predicted and validated to be miR-330-5p. MiR-330-5p abrogated the regulatory effect of ATP2B1-AS1 on cell viability, apoptosis, and cytokines of OGD/R PC12 cells. Furthermore, the results showed that miR-330-5p targeted TLR4, which was also upregulated in the infarcted area of MCAO/IR rats and OGD/R PC12 cells. Overexpression of ATP2B1-AS1 increased the expressions of TLR4, MyD88, and NF-κB p65 of OGD/R PC12 cells, while the effect of ATP2B1-AS1 was abrogated by miR-330-5p. In addition, knockdown of ATP2B1-AS1 decreased the latency time, increased the time of passing the platform position, reduced the cerebral infarct volume, decreased neurological deficit scores, and reduced the number of damaged neurons of MCAO/IR rats that were subjected to the Morris water maze test. Taken together, our study indicates that ATP2B1-AS1 may be an attractive therapeutic target for the treatment of cerebral ischemic injuries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Neurobiology, Health Science Center, Xian Jiaotong University, Xi'an, China.,Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China.,Department of Neurology, Affiliated Taihe Hospital of Xian Jiaotong University Health Science Center, Shiyan, China
| | - Ying Tan
- Department of Laboratory Medicine, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Ziyu Zhu
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Jun Chen
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Qiang Sun
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Zhibin Ai
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Chunqi Ai
- Department of Mental Health Centre, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Yu Xing
- Department of Medical Image Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Guohou He
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Yong Liu
- Department of Human Anatomy, Histology and Embryology, Institute of Neurobiology, Health Science Center, Xian Jiaotong University, Xi'an, China
| |
Collapse
|
37
|
Wahyuningtyas R, Lai YS, Wu ML, Chen HW, Chung WB, Chaung HC, Chang KT. Recombinant Antigen of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2) Promotes M1 Repolarization of Porcine Alveolar Macrophages and Th1 Type Response. Vaccines (Basel) 2021; 9:vaccines9091009. [PMID: 34579246 PMCID: PMC8473084 DOI: 10.3390/vaccines9091009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
The polarization status of porcine alveolar macrophages (PAMs) determines the infectivity of porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV infection skews macrophage polarization toward an M2 phenotype, followed by T-cells inactivation. CD163, one of the scavenger receptors of M2 macrophages, has been described as a putative receptor for PRRSV. In this study, we examined two types of PRRSV-2-derived recombinant antigens, A1 (g6Ld10T) and A2 (lipo-M5Nt), for their ability to mediate PAM polarization and T helper (Th1) response. A1 and A2 were composed of different combination of ORF5, ORF6, and ORF7 in full or partial length. To enhance the adaptive immunity, they were conjugated with T cells epitopes or lipidated elements, respectively. Our results showed that CD163+ expression on PAMs significantly decreased after being challenged with A1 but not A2, followed by a significant increase in pro-inflammatory genes (TNF-α, IL-6, and IL-12). In addition, next generation sequencing (NGS) data show an increase in T-cell receptor signaling in PAMs challenged with A1. Using a co-culture system, PAMs challenged with A1 can induce Th1 activation by boosting IFN-γ and IL-12 secretion and TNF-α expression. In terms of innate and T-cell-mediated immunity, we conclude that A1 is regarded as a potential vaccine for immunization against PRRSV infection due to its ability to reverse the polarization status of PAMs toward pro-inflammatory phenotypes, which in turn reduces CD163 expression for viral entry and increases immunomodulation for Th1-type response.
Collapse
Affiliation(s)
- Rika Wahyuningtyas
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
| | - Yin-Siew Lai
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
| | - Mei-Li Wu
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 400, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 800, Taiwan
| | - Wen-Bin Chung
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
| | - Hso-Chi Chaung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| | - Ko-Tung Chang
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| |
Collapse
|
38
|
Aziz J, Rahman MT, Vaithilingam RD. Dysregulation of metallothionein and zinc aggravates periodontal diseases. J Trace Elem Med Biol 2021; 66:126754. [PMID: 33831799 DOI: 10.1016/j.jtemb.2021.126754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Periodontitis (PD) is a multifaceted inflammatory disease connected to bacterial infection that results in the destruction of tooth supporting structures and eventually tooth loss. Given their involvement in infection and inflammation, both metallothionein (MT) and zinc (Zn) might play vital roles in the development and progression of PD. More specifically, both MT and Zn are heavily involved in regulating immune functions, controlling bacterial infection, balancing inflammatory responses, and reducing oxidative stress, all of which are associated with the pathogenesis of PD. OBJECTIVE This review paper will explore the physiological functions of MT and Zn and hypothesise how dysregulation could negatively affect periodontal health, leading to PD. FINDINGS Bacterial lipopolysaccharide (LPS) derived from periodontal pathogens, namely P. gingivalis initiates the acute phase response, thus upregulating the expression of MT which leads to the subsequent deficiency of Zn, a hallmark of periodontal disease. This deficiency leads to ineffective NETosis, increases the permeability of the gingival epithelium, and disrupts the humoral immune response, collectively contributing to PD. In addition, the presence of LPS in Zn deficient conditions favours M1 macrophage polarisation and maturation of dendritic cells, and also inhibits the anti-inflammatory activity of regulatory T cells. Collectively, these observations could theoretically give rise to the chronic inflammation seen in PD. CONCLUSION A disrupted MT and Zn homeostasis is expected to exert an adverse impact on periodontal health and contribute to the development and progression of PD.
Collapse
Affiliation(s)
- Jazli Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Dept. of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
39
|
Gil NL, Azevedo GA, Balbino AM, Silva MM, Carvalho MHC, Akamine EH, Keller AC, Landgraf RG, Landgraf MA. Intrauterine growth restriction leads to a high-corticosterone producing offspring: An implication for pulmonary infection susceptibility. Life Sci 2021; 281:119764. [PMID: 34186045 DOI: 10.1016/j.lfs.2021.119764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
AIMS Although intrauterine growth restriction (IUGR) impairs immune system homeostasis and lung development, its relationship with the susceptibility to pulmonary infections remains unclear. Thus, this study aimed to investigate the impact of IUGR on acute lung inflammatory response induced by bacterial stimulus. MATERIALS AND METHODS Pregnant female Wistar rats were subjected to 50% caloric-protein food restriction during gestation. To mimic bacterial lung infection, adult male offspring (12 weeks old) were challenged with a single lipopolysaccharide (LPS) intranasal instillation, and 6 h later, we assessed the acute inflammatory response. Normal birth weight (NBW) animals represent the control group. KEY FINDINGS LPS instillation increased the protein levels in the airways of both the NBW and low birth weight (LBW) groups, indicating vascular leakage. LBW animals exhibited a lower number of neutrophils, reduced production of interleukin-6 and macrophage-inflammatory protein-2 and decreased upregulation of intercellular adhesion molecule-1 gene expression in lung tissues. Further analysis revealed that the LBW group produced lower levels of prostaglandin-E2 and failed to secrete leukotriene-B4 upon LPS stimulation, which correlated with impaired cyclooxygenase-2 and 5-lipoxygenase expression. These results were probably associated with their inability to upregulate the expression of Toll-like receptor-4 and downstream signaling proteins, such as nuclear factor kappa-B, in the lungs. The LBW group also exhibited abnormal airway thickening and high corticosterone levels under basal conditions. SIGNIFICANCE This study suggests that IUGR-induced foetal programming in LBW offspring threatens HPA axis physiology and corticosterone biodisponibility, and impairs the innate response to bacterial antigens, increasing future susceptibility to pulmonary infection.
Collapse
Affiliation(s)
- Noemi L Gil
- Department of Pharmaceuticals Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Gabriela A Azevedo
- Department of Pharmaceuticals Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Aleksandro M Balbino
- Department of Pharmaceuticals Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Marina M Silva
- Department of Pharmaceuticals Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | | | - Eliana H Akamine
- Department of Pharmacology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre C Keller
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richardt G Landgraf
- Department of Pharmaceuticals Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil.
| | | |
Collapse
|