1
|
Nkumama IN, Ogwang R, Odera D, Musasia F, Mwai K, Nyamako L, Murungi L, Tuju J, Fürle K, Rosenkranz M, Kimathi R, Njuguna P, Hamaluba M, Kapulu MC, Frank R, Osier FHA. Breadth of Fc-mediated effector function correlates with clinical immunity following human malaria challenge. Immunity 2024; 57:1215-1224.e6. [PMID: 38788711 PMCID: PMC7616646 DOI: 10.1016/j.immuni.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Malaria is a life-threatening disease of global health importance, particularly in sub-Saharan Africa. The growth inhibition assay (GIA) is routinely used to evaluate, prioritize, and quantify the efficacy of malaria blood-stage vaccine candidates but does not reliably predict either naturally acquired or vaccine-induced protection. Controlled human malaria challenge studies in semi-immune volunteers provide an unparalleled opportunity to robustly identify mechanistic correlates of protection. We leveraged this platform to undertake a head-to-head comparison of seven functional antibody assays that are relevant to immunity against the erythrocytic merozoite stage of Plasmodium falciparum. Fc-mediated effector functions were strongly associated with protection from clinical symptoms of malaria and exponential parasite multiplication, while the gold standard GIA was not. The breadth of Fc-mediated effector function discriminated clinical immunity following the challenge. These findings present a shift in the understanding of the mechanisms that underpin immunity to malaria and have important implications for vaccine development.
Collapse
Affiliation(s)
- Irene N Nkumama
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany; Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; European Vaccine Initiative, Heidelberg, Germany
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Dennis Odera
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany; Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Fauzia Musasia
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Lydia Nyamako
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Linda Murungi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Department of Biotechnology and Biochemistry, Pwani University, Kilifi, Kenya
| | - Kristin Fürle
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Micha Rosenkranz
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Rinter Kimathi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Patricia Njuguna
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mainga Hamaluba
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Roland Frank
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Faith H A Osier
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany; Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
2
|
Moghaddam N, Goodarzi MT, Moghaddam S, Sakhaee F, Ahmadi I, Anvari E, Fateh A. Relationship Between Human FCγ RIIA rs1801274 G Allele and Risk of Death Among Different SARS-CoV-2 Variants. Viral Immunol 2023; 36:678-685. [PMID: 38029355 DOI: 10.1089/vim.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 and spread very quickly across the world. Different responses to infections have been related to fragment crystallizable gamma-receptor II alpha (FcγRIIA) polymorphisms. The purpose of this investigation was to determine if FCγRIIA rs1801274 polymorphism was related to COVID-19 mortality among different variants of SARS-CoV-2. The FCγRIIA rs1801274 polymorphism was genotyped using the polymerase chain reaction-restriction fragment length polymorphism technique in 1,734 recovered and 1,450 deceased patients. Deceased patients had significantly higher minor allele frequency of the FCγRIIA rs1801274 G allele than in the recovered cases. The COVID-19 mortality was associated with FCγRIIA rs1801274 GG and AG genotypes in the Delta variant and with FCγRIIA rs1801274 GG genotypes in the Alpha and Omicron BA.5 variants. The reverse transcription-quantitative polymerase chain reaction Ct values revealed statistically significant differences between individuals with a G allele and those with an A allele. In conclusion, among the several SARS-CoV-2 variants, there may be a correlation between the mortality rate of COVID-19 and the G allele of FCγRIIA rs1801274. To confirm our findings, thorough research is still required.
Collapse
Affiliation(s)
- Nazanin Moghaddam
- Department of Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | - Sina Moghaddam
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Sakhaee
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Iraj Ahmadi
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Enayat Anvari
- Clinical Research Development Unit, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Science, Ilam, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Cretin J, Adjemout M, Dieppois C, Gallardo F, Torres M, Merard Z, Sawadogo SA, Picard C, Rihet P, Paul P. A Non-Coding Fc Gamma Receptor Cis-Regulatory Variant within the 1q23 Gene Cluster Is Associated with Plasmodium falciparum Infection in Children Residing in Burkina Faso. Int J Mol Sci 2023; 24:15711. [PMID: 37958695 PMCID: PMC10650193 DOI: 10.3390/ijms242115711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 11/15/2023] Open
Abstract
Antibodies play a crucial role in activating protective immunity against malaria by interacting with Fc-gamma receptors (FcγRs). Genetic variations in genes encoding FcγRs can affect immune cell responses to the parasite. In this study, our aim was to investigate whether non-coding variants that regulate FcγR expression could influence the prevalence of Plasmodium falciparum infection. Through bioinformatics approaches, we selected expression quantitative trait loci (eQTL) for FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B genes encoding FcγRs (FCGR), in whole blood. We prioritized two regulatory variants, rs2099684 and rs1771575, located in open genomic regions. These variants were identified using RegVar, ImmuNexUT, and transcription factor annotations specific to immune cells. In addition to these, we genotyped the coding variants FCGR2A/rs1801274 and FCGR2B/rs1050501 in 234 individuals from a malaria-endemic area in Burkina Faso. We conducted age and family-based analyses to evaluate associations with the prevalence of malarial infection in both children and adults. The analysis revealed that the regulatory rs1771575-CC genotype was predicted to influence FCGR2B/FCGR2C/FCGR3A transcripts in immune cells and was the sole variant associated with a higher prevalence of malarial infection in children. In conclusion, this study identifies the rs1771575 cis-regulatory variant affecting several FcγRs in myeloid and neutrophil cells and associates it with the inter-individual capacity of children living in Burkina Faso to control malarial infection.
Collapse
Affiliation(s)
- Jules Cretin
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
- Institut MarMaRa, 13288 Marseille, France
| | - Mathieu Adjemout
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
- Institut MarMaRa, 13288 Marseille, France
| | - Christelle Dieppois
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
| | - Frederic Gallardo
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
| | - Magali Torres
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
| | - Zachary Merard
- ADES UMR, Aix Marseille University, 13288 Marseille, France (C.P.)
| | - Serge Aimé Sawadogo
- Unité de Formation en Sciences de la Santé (UFR/SDS), Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso;
- Centre PrïmO-Nelson Mandela, 84 rue Sao Tomé et Principe, Ouagadougou 09 BP 706, Burkina Faso
| | - Christophe Picard
- ADES UMR, Aix Marseille University, 13288 Marseille, France (C.P.)
- Immunogenetics Laboratory, Etablissement Français du Sang PACA-Corse, 13001 Marseille, France
| | - Pascal Rihet
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
| | - Pascale Paul
- INSERM 1090, TAGC Theories and Approaches of Genomic Complexity, Campus de Luminy, Aix Marseille University, 13288 Marseille, France (M.A.); (C.D.); (F.G.); (M.T.)
| |
Collapse
|
4
|
Sheikh K, Memon KN, Usman H, Abdel-Maksoud MA, Ullah S, Almanaa TN, Chaudhary A, Jamil M, Gill OBQ, Yar MA, Hussein AM, Zakri AM. Identification of useful biomolecular markers in kidney renal clear cell carcinoma: an in silico and in vitro analysis-based study. Am J Transl Res 2023; 15:5574-5593. [PMID: 37854221 PMCID: PMC10579006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC) is the most prevalent type of renal cell carcinoma (RCC), with a high incidence and mortality rate. There is a lack of sensitive biomarkers. Therefore, the discovery of accurate biomarkers for KIRC patients is critical to improve prognosis. METHODS We determined hub genes and their associated pathways involved in the pathogenesis of KIRC from the GSE66272 dataset consisting of KIRC (n = 26) and corresponding control (n = 26) samples and later validated the expression and methylation level of the identified hub genes on The Cancer Genomic Atlas (TCGA) datasets and Human RCC 786-O and normal HK-2 cell lines through RNA sequencing (RNA-seq), Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and targeted bisulfite sequencing (bisulfite-seq) analyses. RESULTS The identified up-regulated four hub genes include TYROBP (Transmembrane Immune Signaling Adaptor TYROBP), PTPRC (Protein tyrosine phosphatase, receptor type, C), LCP2 (Lymphocyte cytosolic protein 2), and ITGB2 (Integrin Subunit Beta 2). Moreover, the higher expression of TYROBP, PTPRC, LCP2, and ITGB2 in KIRC patients insignificantly correlates with a poor prognosis in KIRC patients. In addition, hub genes were involved in the "Fc epsilon RI signaling pathway, asthma, natural cell killer mediated cytotoxicity, T cell receptor signaling pathway, primary immunodeficiency, Fc gamma R-mediated phagocytosis, malaria, leukocyte transendothelial migration, and legionellosis" pathways and associated with the infiltration level of CD8+ T, CD4+ T, and macrophage cells. CONCLUSION Our integrated in silico and in vitro analysis identified important hub genes (TYROBP, PTPRC, LCP2, and ITGB2) involved in the pathogenesis of KIRC as possible diagnostic biomarkers.
Collapse
Affiliation(s)
- Khalida Sheikh
- Liaquat University of Medical and Health Sciences (LUMHS)Jamshoro 76090, Pakistan
| | | | - Humera Usman
- Fazaia Medical College, Air UniversityIslamabad 44000, Pakistan
| | | | | | | | - Aqsa Chaudhary
- Department of Biochemistry, University of Central PunjabLahore, Pakistan
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | | | - Muhammad Ahmed Yar
- Mufti Mehmood Memorial Teaching HospitalDera Ismail Khan 29050, KPK, Pakistan
| | - Ahmed M Hussein
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of ViennaVienna 1090, Austria
| | - Adel M Zakri
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Deacy AM, Gan SKE. The influence of variable-heavy chain families on IgG 2, 3, 4, FcγRs and B-cell superantigens protein G and L binding using biolayer interferometry. Antib Ther 2023; 6:182-193. [PMID: 37680351 PMCID: PMC10481891 DOI: 10.1093/abt/tbad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 09/09/2023] Open
Abstract
As the most abundant immunoglobulin in blood and the most common human isotype used for therapeutic monoclonal antibodies, the engagement and activation of its Fc receptors by IgGs are crucial for antibody function. Assumed to be relatively constant within subtypes, recent studies reveal that antibody variable regions exert distal effects of modulating antibody-receptor interactions on antibody isotypes. These variable (V)-region distal effects are also expected for the IgG subtypes. With an in-depth understanding of the V-region effects, researchers can make a more informed antibody engineering approach and antibody purification strategy accounting for the functions of microbial immune evasion . In this study, we created a panel of IgG2/IgG3/IgG4 antibodies by changing the VH family (VH1-7) frameworks while retaining the complementary determining regions of pertumuzab and measured their interactions with FcγRIa, FcγRIIaH167, FcγRIIaR167, FcγRIIb/c, FcγRIIIaF176, FcγRIIIaV176, FcγRIIIbNA1 and FcγRIIIbNA2 receptors alongside B-cell superantigens Protein L and G using biolayer interferometry. The panel of 21 IgGs demonstrated that the VH frameworks influenced receptor binding sites on the constant region in a non-canonical manner. However, there was minimal influence on the binding of bacterial B-cell superantigens Proteins L and Protein G on the IgGs, showing their robustness against V-region effects. These results demonstrate the role of V-regions during the humanization of therapeutic antibodies that can influence FcR-dependent immune responses while retaining binding by bacterial B-cell superantigens for antibody purification. These in vitro measurements provide a clue to detailed antibody engineering and understanding of antibody superantigen functions that would be relevant with in vivo validation.
Collapse
Affiliation(s)
- Anthony M Deacy
- Antibody& Product Development Lab, Agency for Science, Technology and Research (ASTAR), Singapore, and Wenzhou-Kean University, Wenzhou, Zhejiang, China
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Samuel Ken-En Gan
- Antibody& Product Development Lab, Agency for Science, Technology and Research (ASTAR), Singapore, and Wenzhou-Kean University, Wenzhou, Zhejiang, China
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Zhejiang Bioinformatics International Science and Technology Cooperation Centre, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Fall AKDJ, Dechavanne C, Sabbagh A, Garcia A, Courtin D, Migot-Nabias F. Combined polymorphisms involving the IgG heavy chain and fc gamma receptors among Fulani and non-Fulani in Benin: Implications for the natural protection of young Fulani against plasmodium. Falciparum malaria infections. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105461. [PMID: 37269963 DOI: 10.1016/j.meegid.2023.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
A decreased susceptibility of Fulani populations to malaria infections has been shown in Africa. A previous longitudinal cohort study conducted in the Atacora region of northern Benin showed a high merozoite-phagocytosis capacity in young Fulani. Here, we explored the combined polymorphisms in the constant region of the IgG3 heavy chain (presence/absence of the G3m6 allotype) and in Fc gamma receptors (FcγRs) as potentially involved in the natural protection against malaria of young Fulani in Benin. An active malaria follow-up was conducted among individuals from Fulani, Bariba, Otamari and Gando ethnic groups living in sympatry in Atacora, over the full malaria transmission season. FcγRIIA 131R/H (rs1801274), FcγRIIC C/T (rs3933769) and FcγRIIIA 176F/V (rs396991) were determined using the TaqMan method; FcγRIIIB NA1/NA2 was assessed by polymerase chain reaction (PCR) using allele-specific primers and G3m6 using allotype by PCR-RFLP. Individual carriage of G3m6 (+) was associated with an increased risk of Pf malaria infection (logistic multivariate regression model (lmrm), IRR = 2.25, 95% CI = 1.06;4.74, P = 0.034). Combined haplotype G3m6 (+) - FcγRIIA 131H - FcγRIIC T - FcγRIIIA 176F - FcγRIIIB NA2 was also associated with an increased risk of Pf malaria infection (lmrm, IRR = 13.01, 95% CI = 1.69;99.76, P = 0.014). G3m6 (-), FcγRIIA 131R and FcγRIIIB NA1 were more prevalent in young Fulani (P = 0.002, P < 0.001 and P = 0.049, respectively), while no Fulani presented the combined G3m6 (+) - FcγRIIA 131H - FcγRIIC T - FcγRIIIA 176F - FcγRIIIB NA2 haplotype that was carried by a majority of infected children. Our results highlight the combined factors G3m6 - FcγR as potentially involved in the merozoite-phagocytosis capacity and in the natural protection of young Fulani individuals against P. falciparum malaria in Benin.
Collapse
Affiliation(s)
| | - Célia Dechavanne
- Université Paris Cité, IRD, UMR261, MERIT, F-75006 Paris, France
| | - Audrey Sabbagh
- Université Paris Cité, IRD, UMR261, MERIT, F-75006 Paris, France
| | - André Garcia
- Université Paris Cité, IRD, UMR261, MERIT, F-75006 Paris, France
| | - David Courtin
- Université Paris Cité, IRD, UMR261, MERIT, F-75006 Paris, France
| | | |
Collapse
|
7
|
Tukwasibwe S, Mboowa G, Sserwadda I, Nankabirwa JI, Arinaitwe E, Ssewanyana I, Taremwa Y, Tumusiime G, Kamya MR, Jagannathan P, Nakimuli A. Impact of high human genetic diversity in Africa on immunogenicity and efficacy of RTS,S/AS01 vaccine. Immunogenetics 2023; 75:207-214. [PMID: 37084013 PMCID: PMC10119520 DOI: 10.1007/s00251-023-01306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
In modern medicine, vaccination is one of the most effective public health strategies to prevent infectious diseases. Indisputably, vaccines have saved millions of lives by reducing the burden of many serious infections such as polio, tuberculosis, measles, pneumonia, and tetanus. Despite the recent recommendation by the World Health Organization (WHO) to roll out RTS,S/AS01, this malaria vaccine still faces major challenges of variability in its efficacy partly due to high genetic variation in humans and malaria parasites. Immune responses to malaria vary between individuals and populations. Human genetic variation in immune system genes is the probable cause for this heterogeneity. In this review, we will focus on human genetic factors that determine variable responses to vaccination and how variation in immune system genes affect the immunogenicity and efficacy of the RTS,S/AS01 vaccine.
Collapse
Affiliation(s)
- Stephen Tukwasibwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda.
- School of Medicine, Uganda Christian University, Kampala, Uganda.
| | - Gerald Mboowa
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Ivan Sserwadda
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | | | | | - Yoweri Taremwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Gerald Tumusiime
- School of Medicine, Uganda Christian University, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Annettee Nakimuli
- School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
8
|
Fehm TN, Welslau M, Müller V, Lüftner D, Schütz F, Fasching PA, Janni W, Thomssen C, Witzel I, Beierlein M, Belleville E, Untch M, Thill M, Tesch H, Ditsch N, Lux MP, Aktas B, Banys-Paluchowski M, Kolberg-Liedtke C, Hartkopf AD, Wöckel A, Kolberg HC, Harbeck N, Stickeler E. Update Breast Cancer 2022 Part 5 - Early Stage Breast Cancer. Geburtshilfe Frauenheilkd 2023; 83:289-298. [PMID: 36908285 PMCID: PMC9998178 DOI: 10.1055/a-2018-9053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/27/2022] [Indexed: 03/14/2023] Open
Abstract
The treatment of patients with early stage breast cancer has changed in recent years due to the introduction of pembrolizumab, olaparib, and abemaciclib. These and other drugs with the same class of active ingredient are currently in trial for various indications. This review article summarizes the latest results that have either been presented at major conferences such as the ESMO 2022 or published recently in international journals. This includes reports on newly discovered breast cancer genes, atezolizumab in neoadjuvant therapy in HER2-positive patients, long-term data from the APHINITY study, and on how preoperative peritumoral application of local anesthetics can influence the prognosis. We also present solid data on dynamic Ki-67 from the ADAPT studies.
Collapse
Affiliation(s)
- Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Diana Lüftner
- Immanuel Hospital Märkische Schweiz, Buckow; Medical University of Brandenburg Theodor-Fontane, Brandenburg, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Isabell Witzel
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Milena Beierlein
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Gynecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Agaplesion Markus Krankenhaus, Department of Gynecology and Gynecological Oncology, Frankfurt, Germany
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Paderborn, Germany
| | - Bahriye Aktas
- Department of Gynecology, University of Leipzig Medical Center, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, Munich, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Düsseldorf), University Hospital of RWTH Aachen, Aachen, Germany
| |
Collapse
|
9
|
Chowdhary S, Sharma K, Ashish A, Yadav AK, Panigrahi P, Mishra A, Kumar D, Singh R. To Determine the Genotyping of Fc-gamma Receptor FCGR2A Polymorphism as Genetic Susceptibility to Neonatal Sepsis: A Study from a Tertiary Center of North India. J Indian Assoc Pediatr Surg 2022; 27:718-722. [PMID: 36714470 PMCID: PMC9878533 DOI: 10.4103/jiaps.jiaps_52_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
Background Neonatal sepsis term is an infection of newborns <28 days of age. It is a common cause of death in developing countries. The receptor-gamma receptor FCGR2A has been shown to be associated with neonatal sepsis. It is an activating receptor found in many cell types such as monocytes, neutrophils, macrophages, platelets, and others. The receptor has a polymorphism (single-nucleotide polymorphism rs1801274) in its gene (FCGR2A) that encodes either a histidine (H) or arginine (R) at amino acid position 131. There are many studies showing the impact of these FCGR2A polymorphisms on sepsis. Our study aims to determine the prevalence of Fc-gamma receptor FCGR2A (rs1801274) polymorphism in neonatal sepsis and control in Eastern UP populations. Patients and Methods We conducted a cross-sectional descriptive study of 590 patients (310 healthy individuals and 280 sepsis patients) to determine polymorphisms in the CD32A coding region in neonates. All individuals were genotyped for a variant at position 131 of the FcγRIIA gene. Discussion In our study, the prevalence of FcγRIIa polymorphism is more in neonates with sepsis than in noninfected neonates. It was observed that the heterozygous allele (AG) were significantly increased in septic neonates when compared to the normal. Conclusion Our data indicate that FcγRIIA genotyping can be used as a marker of genetic susceptibility to sepsis.
Collapse
Affiliation(s)
- Sarita Chowdhary
- Departments of Paediatric Surgery, IMS BHU, Varanasi, Uttar Pradesh, India
| | - Kanika Sharma
- Departments of Paediatric Surgery, IMS BHU, Varanasi, Uttar Pradesh, India
| | - Ashish Ashish
- Department of Anatomy, Division of Genetic, MRU Lab, IMS BHU, Varanasi, Uttar Pradesh, India
| | | | - Pranay Panigrahi
- Departments of Paediatric Surgery, IMS BHU, Varanasi, Uttar Pradesh, India
| | - Akas Mishra
- Departments of Paediatric Surgery, IMS BHU, Varanasi, Uttar Pradesh, India
| | - Deepak Kumar
- Departments of Paediatric Surgery, IMS BHU, Varanasi, Uttar Pradesh, India
| | - Royana Singh
- Department of Anatomy, IMS BHU, Varanasi, Uttar Pradesh, India
| |
Collapse
|
10
|
Delpire B, Van Loon E, Naesens M. The Role of Fc Gamma Receptors in Antibody-Mediated Rejection of Kidney Transplants. Transpl Int 2022; 35:10465. [PMID: 35935272 PMCID: PMC9346079 DOI: 10.3389/ti.2022.10465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
For the past decades, complement activation and complement-mediated destruction of allograft cells were considered to play a central role in anti-HLA antibody-mediated rejection (AMR) of kidney transplants. However, also complement-independent mechanisms are relevant in the downstream immune activation induced by donor-specific antibodies, such as Fc-gamma receptor (FcγR)-mediated direct cellular activation. This article reviews the literature regarding FcγR involvement in AMR, and the potential contribution of FcγR gene polymorphisms to the risk for antibody mediated rejection of kidney transplants. There is large heterogeneity between the studies, both in the definition of the clinical phenotypes and in the technical aspects. The study populations were generally quite small, except for two larger study cohorts, which obviates drawing firm conclusions regarding the associations between AMR and specific FcγR polymorphisms. Although FcγR are central in the pathophysiology of AMR, it remains difficult to identify genetic risk factors for AMR in the recipient’s genome, independent of clinical risk factors, independent of the donor-recipient genetic mismatch, and in the presence of powerful immunosuppressive agents. There is a need for larger, multi-center studies with standardised methods and endpoints to identify potentially relevant FcγR gene polymorphisms that represent an increased risk for AMR after kidney transplantation.
Collapse
Affiliation(s)
- Boris Delpire
- University Hospitals Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Elisabet Van Loon
- University Hospitals Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- University Hospitals Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
- *Correspondence: Maarten Naesens,
| |
Collapse
|
11
|
Albrecht-Schgoer K, Lackner P, Schmutzhard E, Baier G. Cerebral Malaria: Current Clinical and Immunological Aspects. Front Immunol 2022; 13:863568. [PMID: 35514965 PMCID: PMC9067128 DOI: 10.3389/fimmu.2022.863568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
This review focuses on current clinical and immunological aspects of cerebral malaria induced by Plasmodium falciparum infection. Albeit many issues concerning the inflammatory responses remain unresolved and need further investigations, current knowledge of the underlying molecular mechanisms is highlighted. Furthermore, and in the light of significant limitations in preventative diagnosis and treatment of cerebral malaria, this review mainly discusses our understanding of immune mechanisms in the light of the most recent research findings. Remarkably, the newly proposed CD8+ T cell-driven pathophysiological aspects within the central nervous system are summarized, giving first rational insights into encouraging studies with immune-modulating adjunctive therapies that protect from symptomatic cerebral participation of Plasmodium falciparum infection.
Collapse
Affiliation(s)
- Karin Albrecht-Schgoer
- Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Lackner
- Department of Neurology, Klinik Floridsdorf, Wien, Austria
| | - Erich Schmutzhard
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Abstract
Antibodies have been used to prevent or treat viral infections since the nineteenth century, but the full potential to use passive immunization for infectious diseases has yet to be realized. The advent of efficient methods for isolating broad and potently neutralizing human monoclonal antibodies is enabling us to develop antibodies with unprecedented activities. The discovery of IgG Fc region modifications that extend antibody half-life in humans to three months or more suggests that antibodies could become the principal tool with which we manage future viral epidemics. Antibodies for members of most virus families that cause severe disease in humans have been isolated, and many of them are in clinical development, an area that has accelerated during the effort to prevent or treat COVID-19 (coronavirus disease 2019). Broad and potently neutralizing antibodies are also important research reagents for identification of protective epitopes that can be engineered into active vaccines through structure-based reverse vaccinology. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Department of Pediatrics, and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| |
Collapse
|
13
|
Polmear J, Good-Jacobson KL. Antibody glycosylation directs innate and adaptive immune collaboration. Curr Opin Immunol 2022; 74:125-132. [DOI: 10.1016/j.coi.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 01/16/2023]
|
14
|
Dizon BLP, Pierce SK. The tangled web of autoreactive B cells in malaria immunity and autoimmune disease. Trends Parasitol 2022; 38:379-389. [PMID: 35120815 PMCID: PMC9012675 DOI: 10.1016/j.pt.2022.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Two seminal observations suggest that the African genome contains genes selected by malaria that protect against systemic lupus erythematosus (SLE) in individuals chronically exposed to malaria, but which in the absence of malaria, are risk factors for SLE. First, Brian Greenwood observed that SLE was rare in Africa and that malaria prevented SLE-like disease in susceptible mice. Second, African-Americans, as compared with individuals of European descent, are at higher risk of SLE. Understanding that antibodies play central roles in malaria immunity and SLE, we discuss how autoreactive B cells contribute to malaria immunity but promote SLE pathology in the absence of malaria. Testing this model may provide insights into the regulation of autoreactivity and identify new therapeutic targets for SLE.
Collapse
Affiliation(s)
- Brian L P Dizon
- Rheumatology Fellowship and Training Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA; Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
15
|
Nasr A, Aljada A, Hamid O, Elsheikh HA, Masuadi E, Al-Bawab A, Alenazi TH, Abushouk A, Salah AM. Significant differences in FcγRIIa, FcγRIIIa and FcγRIIIb genes polymorphism and anti-malarial IgG subclass pattern are associated with severe Plasmodium falciparum malaria in Saudi children. Malar J 2021; 20:376. [PMID: 34551786 PMCID: PMC8459561 DOI: 10.1186/s12936-021-03901-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background The FcγRs genotypes have been reported to play a key role in the defence against malaria parasites through both cellular and humoral immunity. This study aimed to investigate the possible correlation between FcγR (IIa, IIIa, and IIIb) genes polymorphism and the clinical outcome for anti‐malarial antibody response of Plasmodium falciparum infection among Saudi children. Methods A total of 600 volunteers were enrolled in this study, including 200 malaria-free control (MFC) subjects, 218 patients with uncomplicated malaria (UM) and 182 patients with severe malaria (SM). The FcγR genotypes were analysed using PCR amplification methods, and measurements of immunoglobulin were determined using enzyme-linked immunosorbent assay (ELISA) technique. Results The data revealed that the FcγRIIa-R/R131 showed a statistically significant association with SM patients when compared to UM patients. Furthermore, higher levels of IgG1, IgG2, and IgG4 were associated with the FcγRIIa-H/H131 genotype among UM patients. Although the FcγRIIa-F/V176 genotype was not associated with UM, it showed a significant association with severe malaria. Interestingly, the FcγRIIIa-V/V176 genotype offered protection against SM. Moreover, SM patients carrying the FcγRIIIa-F/F genotype showed higher levels of AMA-1-specific IgG2 and IgG4 antibodies. The FcγRIIIb-NA1/NA1 and FcγRIIIb-NA2/NA2 genotypes did not show significant differences between the UM and the MFC groups. However, the genotype FcγRIIIb-NA2/NA2 was statistically significantly associated with SM patients. Conclusions The data presented in this study suggest that the influence of the FcγRIIa-R/R131, FcγRIIIa-F/F176 and FcγRIIIb-NA2/NA2 genotypes are statistically significantly associated with SM patients. However, the FcγRIIa-H/H13 and FcγRIIIa-V/V176 genotypes have demonstrated a protective effect against SM when compared to UM patients. The impact of the FcyR (IIa, IIIa and IIIb) gene variants and anti-malaria IgG subclasses play an important role in susceptibility to malaria infection and disease outcome in Saudi children.
Collapse
Affiliation(s)
- Amre Nasr
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia. .,Department of Immunology, King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard- Health Affairs, Riyadh, Kingdom of Saudi Arabia.
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Osama Hamid
- Department of Public Health, Jazan Health Affairs- District Ministry of Health, Jazan, Saudi Arabia
| | - Hatim A Elsheikh
- Department of Pharmacology, College of Medicine, Taif University, POBox 888, Taif, 21944, Saudi Arabia
| | - Emad Masuadi
- Department of Immunology, King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard- Health Affairs, Riyadh, Kingdom of Saudi Arabia.,Department of Medical Education, College of Medicine-Riyadh, King Saud Bin Abdul-Aziz University for Health Sciences, (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
| | - Ahmad Al-Bawab
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
| | - Themer H Alenazi
- Infectious Disease Division, Department of Medicine, King Abdulaziz Medical City, National Guard Health Affairs, RiyadhRiyadh, Saudi Arabia.,Department of Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
| | - Amir Abushouk
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdul-Aziz University for Health Sciences, Jeddah, Kingdom of Saudi Arabia.,King Abdullah International Medical Research Centre (KAIMRC), National Guard Health Affairs, Jeddah, Kingdom of Saudi Arabia
| | - Ayman M Salah
- King Abdullah International Medical Research Centre (KAIMRC), National Guard Health Affairs, Jeddah, Kingdom of Saudi Arabia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|