1
|
Alrashdan MS, Al-Shorman H, Bouzid A, Al-Dwairi A, Alazzam M, Alqudah M. The expression of salivary EGF, VEGF, endothelin, and transferrin in waterpipe and cigarette smokers. Odontology 2025; 113:380-389. [PMID: 38710904 DOI: 10.1007/s10266-024-00947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
The aim of this study was to evaluate the effects of two forms of tobacco smoking, cigarettes and water pipe smoking (WPS), on the expression of a panel of salivary proteins in healthy adults. Three groups of age and gender-matched participants were enrolled in the study: never-smokers, cigarette smokers and WPS (N = 55 per group). Expression of epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), endothelin and transferrin in unstimulated whole saliva was estimated using enzyme-linked immunosorbent assays. Statistical analysis consisted of one-way ANOVA and Tukey's post hoc tests, in addition to bioinformatics analysis. VEGF expression was the least in WPS (51.1 ± 14.5 pg/ml) compared to both controls (150.1 ± 13.8 pg/ml) and cigarette smokers (93 ± 9.9 pg/ml), with a significant difference in WPS (p < 0.001) and cigarette smokers (p < 0.01) compared to controls. Furthermore, transferrin showed the weakest expression in the WPS group (1238 ± 261.4 pg/ml) compared to controls (2205.6 ± 298.6 pg/ml) (p = 0.05) and cigarette smokers (1805.4 ± 244 pg/ml). Neither EGF nor endothelin expression showed any statistical difference between the groups (p > 0.05). Gene-gene interaction network demonstrated that FLT1, TFRC, KDR, VEGFB and PGF genes had the highest potential for interaction with the studied proteins. Further functional annotations on the identified markers in the interaction network were performed to identify HIF-1 pathways among the most relevant pathways. In conclusion, smoking habits alter the expression of salivary VEGF and transferrin, which may correspond to early sub-clinical changes in the oral mucosa. The clinical relevance of these salivary changes requires further research.
Collapse
Affiliation(s)
- Mohammad S Alrashdan
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, P.O.Box: 27272, Sharjah, UAE.
- Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jorda University of Science and Technology, Irbid, Jordan.
| | - Hisham Al-Shorman
- Department of Oral and Maxillofacial Surgery and Periodontics, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- Department of Preventive Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Amal Bouzid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Melanie Alazzam
- Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jorda University of Science and Technology, Irbid, Jordan
| | | |
Collapse
|
2
|
Wang J, Cui Z, Song Q, Yang K, Chen Y, Peng S. Integrating single-cell RNA-seq and bulk RNA-seq to construct a neutrophil prognostic model for predicting prognosis and immune response in oral squamous cell carcinoma. Hum Genomics 2024; 18:140. [PMID: 39726033 DOI: 10.1186/s40246-024-00712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is an aggressive malignancy with poor prognosis. Neutrophil infiltration has been associated with unfavorable outcomes in OSCC, but the underlying molecular mechanisms remain unclear. METHODS This study integrated single-cell transcriptomics (scRNA-seq) with bulk RNA-seq data to analyze neutrophil infiltration patterns in OSCC and identify key gene modules using weighted gene co-expression network analysis (hdWGCNA). A prognostic model was developed based on univariate and Lasso-Cox regression analyses, stratifying patients into high- and low-risk groups. Immune landscape and drug sensitivity analyses were conducted to explore group-specific differences. Additionally, Mendelian randomization analysis was employed to identify genes causally related to OSCC progression. RESULTS Several key pathways associated with neutrophil interactions in OSCC progression were identified, leading to the construction of a prognostic model based on significant module genes. The model demonstrated strong predictive performance in distinguishing survival rates between high- and low-risk groups. Immune landscape analysis revealed significant differences in cell infiltration patterns and TIDE scores between the groups. Drug sensitivity analysis highlighted differences in drug responsiveness between high- and low-risk groups. CONCLUSION This study elucidates the critical role of neutrophils and their associated gene modules in OSCC progression. The prognostic model provides a novel reference for patient stratification and targeted therapy. These findings offer potential new targets for OSCC diagnosis, prognosis, and immunotherapy.
Collapse
Affiliation(s)
- Jinhang Wang
- Department of Stomatology, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Zifeng Cui
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiwen Song
- Department of Stomatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kaicheng Yang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanping Chen
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shixiong Peng
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Li C, Dong X, Li B. Tumor microenvironment in oral squamous cell carcinoma. Front Immunol 2024; 15:1485174. [PMID: 39744628 PMCID: PMC11688467 DOI: 10.3389/fimmu.2024.1485174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a highly aggressive and malignant tumor of oral cavity with a poor prognosis and high mortality due to the limitations of existing therapies. The significant role of tumor microenvironment (TME) in the initiation, development, and progression of OSCC has been widely recognized. Various cells in TME, including tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), T lymphocytes, tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs) and dendritic cells (DCs), form a complicated and important cellular network to modulate OSCC proliferation, invasion, migration, and angiogenesis by secreting RNAs, proteins, cytokines, and metabolites. Understanding the interactions among cells in TME provides the foundation for advanced clinical diagnosis and therapies. This review summarizes the current literature that describes the role of various cellular components and other TME factors in the progression of OSCC, hoping to provide new ideas for the novel OSCC treatment strategies targeting the complicated cellular network and factors that mediate the interactive loops among cells in TME.
Collapse
Affiliation(s)
| | | | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral
Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
4
|
Patridge E, Gorakshakar A, Molusky MM, Ogundijo O, Janevski A, Julian C, Hu L, Vuyisich M, Banavar G. Microbial functional pathways based on metatranscriptomic profiling enable effective saliva-based health assessments for precision wellness. Comput Struct Biotechnol J 2024; 23:834-842. [PMID: 38328005 PMCID: PMC10847690 DOI: 10.1016/j.csbj.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
It is increasingly recognized that an important step towards improving overall health is to accurately measure biomarkers of health from the molecular activities prevalent in the oral cavity. We present a general methodology for computationally quantifying the activity of microbial functional pathways using metatranscriptomic data. We describe their implementation as a collection of eight oral pathway scores using a large salivary sample dataset (n = 9350), and we evaluate score associations with oropharyngeal disease phenotypes within an unseen independent cohort (n = 14,129). Through this validation, we show that the relevant oral pathway scores are significantly worse in individuals with periodontal disease, acid reflux, and nicotine addiction, compared with controls. Given these associations, we make the case to use these oral pathway scores to provide molecular health insights from simple, non-invasive saliva samples, and as molecular endpoints for actionable interventions to address the associated conditions.
Collapse
Affiliation(s)
- Eric Patridge
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | - Anmol Gorakshakar
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | | | - Oyetunji Ogundijo
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | - Angel Janevski
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | - Cristina Julian
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | - Lan Hu
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | | | - Guruduth Banavar
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| |
Collapse
|
5
|
Toma AI, Shah D, Roth D, Piña JO, Hymel L, Turner T, Kamalakar A, Liu K, Bartsch P, Jacobs L, D'Souza R, Liotta D, Botchwey E, Willett NJ, Goudy SL. Accelerating Oral Wound Healing Using Bilayer Biomaterial Delivery of FTY720 Immunotherapy. Adv Healthc Mater 2024; 13:e2401480. [PMID: 39388502 PMCID: PMC11616256 DOI: 10.1002/adhm.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Orofacial clefts are the most common congenital craniofacial anomaly. Adverse healing following cleft palate repair can lead to oronasal fistula (ONF), a persistent connection between the oral and nasal cavities. Although human allograft tissues are currently the gold standard for ONF repair, these methods carry risks of infection and rejection, often requiring surgical revision. Immunoregenerative therapies present a novel alternative approach to harness the body's immune response and enhance the wound healing environment. An FDA-approved immunomodulatory drug, FTY720, is repurposed to reduce lymphocyte egress and induce immune cell fate switching toward pro-regenerative phenotypes. In this study, a bilayer biomaterial system is engineered using Tegaderm to secure and control the delivery of FTY720-nanofiber scaffolds (FTY720-NF). The release kinetics of the bilayer FTY720-NF is optimized to maintain drug release for up to 7 days, ensuring safe transdermal absorption and tissue biodistribution. The comprehensive immunophenotyping results demonstrate a regenerative state transition in hybrid immune cells recruited to the wound site. Further, histological evaluations reveal a significant ONF closure in mice by day 7 following bilayer FTY720-NF implantation. These findings demonstrate the utility of immunomodulatory strategies for oral wound healing, better positing the field to develop more efficacious treatment options in pediatric patients.
Collapse
Affiliation(s)
- Afra I. Toma
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGA30322USA
- Department of Pediatrics and OtolaryngologyChildren's Healthcare of AtlantaAtlantaGA30329USA
| | - Daniel Shah
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGA30322USA
| | - Daniela Roth
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD20892USA
| | - Jeremie Oliver Piña
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD20892USA
| | - Lauren Hymel
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGA30322USA
| | - Thomas Turner
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGA30322USA
| | - Archana Kamalakar
- Department of Pediatrics and OtolaryngologyChildren's Healthcare of AtlantaAtlantaGA30329USA
| | - Ken Liu
- Department of ChemistryEmory UniversityAtlantaGA30322USA
| | - Perry Bartsch
- Department of ChemistryEmory UniversityAtlantaGA30322USA
| | - Leon Jacobs
- Department of ChemistryEmory UniversityAtlantaGA30322USA
| | - Rena D'Souza
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD20892USA
| | - Dennis Liotta
- Department of ChemistryEmory UniversityAtlantaGA30322USA
| | - Edward Botchwey
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGA30322USA
| | - Nick J. Willett
- Phil and Penny Knight Campus for Accelerating Scientific ImpactUniversity of OregonEugeneOR97403USA
| | - Steven L. Goudy
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGA30322USA
- Department of Pediatrics and OtolaryngologyChildren's Healthcare of AtlantaAtlantaGA30329USA
| |
Collapse
|
6
|
Kraus RF, Ott L, Utpatel K, Kees MG, Gruber MA, Bitzinger D. Neutrophils in the Spotlight-An Analysis of Neutrophil Function and Phenotype in ARDS. Int J Mol Sci 2024; 25:12547. [PMID: 39684262 DOI: 10.3390/ijms252312547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a complex disease pattern in which pathogenesis polymorphonuclear neutrophil granulocytes (PMN) play a key role. In previous experiments, we could show that interaction with collagen III (an important component of pulmonary tissue) is a possible trigger of neutrophil reactive oxygen species (ROS) production. To investigate possible correlations, further elucidate ARDS pathophysiology, and maybe find pharmacological targets, we evaluated PMNs from blood (circulating PMNs: cPMNs) and tracheal secretion (tPMNs) from patients with and without ARDS with regard to function and phenotype. Blood samples and tracheal secretions were obtained from intensive care patients with and without ARDS. Isolation of cPMN was performed by density-gradient gravity sedimentation without centrifugation. For tPMN isolation, endotracheal aspirate was filtered, and tPMNs were separated from the remaining aspirate using a particle filter. Specific surface epitopes (CD66b, CD62L, fMLP-receptor, LOX-1, CD49d, CD29, CD11b) of the isolated PMN cells were labeled with antibody-coupled dyes and analyzed by flow cytometry. Neutrophil ROS production before and after activation with N-formyl-methyl-leucyl-phenylalanine (fMLP) and tumor necrosis factor α (TNFα) was quantified using rhodamine-123. In addition, a qualitative cytological hematoxylin-eosin (HE) staining was performed with a portion of the secretion. tPMNs were observed in both bloody and mucosal tracheal secretions from ARDS patients. The epitope distribution on cPMNs and tPMNs differed significantly in patients with and without ARDS: tPMNs generally showed increased expression of CD66b, LOX-1 and fMLP-receptor compared to cPMNs, and decreased expression of CD62L. The CD49d levels of all cPMNs were at the same level as tPMNs in ARDS, whereas CD49d expression was increased on tPMNs without ARDS. ROS production was significantly stimulated by fMLP/TNFα in cPMNs regardless of the patient group, while it was similarly increased in tPMNs with and without stimulation. Increased expression of CD66b, LOX-1 and fMLP-receptor on tPMNs indicated a higher activity status compared to cPMNs. Increased CD49d expression on tPMNs without ARDS marks different PMN surface changes in lung disease. PMNs appear to be in a more activated state in lung secretions than in blood, as indicated by higher CD66b and lower CD62L expression, higher constitutive ROS production and lower excitability with fMLP and TNFα. In the context of possible CD49d-triggered ROS production, it is noteworthy that CD49d is downregulated in secretion from patients with ARDS compared to patients without. This phenotypic and functional PMN characterization can provide valuable diagnostic and therapeutic information for the intensive care treatment of ARDS patients.
Collapse
Affiliation(s)
- Richard F Kraus
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Lisa Ott
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Martin G Kees
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Michael A Gruber
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Diane Bitzinger
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Soheili F, Delfan N, Masoudifar N, Ebrahimni S, Moshiri B, Glogauer M, Ghafar-Zadeh E. Toward Digital Periodontal Health: Recent Advances and Future Perspectives. Bioengineering (Basel) 2024; 11:937. [PMID: 39329678 PMCID: PMC11428937 DOI: 10.3390/bioengineering11090937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Periodontal diseases, ranging from gingivitis to periodontitis, are prevalent oral diseases affecting over 50% of the global population. These diseases arise from infections and inflammation of the gums and supporting bones, significantly impacting oral health. The established link between periodontal diseases and systemic diseases, such as cardiovascular diseases, underscores their importance as a public health concern. Consequently, the early detection and prevention of periodontal diseases have become critical objectives in healthcare, particularly through the integration of advanced artificial intelligence (AI) technologies. This paper aims to bridge the gap between clinical practices and cutting-edge technologies by providing a comprehensive review of current research. We examine the identification of causative factors, disease progression, and the role of AI in enhancing early detection and treatment. Our goal is to underscore the importance of early intervention in improving patient outcomes and to stimulate further interest among researchers, bioengineers, and AI specialists in the ongoing exploration of AI applications in periodontal disease diagnosis.
Collapse
Affiliation(s)
- Fatemeh Soheili
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Niloufar Delfan
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran P9FQ+M8X, Kargar, Iran
| | - Negin Masoudifar
- Department of Internal Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Shahin Ebrahimni
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Behzad Moshiri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran P9FQ+M8X, Kargar, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Electrical Engineering and Computer Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
8
|
Afradi Z, Panahipour L, Abbas Zadeh S, Gruber R. PRF Lysates Modulate Chemokine Expression in Oral Squamous Carcinoma and Healthy Epithelial Cells. Bioengineering (Basel) 2024; 11:746. [PMID: 39199704 PMCID: PMC11351820 DOI: 10.3390/bioengineering11080746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Platelet-rich fibrin (PRF), originally used to support soft tissue healing, is also considered a therapeutic option for treating oral lichen planus and leukoplakia. The progression from the two premalignant lesions to the aggressive malignant oral squamous cell carcinoma involves an inflammatory process linked to chemokine expression. Thus, there is a rationale for studying how PRF modulates the expression of chemokines in oral squamous carcinoma cells. To this aim, we expose the oral squamous carcinoma cell line HSC2 to IL1β and TNFα either alone or in the presence of lysates obtained from solid PRF membranes. We report here that in HSC2 cells, PRF lysates significantly reduce the forced transcription of chemokines, e.g., CXCL1, CXCL2, CXCL8, CXCL10, and CCL5. Moreover, PRF lysates attenuate the nuclear translocation of p65 in HSC2 oral epithelial cells when exposed to IL1β and TNFα. PRF lysates further reduce chemokine expression provoked by poly:IC HMW. Even though less pronounced, PRF lysates reduce IL1β- and TNFα-induced chemokine expression in TR146 cells. In primary oral epithelial cells, however, PRF lysates increase the basal expression of CXCL1, CXCL2 and CXCL8. Thus, PRF can exert a biphasic effect on chemokine expression in oral squamous cell carcinoma cell lines and primary oral epithelial cells. These findings suggest that PRF may reduce inflammation in a malignant environment while provoking an immunological response in healthy oral epithelium.
Collapse
Affiliation(s)
- Zohreh Afradi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.A.); (L.P.)
| | - Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.A.); (L.P.)
| | | | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.A.); (L.P.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
9
|
Fang X, Tong W, Wu S, Zhu Z, Zhu J. The role of intratumoral microorganisms in the progression and immunotherapeutic efficacy of head and neck cancer. ONCOLOGIE 2024; 26:349-360. [DOI: 10.1515/oncologie-2023-0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
The effectiveness of cancer immunization is largely dependent on the tumor’s microenvironment, especially the tumor immune microenvironment. Emerging studies say microbes exist in tumor cells and immune cells, suggesting that these microbes can affect the state of the immune microenvironment of the tumor. Our comprehensive review navigates the intricate nexus between intratumoral microorganisms and their role in tumor biology and immune modulation. Beginning with an exploration of the historical acknowledgment of microorganisms within tumors, the article underscores the evolution of the tumor microenvironment (TME) and its subsequent implications. Using findings from recent studies, we delve into the unique bacterial compositions across different tumor types and their influence on tumor growth, DNA damage, and immune regulation. Furthermore, we illuminate the potential therapeutic implications of targeting these intratumoral microorganisms, emphasizing their multifaceted roles from drug delivery agents to immunotherapy enhancers. As advancements in next-generation sequencing (NGS) technology redefine our understanding of the tumor microbiome, the article underscores the importance of discerning their precise role in tumor progression and tailoring therapeutic interventions. The review culminates by emphasizing ongoing challenges and the pressing need for further research to harness the potential of intratumoral microorganisms in cancer care.
Collapse
Affiliation(s)
- Xuzhe Fang
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Weihong Tong
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Sheng Wu
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Zhengyong Zhu
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Jin Zhu
- Department of Otorhinolaryngology and Head Neck Surgery, Affiliated Hangzhou First People’s Hospital , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
10
|
Costa-da-Silva AC, Villapudua CU, Hoffman MP, Aure MH. Immunomodulation of salivary gland function due to cancer therapy. Oral Dis 2024:10.1111/odi.14972. [PMID: 38696474 PMCID: PMC11530405 DOI: 10.1111/odi.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/04/2024]
Abstract
Functional salivary glands (SG) are essential for maintaining oral health, and salivary dysfunction is a persistent major clinical challenge. Several cancer therapies also have off-target effects leading to SG dysfunction. Recent advances highlight the role of SG immune populations in homeostasis, dysfunction and gland regeneration. Here, we review what is known about SG immune populations during development and postnatal homeostasis. We summarize recent findings of immune cell involvement in SG dysfunction following cancer treatments such as irradiation (IR) for head and neck cancers, immune transplant leading to graft-versus-host-disease (GVHD) and immune checkpoint inhibitor (ICI) treatment. The role of immune cells in SG in both homeostasis and disease, is an emerging field of research that may provide important clues to organ dysfunction and lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Ana C. Costa-da-Silva
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carlos U. Villapudua
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marit H. Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
11
|
Magdum DB, Kulkarni NA, Kavle PG, Paraye S, Pohankar PS, Giram AV. Salivary Neutrophil-to-Lymphocyte Ratio as a Prognostic Predictor of Oral Premalignant and Malignant Disorders: A Prospective Study. Cureus 2024; 16:e56273. [PMID: 38623101 PMCID: PMC11017949 DOI: 10.7759/cureus.56273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/17/2024] Open
Abstract
INTRODUCTION Inflammation is a definitive characteristic of carcinogenesis. The neutrophil-to-lymphocyte ratio (NLR) is an easy and efficient indicator of inflammation and a valuable marker in individuals with malignancies. The present study was performed to ascertain NLR values in salivary samples collected from individuals with oral premalignant disorders (OPMDs) and to assess the prognostic significance of NLR in distinguishing OPMDs from oral malignancies. MATERIALS AND METHODS This study was conducted on 50 patients histopathologically diagnosed with OPMDs with mild dysplasia. The patients were provided with standard medicinal treatment, encouraged to quit their habits, and followed up for one year at three-month regular intervals. During the follow-up, 29 (67.4%) patients completely recovered, whereas 14 (32.6%) developed oral malignancies. Salivary samples were collected at baseline (T0) and one-year follow-up (T1). The total salivary neutrophils and lymphocytes were counted using an improved cell counting method with a Neubauer chamber. The NLR values were calculated at T0 and T1. The paired t-test was used to compare the NLR values at T0 and T1. The cutoff value of the NLR was determined using the receiver operating characteristic (ROC) curve. The Youden index was used to determine the optimal cutoff NLR values in the groups. Statistical significance was set at p ≤0.05. RESULTS OPMDs were predominantly observed in males, with leukoplakia being the most prevailing one. Erythroplakia exhibited the highest propensity for malignant transformation, and habitual consumption of alcohol and tobacco was identified as a risk factor for this transformation. NLR increased in both premalignant and malignant conditions. NLR value equal to or exceeding 4 was determined to be a reliable indicator for the occurrence of oral cancer in patients with OPMDs. The ROC curve analysis yielded a sensitivity and specificity of 92%, with an area under the curve (AUC) of 0.928. CONCLUSION The poor prognosis of oral cancers was associated with higher NLR values. NLR values in salivary samples can serve as an independent reliable predictor in oral cancer and OPMDs.
Collapse
Affiliation(s)
- Dilip B Magdum
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth Dental College and Hospital, Sangli, IND
| | - Noopur A Kulkarni
- Department of Oral Pathology and Microbiology, Pandit Deendayal Upadhyay Dental College, Solapur, IND
| | - Pratibha G Kavle
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth Dental College and Hospital, Navi Mumbai, IND
| | - Swati Paraye
- Department of Oral Medicine and Radiology, Saraswati Dhanwantari Dental College and Hospital, Parbhani, IND
| | - Pritam S Pohankar
- Department of Oral Medicine and Radiology, Saraswati Dhanwantari Dental College and Hospital, Parbhani, IND
| | - Amol V Giram
- Department of Oral Medicine and Radiology, Saraswati Dhanwantari Dental College and Hospital, Parbhani, IND
| |
Collapse
|
12
|
Koidl L, Gentile SA, Untersmayr E. Allergen Stability in Food Allergy: A Clinician's Perspective. Curr Allergy Asthma Rep 2023; 23:601-612. [PMID: 37665560 PMCID: PMC10506954 DOI: 10.1007/s11882-023-01107-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW The globally rising food allergy prevalence is associated with the urgent need for new disease prevention methods, efficient treatment, and reliable risk assessment methods for characterization of food allergens. Due to inter-individual variations in the digestive system, food allergens are degraded to a different extent in each person. Food processing also influences allergen digestion. RECENT FINDINGS In this review, we provide an overview of the digestive system with focus on relevance for food allergy. Main food proteins causing allergic reactions are evaluated, and the combined role of food processing and digestion for allergen stability is highlighted. Finally, clinical implications of this knowledge are discussed. Recent literature shows that allergen digestibility is dependent on food processing, digestive conditions, and food matrix. Digestion affects proteins allergenicity. It is currently not possible to predict the immunogenicity of allergens solely based on protein stability.
Collapse
Affiliation(s)
- Larissa Koidl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria
| | - Salvatore Alessio Gentile
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Budi HS, Farhood B. Tumor microenvironment remodeling in oral cancer: Application of plant derived-natural products and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 233:116432. [PMID: 37331557 DOI: 10.1016/j.envres.2023.116432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Oral cancers consist of squamous cell carcinoma (SCC) and other malignancies in the mouth with varying degrees of invasion and differentiation. For many years, different modalities such as surgery, radiation therapy, and classical chemotherapy drugs have been used to control the growth of oral tumors. Nowadays, studies have confirmed the remarkable effects of the tumor microenvironment (TME) on the development, invasion, and therapeutic resistance of tumors like oral cancers. Therefore, several studies have been conducted to modulate the TME in various types of tumors in favor of cancer suppression. Natural products are intriguing agents for targeting cancers and TME. Flavonoids, non-flavonoid herbal-derived molecules, and other natural products have shown promising effects on cancers and TME. These agents, such as curcumin, resveratrol, melatonin, quercetin and naringinin have demonstrated potency in suppressing oral cancers. In this paper, we will review and discuss about the potential efficacy of natural adjuvants on oral cancer cells. Furthermore, we will review the possible therapeutic effects of these agents on the TME and oral cancer cells. Moreover, the potential of nanoparticles-loaded natural products for targeting oral cancers and TME will be reviewed. The potentials, gaps, and future perspectives for targeting TME by nanoparticles-loaded natural products will also be discussed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Silva AJD, de Moura IA, da Gama MATM, Leal LRS, de Pinho SS, Espinoza BCF, dos Santos DL, Santos VEP, Sena MGAMD, Invenção MDCV, de Macêdo LS, de França Neto PL, de Freitas AC. Advancing Immunotherapies for HPV-Related Cancers: Exploring Novel Vaccine Strategies and the Influence of Tumor Microenvironment. Vaccines (Basel) 2023; 11:1354. [PMID: 37631922 PMCID: PMC10458729 DOI: 10.3390/vaccines11081354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
The understanding of the relationship between immunological responses and cancers, especially those related to HPV, has allowed for the study and development of therapeutic vaccines against these neoplasias. There is a growing number of studies about the composition and influence of the tumor microenvironment (TME) in the progression or establishment of the most varied types of cancer. Hence, it has been possible to structure immunotherapy approaches based on therapeutic vaccines that are even more specific and directed to components of TME and the immune response associated with tumors. Among these components are dendritic cells (DCs), which are the main professional antigen-presenting cells (APCs) already studied in therapy strategies for HPV-related cancers. On the other hand, tumor-associated macrophages are also potential targets since the profile present in tumor infiltrates, M1 or M2, influences the prognosis of some types of cancer. These two cell types can be targets for therapy or immunomodulation. In this context, our review aims to provide an overview of immunotherapy strategies for HPV-positive tumors, such as cervical and head and neck cancers, pointing to TME immune cells as promising targets for these approaches. This review also explores the potential of immunotherapy in cancer treatment, including checkpoint inhibitors, cytokine immunotherapies, immunotherapy vaccines, and cell therapies. Furthermore, it highlights the importance of understanding the TME and its effect on the design and achievement of immunotherapeutic methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (A.J.D.S.); (I.A.d.M.); (M.A.T.M.d.G.); (L.R.S.L.); (S.S.d.P.); (B.C.F.E.); (D.L.d.S.); (V.E.P.S.); (M.G.A.M.D.S.); (M.D.C.V.I.); (L.S.d.M.); (P.L.d.F.N.)
| |
Collapse
|
15
|
Lenka S, Bhola RK, Varanasi PR, Bhuyan SK, Bhuyan R. Understanding the functional relevance of oral neutrophils, phenotype and properties in OSCC. Med Oncol 2023; 40:134. [PMID: 37010645 DOI: 10.1007/s12032-023-02010-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
Neutrophils are the predominant white blood cells (WBC) that are recruited to the sites of inflammation and infection. They are acknowledged to perform dual roles by promoting (pro-tumor) or by exhibiting anti-cancer properties (anti-tumor). Neutrophils are characterized based on the changes in phenotype and functional properties. To this context, circulating polymorphonuclear neutrophils (cPMN) and tumor-associated neutrophils (TANs) in cancer biology has been well explored but limited to oral polymorphonuclear neutrophils (oPMNs) in oral squamous cell carcinoma (OSCC). However, oPMNs are eminent in maintaining the healthy oral ecosystem by neutralizing microorganisms. Neutralization process enhances the expression of cell surface markers (CD11b, CD63, CD66, CD66b, CD66c, and CD66e) and inflammatory cytokines (TNF-α, IFN-γ, GM-CSF, and IL-8) and increases the recruitment of neutrophils. Along with the inflammation, it has been reported that CEACAM1 and chemerin also favors the infiltration of neutrophils to the cancer site. This indicates that oPMN might contribute to the aetiology of OSCC. The main objective of this review is to explore, the production and migration of oPMNs to the oral cavity, their phenotypes and possible role in OSCC.
Collapse
Affiliation(s)
- Sudhansubala Lenka
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Rajesh Kumar Bhola
- Department of Pathology, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Pavankumar R Varanasi
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Sanat Kumar Bhuyan
- Department of Oral Medicine and Radiology, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Ruchi Bhuyan
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.
- Department of Oral Pathology and Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be) University, Bhubaneswar, 751003, India.
| |
Collapse
|
16
|
Jensen PØ, Rikvold PD, Larsen KR, Jørgensen MR, Kragelund C. "The Standard Procedure" for Investigation of Oral Neutrophils in Oral Diseases. Int J Dent 2023; 2023:1308326. [PMID: 37152477 PMCID: PMC10159737 DOI: 10.1155/2023/1308326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Aim There is need of an objective "standard procedure" that is reliable and clinically applicable for estimating oral neutrophil content in relation to oral diseases. Methods Forty-one patients with suspected oral candidosis (OC) and nine healthy controls with no oral mucosal disease were flushing with 10 ml mouth rinse (MR) (sterile phosphate-buffered saline) for 1 min. Aliquots were stored on different conditions to explore stability, storage, and fixation conditions for analysis by flow cytometry. Results The optimal storage and fixation condition for MR was by fixation 1 : 1 in 10% formalin and stored at 5°C. This procedure yielded stable results up to 7 days after collection. The ability of the optimized method to relate oral neutrophils to inflammation was demonstrated by the significantly higher number of neutrophils in patients with primary OC (p = 0.0334) compared to healthy controls. Conclusion This method is rapid, reliable, and clinically applicable for establishing the content of oral neutrophils. We demonstrate increased density of oral neutrophils in the MR of patients with OC. The potential of the method is to be "the standard procedure" for investigation of the oral inflammation in patients with oral diseases as it is noninvasive and provides high stability, clinical relevance, and minimal handling.
Collapse
Affiliation(s)
- Peter Østrup Jensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Center for Rheumatology and Spine Diseases, Institute for Inflammation Research, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Pernille Dukanovic Rikvold
- Department of Odontology, Oral Pathology & Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Røn Larsen
- Department of Odontology, Oral Pathology & Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Rose Jørgensen
- Department of Odontology, Oral Pathology & Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Kragelund
- Department of Odontology, Oral Pathology & Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Venkatesiah SS, Augustine D, Mishra D, Gujjar N, Haragannavar VC, Awan KH, Patil S. Immunology of Oral Squamous Cell Carcinoma-A Comprehensive Insight with Recent Concepts. Life (Basel) 2022; 12:1807. [PMID: 36362963 PMCID: PMC9695443 DOI: 10.3390/life12111807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
This review aims to understand the concept of oral cancer immunology through the notion of immune profiling, immunoediting and immunotherapy, and to gain knowledge regarding its application for the management of oral cancer patients. Oral cancer is an immunogenic tumor where the cells of the tumor microenvironment play an important role in tumorigenesis. Understanding the mechanism of these modulations can help design immunotherapeutic strategies in oral cancer patients. This article gives an overview of immunomodulation in the oral cancer tumor microenvironment, with concepts of immune profiling, immunoediting and immunotherapy. English literature searches via Google Scholar, Web of Science, EBSCO, Scopus, and PubMed database were performed with the key words immunology, tumor microenvironment, cells, cross talk, immune profiling, biomarkers, inflammation, gene expression, techniques, immunoediting, immunosurveillance, tumor escape, immunotherapy, immune checkpoint inhibitors, vaccines in cancer, oral cancer, and head and neck cancer. Original research articles, reviews, and case reports published from 2016-2021 (n = 81) were included to appraise different topics, and were discussed under the following subsections. Literature published on oral cancer immunology reveals that oral cancer immune profiling with appropriate markers and techniques and knowledge on immunoediting concepts can help design and play an effective role in immunotherapeutic management of oral cancer patients. An evaluation of oral cancer immunology helps to determine its role in tumorigenesis, and immunotherapy could be the emerging drift in the effective management of oral cancer.
Collapse
Affiliation(s)
- Sowmya Samudrala Venkatesiah
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Dominic Augustine
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Deepika Mishra
- Department of Oral Pathology & Microbiology, Centre for Dental Education and Research, All India Institute of Medical Sciences (AIIMS), Delhi 110608, India
| | - Neethi Gujjar
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Vanishri C. Haragannavar
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, India
| |
Collapse
|
18
|
Kabekkodu SP, Chakrabarty S, Varghese VK, Ghosh S, Radhakrishnan R, Mallya SP, Kudva A. Salivary DNA methylation markers for cancer of oral cavity. Cancer Biomark 2022; 35:257-268. [PMID: 36245370 DOI: 10.3233/cbm-220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE: Aberrant DNA methylation plays a crucial role in oral carcinogenesis. Our previous study demonstrated hypermethylation of DAPK1, LRPPRC, RAB6C, and ZNF471 promoters in patients with tongue squamous cell carcinoma compared with normal samples. Methylation profiling using salivary DNA is considered a non-invasive alternative to tissue samples. Hence, the present study tested the DNA methylation status of these four promoters as indicators of oral cancer progression. METHODS: We performed the bisulfite-based targeted next-generation sequencing of four candidate genes in saliva and tissue DNA from normal, premalignant, and squamous cell carcinoma subjects. The clinicopathological association, diagnostic, and prognostic utility of aberrant DNA methylation were evaluated using the TCGA-HNSCC dataset. Using the Xgboost algorithm and logistic regression, CpG sites were prioritized, and Receiver Operating Characteristic was generated. By Log-rank test and Kaplan-Meier (KM) curves, an association between methylation and overall survival (OS), disease-free interval (DFI), and progression-free interval (PFI) were computed. RESULTS: We identified all four genes as significantly hypermethylation in premalignant and malignant samples compared with normal samples. The methylation levels were comparable between saliva and tissue samples with an r-value of 0.6297 to 0.8023 and 0.7823 to 0.9419 between premalignant tissue vs. saliva and OC vs. saliva, respectively. We identified an inverse correlation between DAPK1, LRPPRC, RAB6C, and ZNF471 promoter methylation with its expression. A classifier of 8 differentially methylated CpG sites belonging to DAPK1, RAB6C, and ZNF471 promoters was constructed, showing an AUC of 0.984 to differentiate tumors from normal samples. The differential methylation status of DAPK1, LRPPRC, and ZNF71 promoters was prognostically important. Abnormal expression of all four genes was associated with immune infiltration. CONCLUSIONS: Thus, methylation analysis of these candidate CpG sites from saliva can be helpful as a non-invasive tool for the clinical management of OC.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Centre for DNA repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Centre for DNA repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Supriti Ghosh
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sandeep P. Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Adarsh Kudva
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
19
|
Oral Cavity Calprotectin and Lactoferrin Levels in Relation to Radiotherapy. Curr Issues Mol Biol 2022; 44:4439-4446. [PMID: 36286019 PMCID: PMC9600558 DOI: 10.3390/cimb44100304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Lactoferrin, an iron-binding glycoprotein, and calprotectin, a calcium binding protein, are sensitive markers of inflammation and their fecal levels increase during radiotherapy of prostate cancer patients. With this background, we analyzed mouthrinse calprotectin and lactoferrin levels of head- and neck-cancer patients before, during and after radiotherapy. Methods: Twenty cancer patients (mean age 55.85 ± 15.01, 80% male), who had been planned to undergo radiotherapy to the head and neck area, were included in this study. Mouthrinse samples were collected before radiotherapy, at the 3rd and 6th weeks of radiotherapy and 4 weeks after the radiotherapy. Mouthrinse samples were analyzed for calprotectin and lactoferrin using commercial ELISA kits. Results: Calprotectin levels increased significantly during radiotherapy (p = 0.022). Both markers, lactoferrin (p = 0.011) and calprotectin (p = 0.006), decreased significantly after the treatment. Conclusions: Present study results may suggest that the elevations in calprotectin and lactoferrin levels during radiotherapy reflect the increased and emerging inflammatory environment in the oral cavity, thus may increase the risk of periodontal disease initiation or progression.
Collapse
|
20
|
Mazul AL, Hartman CM, Mowery YM, Kramer JR, White DL, Royse KE, Raychaudhury S, Sandulache VC, Ahmed ST, Zevallos JP, Richardson PA, Sikora AG, Chiao EY. Risk and incidence of head and neck cancers in veterans living with HIV and matched HIV-negative veterans. Cancer 2022; 128:3310-3318. [PMID: 35867552 PMCID: PMC10650941 DOI: 10.1002/cncr.34387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Persons living with HIV/AIDS have a higher incidence of virus-related and tobacco/alcohol-related cancers. This study is the first to estimate the effect of HIV versus HIV-negative veterans on the risk of head and neck squamous cell carcinoma incidence in a large retrospective cohort study. METHODS The authors constructed a retrospective cohort study using patient data from 1999 to 2016 from the National Veterans Administration Corporate Data Warehouse and the VA Central Cancer Registry. This cohort study included 45,052 veterans living with HIV/AIDS and 162,486 HIV-negative patients matched by age, sex, and index visit (i.e., HIV diagnosis date or clinic visit date). The age-standardized incidence rates and estimated adjusted hazard ratios were calculated with a Cox proportional hazards regression for oropharyngeal and nonoropharyngeal head and neck cancer squamous cell carcinoma (HNSCC). The authors also abstracted human papillomavirus (HPV) status from oropharyngeal HNSCC diagnosed after 2010. RESULTS Veterans living with HIV/AIDS (VLWH) have 1.71 (95% confidence interval [CI], 1.36, 2.14) times the risk of oropharyngeal cancer and 2.06 (95% CI, 1.76, 2.42) times the hazard of nonoropharyngeal cancer compared with HIV-negative veterans. VLWH with oropharyngeal squamous cell carcinoma (OPSCC) were more likely to be HPV-positive (N = 30 [81.1%]) than the HIV-negative veterans with OPSCC (N = 50 [67.6%]), although this difference was not significant (p = .135). For nonoropharyngeal cancer, the increased risk of oral cavity cancer among VLWH drove the increased risk. CONCLUSIONS The study results suggest that HIV may play a role in virally mediated and nonvirally mediated HNSCC. As the HIV prevalence rises in the United States due to better survival and the incidence of HPV-positive oropharyngeal HNSCC increases, the interaction between HPV and HIV becomes increasingly relevant.
Collapse
Affiliation(s)
- Angela L Mazul
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Division of Public Health Science, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Christine M Hartman
- VA Health Services Research Center of Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
- Department of Head and Neck Surgery and Communication Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer R Kramer
- VA Health Services Research Center of Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Donna L White
- VA Health Services Research Center of Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn E Royse
- VA Health Services Research Center of Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | | | - Vlad C Sandulache
- ENT Section, Operative Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Sarah T Ahmed
- VA Health Services Research Center of Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jose P Zevallos
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Peter A Richardson
- VA Health Services Research Center of Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth Y Chiao
- Department of Epidemiology, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
21
|
Allen JL, Hames RA, Mastroianni NM, Greenstein AE, Weed SA. Evaluation of the matrix metalloproteinase 9 (MMP9) inhibitor Andecaliximab as an Anti-invasive therapeutic in Head and neck squamous cell carcinoma. Oral Oncol 2022; 132:106008. [PMID: 35803110 DOI: 10.1016/j.oraloncology.2022.106008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Locoregional and lymphovascular involvement of invasive head and neck squamous cell carcinoma (HNSCC) complicates curative treatment. Matrix metalloproteinase (MMP) 9 is a negative prognostic marker in HNSCC and targets multiple extracellular matrix (ECM) substrates, where it contributes to breaching basement membrane and stromal barriers enabling invasive spread. Andecaliximab (ADX) is a second-generation MMP9 inhibitor well tolerated in clinical trials of gastric and pancreatic adenocarcinoma. The impact of selective MMP9 targeting by ADX in HNSCC has not been evaluated. MATERIALS AND METHODS Established and patient-derived xenograft (PDX) cell lines were utilized in HNSCC invasion assays to determine the inhibitory ability of MMP9-mediated invasion by ADX. MMP9 expression was confirmed using immunohistochemistry (IHC) and immunoblotting. ECM degradation was evaluated with confocal microscopy. Cell invasion from tumor spheroids was monitored by phase microscopy. Histological evaluation was used to determine ADX efficacy in three-dimensional organotypic cultures containing cancer associated fibroblasts (CAFs). RESULTS MMP9 was expressed in all established and PDX-derived cell lines. While the broad spectrum clinical MMP inhibitor marimastat (BB2516) blocked HNSCC invadopodia function and tumor spheroid invasion, ADX treatment failed to inhibit invadopodia-based matrix degradation, tumor cell or fibroblast-driven ECM invasion in collagen I-based matrices. CONCLUSION ADX monotherapy was ineffective at blocking initial MMP-dependent events of HNSCC invasion, likely due to redundant functions of additional non-targeted MMPs produced by tumor cells and microenvironment. Combination of ADX with existing and emerging therapies targeting additional MMP activation pathways may warrant future investigation.
Collapse
Affiliation(s)
- Jessica L Allen
- Program in Cancer Cell Biology, Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, United States
| | - River A Hames
- Program in Cancer Cell Biology, Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, United States
| | - Natalie M Mastroianni
- Program in Cancer Cell Biology, Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, United States
| | | | - Scott A Weed
- Program in Cancer Cell Biology, Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, United States.
| |
Collapse
|
22
|
Mojdami ZD, Barbour A, Oveisi M, Sun C, Fine N, Saha S, Marks C, Elebyary O, Watson E, Tenenbaum H, Azarpazhooh A, Glogauer M. The Effect of Intensity-Modulated Radiotherapy to the Head and Neck Region on the Oral Innate Immune Response and Oral Microbiome: A Prospective Cohort Study of Head and Neck Tumour Patients. Int J Mol Sci 2022; 23:ijms23179594. [PMID: 36076990 PMCID: PMC9456060 DOI: 10.3390/ijms23179594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Neutrophils, also known as polymorphonuclear leukocytes (PMNs), form a significant component of the innate host response, and the consequence of the interaction between the oral microbiota and PMNs is a crucial determinant of oral health status. The impact of radiation therapy (RT) for head and neck tumour (HNT) treatment on the oral innate immune system, neutrophils in particular, and the oral microbiome has not been thoroughly investigated. Therefore, the objective of this study was to characterize RT-mediated changes in oral neutrophils (oPMNs) and the oral microbiome in patients undergoing RT to treat HNTs. Oral rinse samples were collected prior to, during and post-RT from HNT patients receiving RT at Dental Oncology at Princess Margaret Cancer Centre. The oPMNs counts and activation states were analysed using flow cytometry, and the oral microbiome was analysed using 16S rRNA gene sequencing. Statistically significant (p < 0.05) drops in oPMN counts and the activation states of the CD11b, CD16, CD18, CD64 and H3Cit markers from pre-RT to post-RT were observed. Moreover, exposure to RT caused a significant reduction in the relative abundance of commensal Gram-negative bacteria and increased the commensal Gram-positive microbes. Ionizing radiation for the treatment of HNTs simultaneously decreased the recruitment of oPMNs into the oral cavity and suppressed their activation state. The oral microbiome composition post-RT was altered significantly due to RT which may favour the colonization of specific microbial communities unfavourable for the long-term development of a balanced oral microbiome.
Collapse
Affiliation(s)
- Zahra Dorna Mojdami
- Dental Oncology and Maxillofacial Prosthetics Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
- Correspondence: (A.B.); (M.G.)
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Sourav Saha
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Cara Marks
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Erin Watson
- Dental Oncology and Maxillofacial Prosthetics Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Howard Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
- Centre for Advanced Dental Research and Care, Department of Dentistry, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Amir Azarpazhooh
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
- Centre for Advanced Dental Research and Care, Department of Dentistry, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Michael Glogauer
- Dental Oncology and Maxillofacial Prosthetics Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
- Centre for Advanced Dental Research and Care, Department of Dentistry, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Correspondence: (A.B.); (M.G.)
| |
Collapse
|
23
|
Bergmeier LA, Dutzan N, Smith PC, Kraan H. Editorial: Immunology of the Oral Mucosa. Front Immunol 2022; 13:877209. [PMID: 35401502 PMCID: PMC8992007 DOI: 10.3389/fimmu.2022.877209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Lesley Ann Bergmeier
- Centre for Immunobiology and Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicolas Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Patricio C Smith
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Heleen Kraan
- Institute for Translational Vaccinology, Intravacc, Bilthoven, Netherlands
| |
Collapse
|
24
|
Pasman R, Krom BP, Zaat SAJ, Brul S. The Role of the Oral Immune System in Oropharyngeal Candidiasis-Facilitated Invasion and Dissemination of Staphylococcus aureus. FRONTIERS IN ORAL HEALTH 2022; 3:851786. [PMID: 35464779 PMCID: PMC9021398 DOI: 10.3389/froh.2022.851786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans and Staphylococcus aureus account for most invasive fungal and bacterial bloodstream infections (BSIs), respectively. However, the initial point of invasion responsible for S. aureus BSIs is often unclear. Recently, C. albicans has been proposed to mediate S. aureus invasion of immunocompromised hosts during co-colonization of oral mucosal surfaces. The status of the oral immune system crucially contributes to this process in two distinct ways: firstly, by allowing invasive C. albicans growth during dysfunction of extra-epithelial immunity, and secondly following invasion by some remaining function of intra-epithelial immunity. Immunocompromised individuals at risk of developing invasive oral C. albicans infections could, therefore, also be at risk of contracting concordant S. aureus BSIs. Considering the crucial contribution of both oral immune function and dysfunction, the aim of this review is to provide an overview of relevant aspects of intra and extra-epithelial oral immunity and discuss predominant immune deficiencies expected to facilitate C. albicans induced S. aureus BSIs.
Collapse
Affiliation(s)
- Raymond Pasman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Stanley Brul
| |
Collapse
|
25
|
Metcalfe S, Anselmi N, Escobar A, Visser MB, Kay JG. Innate Phagocyte Polarization in the Oral Cavity. Front Immunol 2022; 12:768479. [PMID: 35069541 PMCID: PMC8770816 DOI: 10.3389/fimmu.2021.768479] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
The oral cavity is a complex environment constantly exposed to antigens from food and the oral microbiota. Innate immune cells play an essential role in maintaining health and homeostasis in the oral environment. However, these cells also play a significant role in disease progression. This review will focus on two innate phagocytes in the oral cavity: macrophages and neutrophils, and examine their roles during homeostasis and disease development, with a focus on periodontal disease and cancer. Macrophages have a well-known ability to polarize and be activated towards a variety of phenotypes. Several studies have found that macrophages’ polarization changes can play an essential role in maintaining health in the oral cavity and contribute to disease. Recent data also finds that neutrophils display phenotypic heterogeneity in the oral cavity. In both cases, we focus on what is known about how these cellular changes alter these immune cells’ interactions with the oral microbiota, including how such changes can lead to worsening, rather than improving, disease states.
Collapse
Affiliation(s)
- Sarah Metcalfe
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Natalie Anselmi
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Alejandro Escobar
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Michelle B Visser
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Jason G Kay
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
26
|
Ozel I, Duerig I, Domnich M, Lang S, Pylaeva E, Jablonska J. The Good, the Bad, and the Ugly: Neutrophils, Angiogenesis, and Cancer. Cancers (Basel) 2022; 14:cancers14030536. [PMID: 35158807 PMCID: PMC8833332 DOI: 10.3390/cancers14030536] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels from already existing vasculature, is tightly regulated by pro- and anti-angiogenic stimuli and occurs under both physiological and pathological conditions. Tumor angiogenesis is central for tumor development, and an “angiogenic switch” could be initiated by multiple immune cells, such as neutrophils. Tumor-associated neutrophils promote tumor angiogenesis by the release of both conventional and non-conventional pro-angiogenic factors. Therefore, neutrophil-mediated tumor angiogenesis should be taken into consideration in the design of novel anti-cancer therapy. This review recapitulates the complex role of neutrophils in tumor angiogenesis and summarizes neutrophil-derived pro-angiogenic factors and mechanisms regulating angiogenic activity of tumor-associated neutrophils. Moreover, it provides up-to-date information about neutrophil-targeting therapy, complementary to anti-angiogenic treatment.
Collapse
|
27
|
Ganapathy D, Ramadoss R, Yuwanati M, Karthikeyan M. Rarity of mucormycosis in oral squamous cell carcinoma: A clinical paradox? Oral Oncol 2022; 125:105725. [PMID: 35051852 DOI: 10.1016/j.oraloncology.2022.105725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Dhanraj Ganapathy
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ramya Ramadoss
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Monal Yuwanati
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Murthykumar Karthikeyan
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| |
Collapse
|
28
|
Ptasiewicz M, Grywalska E, Mertowska P, Korona-Głowniak I, Poniewierska-Baran A, Niedźwiedzka-Rystwej P, Chałas R. Armed to the Teeth-The Oral Mucosa Immunity System and Microbiota. Int J Mol Sci 2022; 23:882. [PMID: 35055069 PMCID: PMC8776045 DOI: 10.3390/ijms23020882] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The oral cavity is inhabited by a wide spectrum of microbial species, and their colonization is mostly based on commensalism. These microbes are part of the normal oral flora, but there are also opportunistic species that can cause oral and systemic diseases. Although there is a strong exposure to various microorganisms, the oral mucosa reduces the colonization of microorganisms with high rotation and secretion of various types of cytokines and antimicrobial proteins such as defensins. In some circumstances, the imbalance between normal oral flora and pathogenic flora may lead to a change in the ratio of commensalism to parasitism. Healthy oral mucosa has many important functions. Thanks to its integrity, it is impermeable to most microorganisms and constitutes a mechanical barrier against their penetration into tissues. Our study aims to present the role and composition of the oral cavity microbiota as well as defense mechanisms within the oral mucosa which allow for maintaining a balance between such numerous species of microorganisms. We highlight the specific aspects of the oral mucosa protecting barrier and discuss up-to-date information on the immune cell system that ensures microbiota balance. This study presents the latest data on specific tissue stimuli in the regulation of the immune system with particular emphasis on the resistance of the gingival barrier. Despite advances in understanding the mechanisms regulating the balance on the microorganism/host axis, more research is still needed on how the combination of these diverse signals is involved in the regulation of immunity at the oral mucosa barrier.
Collapse
Affiliation(s)
- Maja Ptasiewicz
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | | | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| |
Collapse
|
29
|
Epithelial-to-Mesenchymal Transition-Derived Heterogeneity in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:cancers13215355. [PMID: 34771518 PMCID: PMC8582421 DOI: 10.3390/cancers13215355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinomas (HNSCC) are common malignancies with considerable morbidity and a high death toll worldwide. Resistance towards multi-modal therapy modalities composed of surgery, irradiation, chemo- and immunotherapy represents a major obstacle in the efficient treatment of HNSCC patients. Patients frequently show nodal metastases at the time of diagnosis and endure early relapses, oftentimes in the form of local recurrences. Differentiation programs such as the epithelial-to-mesenchymal transition (EMT) allow individual tumor cells to adopt cellular functions that are central to the development of metastases and treatment resistance. In the present review article, the molecular basis and regulation of EMT and its impact on the progression of HNSCC will be addressed. Abstract Head and neck squamous cell carcinomas (HNSCC) are common tumors with a poor overall prognosis. Poor survival is resulting from limited response to multi-modal therapy, high incidence of metastasis, and local recurrence. Treatment includes surgery, radio(chemo)therapy, and targeted therapy specific for EGFR and immune checkpoint inhibition. The understanding of the molecular basis for the poor outcome of HNSCC was improved using multi-OMICs approaches, which revealed a strong degree of inter- and intratumor heterogeneity (ITH) at the level of DNA mutations, transcriptome, and (phospho)proteome. Single-cell RNA-sequencing (scRNA-seq) identified RNA-expression signatures related to cell cycle, cell stress, hypoxia, epithelial differentiation, and a partial epithelial-to-mesenchymal transition (pEMT). The latter signature was correlated to nodal involvement and adverse clinical features. Mechanistically, shifts towards a mesenchymal phenotype equips tumor cells with migratory and invasive capacities and with an enhanced resistance to standard therapy. Hence, gradual variations of EMT as observed in HNSCC represent a potent driver of tumor progression that could open new paths to improve the stratification of patients and to innovate approaches to break therapy resistance. These aspects of molecular heterogeneity will be discussed in the present review.
Collapse
|