1
|
Basar E, Mead H, Shum B, Rauter I, Ay C, Skaletz-Rorowski A, Brockmeyer NH. Biological Barriers for Drug Delivery and Development of Innovative Therapeutic Approaches in HIV, Pancreatic Cancer, and Hemophilia A/B. Pharmaceutics 2024; 16:1207. [PMID: 39339243 PMCID: PMC11435036 DOI: 10.3390/pharmaceutics16091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Biological barriers remain a major obstacle for the development of innovative therapeutics. Depending on a disease's pathophysiology, the involved tissues, cell populations, and cellular components, drugs often have to overcome several biological barriers to reach their target cells and become effective in a specific cellular compartment. Human biological barriers are incredibly diverse and include multiple layers of protection and obstruction. Importantly, biological barriers are not only found at the organ/tissue level, but also include cellular structures such as the outer plasma membrane, the endolysosomal machinery, and the nuclear envelope. Nowadays, clinicians have access to a broad arsenal of therapeutics ranging from chemically synthesized small molecules, biologicals including recombinant proteins (such as monoclonal antibodies and hormones), nucleic-acid-based therapeutics, and antibody-drug conjugates (ADCs), to modern viral-vector-mediated gene therapy. In the past decade, the therapeutic landscape has been changing rapidly, giving rise to a multitude of innovative therapy approaches. In 2018, the FDA approval of patisiran paved the way for small interfering RNAs (siRNAs) to become a novel class of nucleic-acid-based therapeutics, which-upon effective drug delivery to their target cells-allow to elegantly regulate the post-transcriptional gene expression. The recent approvals of valoctocogene roxaparvovec and etranacogene dezaparvovec for the treatment of hemophilia A and B, respectively, mark the breakthrough of viral-vector-based gene therapy as a new tool to cure disease. A multitude of highly innovative medicines and drug delivery methods including mRNA-based cancer vaccines and exosome-targeted therapy is on the verge of entering the market and changing the treatment landscape for a broad range of conditions. In this review, we provide insights into three different disease entities, which are clinically, scientifically, and socioeconomically impactful and have given rise to many technological advancements: acquired immunodeficiency syndrome (AIDS) as a predominant infectious disease, pancreatic carcinoma as one of the most lethal solid cancers, and hemophilia A/B as a hereditary genetic disorder. Our primary objective is to highlight the overarching principles of biological barriers that can be identified across different disease areas. Our second goal is to showcase which therapeutic approaches designed to cross disease-specific biological barriers have been promising in effectively treating disease. In this context, we will exemplify how the right selection of the drug category and delivery vehicle, mode of administration, and therapeutic target(s) can help overcome various biological barriers to prevent, treat, and cure disease.
Collapse
Affiliation(s)
- Emre Basar
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | | | - Bennett Shum
- GenePath LLC, Sydney, NSW 2067, Australia
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia
| | | | - Cihan Ay
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Adriane Skaletz-Rorowski
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | - Norbert H. Brockmeyer
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| |
Collapse
|
2
|
Batohi N, Shalekoff S, Martinson NA, Ebrahim O, Tiemessen CT, Thobakgale CF. HIV-1 Elite Controllers are Characterised by Elevated Levels of CD69-Expressing Natural Killer Cells. J Acquir Immune Defic Syndr 2024; 97:00126334-990000000-00497. [PMID: 39219024 PMCID: PMC11540281 DOI: 10.1097/qai.0000000000003518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) elite controllers (ECs) are a rare subset of people living with HIV-1 (PLWH) who control viral replication in the absence of antiretroviral therapy (ART) and may provide a model for a functional cure. We investigated the role of natural killer (NK) cells in HIV-1 ECs from South Africa. METHODS Phenotypic (CD69, CD38, CD57, PD-1), functional (CD107a, IFN-γ), and nutrient transporter profiles (glucose transporter 1, CD98) of NK cells from ECs (n=20), viraemic progressors (VPs; n=19), people living with HIV-1 (PLWH) on ART (n=20), and people without HIV-1 (PWOH; n=21) were analysed using flow cytometry. The Kruskal-Wallis test followed by the Mann-Whitney U test were used to determine differences among the study groups. The Spearman's rank correlation coefficient was used to determine significant associations. RESULTS Compared to the other study groups, the percentage of CD69-expressing NK cells was higher in ECs, whereas the percentage of CD38-expressing NK cells was higher in VPs. Percentages of CD69+CD38- NK cells were elevated in ECs compared to VPs (p = 0.003), but were not different to PLWH on ART and PWOH. Differentiation, exhaustion, and metabolic profiles were not different in ECs compared with PLWH on ART and PWOH, however, NK cell function was lower than in PWOH. CONCLUSION These findings demonstrate that NK cells from ECs have an activated, mature profile with low levels of immune exhaustion and a reduced metabolic phenotype suggesting functional competence. This insight could inform the development of novel immunotherapeutic strategies for treating HIV-1.
Collapse
Affiliation(s)
- Nikayla Batohi
- School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sharon Shalekoff
- Centre for HIV and STIs, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil A. Martinson
- Perinatal HIV Research Unit, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Soweto, South Africa
- Soweto Matlosana Centre for HIV/AIDS and Tuberculosis Research, South African Medical Research Council, Johannesburg, South Africa; and
| | - Osman Ebrahim
- School of Therapeutic Sciences, Department of Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T. Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Christina F. Thobakgale
- School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Rodriguez NR, Fortune T, Hegde E, Weinstein MP, Keane AM, Mangold JF, Swartz TH. Oxidative phosphorylation in HIV-1 infection: impacts on cellular metabolism and immune function. Front Immunol 2024; 15:1360342. [PMID: 38529284 PMCID: PMC10962326 DOI: 10.3389/fimmu.2024.1360342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) presents significant challenges to the immune system, predominantly characterized by CD4+ T cell depletion, leading to Acquired Immunodeficiency Syndrome (AIDS). Antiretroviral therapy (ART) effectively suppresses the viral load in people with HIV (PWH), leading to a state of chronic infection that is associated with inflammation. This review explores the complex relationship between oxidative phosphorylation, a crucial metabolic pathway for cellular energy production, and HIV-1, emphasizing the dual impact of HIV-1 infection and the metabolic and mitochondrial effects of ART. The review highlights how HIV-1 infection disrupts oxidative phosphorylation, promoting glycolysis and fatty acid synthesis to facilitate viral replication. ART can exacerbate metabolic dysregulation despite controlling viral replication, impacting mitochondrial DNA synthesis and enhancing reactive oxygen species production. These effects collectively contribute to significant changes in oxidative phosphorylation, influencing immune cell metabolism and function. Adenosine triphosphate (ATP) generated through oxidative phosphorylation can influence the metabolic landscape of infected cells through ATP-detected purinergic signaling and contributes to immunometabolic dysfunction. Future research should focus on identifying specific targets within this pathway and exploring the role of purinergic signaling in HIV-1 pathogenesis to enhance HIV-1 treatment modalities, addressing both viral infection and its metabolic consequences.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Talia H. Swartz
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Moshawih S, Jarrar Q, Bahrin AA, Lim AF, Ming L, Goh HP. Evaluating NSAIDs in SARS-CoV-2: Immunomodulatory mechanisms and future therapeutic strategies. Heliyon 2024; 10:e25734. [PMID: 38356603 PMCID: PMC10864964 DOI: 10.1016/j.heliyon.2024.e25734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely recognized for their analgesic and anti-inflammatory properties. Amidst the SARS-CoV-2 pandemic, the role of NSAIDs in modulating viral and bacterial infections has become a critical area of research, sparking debates and necessitating a thorough review. This review examines the multifaceted interactions between NSAIDs, immune responses, and infections. Focusing on the immunomodulatory mechanisms of NSAIDs in SARS-CoV-2 and their implications for other viral and bacterial infections, we aim to provide clarity and direction for future therapeutic strategies. NSAIDs demonstrate a dual role in infectious diseases. They reduce inflammation by decreasing neutrophil recruitment and cytokine release, yet potentially compromise antiviral defense mechanisms. They also modulate cytokine storms in SARS-CoV-2 and exhibit the potential to enhance anti-tumor immunity by inhibiting tumor-induced COX-2/PGE2 signaling. Specific NSAIDs have shown efficacy in inhibiting viral replication. The review highlights NSAIDs' synergy with other medications, like COX inhibitors and immunotherapy agents, in augmenting therapeutic effects. Notably, the World Health Organization's analysis found no substantial link between NSAIDs and the worsening of viral respiratory infections. The findings underscore NSAIDs' complex role in infection management. Understanding these interactions is crucial for optimizing therapeutic approaches in current and future pandemics. However, their dual nature warrants cautious application, particularly in vulnerable populations. NSAIDs present a paradoxical impact on immune responses in viral and bacterial infections. While offering potential benefits, their usage in infectious diseases, especially SARS-CoV-2, demands a nuanced understanding to balance therapeutic advantages against possible adverse effects.
Collapse
Affiliation(s)
- Said Moshawih
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Abdul Alim Bahrin
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Ai Fern Lim
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Long Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Hui Poh Goh
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
6
|
Mu W, Patankar V, Kitchen S, Zhen A. Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection. Viruses 2024; 16:219. [PMID: 38399994 PMCID: PMC10893210 DOI: 10.3390/v16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vaibhavi Patankar
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Linkner TR, Ambrus V, Kunkli B, Szojka ZI, Kalló G, Csősz É, Kumar A, Emri M, Tőzsér J, Mahdi M. Comparative Analysis of Differential Cellular Transcriptome and Proteome Regulation by HIV-1 and HIV-2 Pseudovirions in the Early Phase of Infection. Int J Mol Sci 2023; 25:380. [PMID: 38203551 PMCID: PMC10779251 DOI: 10.3390/ijms25010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In spite of the similar structural and genomic organization of human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2), striking differences exist between them in terms of replication dynamics and clinical manifestation of infection. Although the pathomechanism of HIV-1 infection is well characterized, relatively few data are available regarding HIV-2 viral replication and its interaction with host-cell proteins during the early phase of infection. We utilized proteo-transcriptomic analyses to determine differential genome expression and proteomic changes induced by transduction with HIV-1/2 pseudovirions during 8, 12 and 26 h time-points in HEK-293T cells. We show that alteration in the cellular milieu was indeed different between the two pseudovirions. The significantly higher number of genes altered by HIV-2 in the first two time-points suggests a more diverse yet subtle effect on the host cell, preparing the infected cell for integration and latency. On the other hand, GO analysis showed that, while HIV-1 induced cellular oxidative stress and had a greater effect on cellular metabolism, HIV-2 mostly affected genes involved in cell adhesion, extracellular matrix organization or cellular differentiation. Proteomics analysis revealed that HIV-2 significantly downregulated the expression of proteins involved in mRNA processing and translation. Meanwhile, HIV-1 influenced the cellular level of translation initiation factors and chaperones. Our study provides insight into the understudied replication cycle of HIV-2 and enriches our knowledge about the use of HIV-based lentiviral vectors in general.
Collapse
Affiliation(s)
- Tamás Richárd Linkner
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Viktor Ambrus
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Balázs Kunkli
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zsófia Ilona Szojka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, 22100 Lund, Sweden
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Ajneesh Kumar
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Miklós Emri
- Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
| |
Collapse
|
8
|
Cortés‐Llanos B, Jain V, Cooper‐Volkheimer A, Browne EP, Murdoch DM, Allbritton NL. Automated microarray platform for single-cell sorting and collection of lymphocytes following HIV reactivation. Bioeng Transl Med 2023; 8:e10551. [PMID: 37693052 PMCID: PMC10487311 DOI: 10.1002/btm2.10551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 09/12/2023] Open
Abstract
A promising strategy to cure HIV-infected individuals is to use latency reversing agents (LRAs) to reactivate latent viruses, followed by host clearance of infected reservoir cells. However, reactivation of latent proviruses within infected cells is heterogeneous and often incomplete. This fact limits strategies to cure HIV which may require complete elimination of viable virus from all cellular reservoirs. For this reason, understanding the mechanism(s) of reactivation of HIV within cellular reservoirs is critical to achieve therapeutic success. Methodologies enabling temporal tracking of single cells as they reactivate followed by sorting and molecular analysis of those cells are urgently needed. To this end, microraft arrays were adapted to image T-lymphocytes expressing mCherry under the control of the HIV long terminal repeat (LTR) promoter, in response to the application of LRAs (prostratin, iBET151, and SAHA). In response to prostratin, iBET151, and SAHA, 30.5%, 11.2%, and 12.1% percentage of cells, respectively. The arrays enabled large numbers of single cells (>25,000) to be imaged over time. mCherry fluorescence quantification identified cell subpopulations with differing reactivation kinetics. Significant heterogeneity was observed at the single-cell level between different LRAs in terms of time to reactivation, rate of mCherry fluorescence increase upon reactivation, and peak fluorescence attained. In response to prostratin, subpopulations of T lymphocytes with slow and fast reactivation kinetics were identified. Single T-lymphocytes that were either fast or slow reactivators were sorted, and single-cell RNA-sequencing was performed. Different genes associated with inflammation, immune activation, and cellular and viral transcription factors were found.
Collapse
Affiliation(s)
- Belén Cortés‐Llanos
- Department of BioengineeringUniversity of WashingtonWashingtonUSA
- Department of MedicineDuke UniversityNorth CarolinaUSA
| | - Vaibhav Jain
- Department of Molecular PhysiologyDuke UniversityNorth CarolinaUSA
| | | | - Edward P. Browne
- Department of MedicineUniversity of North CarolinaNorth CarolinaUSA
- Department of Microbiology and ImmunologyUniversity of North CarolinaNorth CarolinaUSA
- UNC HIV Cure CenterUniversity of North CarolinaNorth CarolinaUSA
| | | | | |
Collapse
|
9
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
10
|
Mataramvura H, Bunders MJ, Duri K. Human immunodeficiency virus and antiretroviral therapy-mediated immune cell metabolic dysregulation in children born to HIV-infected women: potential clinical implications. Front Immunol 2023; 14:1182217. [PMID: 37350953 PMCID: PMC10282157 DOI: 10.3389/fimmu.2023.1182217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Commencing lifelong antiretroviral therapy (ART) immediately following HIV diagnosis (Option B+) has dramatically improved the health of HIV-infected women and their children, with the majority being of HIV-exposed children born uninfected (HEU). This success has led to an increasing population of HIV-infected women receiving ART during pregnancy and children exposed to ART in utero. Nonetheless, a small proportion of children are still infected with HIV (HEI) each year. HEI children suffer from reduced immunocompetence and host-defence, due to CD4+ T lymphocyte depletion, but also dysregulation of other immune cells including CD8+ T lymphocytes, natural killer (NK) cells, macrophages including B lymphocytes. Furthermore, although HEU children are uninfected, altered immune responses are observed and associated with increased vulnerability to infections. The mechanisms underlying immune dysregulation in HEU children remain poorly described. Building on early studies, emerging data suggests that HIV/ART exposure early in life affects cell metabolic function of HEU children. Prenatal HIV/ART exposure has been associated with dysregulation of mitochondria, including impaired DNA polymerase activity. Furthermore, dysregulation of oxidative phosphorylation (OXPHOS) causes a decreased generation of adenosine triphosphate (ATP) and increased production of reactive oxygen species (ROS), resulting in oxidative stress. These altered metabolic processes can affect immune cell viability and immune responses. Recent studies have indicated that immune-metabolic dysregulation may contribute to HIV-associated pathogenesis and clinical observations associated with HIV and ART exposure in HEU/HEI children. Given the critical role metabolic processes in immune cell functioning, immune-metabolic dysregulation in HEU and HEI children may have implications in effective host-defence responses against pathogens, as well as efficacy of standard ART regimens and future novel HIV cure approaches in HEI children. At the same time, targeting metabolic pathways of immune cells may provide safer and novel approaches for HIV cure strategies. Here, we review the current literature investigating immune-metabolic dysregulation in paediatric HIV pathogenesis.
Collapse
Affiliation(s)
- Hope Mataramvura
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Madeleine J. Bunders
- III. Medical Department, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Kerina Duri
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
11
|
Yang B, Mukherjee T, Radhakrishnan R, Paidipally P, Ansari D, John S, Vankayalapati R, Tripathi D, Yi G. HIV-Differentiated Metabolite N-Acetyl-L-Alanine Dysregulates Human Natural Killer Cell Responses to Mycobacterium tuberculosis Infection. Int J Mol Sci 2023; 24:7267. [PMID: 37108430 PMCID: PMC10138430 DOI: 10.3390/ijms24087267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) has latently infected over two billion people worldwide (LTBI) and caused ~1.6 million deaths in 2021. Human immunodeficiency virus (HIV) co-infection with Mtb will affect the Mtb progression and increase the risk of developing active tuberculosis by 10-20 times compared with HIV- LTBI+ patients. It is crucial to understand how HIV can dysregulate immune responses in LTBI+ individuals. Plasma samples collected from healthy and HIV-infected individuals were investigated using liquid chromatography-mass spectrometry (LC-MS), and the metabolic data were analyzed using the online platform Metabo-Analyst. ELISA, surface and intracellular staining, flow cytometry, and quantitative reverse-transcription PCR (qRT-PCR) were performed using standard procedures to determine the surface markers, cytokines, and other signaling molecule expressions. Seahorse extra-cellular flux assays were used to measure mitochondrial oxidative phosphorylation and glycolysis. Six metabolites were significantly less abundant, and two were significantly higher in abundance in HIV+ individuals compared with healthy donors. One of the HIV-upregulated metabolites, N-acetyl-L-alanine (ALA), inhibits pro-inflammatory cytokine IFN-γ production by the NK cells of LTBI+ individuals. ALA inhibits the glycolysis of LTBI+ individuals' NK cells in response to Mtb. Our findings demonstrate that HIV infection enhances plasma ALA levels to inhibit NK-cell-mediated immune responses to Mtb infection, offering a new understanding of the HIV-Mtb interaction and providing insights into the implication of nutrition intervention and therapy for HIV-Mtb co-infected patients.
Collapse
Affiliation(s)
- Baojun Yang
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Tanmoy Mukherjee
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Rajesh Radhakrishnan
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Padmaja Paidipally
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Danish Ansari
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Sahana John
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Ramakrishna Vankayalapati
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Deepak Tripathi
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Guohua Yi
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| |
Collapse
|
12
|
Zhao Z, Zou Q, Han S, Shi J, Yan H, Hu D, Yi Y. Omics analysis revealed the possible mechanism of streptococcus disease outbreak in tilapia under high temperature. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108639. [PMID: 36841518 DOI: 10.1016/j.fsi.2023.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
High temperature is a main cause to result in the outbreak of tilapia streptococcal disease. However, the underlying mechanisms are not well understood. In this study, we first confirmed that tilapia infected with Streptococcus agalactiae (S. agalactiae) had a higher mortality at high temperature (35 °C) than that at normal temperature (28 °C). Subsequently, the effects of high temperature on gene expression pattern of S. agalactiae and intestinal microbiota of tilapia were respectively detected by RNA-seq and 16S rDNA sequencing. RNA-seq identified 357 differentially expressed genes (DEGs) in S. agalactiae cultured at 28 °C and 35 °C. GO and KEGG analysis showed that these DEGs were highly involved in metabolic processes, including glucose, lipid and amino acid metabolisms, which indicates that S. agalactiae have stronger vitality and are likely to be more infectious under high temperature. Microbiota analysis revealed that high temperature could influence the bacterial community composition of tilapia intestine, accompanied by changes in intestinal structure. Compared to feed at 28 °C, the total bacterial species as well as pathogens, such as norank_f__Rhizobiales_Incertae_Sedis, Pseudorhodoplanes, Ancylobacter, in tilapia intestine were significantly increased at 35 °C, which may weaken the immune resistance of tilapia. Taken together, our results suggest that high temperature evoked tilapia susceptible to S. agalactiae should be the combined effect of enhanced S. agalactiae metabolism and dysregulated tilapia intestinal microbiota.
Collapse
Affiliation(s)
- Zaoya Zhao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| | - Qianxing Zou
- Department of Reproductive Medicine, Liuzhou People's Hospital, Liuzhou, 545006, China.
| | - Shuyu Han
- Guangxi Fishery Technical Extension Station, Nanning, 530022, China.
| | - Jingu Shi
- Guangxi Fishery Technical Extension Station, Nanning, 530022, China.
| | - Haijun Yan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Dasheng Hu
- Guangxi Fishery Technical Extension Station, Nanning, 530022, China.
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| |
Collapse
|
13
|
Yang B, Mukherjee T, Radhakrishnan R, Paidipally P, Ansari D, John S, Vankayalapati R, Tripathi D, Yi G. HIV-differentiated metabolite N-Acetyl-L-Alanine dysregulates human natural killer cell responses to Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530445. [PMID: 36909560 PMCID: PMC10002710 DOI: 10.1101/2023.02.28.530445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Background Mycobacterium tuberculosis ( Mtb ) has latently infected over two billion people worldwide (LTBI) and causes 1.8 million deaths each year. Human immunodeficiency virus (HIV) co-infection with Mtb will affect the Mtb progression and increase the risk of developing active tuberculosis by 10-20 times compared to the HIV-LTBI+ patients. It is crucial to understand how HIV can dysregulate immune responses in LTBI+ individuals. Methods Plasma samples collected from healthy and HIV-infected individuals were investigated by liquid chromatography-mass spectrometry (LC-MS), and the metabolic data were analyzed using an online platform Metabo-Analyst. ELISA, surface and intracellular staining, flow cytometry, quantitative reverse transcription PCR (qRT-PCR) were performed by standard procedure to determine the surface markers, cytokines and other signaling molecule expression. Seahorse extra cellular flux assays were used to measure the mitochondrial oxidative phosphorylation and glycolysis. Results Six metabolites were significantly less abundant, and two were significantly higher in abundance in HIV+ individuals compared to healthy donors. One of the HIV-upregulated metabolites, N-Acetyl-L-Alanine (ALA), inhibits pro-inflammatory cytokine IFN-□ production by NK cells of LTBI+ individuals. ALA inhibits glycolysis of LTBI+ individuals' NK cells in response to Mtb . Conclusions Our findings demonstrate that HIV infection enhances plasma ALA levels to inhibit NK cell-mediated immune responses to Mtb infection, offering a new understanding of the HIV- Mtb interaction and providing the implication of nutrition intervention and therapy for HIV- Mtb co-infected patients.
Collapse
|
14
|
Cortés-Llanos B, Jain V, Volkheimer A, Browne EP, Murdoch DM, Allbritton NL. Automated microarray for single-cell sorting and collection of lymphocytes following HIV reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526757. [PMID: 36778314 PMCID: PMC9915582 DOI: 10.1101/2023.02.02.526757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A promising strategy to cure HIV infected individuals is to use latency reversing agents (LRAs) to reactivate latent viruses, followed by host clearance of infected reservoir cells. However, reactivation of latent proviruses within infected cells is heterogeneous and often incomplete. This fact limits strategies to cure HIV which may require complete elimination of viable virus from all cellular reservoirs. For this reason, understanding the mechanism(s) of reactivation of HIV within cellular reservoirs is critical to achieve therapeutic success. Methodologies enabling temporal tracking of single cells as they reactivate followed by sorting and molecular analysis of those cells are urgently needed. To this end, microraft arrays were adapted to image T-lymphocytes expressing mCherry under the control of the HIV long terminal repeat (LTR) promoter, in response to the application of various LRAs (prostratin, iBET151, and SAHA). In response to prostratin, iBET151, and SAHA, 30.5 %, 11.2 %, and 12.1 % percentage of cells respectively, reactivated similar to that observed in other experimental systems. The arrays enabled large numbers of single cells (>25,000) to be imaged over time. mCherry fluorescence quantification identified cell subpopulations with differing reactivation kinetics. Significant heterogeneity was observed at the single cell level between different LRAs in terms of time to reactivation, rate of mCherry fluorescence increase upon reactivation, and peak fluorescence attained. In response to prostratin, subpopulations of T lymphocytes with slow and fast reactivation kinetics were identified. Single T-lymphocytes that were either fast or slow reactivators were sorted, and single-cell RNA-sequencing was performed. Different genes associated with inflammation, immune activation, and cellular and viral transcription factors were found. These results advance our conceptual understanding of HIV reactivation dynamics at the single-cell level toward a cure for HIV.
Collapse
|
15
|
The Role of Immunometabolism in HIV-1 Pathogenicity: Links to Immune Cell Responses. Viruses 2022; 14:v14081813. [PMID: 36016435 PMCID: PMC9415820 DOI: 10.3390/v14081813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
With the successful roll-out of combination antiretroviral treatment, HIV is currently managed as a chronic illness. Of note, immune activation and chronic inflammation are hallmarks of HIV-1 infection that persists even though patients are receiving treatments. Despite strong evidence linking immune activation and low-grade inflammation to HIV-1 pathogenesis, the underlying mechanisms remain less well-understood. As intracellular metabolism is emerging as a crucial factor determining the fate and activity of immune cells, this review article focuses on how links between early immune responses and metabolic reprograming may contribute to HIV pathogenicity. Here, the collective data reveal that immunometabolism plays a key role in HIV-1 pathogenesis. For example, the shift from quiescent immune cells to its activation leads to perturbed metabolic circuits that are major drivers of immune cell dysfunction and an altered phenotype. These findings suggest that immunometabolic perturbations play a key role in the onset of non-AIDS-associated comorbidities and that they represent an attractive target to develop improved diagnostic tools and novel therapeutic strategies to help blunt HIV-1 pathogenesis.
Collapse
|
16
|
Understanding the Pivotal Role of the Vagus Nerve in Health from Pandemics. Bioengineering (Basel) 2022; 9:bioengineering9080352. [PMID: 36004877 PMCID: PMC9405360 DOI: 10.3390/bioengineering9080352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
The COVID-19 pandemic seems endless with the regular emergence of new variants. Is the SARS-CoV-2 virus particularly evasive to the immune system, or is it merely disrupting communication between the body and the brain, thus pre-empting homeostasis? Retrospective analysis of the COVID-19 and AIDS pandemics, as well as prion disease, emphasizes the pivotal but little-known role of the 10th cranial nerve in health. Considering neuroimmunometabolism from the point of view of the vagus nerve, non-invasive bioengineering solutions aiming at monitoring and stimulating the vagal tone are subsequently discussed as the next optimal and global preventive treatments, far beyond pandemics.
Collapse
|
17
|
Yu L, Liu X, Wang X, Yan H, Pu Q, Xie Y, Du J, Yang Z. Glycometabolism-related gene signature of hepatocellular carcinoma predicts prognosis and guides immunotherapy. Front Cell Dev Biol 2022; 10:940551. [PMID: 35938165 PMCID: PMC9354664 DOI: 10.3389/fcell.2022.940551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe cancer endangering human health. We constructed a novel glycometabolism-related risk score to predict prognosis and immunotherapy strategies in HCC patients. The HCC data sets were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, and the glycometabolism-related gene sets were obtained from the Molecular Signature Database. The least absolute contraction and selection operator (LASSO) regression model was used to construct a risk score based on glycometabolism-related genes. A simple visual nomogram model with clinical indicators was constructed and its effectiveness in calibration, accuracy, and clinical value was evaluated. We also explored the correlation between glycometabolism-related risk scores and molecular pathways, immune cells, and functions. Patients in the low-risk group responded better to anti-CTLA-4 immune checkpoint treatment and benefited from immune checkpoint inhibitor (ICI) therapy. The study found that glycometabolism-related risk score can effectively distinguish the prognosis, molecular and immune-related characteristics of HCC patients, and may provide a new strategy for individualized treatment.
Collapse
Affiliation(s)
- Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qing Pu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
McTernan PM, Siggins RW, Catinis A, Amedee AM, Simon L, Molina PE. Chronic Binge Alcohol and Ovarian Hormone Loss Dysregulate Circulating Immune Cell SIV Co-Receptor Expression and Mitochondrial Homeostasis in SIV-Infected Rhesus Macaques. Biomolecules 2022; 12:946. [PMID: 35883501 PMCID: PMC9313096 DOI: 10.3390/biom12070946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 12/01/2022] Open
Abstract
Effective antiretroviral therapy (ART) has transitioned HIV to a chronic disease, with more than 50% of people living with HIV (PLWH) being over the age of 50. HIV targets activated CD4+ T cells expressing HIV-specific co-receptors (CCR5 and CXCR4). Previously, we reported that chronic binge alcohol (CBA)-administered male rhesus macaques had a higher percentage of gut CD4+ T cells expressing simian immunodeficiency virus (SIV) co-receptor CXCR4. Evidence also suggests that gonadal hormone loss increased activated peripheral T cells. Further, mitochondrial function is critical for HIV replication and alcohol dysregulates mitochondrial homeostasis. Hence, we tested the hypothesis that CBA and ovariectomy (OVX) increase circulating activated CD4+ T cells expressing SIV co-receptors and dysregulate mitochondrial homeostasis in SIV-infected female rhesus macaques. Results showed that at the study end-point, CBA/SHAM animals had increased peripheral CD4+ T cell SIV co-receptor expression, and a lower CD4+ T cell count compared to CBA/OVX animals. CBA and OVX animals had altered peripheral immune cell gene expression important for maintaining mitochondrial homeostasis. These results provide insights into how at-risk alcohol use could potentially impact viral expression in cellular reservoirs, particularly in SIV-infected ovariectomized rhesus macaques.
Collapse
Affiliation(s)
- Patrick M. McTernan
- Comprehensive Alcohol Research Center, New Orleans, LA 70112, USA; (P.M.M.); (R.W.S.); (A.M.A.); (L.S.)
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Robert W. Siggins
- Comprehensive Alcohol Research Center, New Orleans, LA 70112, USA; (P.M.M.); (R.W.S.); (A.M.A.); (L.S.)
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Anna Catinis
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Angela M. Amedee
- Comprehensive Alcohol Research Center, New Orleans, LA 70112, USA; (P.M.M.); (R.W.S.); (A.M.A.); (L.S.)
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Liz Simon
- Comprehensive Alcohol Research Center, New Orleans, LA 70112, USA; (P.M.M.); (R.W.S.); (A.M.A.); (L.S.)
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Patricia E. Molina
- Comprehensive Alcohol Research Center, New Orleans, LA 70112, USA; (P.M.M.); (R.W.S.); (A.M.A.); (L.S.)
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| |
Collapse
|
19
|
McTernan PM, Levitt DE, Welsh DA, Simon L, Siggins RW, Molina PE. Alcohol Impairs Immunometabolism and Promotes Naïve T Cell Differentiation to Pro-Inflammatory Th1 CD4 + T Cells. Front Immunol 2022; 13:839390. [PMID: 35634279 PMCID: PMC9133564 DOI: 10.3389/fimmu.2022.839390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
CD4+ T cell differentiation to pro-inflammatory and immunosuppressive subsets depends on immunometabolism. Pro-inflammatory CD4+ subsets rely on glycolysis, while immunosuppressive Treg cells require functional mitochondria for their differentiation and function. Previous pre-clinical studies have shown that ethanol (EtOH) administration increases pro-inflammatory CD4+ T cell subsets; whether this shift in immunophenotype is linked to alterations in CD4+ T cell metabolism had not been previously examined. The objective of this study was to determine whether ethanol alters CD4+ immunometabolism, and whether this affects CD4+ T cell differentiation. Naïve human CD4+ T cells were plated on anti-CD3 coated plates with soluble anti-CD28, and differentiated with IL-12 in the presence of ethanol (0 and 50 mM) for 3 days. Both Tbet-expressing (Th1) and FOXP3-expressing (Treg) CD4+ T cells increased after differentiation. Ethanol dysregulated CD4+ T cell differentiation by increasing Th1 and decreasing Treg CD4+ T cell subsets. Ethanol increased glycolysis and impaired oxidative phosphorylation in differentiated CD4+ T cells. Moreover, the glycolytic inhibitor 2-deoxyglucose (2-DG) prevented the ethanol-mediated increase in Tbet-expressing CD4+ T cells but did not attenuate the decrease in FOXP3 expression in differentiated CD4+ T cells. Ethanol increased Treg mitochondrial volume and altered expression of genes implicated in mitophagy and autophagosome formation (PINK1 and ATG7). These results suggest that ethanol impairs CD4+ T cell immunometabolism and disrupts mitochondrial repair processes as it promotes CD4+ T cell differentiation to a pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Patrick M. McTernan
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Danielle E. Levitt
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - David A. Welsh
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Medicine, Section of Pulmonary/Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Robert W. Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
20
|
Damen MSMA, Alarcon PC, Shah AS, Divanovic S. Greasing the inflammatory pathogenesis of viral pneumonias in diabetes. Obes Rev 2022; 23:e13415. [PMID: 34989117 PMCID: PMC9771603 DOI: 10.1111/obr.13415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes (T2D) and obesity are independent risk factors for increased morbidity and mortality associated with influenza and SARS-CoV-2 infection. Skewed cellular metabolism shapes immune cell inflammatory responsiveness and function in obesity, T2D, and infection. However, altered immune cell responsiveness and levels of systemic proinflammatory mediators, partly independent of peripheral immune cell contribution, are linked with SARS-CoV-2-associated disease severity. Despite such knowledge, the role of tissue parenchymal cell-driven inflammatory responses, and specifically those dominantly modified in obesity (e.g., adipocytes), in influenza and SARS-CoV-2 infection pathogenesis remain poorly defined. Whether obesity-dependent skewing of adipocyte cellular metabolism uncovers inflammatory clades and promotes the existence of a 'pathogenic-inflammatory' adipocyte phenotype that amplifies SARS-CoV-2 infection diseases severity in individuals with obesity and individuals with obesity and T2D has not been examined. Here, using the knowledge gained from studies of immune cell responses in obesity, T2D, and infection, we highlight the key knowledge gaps underlying adipocyte cellular functions that may sculpt and grease pathogenic processes associated with influenza and SARS-CoV-2 disease severity in diabetes.
Collapse
Affiliation(s)
- Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pablo C Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical Scientist Training Program, Cincinnati Childrens Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Amy S Shah
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical Scientist Training Program, Cincinnati Childrens Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Allen CNS, Arjona SP, Santerre M, De Lucia C, Koch WJ, Sawaya BE. Metabolic Reprogramming in HIV-Associated Neurocognitive Disorders. Front Cell Neurosci 2022; 16:812887. [PMID: 35418836 PMCID: PMC8997587 DOI: 10.3389/fncel.2022.812887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
A significant number of patients infected with HIV-1 suffer from HIV-associated neurocognitive disorders (HAND) such as spatial memory impairments and learning disabilities (SMI-LD). SMI-LD is also observed in patients using combination antiretroviral therapy (cART). Our lab has demonstrated that the HIV-1 protein, gp120, promotes SMI-LD by altering mitochondrial functions and energy production. We have investigated cellular processes upstream of the mitochondrial functions and discovered that gp120 causes metabolic reprogramming. Effectively, the addition of gp120 protein to neuronal cells disrupted the glycolysis pathway at the pyruvate level. Looking for the players involved, we found that gp120 promotes increased expression of polypyrimidine tract binding protein 1 (PTBP1), causing the splicing of pyruvate kinase M (PKM) into PKM1 and PKM2. We have also shown that these events lead to the accumulation of advanced glycation end products (AGEs) and prevent the cleavage of pro-brain-derived neurotrophic factor (pro-BDNF) protein into mature brain-derived neurotrophic factor (BDNF). The accumulation of proBDNF results in signaling that increases the expression of the inducible cAMP early repressor (ICER) protein which then occupies the cAMP response element (CRE)-binding sites within the BDNF promoters II and IV, thus altering normal synaptic plasticity. We reversed these events by adding Tepp-46, which stabilizes the tetrameric form of PKM2. Therefore, we concluded that gp120 reprograms cellular metabolism, causing changes linked to disrupted memory in HIV-infected patients and that preventing the disruption of the metabolism presents a potential cure against HAND progression.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Claudio De Lucia
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J. Koch
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Bassel E. Sawaya,
| |
Collapse
|
22
|
Gibson MS, Noronha-Estima C, Gama-Carvalho M. Therapeutic Metabolic Reprograming Using microRNAs: From Cancer to HIV Infection. Genes (Basel) 2022; 13:273. [PMID: 35205318 PMCID: PMC8872267 DOI: 10.3390/genes13020273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) are crucial regulators of cellular processes, including metabolism. Attempts to use miRNAs as therapeutic agents are being explored in several areas, including the control of cancer progression. Recent evidence suggests fine tuning miRNA activity to reprogram tumor cell metabolism has enormous potential as an alternative treatment option. Indeed, cancer growth is known to be linked to profound metabolic changes. Likewise, the emerging field of immunometabolism is leading to a refined understanding of how immune cell proliferation and function is governed by glucose homeostasis. Different immune cell types are now known to have unique metabolic signatures that switch in response to a changing environment. T-cell subsets exhibit distinct metabolic profiles which underlie their alternative differentiation and phenotypic functions. Recent evidence shows that the susceptibility of CD4+ T-cells to HIV infection is intimately linked to their metabolic activity, with many of the metabolic features of HIV-1-infected cells resembling those found in tumor cells. In this review, we discuss the use of miRNA modulation to achieve metabolic reprogramming for cancer therapy and explore the idea that the same approach may serve as an effective mechanism to restrict HIV replication and eliminate infected cells.
Collapse
Affiliation(s)
| | | | - Margarida Gama-Carvalho
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal; (M.S.G.); (C.N.-E.)
| |
Collapse
|
23
|
Büttiker P, Stefano GB, Weissenberger S, Ptacek R, Anders M, Raboch J, Kream RM. HIV, HSV, SARS-CoV-2 and Ebola Share Long-Term Neuropsychiatric Sequelae. Neuropsychiatr Dis Treat 2022; 18:2229-2237. [PMID: 36221293 PMCID: PMC9548297 DOI: 10.2147/ndt.s382308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Long COVID, in which disease-related symptoms persist for months after recovery, has led to a revival of the discussion of whether neuropsychiatric long-term symptoms after viral infections indeed result from virulent activity or are purely psychological phenomena. In this review, we demonstrate that, despite showing differences in structure and targeting, many viruses have highly similar neuropsychiatric effects on the host. Herein, we compare severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus 1 (HIV-1), Ebola virus disease (EVD), and herpes simplex virus 1 (HSV-1). We provide evidence that the mutual symptoms of acute and long-term anxiety, depression and post-traumatic stress among these viral infections are likely to result from primary viral activity, thus suggesting that these viruses share neuroinvasive strategies in common. Moreover, it appears that secondary induced environmental stress can lead to the emergence of psychopathologies and increased susceptibility to viral (re)infection in infected individuals. We hypothesize that a positive feedback loop of virus-environment-reinforced systemic responses exists. It is surmised that this cycle of primary virulent activity and secondary stress-induced reactivation, may be detrimental to infected individuals by maintaining and reinforcing the host's immunocompromised state of chronic inflammation, immunological strain, and maladaptive central-nervous-system activity. We propose that this state can lead to perturbed cognitive processing and promote aversive learning, which may manifest as acute, long-term neuropsychiatric illness.
Collapse
Affiliation(s)
- Pascal Büttiker
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - George B Stefano
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Simon Weissenberger
- Department of Psychology, University of New York in Prague, Prague, Czech Republic
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Anders
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Richard M Kream
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
24
|
Dash PK, Alomar FA, Cox JL, McMillan J, Hackfort BT, Makarov E, Morsey B, Fox HS, Gendelman HE, Gorantla S, Bidasee KR. A Link Between Methylglyoxal and Heart Failure During HIV-1 Infection. Front Cardiovasc Med 2022; 8:792180. [PMID: 34970611 PMCID: PMC8712558 DOI: 10.3389/fcvm.2021.792180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Early-onset heart failure (HF) continues to be a major cause of morbidity and mortality in people living with human immunodeficiency virus type one (HIV-1) infection (PLWH), yet the molecular causes for this remain poorly understood. Herein NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ humanized mice (Hu-mice), plasma from PLWH, and autopsied cardiac tissues from deceased HIV seropositive individuals were used to assess if there is a link between the glycolysis byproduct methylglyoxal (MG) and HF in the setting of HIV-1 infection. At five weeks post HIV infection, Hu-mice developed grade III-IV diastolic dysfunction (DD) with an associated two-fold increase in plasma MG. At sixteen-seventeen weeks post infection, cardiac ejection fraction and fractional shortening also declined by 26 and 35%, and plasma MG increased to four-fold higher than uninfected controls. Histopathological and biochemical analyses of cardiac tissues from Hu-mice 17 weeks post-infection affirmed MG increase with a concomitant decrease in expression of the MG-degrading enzyme glyoxalase-1 (Glo1). The endothelial cell marker CD31 was found to be lower, and coronary microvascular leakage and myocardial fibrosis were prominent. Increasing expression of Glo1 in Hu-mice five weeks post-infection using a single dose of an engineered AAV2/9 (1.7 × 1012 virion particles/kg), attenuated the increases in plasma and cardiac MG levels. Increasing Glo1 also blunted microvascular leakage, fibrosis, and HF seen at sixteen weeks post-infection, without changes in plasma viral loads. In plasma from virally suppressed PLWH, MG was also 3.7-fold higher. In autopsied cardiac tissues from seropositive, HIV individuals with low viral log, MG was 4.2-fold higher and Glo1 was 50% lower compared to uninfected controls. These data show for the first time a causal link between accumulation of MG and HF in the setting of HIV infection.
Collapse
Affiliation(s)
- Prasanta K Dash
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fadhel A Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Jesse L Cox
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - JoEllyn McMillan
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bryan T Hackfort
- Departments of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Edward Makarov
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Brenda Morsey
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard S Fox
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E Gendelman
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Santhi Gorantla
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Keshore R Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.,Departments of Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States.,Nebraska Redox Biology Center, Lincoln, NE, United States
| |
Collapse
|
25
|
Importance of T, NK, CAR T and CAR NK Cell Metabolic Fitness for Effective Anti-Cancer Therapy: A Continuous Learning Process Allowing the Optimization of T, NK and CAR-Based Anti-Cancer Therapies. Cancers (Basel) 2021; 14:cancers14010183. [PMID: 35008348 PMCID: PMC8782435 DOI: 10.3390/cancers14010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer treatments are evolving at a very rapid pace. Some of the most novel anti-cancer medicines under development rely on the modification of immune cells in order to transform them into potent tumor-killing cells. However, the tumor microenvironment (TME) is competing for nutrients with these harnessed immune cells and therefore paralyzes their metabolic effective and active anti-cancer activities. Here we describe strategies to overcome these hurdles imposed on immune cell activity, which lead to therapeutic approaches to enhance metabolic fitness of the patient’s immune system with the objective to improve their anti-cancer capacity. Abstract Chimeric antigen receptor (CAR) T and CAR NK cell therapies opened new avenues for cancer treatment. Although original successes of CAR T and CAR NK cells for the treatment of hematological malignancies were extraordinary, several obstacles have since been revealed, in particular their use for the treatment of solid cancers. The tumor microenvironment (TME) is competing for nutrients with T and NK cells and their CAR-expressing counterparts, paralyzing their metabolic effective and active states. Consequently, this can lead to alterations in their anti-tumoral capacity and persistence in vivo. High glucose uptake and the depletion of key amino acids by the TME can deprive T and NK cells of energy and building blocks, which turns them into a state of anergy, where they are unable to exert cytotoxic activity against cancer cells. This is especially true in the context of an immune-suppressive TME. In order to re-invigorate the T, NK, CAR T and CAR NK cell-mediated antitumor response, the field is now attempting to understand how metabolic pathways might change T and NK responses and functions, as well as those from their CAR-expressing partners. This revealed ways to metabolically rewire these cells by using metabolic enhancers or optimizing pre-infusion in vitro cultures of these cells. Importantly, next-generation CAR T and CAR NK products might include in the future the necessary metabolic requirements by improving their design, manufacturing process and other parameters. This will allow the overcoming of current limitations due to their interaction with the suppressive TME. In a clinical setting, this might improve their anti-cancer effector activity in synergy with immunotherapies. In this review, we discuss how the tumor cells and TME interfere with T and NK cell metabolic requirements. This may potentially lead to therapeutic approaches that enhance the metabolic fitness of CAR T and CAR NK cells, with the objective to improve their anti-cancer capacity.
Collapse
|
26
|
Mantovani N, Defelicibus A, da Silva IT, Cicero MF, Santana LC, Arnold R, de Castro DF, Duro RLS, Nishiyama-Jr MY, Junqueira-de-Azevedo ILM, da Silva BCM, da Silva Duarte AJ, Casseb J, de Barros Tenore S, Hunter J, Diaz RS, Komninakis SCV. Latency-associated DNA methylation patterns among HIV-1 infected individuals with distinct disease progression courses or antiretroviral virologic response. Sci Rep 2021; 11:22993. [PMID: 34837007 PMCID: PMC8626465 DOI: 10.1038/s41598-021-02463-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
DNA methylation is one of the epigenetic modifications that configures gene transcription programs. This study describes the DNA methylation profile of HIV-infected individuals with distinct characteristics related to natural and artificial viremia control. Sheared DNA from circulating mononuclear cells was subjected to target enrichment bisulfite sequencing designed to cover CpG-rich genomic regions. Gene expression was assessed through RNA-seq. Hypermethylation in virologic responders was highly distributed closer to Transcription Start Sites (p-value = 0.03). Hyper and hypomethylation levels within TSS adjacencies varied according to disease progression status (Kruskal-Wallis, p < 0.001), and specific differentially methylated regions associated genes were identified for each group. The lower the promoter methylation, the higher the gene expression in subjects undergoing virologic failure (R = - 0.82, p = 0.00068). Among the inversely correlated genes, those supporting glycolysis and its related pathways were hypomethylated and up-regulated in virologic failures. Disease progression heterogeneity was associated with distinct DNA methylation patterns in terms of rates and distribution. Methylation was associated with the expression of genes sustaining intracellular glucose metabolism in subjects undergoing antiretroviral virologic failure. Our findings highlight that DNA methylation is associated with latency, disease progression, and fundamental cellular processes.
Collapse
Affiliation(s)
- Nathalia Mantovani
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil.
| | - Alexandre Defelicibus
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer Center, Rua Taguá, 440, São Paulo, SP, 01508-010, Brazil
| | - Israel Tojal da Silva
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer Center, Rua Taguá, 440, São Paulo, SP, 01508-010, Brazil
| | - Maira Ferreira Cicero
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Luiz Claudio Santana
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Rafael Arnold
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Daniela Funayama de Castro
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Rodrigo Lopes Sanz Duro
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Milton Yutaka Nishiyama-Jr
- Laboratório de Toxinologia Aplicada, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo, SP, 05503-900, Brazil
| | | | - Bosco Christiano Maciel da Silva
- Laboratório de Investigação Médica 56 (LIM/56), Faculdade de Medicina FMUSP, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Alberto José da Silva Duarte
- Laboratório de Investigação Médica 56 (LIM/56), Faculdade de Medicina FMUSP, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Jorge Casseb
- Laboratório de Investigação Médica 56 (LIM/56), Faculdade de Medicina FMUSP, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Simone de Barros Tenore
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - James Hunter
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Ricardo Sobhie Diaz
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Shirley Cavalcante Vasconcelos Komninakis
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| |
Collapse
|
27
|
Sumbria D, Berber E, Mathayan M, Rouse BT. Virus Infections and Host Metabolism-Can We Manage the Interactions? Front Immunol 2021; 11:594963. [PMID: 33613518 PMCID: PMC7887310 DOI: 10.3389/fimmu.2020.594963] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
When viruses infect cells, they almost invariably cause metabolic changes in the infected cell as well as in several host cell types that react to the infection. Such metabolic changes provide potential targets for therapeutic approaches that could reduce the impact of infection. Several examples are discussed in this review, which include effects on energy metabolism, glutaminolysis and fatty acid metabolism. The response of the immune system also involves metabolic changes and manipulating these may change the outcome of infection. This could include changing the status of herpesviruses infections from productive to latency. The consequences of viral infections which include coronavirus disease 2019 (COVID-19), may also differ in patients with metabolic problems, such as diabetes mellitus (DM), obesity, and endocrine diseases. Nutrition status may also affect the pattern of events following viral infection and examples that impact on the pattern of human and experimental animal viral diseases and the mechanisms involved are discussed. Finally, we discuss the so far few published reports that have manipulated metabolic events in-vivo to change the outcome of virus infection. The topic is expected to expand in relevance as an approach used alone or in combination with other therapies to shape the nature of virus induced diseases.
Collapse
Affiliation(s)
- Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States.,Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Manikannan Mathayan
- Center for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|