1
|
Gong Y, Hu H, Zhao X, Wei W, Zhang M, Tran NT, Ma H, Zhang Y, Chan KG, Li S. Exosome-mediated viral nucleic acid presentation in a crustacean expounds innate immunity from a novel perspective. J Virol 2024; 98:e0151924. [PMID: 39545727 DOI: 10.1128/jvi.01519-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
As an enduring hot topic in the field of innate immunity, apoptosis is widely considered an effective approach to eliminate pathogenic microbes and plays a crucial role during host-pathogen interactions. Recently, researchers have found that the virus-containing host cells could transmit apoptotic signals to the surrounding uninfected cells during infection, but the mechanism remains unclear. Here, we found that exosomes secreted by WSSV-infected mud crab hemocytes contain viral nucleic acid wsv277, which could be transported to the recipient cells and further expressed viral protein with phosphokinase activity. Besides, by using transcriptome, proteome, ChIP-seq, and coIP techniques, the results revealed that wsv277 could activate the transcription and translation of apoptotic genes via interacting with CBF and EF-1α so as to suppress the spread of virus infection by inducing apoptosis of the surrounding cells. Therefore, for the first time, our study proved that the components of DNA virus could be encapsulated into exosomes and elucidated the mechanism of apoptotic signal transduction between cells from the perspective of exosomes. IMPORTANCE Our study revealed that the components of DNA virus could be packaged and transmitted through the exosomes of lower invertebrates, which strongly demonstrated the diversity of exosome-mediated viral immunity and its universality in animals. Furthermore, we elucidated the mechanism of apoptotic signal transduction between cells from the perspective of exosomes and revealed a novel strategy for the host to cope with viral infection.
Collapse
Affiliation(s)
- Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Hang Hu
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Xinshan Zhao
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Weiqian Wei
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Kok-Gan Chan
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
2
|
Zou Y, Cao P, Bao Z, Xu Y, Xu Z, Guo H. Histological, physiological and transcriptomic analysis in hepatopancreas of Procambarus clarkii under heat stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117459. [PMID: 39647367 DOI: 10.1016/j.ecoenv.2024.117459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
In the context of global warming, heat stress poses a threat to aquatic organisms. In the present study, a comprehensive analysis in hepatopancreas from Procambarus clarkii was conducted to examine the histology, physiological changes, and transcriptome alterations after exposed at 32 and 37 ℃ for 24 and 72 h, respectively, with 26 ℃ as the control group. The results demonstrated that the survival rate of P. clarkii decreased significantly with the stress time and the temperature increased, with a corresponding damage to its hepatopancreas. Significant fluctuations were observed in the malondialdehyde (MDA) content, reactive oxygen species (ROS) production, total antioxidant capacity (T-AOC), and activities of pyruvate kinase (PK), hexokinase (HK), alkaline phosphatase (ALP), lysozyme (LYS), acid phosphatase (ACP), fatty acid synthase (FAS), as well as lipoprotein lipase (LPL) in response to different stress conditions (P < 0.05). Heat stress notably altered the expression of genes related to glucose, lipid, and protein metabolism, as well as oxidative phosphorylation pathways. The expression of genes related to protein processing and degradation pathways in the endoplasmic reticulum was up-regulation. On the contrary, the expression of genes related to ER autophagy was suppressed. Simultaneously, the differentially expressed genes (DEGs) were significantly enriched in lysosomal and phagosomal pathways. In summary, heat stress induced oxidative damage, disrupted metabolic pathways, impacted protein processing, and compromised immune defense mechanisms, ultimately resulting in decreased survival rates of P. clarkii. These findings contribute to a deeper understanding of aquatic organisms respond to heat stress.
Collapse
Affiliation(s)
- Yongfeng Zou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Panhui Cao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhiming Bao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yu Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, PR China
| | - Zhiqiang Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, PR China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
3
|
Lai W, Song Y, Tollefsen KE, Hvidsten TR. SOLA: dissecting dose-response patterns in multi-omics data using a semi-supervised workflow. Front Genet 2024; 15:1508521. [PMID: 39687738 PMCID: PMC11647027 DOI: 10.3389/fgene.2024.1508521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
An increasing number of ecotoxicological studies have used omics-data to understand the dose-response patterns of environmental stressors. However, very few have investigated complex non-monotonic dose-response patterns with multi-omics data. In the present study, we developed a novel semi-supervised network analysis workflow as an alternative to benchmark dose (BMD) modelling. We utilised a previously published multi-omics dataset generated from Daphnia magna after chronic gamma radiation exposure to obtain novel knowledge on the dose-dependent effects of radiation. Our approach combines 1) unsupervised co-expression network analysis to group genes with similar dose responses into modules; 2) supervised classification of these modules by relevant response patterns; 3) reconstruction of regulatory networks based on transcription factor binding motifs to reveal the mechanistic underpinning of the modules; 4) differential co-expression network analysis to compare the discovered modules across two datasets with different exposure periods; and 5) pathway enrichment analysis to integrate transcriptomics and metabolomics data. Our method unveiled both known and novel effects of gamma radiation, provide insight into shifts in responses from low to high dose rates, and can be used as an alternative approach for multi-omics dose-response analysis in future. The workflow SOLA (Semi-supervised Omics Landscape Analysis) is available at https://gitlab.com/wanxin.lai/SOLA.git.
Collapse
Affiliation(s)
- Wanxin Lai
- Bioinformatics and Applied Statistics (BIAS), Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Akershus, Norway
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - Torgeir R. Hvidsten
- Bioinformatics and Applied Statistics (BIAS), Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Akershus, Norway
| |
Collapse
|
4
|
Rowley AF, Baker-Austin C, Boerlage AS, Caillon C, Davies CE, Duperret L, Martin SAM, Mitta G, Pernet F, Pratoomyot J, Shields JD, Shinn AP, Songsungthong W, Srijuntongsiri G, Sritunyalucksana K, Vidal-Dupiol J, Uren Webster TM, Taengchaiyaphum S, Wongwaradechkul R, Coates CJ. Diseases of marine fish and shellfish in an age of rapid climate change. iScience 2024; 27:110838. [PMID: 39318536 PMCID: PMC11420459 DOI: 10.1016/j.isci.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
A recurring trend in evidence scrutinized over the past few decades is that disease outbreaks will become more frequent, intense, and widespread on land and in water, due to climate change. Pathogens and the diseases they inflict represent a major constraint on seafood production and yield, and by extension, food security. The risk(s) for fish and shellfish from disease is a function of pathogen characteristics, biological species identity, and the ambient environmental conditions. A changing climate can adversely influence the host and environment, while augmenting pathogen characteristics simultaneously, thereby favoring disease outbreaks. Herein, we use a series of case studies covering some of the world's most cultured aquatic species (e.g., salmonids, penaeid shrimp, and oysters), and the pathogens (viral, fungal, bacterial, and parasitic) that afflict them, to illustrate the magnitude of disease-related problems linked to climate change.
Collapse
Affiliation(s)
- Andrew F Rowley
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | | | - Annette S Boerlage
- Centre for Epidemiology and Planetary Health (CEPH), SRUC School of Veterinary Medicine, Inverness, Scotland, UK
| | - Coline Caillon
- Université of Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Charlotte E Davies
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Léo Duperret
- IHPE, Université of Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Montpellier, France
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Guillaume Mitta
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Tahiti, French Polynesia
| | - Fabrice Pernet
- Université of Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Jarunan Pratoomyot
- Institute of Marine Science, Burapha University, Chonburi 20131, Thailand
| | - Jeffrey D Shields
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Andrew P Shinn
- INVE Aquaculture (Thailand), 471 Bond Street, Bangpood, Pakkred, Nonthaburi 11120, Thailand
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Warangkhana Songsungthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Gun Srijuntongsiri
- School of Information, Computer, and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Kallaya Sritunyalucksana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Jeremie Vidal-Dupiol
- IHPE, Université of Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Montpellier, France
| | - Tamsyn M Uren Webster
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Suparat Taengchaiyaphum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | | | - Christopher J Coates
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
- Zoology and Ryan Institute, School of Natural Sciences, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
5
|
Beaudreau N, Page TM, Drolet D, McKindsey CW, Howland KL, Calosi P. Using a metabolomics approach to investigate the sensitivity of a potential Arctic-invader and its Arctic sister-species to marine heatwaves and traditional harvesting disturbances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170167. [PMID: 38242480 DOI: 10.1016/j.scitotenv.2024.170167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Coastal species are threatened by fishing practices and changing environmental conditions, such as marine heatwaves (MHW). The mechanisms that confer tolerance to such stressors in marine invertebrates are poorly understood. However, differences in tolerance among different species may be attributed to their geographical distribution. To test the tolerance of species occupying different thermal ranges, we used two closely related bivalves the softshell clam Mya arenaria (Linnaeus, 1758), a cold-temperate invader with demonstrated potential for establishment in the Arctic, and the blunt gaper Mya truncata (Linnaeus, 1758), a native polar species. Clams were subjected to a thermal stress, mimicking a MHW, and harvesting stress in a controlled environment. Seven acute temperature changes (2, 7, 12, 17, 22, 27, and 32 °C) were tested at two harvesting disturbance intensities (with, without). Survival was measured after 12 days and three tissues (gills, mantle, and posterior adductor muscle) collected from surviving individuals for targeted metabolomic profiling. MHW tolerance differed significantly between species: 26.9 °C for M. arenaria and 17.8 °C for M. truncata, with a negligeable effect of harvesting. At the upper thermal limit, M. arenaria displayed a more profound metabolomic remodelling when compared to M. truncata, and this varied greatly between tissue types. Network analysis revealed differences in pathway utilization at the upper MHW limit, with M. arenaria displaying a greater reliance on multiple DNA repair and expression and cell signalling pathways, while M. truncata was limited to fewer pathways. This suggests that M. truncata is ill equipped to cope with warming environments. MHW patterning in the Northwest Atlantic may be a strong predictor of population survival and future range shifts in these two clam species. As polar environments undergo faster rates of warming compared to the global average, M. truncata may be outcompeted by M. arenaria expanding into its native range.
Collapse
Affiliation(s)
- Nicholas Beaudreau
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Tessa M Page
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - David Drolet
- Fisheries and Oceans Canada, Demersal and Benthic Science Branch, Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada
| | - Christopher W McKindsey
- Fisheries and Oceans Canada, Demersal and Benthic Science Branch, Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada
| | - Kimberly L Howland
- Fisheries and Oceans Canada, Arctic and Aquatic Research Division, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Piero Calosi
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada.
| |
Collapse
|
6
|
Zhu X, Zhao Y, Sun N, Li C, Jiang Q, Zhang Y, Wei H, Li Y, Hu Q, Li X. Comparison of the gut microbiota and untargeted gut tissue metabolome of Chinese mitten crabs ( Eriocheir sinensis) with different shell colors. Front Microbiol 2023; 14:1218152. [PMID: 37520354 PMCID: PMC10374289 DOI: 10.3389/fmicb.2023.1218152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The Chinese mitten crab (Eriocheir sinensis) is a highly valued freshwater crustacean in China. While the natural shell color of E. sinensis is greenish brown (GH), we found a variety with a brownish-orange shell color (RH). Although RH is more expensive, it exhibits a lower molting frequency and growth rate compared with GH, which significantly reduces its yield and hinders large-scale farming. The growth and development of animals are closely related to their gut microbiota and gut tissue metabolic profiles. Methods In this study, we compared the gut microbiome communities and metabolic profiles of juvenile RH and GH crabs using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS), respectively. Results Our findings indicated that the intestinal microbial composition and metabolic characteristics of E. sinensis differed significantly between RH and GH. At the operational taxonomic unit (OTU) level, the α-diversity of the gut microbiota did not differ significantly between RH and GH, while the β-diversity of the RH gut microbiota was higher than that of the GH gut microbiota. At the species level, the richness of unclassified_c_Alphaproteobacteria was significantly higher in the GH group, while the RH group had a significantly higher richness of three low-abundance species, Flavobacteria bacterium BAL38, Paraburkholderia ferrariae, and uncultured_bacterium_g__Legionella. In the current study, 598 gut tissue metabolites were identified, and 159 metabolites were significantly different between GH and RH. The metabolite profile of RH was characteristic of a low level of most amino acids and lipid metabolites and a high level of several pigments compared with that of GH. These metabolites were enriched in 102 KEGG pathways. Four pathways, including (1) Central carbon metabolism in cancer, (2) protein digestion and absorption, (3) alanine, aspartate and glutamate metabolism, and (4) aminoacyl-tRNA biosynthesis, were significantly enriched. The correlation analysis between metabolites and microbiotas indicated that most key differential metabolites were positively correlated with the abundance of Shewanella_sp_MR-7. Discussion This research provided a greater understanding of the physiological conditions of E. sinensis varieties with different shell colors by comparing the gut microbiota and gut tissue metabolome.
Collapse
Affiliation(s)
- Xiaochen Zhu
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Yingying Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Na Sun
- Panjin Guanghe Crab Industry Co. Ltd., Panjin, China
| | - Changlei Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qing Jiang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yazhao Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hua Wei
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Yingdong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Qingbiao Hu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Xiaodong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
- Panjin Guanghe Crab Industry Co. Ltd., Panjin, China
| |
Collapse
|
7
|
Sui Z, Wei C, Wang X, Zhou H, Liu C, Mai K, He G. Nutrient sensing signaling and metabolic responses in shrimp Litopenaeus vannamei under acute ammonia stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114672. [PMID: 36827896 DOI: 10.1016/j.ecoenv.2023.114672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Ammonia is the primary environmental factor affecting the growth and health of crustaceans. It would induce oxidative stress and metabolic disorders. Extra amount of energy was demanded to maintain the physiological functions under ammonia stress. However, limited information was available on its effects on the main nutrient metabolism, as well as the nutrient sensing signaling pathways. In the present study, shrimp Litopenaeus vannamei were exposed to acute ammonia stress and injected with amino acid solution. The results showed that acute ammonia exposure resulted in lower free amino acid levels in hemolymph, incomplete activation of the mechanistic target of rapamycin (mTOR) signaling and cascaded less protein synthesis in muscle. It induced autophagy and activated the AMP-activated protein kinase (AMPK) pathway. Meanwhile, ammonia exposure enhanced glycolysis and lipogenesis, but inhibited lipolysis. The results characterized the integrated metabolic responses and nutrient signaling to ammonia stress. It provides critical clues to understand the growth performance and physiological responses in shrimp under ammonia stress.
Collapse
Affiliation(s)
- Zhongmin Sui
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China
| | - Chaoqing Wei
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China
| | - Xuan Wang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China
| | - Huihui Zhou
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China
| | - Chengdong Liu
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China
| | - Gen He
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Key laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
Zhou L, Liu Z, Zheng Z, Yao D, Zhao Y, Chen X, Zhang Y, Aweya JJ. The CCR1 and CCR5 C-C chemokine receptors in Penaeus vannamei are annexed by bacteria to attenuate shrimp survival. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104561. [PMID: 36183838 DOI: 10.1016/j.dci.2022.104561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The C-C chemokine receptors (CCRs) family is involved in diverse pathophysiological processes in mammals, such as immune regulation and cancer, but their functions in invertebrates remain enigmatic. Here, two CCR homologs in Penaeus vannamei (designated PvCCR1 and PvCCR5) were characterized and found to share sequence homology with other CCRs and contain the conserved 7TM functional domain. Both PvCCR1 and PvCCR5 were constitutively expressed in healthy shrimp tissues, while their mRNA transcript levels were induced in hepatopancreas and hemocytes by Vibrio parahaemolyticus, Streptococcus iniae, and white spot syndrome virus. Notably, shrimp survival increased after knockdown of PvCCR1 and PvCCR5 followed by V. parahaemolyticus infection, indicating that PvCCR1 and PvCCR5 are annexed by the bacteria for their benefit, the absence of which attenuates the effects of the pathogen on shrimp survival. The present data indicate that PvCCR1 and PvCCR5 play key roles in the antimicrobial immune response and therefore vital for shrimp survival.
Collapse
Affiliation(s)
- Liping Zhou
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Zhouyan Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Yueling Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, Fujian, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
9
|
Hou M, Pang Y, Niu C, Zhang D, Zhang Y, Liu Z, Song Y, Shi A, Chen Q, Zhang J, Cheng Y, Yang X. Effects of Dietary L-TRP on Immunity, Antioxidant Capacity and Intestinal Microbiota of the Chinese Mitten Crab ( Eriocheir Sinensis) in Pond Culture. Metabolites 2022; 13:metabo13010001. [PMID: 36676926 PMCID: PMC9866439 DOI: 10.3390/metabo13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
L-tryptophan (L-TRP) is an essential amino acid for the normal growth of crustaceans. As a nutritional supplement and antioxidant, L-TRP has the function of immune and antioxidant capacity regulation. From July to November, the effects of L-TRP on the immunity, antioxidant capacity and intestinal microflora of the Chinese mitten crab (Eriocheir sinensis) in pond culture were investigated. After feeding an L-TRP diet for 30 (named as August), 60 (named as September) and 106 (named as November) days, respectively, the activities of the immune and antioxidant enzymes in the hepatopancreas and hemolymph were evaluated, and the intestinal microbiota were profiled via high-throughput Illumina sequencing. The results showed that supplementation of L-TRP significantly increased the activities of AKP in the hepatopancreas in September, and significantly increased the activities of ACP in the hepatopancreas in August and September, and the hemolymph’s ACP activities also significantly increased in August and November (p < 0.05). Similarly, the activities of SOD, AOC and POD in the hepatopancreas significantly increased in September and November (p < 0.05) after feeding the L-TRP diet; meanwhile, the activities of SOD and AOC in the hemolymph also significantly increased in August (p < 0.05). However, in August, the L-TRP diet resulted in a significant increase in MDA activity in the hepatopancreas and hemolymph (p < 0.05). In addition, the results of the intestinal microbiota analysis showed that Firmicutes, Bacteroidetes and Proteobacteria were the dominant phyla in August, September and November, and Patescibacteria was the dominant phylum in September and November. After feeding the L-TRP diet, the richness of Cyanobacteria and Desulfobacterota significantly increased in August (p < 0.05), and the richness of Actinobacteriota significantly decreased in September (p < 0.05). Moreover, the L-TRP supplementation significantly reduced the abundance of ZOR0006 in the Firmicutes in September (p < 0.05). In conclusion, dietary L-TRP could improve the immunity and antioxidant ability and impact the intestinal health of E. sinensis at the early stage of pond culturing. However, long-term feeding of an L-TRP diet might have no positive impact on the activities of the immune, antioxidant enzymes and intestinal microbiota.
Collapse
Affiliation(s)
- Mengna Hou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yangyang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chao Niu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Dongxin Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiqiang Liu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yameng Song
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Aoya Shi
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Qing Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Junyan Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (Y.C.); (X.Y.); Tel.: +86-21-6190-0417 (Y.C. & X.Y.)
| | - Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (Y.C.); (X.Y.); Tel.: +86-21-6190-0417 (Y.C. & X.Y.)
| |
Collapse
|
10
|
Wang Z, Aweya JJ, Yao D, Zheng Z, Wang C, Zhao Y, Li S, Zhang Y. Taurine metabolism is modulated in Vibrio-infected Penaeus vannamei to shape shrimp antibacterial response and survival. MICROBIOME 2022; 10:213. [PMID: 36464721 PMCID: PMC9721036 DOI: 10.1186/s40168-022-01414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Numerous microorganisms are found in aquaculture ponds, including several pathogenic bacteria. Infection of cultured animals by these pathogens results in diseases and metabolic dysregulation. However, changes in the metabolic profiles that occur at different infection stages in the same ponds and how these metabolic changes can be modulated by exogenous metabolites in Penaeus vannamei remain unknown. RESULTS Here, we collected gastrointestinal tract (GIT) samples from healthy, diseased, and moribund P. vannamei in the same aquaculture pond for histological, metabolic, and transcriptome profiling. We found that diseased and moribund shrimp with empty GITs and atrophied hepatopancreas were mainly infected with Vibrio parahaemolyticus and Vibrio harveyi. Although significant dysregulation of crucial metabolites and their enzymes were observed in diseased and moribund shrimps, diseased shrimp expressed high levels of taurine and taurine metabolism-related enzymes, while moribund shrimp expressed high levels of hypoxanthine and related metabolism enzymes. Moreover, a strong negative correlation was observed between taurine levels and the relative abundance of V. parahaemolyticus and V. harveyi. Besides, exogenous taurine enhanced shrimp survival against V. parahaemolyticus challenge by increasing the expression of key taurine metabolism enzymes, mainly, cysteine dioxygenase (CDO) and cysteine sulfinic acid decarboxylase (CSD). CONCLUSIONS Our study revealed that taurine metabolism could be modulated by exogenous supplementation to improve crustacean immune response against pathogenic microbes. Video Abstract.
Collapse
Affiliation(s)
- Zhongyan Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, Fujian, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Chuanqi Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
11
|
Liu J, Hong W, Li M, Xiao Y, Yi Y, Liu Y, Wu G. Transcriptome analysis reveals immune and metabolic regulation effects of Poria cocos polysaccharides on Bombyx mori larvae. Front Immunol 2022; 13:1014985. [PMID: 36389836 PMCID: PMC9650554 DOI: 10.3389/fimmu.2022.1014985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Poria cocos polysaccharides (PS) have been used as Chinese traditional medicine with various pharmacological effects, including antiviral, anti-oxidative, and immunomodulatory activities. Herein Bombyx mori silkworm was used as a model animal to evaluate the immunomodulatory effects of PS via detecting the changes of innate immune parameters and explore the underlying molecular mechanism of the immunoregulatory effect of PS using Illumina HiSeq Xten platform. The results presented here demonstrated that a hemocoel injection of PS significantly enhanced the cellular immunity of silkworm, including hemocyte phagocytosis, microaggregation, and spreading ability. A total of 335 differentially expressed genes (DEGs) were screened, including 214 upregulated genes and 121 downregulated genes by differential expression analysis. Gene annotation and enrichment analyses showed that many DEGs related to immune signal recognition, detoxification, proPO activation, carbohydrate metabolism, and lipid metabolism were significantly upregulated in the treatment group. The Kyoto Encyclopedia of Genes and Genomes-based Gene Set Enrichment Analysis also revealed that the more highly expressed gene sets in the PS treatment silkworm were mainly related to immune signal transduction pathways and energy metabolism. In addition, the activity of four enzymes related to immunity and energy metabolism—including phenoloxidase, glucose-6-phosphate dehydrogenase, hexokinase, and fatty acid synthetase—were all significantly increased in the larvae injected with PS. We performed qRT-PCR to examine the expression profile of immune and metabolic-related genes, which further verified the reliability of our transcriptome data and suggested that PS can regulate the immunity of silkworm by enhancing the cellular immunity and modulating the expression levels of genes related to immune responses and physiological metabolism. These findings will lay a scientific foundation for the use of PS as an immunomodulator in disease prevention in human beings or animals.
Collapse
Affiliation(s)
- Jiajie Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Wanyu Hong
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Mei Li
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, China
| | - Yang Xiao
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Yunhong Yi
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Gongqing Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
- Guangdong Cosmetics Engineering & Technology Research Center, Zhongshan, China
- *Correspondence: Gongqing Wu,
| |
Collapse
|
12
|
Zheng L, Byadgi O, Rakhshaninejad M, Nauwynck H. Upregulation of torso-like protein (perforin) and granzymes B and G in non-adherent, lymphocyte-like haemocytes during a WSSV infection in shrimp. FISH & SHELLFISH IMMUNOLOGY 2022; 128:676-683. [PMID: 35985630 DOI: 10.1016/j.fsi.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Invertebrates only have an innate immunity in which haemocytes play an important role. In our lab, 5 subpopulations of haemocytes were identified in the past by an iodixanol density gradient: hyalinocytes, granulocytes, semi-granulocytes and two subpopulations of non-phagocytic cells. For the two latter subpopulations, the haemocytes have small cytoplasm rims, do not adhere to the bottom of plastic cell-culture grade wells and present folds in the nucleus. These characteristics are similar to those of mammalian lymphocytes. Therefore, they were designated lymphocyte-like haemocytes. Although little is known about their function, we hypothesize, based on their morphology, that they may have a cytotoxic activity. First, a fast isolation technique was developed to separate the non-adherent haemocytes from the adherent haemocytes. After 60 min incubation on cell culture plates, the non-adherent haemocytes were collected. The purity reached 93% as demonstrated by flow cytometry and light microscopy upon a Hematoxylin and Eosin (H&E) staining. Cytotoxicity by lymphocytes is mediated by molecules such as perforin and granzymes and therefore, we searched for their genes in the shrimp genome. Genes coding for a torso-like protein, granzyme B and granzyme G were identified. Primers were designed and RT-PCR/RT-qPCR assays were developed. The results demonstrated that torso-like protein, granzyme B and granzyme G were mainly expressed in non-adherent haemocytes. The shrimp torso-like protein gene was most related to that of the crab torso-like protein; granzyme B gene was most related to that of mouse granzyme B and granzyme G gene was most related to that of zebrafish granzyme G. In a 72-hour in vivo WSSV infection challenge, the mRNA expression of shrimp torso-like protein, granzyme B and granzyme G in haemocytes was increasing over time, which indicated that torso-like protein, granzyme B and granzyme G of shrimp haemocytes are involved in the immune response during a viral infection. In the future, antibodies will be raised against these proteins for more in-depth functional analyses.
Collapse
Affiliation(s)
- Liping Zheng
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - Omkar Byadgi
- International Program in Ornamental Fish Technology and Aquatic Animal Health, National Pingtung University of Science and Technology, 91201, Pingtung, Taiwan
| | - Mostafa Rakhshaninejad
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
13
|
Baharum SN, Mayalvanan Y, Natnan ME, Azizan KA, Bunawan H, Him NRN, Low CF, Chong CM. LC-qTOF-MS analysis of fish immune organs reveals the distribution of amino acids in response to metabolic adaptation of the survival phenotype in grouper against Vibrio infection. 3 Biotech 2022; 12:206. [PMID: 35935547 PMCID: PMC9349327 DOI: 10.1007/s13205-022-03269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Epinephelus fuscoguttatus is economically crucial to various Southeast Asia countries where they are reared in fish farms to meet the demand for supply. However, a systemic infectious disease known as vibriosis has steadily and extensively affected the fish farming industry. The disease is caused by Vibrio spp., which are pathogenic gram-negative bacteria. This study focused on understanding the host's metabolic adaptation against Vibrio vulnificus infection, which features a survival phenotype, by profiling the metabolites in grouper fingerlings that survived the experimental infection. Mapping of the pathways is crucial to explain the roles of metabolites in fish immunity. A solvent extraction method was used on the grouper's immune organs (gills, liver and spleen) prior to Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (LC-qTOF-MS) analysis. The metabolites identified in fingerlings that survived experimental infections were mostly amino acids (primary metabolites). Glutamine (0.44%), alanine (0.68%), phenylalanine (2.63%) and tyrosine (2.60%) were highly abundant in survived-infected gills. Aspartic acid (13.57%) and leucine (4.01%) were highly abundant in the livers of the survived-infected fish and lysine was highly abundant in both gills (2.94%) and liver (3.64%) of the survived-infected fish. Subsequent bioinformatics analysis revealed the involvement of the identified functional amino acids in various immune-related pathways. The current findings facilitate the comprehension of the metabolic adaptation of grouper fingerlings that exhibited a survival phenotype against Vibrio infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03269-1.
Collapse
Affiliation(s)
- Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600 Selangor Malaysia
| | - Yosmetha Mayalvanan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600 Selangor Malaysia
| | - Maya Erna Natnan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600 Selangor Malaysia
| | - Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600 Selangor Malaysia
| | - Hamidun Bunawan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600 Selangor Malaysia
| | - Nik Raikhan Nik Him
- Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40450 Selangor Malaysia
| | - Chen-Fei Low
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600 Selangor Malaysia
| | - Chou-Min Chong
- Aquaculture Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400 Selangor Malaysia
| |
Collapse
|
14
|
Hernández-Velázquez IM, Zamora-Briseño JA, Hernández-Bolio GI, Hernández-Nuñez E, Lozano-Álvarez E, Briones-Fourzán P, Rodríguez-Canul R. Metabolic changes in antennal glands of Caribbean spiny lobsters Panulirus argus infected by Panulirus argus virus 1 (PaV1). DISEASES OF AQUATIC ORGANISMS 2022; 151:11-22. [PMID: 36047670 DOI: 10.3354/dao03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Panulirus argus virus 1 (PaV1) (Family Mininucleoviridae) causes chronic and systemic infection in wild juvenile spiny lobsters Panulirus argus (Latreille, 1804), ending in death by starvation and metabolic wasting. In marine decapods, the antennal gland is involved in osmoregulation and excretion. In this compact organ, fluid is filtered from the hemolymph, and ions are reabsorbed to produce a hypotonic urine. Although PaV1 is released with the urine in infected individuals, little is known regarding the metabolic effect of PaV1 in the antennal gland. The objective of this study was to perform a comparative evaluation of the metabolic profile of the antennal gland of clinically PaV1-infected lobsters versus those with no clinical signs of infection, using proton nuclear magnetic resonance analysis. Overall, 48 compounds were identified, and the most represented metabolites were those involved in carbohydrate, amino acid, energy, and nucleotide metabolism. Most of the metabolites that were down-regulated in the infected group were essential and non-essential amino acids. Some metabolites involved in the urea cycle and carbohydrate metabolism were also altered. This study represents a first approach to the metabolic evaluation of the antennal gland. We broadly discuss alterations in the content of several proteinogenic and non-proteinogenic amino acids and other key metabolites involved in energetic and nucleotide metabolism.
Collapse
Affiliation(s)
- Ioreni Margarita Hernández-Velázquez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Carr. Mérida-Progreso, CP 97310 Mérida, Yucatán, México
| | | | | | | | | | | | | |
Collapse
|
15
|
D'Costa AH. Microplastics in decapod crustaceans: Accumulation, toxicity and impacts, a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154963. [PMID: 35367539 DOI: 10.1016/j.scitotenv.2022.154963] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The presence of microplastics in the aquatic environment poses a serious threat not only to aquatic organisms but also to human beings that consume them. The uptake and effects of microplastics have been studied in almost all groups of aquatic organisms. This review details the different aspects of microplastics exposure in an ecologically and economically important group of crustaceans, the Decapods. A majority of Decapod crustaceans such as prawns, shrimp, crabs, lobsters and crayfish are consumed as seafood and play important roles in food chains and food webs. Numerous studies are available on the accumulation of microplastics in tissues such as the gills, hepatopancreas and gastrointestinal tract in these organisms. Experimental studies have also highlighted the toxic effects of microplastics such as oxidative stress, immunotoxicity and reproductive and developmental toxicity in them. This review also summarizes the ecological impacts and implications in human beings as well as lacunae with regard to microplastic uptake in Decapods.
Collapse
|
16
|
Mansour AT, Ashour M, Abbas EM, Alsaqufi AS, Kelany MS, El-Sawy MA, Sharawy ZZ. Growth Performance, Immune-Related and Antioxidant Genes Expression, and Gut Bacterial Abundance of Pacific White Leg Shrimp, Litopenaeus vannamei, Dietary Supplemented With Natural Astaxanthin. Front Physiol 2022; 13:874172. [PMID: 35812341 PMCID: PMC9259928 DOI: 10.3389/fphys.2022.874172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/01/2022] [Indexed: 01/29/2023] Open
Abstract
The current study examines the effect of dietary supplementation of ethanolic extract of Arthrospira platensis NIOF17/003, which is mainly natural astaxanthins (97.50%), on the growth performance, feed utilization, bacterial abundance, and immune-related and antioxidant gene expressions of the Pacific white leg shrimp, Litopenaeus vannamei. A total of 360 healthy L. vannamei postlarvae (0.19 ± 0.003 g) were divided into four groups (0, 2, 4, and 6 g natural astaxanthins/kg diet) each in three replicates, at an initial density of 30 PLs per tank (40 L capacity). The shrimp were fed the tested diets three times a day at a rate of 10% of their total body weight for 90 days. Diets supplemented with different astaxanthin levels significantly improved shrimp growth performance and feed conversion ratio compared to the control diet. No significant differences were observed in survival rates among all experimental groups. The immune-related genes (prophenoloxidase, lysozyme, beta-glucan binding protein, transglutaminase, and crustin) mRNA levels were significantly upregulated in groups fed with different concentrations of the natural astaxanthins in a dose-dependent manner. The prophenoloxidase gene is the highest immune-upregulated gene (14.71-fold change) in response to astaxanthin supplementation. The superoxide dismutase mRNA level was significantly increased with increasing dietary astaxanthin supplementation. In addition, increasing astaxanthin supplementation levels significantly reduced the count of heterotrophic bacteria and Vibrio spp. in the culture water and shrimp intestine. Overall, the current results concluded that diet supplementation with natural astaxanthin, extracted from Arthrospira platensis, enhanced the growth performance, immune response, and antioxidant status of L. vannamei.
Collapse
Affiliation(s)
- Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
- *Correspondence: Abdallah Tageldein Mansour, , orcid.org/0000-0002-5963-5276; Mohamed Ashour, , orcid.org/0000-0002-1595-1197
| | - Mohamed Ashour
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
- *Correspondence: Abdallah Tageldein Mansour, , orcid.org/0000-0002-5963-5276; Mohamed Ashour, , orcid.org/0000-0002-1595-1197
| | - Eman M. Abbas
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Ahmed Saud Alsaqufi
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Mahmoud S. Kelany
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | | | - Zaki Z. Sharawy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
17
|
Prigot-Maurice C, Depeux C, Paulhac H, Braquart-Varnier C, Beltran-Bech S. Immune priming in Armadillidiumvulgare against Salmonellaenterica: direct or indirect costs on life history traits? Zookeys 2022; 1101:131-158. [PMID: 36760973 PMCID: PMC9848923 DOI: 10.3897/zookeys.1101.77216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/08/2022] [Indexed: 11/12/2022] Open
Abstract
Invertebrate immune priming is defined as an enhanced protection against secondary pathogenic infections when individuals have been previously exposed to the same or a different pathogen. Immune priming can be energetically costly for individuals, thus impacting trade-offs between life-history traits, like reproduction, growth, and lifetime. Here, the reproductive cost(s) and senescence patterns of immune priming against S.enterica in the common woodlouse A.vulgare (Crustacea, Isopoda) were investigated. Four different groups of females were used that either (1) have never been injected (control), (2) were injected twice with S.enterica (7 days between infections), (3) were firstly injected with LB-broth, then with S.enterica, and (4) females injected only once with S.enterica. All females were allowed to breed with one non-infected male and were observed for eight months. Then, the number of clutches produced, the time taken to produce the clutch(es), the number of offspring in each clutch, the senescence biomarkers of females, and parameters of their haemocytes were compared. The result was that immune priming did not significantly impact reproductive abilities, senescence patterns, and haemocyte parameters of female A.vulgare, but had an indirect effect through body weight. The lighter immune primed females took less time to produce the first clutch, which contained less offspring, but they were more likely to produce a second clutch. The opposite effects were observed in the heavier immune primed females. By highlighting that immune priming was not as costly as expected in A.vulgare, these results provide new insights into the adaptive nature of this immune process.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, 3 rue Jacques Fort, TSA 51106, F-86073 POITIERS Cedex 9, FranceUniversité de PoitiersPoitiersFrance
| | - Charlotte Depeux
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, 3 rue Jacques Fort, TSA 51106, F-86073 POITIERS Cedex 9, FranceUniversité de PoitiersPoitiersFrance
| | - Hélène Paulhac
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, 3 rue Jacques Fort, TSA 51106, F-86073 POITIERS Cedex 9, FranceUniversité de PoitiersPoitiersFrance
| | - Christine Braquart-Varnier
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, 3 rue Jacques Fort, TSA 51106, F-86073 POITIERS Cedex 9, FranceUniversité de PoitiersPoitiersFrance
| | - Sophie Beltran-Bech
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, 3 rue Jacques Fort, TSA 51106, F-86073 POITIERS Cedex 9, FranceUniversité de PoitiersPoitiersFrance
| |
Collapse
|
18
|
Lu M, Su M, Liu N, Zhang J. Effects of environmental salinity on the immune response of the coastal fish Scatophagus argus during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:401-410. [PMID: 35472400 DOI: 10.1016/j.fsi.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The coastal aquaculture is characterized with environmental salinity fluctuation, and the effects of salinity stress on the immunity of cultured fish are needed to be further explored. Scatophagus argus is an important species in the wild fisheries and aquaculture industry, it would be of great value to reveal the impact of salinity change on the immune response in this species. Understanding the effects of salinity stress on immune response can provide valuable insights into salinity management in the aquacultural process. The head kidney, which is an organ unique for teleost fish, functions not only as a central immune organ but also as a crucial role in the stress response during which the secretion of immunoregulatory molecules i.e. cytokines is facilitated. In the present study, Individuals of S. argus acclimated to 3 different salinities [0‰ (FW), 10‰ (BW), and 25‰ (SW)] were injected intraperitoneally with A. hydrophila, and then monitored throughout one week. The effects of environmental salinity on the immune response in S. argus stimulated by A. hydrophila infection were investigated. mRNA expression profiles of cytokine genes IL-1β, IL-6, IL-10 and TNF-α in different salinity groups was quite different. mRNA expression of cytokine genes in BW group and SW group rose more quickly and significantly higher than FW group (p < 0.05) at early stages (6-24 hpi) after bacterial injection, and before 96 hpi, the highest value of cytokine expression at each time point was recorded in SW group. Immune parameters such as lysozyme level, complement C3 activity and IgM content in BW and FW groups were lower than SW group at each time point from 24 to 144 hpi after bacterial injection. In addition, leukocyte profiles in the head kidney and blood were also investigated. Although hypoosmotic acclimation could temporarily stimulate monocyte and neutrophil proliferation, it was observed that the number of monocytes, neutrophils and lymphocytes of the head kidney and blood in SW group increased more quickly than BW and FW groups after bacterial infection. Our results indicate that hypoosmotic stress due to the decrease of environmental salinity has suppressive immunoregulatory effects on the immune response of S. argus.
Collapse
Affiliation(s)
- Mengying Lu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
19
|
Huang Z, Zhang Y, Zheng X, Liu Z, Yao D, Zhao Y, Chen X, Aweya JJ. Functional characterization of arginine metabolic pathway enzymes in the antibacterial immune response of penaeid shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104293. [PMID: 34648768 DOI: 10.1016/j.dci.2021.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Arginine metabolism pathway enzymes and products are important modulators of several physiological processes in animals, including immune response. Although some components of the arginine metabolic pathway have been reported in penaeid shrimps, no systematic study has explored all the key pathway enzymes involved in shrimp antimicrobial response. Here, we explored the role of the three key arginine metabolism enzymes (nitric-oxide synthase (NOS), arginase (ARG), agmatinase (AGM)) in Penaeus vannamei antimicrobial immunity. First, P. vannamei homologs of ARG and AGM (PvARG and PvAGM) were cloned and found to be evolutionally conserved with invertebrate counterparts. Transcript levels of PvARG, PvAGM, and PvNOS were ubiquitously expressed in healthy shrimp tissues and induced in hemocytes and hepatopancreas upon challenge with Gram-negative (Vibrio parahaemolyticus) and Gram-positive (Streptoccocus iniae) bacteria, suggesting their involvement in shrimp antimicrobial immune response. Besides, RNA interference knockdown and enzyme activity assay revealed an antagonistic relationship between PvARG/PvAGM and PvNOS, while this relationship was broken upon pathogen stimulation. Interestingly, knockdown of PvNOS increased Vibrio abundance in shrimp hemolymph, whereas knockdown of PvAGR reduced Vibrio abundance. Taken together, our present data shows that homologs of the key arginine metabolism pathway enzymes in penaeid shrimp (PvARG, PvAGM, and PvNOS) work synergistically and/or antagonistically to modulate antibacterial immune response.
Collapse
Affiliation(s)
- Zishu Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Xiaoyu Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zhuoyan Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Xiaohan Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|