1
|
Farnetano M, Carucci L, Coppola S, Oglio F, Masino A, Cozzolino M, Nocerino R, Berni Canani R. Gut microbiome features in pediatric food allergy: a scoping review. FRONTIERS IN ALLERGY 2024; 5:1438252. [PMID: 39386092 PMCID: PMC11461474 DOI: 10.3389/falgy.2024.1438252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024] Open
Abstract
Increasing evidence suggests that alterations in the gut microbiome (GM) play a pivotal role in the pathogenesis of pediatric food allergy (FA). This scoping review analyzes the current evidence on GM features associated with pediatric FAs and highlights the importance of the GM as a potential target of intervention for preventing and treating this common condition in the pediatric age. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, we searched PubMed and Embase using the keywords (gut microbiome OR dysbiosis OR gut microbiota OR microbiome signatures) AND (food allergy OR IgE-mediated food allergy OR food protein-induced allergic proctocolitis OR food protein-induced enterocolitis OR non-IgE food allergy OR cow milk allergy OR hen egg allergy OR peanut allergy OR fish allergy OR shellfish allergy OR tree nut allergy OR soy allergy OR wheat allergy OR rice allergy OR food sensitization). We included 34 studies reporting alterations in the GM in children affected by FA compared with healthy controls. The GM in pediatric FAs is characterized by a higher abundance of harmful microorganisms (e.g., Enterobacteriaceae, Clostridium sensu stricto, Ruminococcus gnavus, and Blautia spp.) and lower abundance of beneficial bacteria (e.g., Bifidobacteriaceae, Lactobacillaceae, some Bacteroides species). Moreover, we provide an overview of the mechanisms of action elicited by these bacterial species in regulating immune tolerance and of the main environmental factors that can modulate the composition and function of the GM in early life. Altogether, these data improve our knowledge of the pathogenesis of FA and can open the way to innovative diagnostic, preventive, and therapeutic strategies for managing these conditions.
Collapse
Affiliation(s)
- Margherita Farnetano
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Marica Cozzolino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Nocerino R, Carucci L, Coppola S, Oglio F, Masino A, Agizza A, Paparo L, Berni Canani R. The journey toward disease modification in cow milk protein allergy. Immunol Rev 2024; 326:191-202. [PMID: 39046826 DOI: 10.1111/imr.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cow milk protein allergy (CMPA) is one of the most common food allergies in the pediatric age worldwide. Prevalence, persistence, and severity of this condition are on the rise, with a negative impact on the health-related quality of life of the patients and families and on the costs related to its management. Another relevant issue is that CMPA in early life may be the first stage of the "allergic march," leading to the occurrence of other atopic manifestations later in life, especially asthma, atopic eczema, urticaria, and rhinoconjunctivitis. Thus, "disease modification" options that are able to modulate the disease course of pediatric patients affected by CMPA would be very welcomed by affected families and healthcare systems. In this review, we report the most relevant progress on this topic.
Collapse
Affiliation(s)
- Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Alessandra Agizza
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Laboratory Medicine, ASL Benevento, Benevento, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
- Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Nocerino R, Coppola S, Carucci L, Oglio F, Cozzolino M, Masino A, Ozen G, Farnetano M, Berni Canani R. Growth pattern of paediatric patients affected by cow milk protein allergy fed with rice hydrolyzed formula. J Pediatr Gastroenterol Nutr 2024; 78:909-917. [PMID: 38374730 DOI: 10.1002/jpn3.12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Formulas made from hydrolyzed rice proteins (HRPF) are well-tolerated plant-based alternatives to cow's milk protein (CMP)-based formulas for the dietary management of paediatric patients with CMP allergy (CMPA). Growth in patients with CMPA fed with HRPF has been evaluated in several studies with conflicting results. The aim was to evaluate the growth pattern of children with CMPA over a 12-month follow-up period. METHODS Prospective cohort study evaluating growth patterns in challenge proven CMPA paediatric patients receiving HRPF for 12 months. Outcomes were anthropometry (body weight, body length, head circumference), adherence to the study formula and occurrence of adverse events (AEs). RESULTS Sixty-six children were included and completed the 12-month study. At baseline, all CMPA patients were weaned. For the entire CMPA pediatric patients' cohort, from baseline to the end of the study period, the growth pattern resulted within the normal range of World Health Organization (WHO) growth references. The formula was well tolerated. Adherence was optimal and no AEs related to HRPF use were reported. CONCLUSIONS HRPF is well tolerated and can help support healthy growth and development in infants and young children with CMPA. These type of formula can be given with complementary foods in the dietary management of CMPA.
Collapse
Affiliation(s)
- Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Marica Cozzolino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Gulsum Ozen
- Department of Pediatrics, Ankara Ataturk Sanatoryum Training and Research Hospital, Ankara, Turkey
| | - Margherita Farnetano
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Paparo L, Coppola S, Nocerino R, Pisapia L, Picariello G, Cortese M, Voto L, Maglio M, Miele E, Carucci L, Oglio F, Trinchese G, Mollica MP, Bruno C, De Vita S, Tarallo A, Damiano C, Cerulo M, Esposito C, Fogliano V, Parenti G, Troncone R, Berni Canani R. How dietary advanced glycation end products could facilitate the occurrence of food allergy. J Allergy Clin Immunol 2024; 153:742-758. [PMID: 38042501 DOI: 10.1016/j.jaci.2023.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 11/02/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Food allergy (FA) is one of the most common chronic conditions in children with an increasing prevalence facilitated by the exposure to environmental factors in predisposed individuals. It has been hypothesized that the increased consumption of ultra-processed foods, containing high levels of dietary advanced glycation end products (AGEs), could facilitate the occurrence of FA. OBJECTIVE We sought to provide preclinical and clinical evidence on the potential role of AGEs in facilitating the occurrence of FA. METHODS Human enterocytes, human small intestine organ culture, and PBMCs from children at risk for allergy were used to investigate the direct effect of AGEs on gut barrier, inflammation, TH2 cytokine response, and mitochondrial function. Intake of the 3 most common glycation products in Western diet foods, Nε-(carboxymethyl) lysine, Nε-(1-carboxyethyl) lysin, and Nδ-(5-hydro-5- methyl-4-imidazolone-2-yl)-ornithine (MG-H1), and the accumulation of AGEs in the skin were comparatively investigated in children with FA and in age-matched healthy controls. RESULTS Human enterocytes exposed to AGEs showed alteration in gut barrier, AGE receptor expression, reactive oxygen species production, and autophagy, with increased transepithelial passage of food antigens. Small intestine organ cultures exposed to AGEs showed an increase of CD25+ cells and proliferating crypt enterocytes. PBMCs exposed to AGEs showed alteration in proliferation rate, AGE receptor activation, release of inflammatory and TH2 cytokines, and mitochondrial metabolism. Significant higher dietary AGE intake and skin accumulation were observed children with FA (n = 42) compared with age-matched healthy controls (n = 66). CONCLUSIONS These data, supporting a potential role for dietary AGEs in facilitating the occurrence of FA, suggest the importance of limiting exposure to AGEs children as a potential preventive strategy against this common condition.
Collapse
Affiliation(s)
- Lorella Paparo
- Department of Translational Medical Science, University Federico II, Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University Federico II, Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University Federico II, Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University Federico II, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | | | - Maddalena Cortese
- Department of Translational Medical Science, University Federico II, Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University Federico II, Naples, Italy
| | - Luana Voto
- Department of Translational Medical Science, University Federico II, Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University Federico II, Naples, Italy
| | - Mariantonia Maglio
- Department of Translational Medical Science, University Federico II, Naples, Italy; European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Erasmo Miele
- Department of Translational Medical Science, University Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University Federico II, Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University Federico II, Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University Federico II, Naples, Italy
| | | | | | - Cristina Bruno
- Department of Translational Medical Science, University Federico II, Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University Federico II, Naples, Italy
| | - Simone De Vita
- Department of Translational Medical Science, University Federico II, Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University Federico II, Naples, Italy
| | - Antonietta Tarallo
- Department of Translational Medical Science, University Federico II, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Carla Damiano
- Department of Translational Medical Science, University Federico II, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Mariapina Cerulo
- Department of Translational Medical Science, University Federico II, Naples, Italy
| | - Ciro Esposito
- Department of Translational Medical Science, University Federico II, Naples, Italy
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Giancarlo Parenti
- Department of Translational Medical Science, University Federico II, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science, University Federico II, Naples, Italy; European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University Federico II, Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University Federico II, Naples, Italy; European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy; Task Force for Microbiome Studies, University Federico II, Naples, Italy; Task Force for Nutraceuticals and Functional Foods, University Federico II, Naples, Italy.
| |
Collapse
|
5
|
Di Lorenzo F, Paparo L, Pisapia L, Oglio F, Pither MD, Cirella R, Nocerino R, Carucci L, Silipo A, de Filippis F, Ercolini D, Molinaro A, Berni Canani R. The chemistry of gut microbiome-derived lipopolysaccharides impacts on the occurrence of food allergy in the pediatric age. Front Mol Biosci 2023; 10:1266293. [PMID: 37900913 PMCID: PMC10606559 DOI: 10.3389/fmolb.2023.1266293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Food allergy (FA) in children is a major health concern. A better definition of the pathogenesis of the disease could facilitate effective preventive and therapeutic measures. Gut microbiome alterations could modulate the occurrence of FA, although the mechanisms involved in this phenomenon are poorly characterized. Gut bacteria release signaling byproducts from their cell wall, such as lipopolysaccharides (LPSs), which can act locally and systemically, modulating the immune system function. Methods: In the current study gut microbiome-derived LPS isolated from fecal samples of FA and healthy children was chemically characterized providing insights into the carbohydrate and lipid composition as well as into the LPS macromolecular nature. In addition, by means of a chemical/MALDI-TOF MS and MS/MS approach we elucidated the gut microbiome-derived lipid A mass spectral profile directly on fecal samples. Finally, we evaluated the pro-allergic and pro-tolerogenic potential of these fecal LPS and lipid A by harnessing peripheral blood mononuclear cells from healthy donors. Results: By analyzing fecal samples, we have identified different gut microbiome-derived LPS chemical features comparing FA children and healthy controls. We also have provided evidence on a different immunoregulatory action elicited by LPS on peripheral blood mononuclear cells collected from healthy donors suggesting that LPS from healthy individuals could be able to protect against the occurrence of FA, while LPS from children affected by FA could promote the allergic response. Discussion: Altogether these data highlight the relevance of gut microbiome-derived LPSs as potential biomarkers for FA and as a target of intervention to limit the disease burden.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University Federico II, Naples, Italy
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
- European Laboratory for Investigation of Food Induced Diseases, University Federico II, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
| | | | - Roberta Cirella
- Department of Chemical Sciences, University Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University Federico II, Naples, Italy
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
| | - Francesca de Filippis
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Agriculture, University Federico II, Naples, Italy
| | - Danilo Ercolini
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Agriculture, University Federico II, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University Federico II, Naples, Italy
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Chemistry, School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Roberto Berni Canani
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
- European Laboratory for Investigation of Food Induced Diseases, University Federico II, Naples, Italy
| |
Collapse
|
6
|
Nocerino R, Coppola S, Carucci L, de Giovanni di Santa Severina AF, Oglio F, de Michele R, di Sessa I, Masino A, Bedogni G, Berni Canani R. The step-down approach in children with cow's milk allergy: Results of a randomized controlled trial. Allergy 2023; 78:2477-2486. [PMID: 37087638 DOI: 10.1111/all.15750] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND The Step-Down Approach for Cow's Milk Allergy (SDACMA) trial evaluated the tolerability and the rate of immune tolerance acquisition in CMA children starting dietary treatment with amino acid-based formula (AAF) and then switching to EHCF containing the probiotic Lacticaseibacillus rhamnosus GG (EHCF + LGG). METHODS Randomized controlled trial involving IgE-mediated CMA children receiving AAF from at least 4 weeks. EHCF + LGG tolerance was evaluated by the results of double-blind placebo-controlled food challenge (DBPCFC). Subjects tolerating EHCF + LGG were randomly allocated to remain on AAF, or to switch to EHCF + LGG. Immune tolerance acquisition to cow's milk proteins was evaluated with DBPCFC after 12 months of treatment. Allergy screening tests and body growth were also monitored. RESULTS Sixty IgE-mediated CMA children were enrolled. The proportion of children treated with AAF who resulted tolerant to the first exposure of EHCF + LGG was 0.98 (exact 95% CI 0.91-0.99). The rate of the immune tolerance acquisition to cow milk proteins after 12 months treatment was higher in the EHCF + LGG (0.48, 95% exact CI 0.29-0.67, n/N = 14/29) than in the AAF group (0.03, 95% exact CI 0.001-0.17, n/N = 1/30). There was an absolute benefit increase (ABI) of tolerance rate equal to 0.45 (95% CI 0.23-0.63, Newcombe method 10) for EHCF + LGG versus AAF, corresponding to a NNT of 2 (2-4, Bender's method). A normal body growth pattern was observed in the two study groups. CONCLUSION In IgE-mediated CMA children the step-down from AAF to EHCF + LGG is well tolerated and could facilitate the immune tolerance acquisition.
Collapse
Affiliation(s)
- Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Anna Fiorenza de Giovanni di Santa Severina
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Roberta de Michele
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Ilaria di Sessa
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Giorgio Bedogni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Department of Primary Health Care, Internal Medicine Unit addressed to Frailty and Aging, S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Brasal-Prieto M, Fernández-Prades L, Dakhaoui H, Sobrino F, López-Enríquez S, Palomares F. Update on In Vitro Diagnostic Tools and Treatments for Food Allergies. Nutrients 2023; 15:3744. [PMID: 37686776 PMCID: PMC10489659 DOI: 10.3390/nu15173744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Food allergy (FA) is an adverse immunological reaction to a specific food that can trigger a wide range of symptoms from mild to life-threatening. This adverse reaction is caused by different immunological mechanisms, such as IgE-mediated, non-IgE-mediated and mixed IgE-mediated reactions. Its epidemiology has had a significant increase in the last decade, more so in developed countries. It is estimated that approximately 2 to 10% of the world's population has FA and this number appears to be increasing and also affecting more children. The diagnosis can be complex and requires the combination of different tests to establish an accurate diagnosis. However, the treatment of FA is based on avoiding the intake of the specific allergenic food, thus being very difficult at times and also controlling the symptoms in case of accidental exposure. Currently, there are other immunomodulatory treatments such as specific allergen immunotherapy or more innovative treatments that can induce a tolerance response. It is important to mention that research in this field is ongoing and clinical trials are underway to assess the safety and efficacy of these different immunotherapy approaches, new treatment pathways are being used to target and promote the tolerance response. In this review, we describe the new in vitro diagnostic tools and therapeutic treatments to show the latest advances in FA management. We conclude that although significant advances have been made to improve therapies and diagnostic tools for FA, there is an urgent need to standardize both so that, in their totality, they help to improve the management of FA.
Collapse
|
8
|
Smolinska S, Antolín-Amérigo D, Popescu FD, Jutel M. Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. Int J Mol Sci 2023; 24:12725. [PMID: 37628907 PMCID: PMC10454039 DOI: 10.3390/ijms241612725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that has emerged as a critical player in the development and progression of allergy and asthma. It is primarily produced by epithelial cells and functions as a potent immune system activator. TSLP acts through interaction with its receptor complex, composed of the TSLP receptor (TSLPR) and interleukin-7 receptor alpha chain (IL-7Rα), activating downstream complex signalling pathways. The TSLP major isoform, known as long-form TSLP (lfTSLP), is upregulated in the airway epithelium of patients with allergic diseases. More research is warranted to explore the precise mechanisms by which short-form TSLP (sfTSLP) regulates immune responses. Understanding the dynamic interplay between TSLP and the dysfunctional epithelium provides insights into the mechanisms underlying allergy and asthma pathogenesis. Targeting TSLP represents an important therapeutic strategy, as it may upstream disrupt the inflammatory cascade and alleviate symptoms associated with allergic inflammation.
Collapse
Affiliation(s)
- Sylwia Smolinska
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Darío Antolín-Amérigo
- Servicio de Alergia, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Florin-Dan Popescu
- Department of Allergology “Nicolae Malaxa” Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, 022441 Bucharest, Romania;
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- “ALL-MED” Research Medical Institute, 53-201 Wroclaw, Poland
| |
Collapse
|
9
|
Arzola-Martínez L, Ptaschinski C, Lukacs NW. Trained innate immunity, epigenetics, and food allergy. FRONTIERS IN ALLERGY 2023; 4:1105588. [PMID: 37304168 PMCID: PMC10251748 DOI: 10.3389/falgy.2023.1105588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years the increased incidence of food allergy in Western culture has been associated with environmental factors and an inappropriate immune phenotype. While the adaptive immune changes in food allergy development and progression have been well-characterized, an increase in innate cell frequency and activation status has also recently received greater attention. Early in prenatal and neonatal development of human immunity there is a reliance on epigenetic and metabolic changes that stem from environmental factors, which are critical in training the immune outcomes. In the present review, we discuss how trained immunity is regulated by epigenetic, microbial and metabolic factors, and how these factors and their impact on innate immunity have been linked to the development of food allergy. We further summarize current efforts to use probiotics as a potential therapeutic approach to reverse the epigenetic and metabolic signatures and prevent the development of severe anaphylactic food allergy, as well as the potential use of trained immunity as a diagnostic and management strategy. Finally, trained immunity is presented as one of the mechanisms of action of allergen-specific immunotherapy to promote tolerogenic responses in allergic individuals.
Collapse
Affiliation(s)
- Llilian Arzola-Martínez
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Rizzi A, Lo Presti E, Chini R, Gammeri L, Inchingolo R, Lohmeyer FM, Nucera E, Gangemi S. Emerging Role of Alarmins in Food Allergy: An Update on Pathophysiological Insights, Potential Use as Disease Biomarkers, and Therapeutic Implications. J Clin Med 2023; 12:jcm12072699. [PMID: 37048784 PMCID: PMC10094851 DOI: 10.3390/jcm12072699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Food allergies are immuno-mediated adverse reactions to ingestion or contact with foods, representing a widespread health problem. The immune response can be IgE-mediated, non-IgE-mediated, or with a mixed mechanism. The role of innate immunity and alarmins in the pathogenesis of diseases such as asthma and atopic dermatitis is well known. Some authors have investigated the correlation between alarmins and food allergies, often obtaining interesting results. We analyzed articles published in English from the last 22 years present on PubMed concerning the role of alarmins in the pathogenesis of food allergies and their potential use as disease biomarkers, response biomarkers to therapy, or potential therapeutic targets. Nuclear alarmins (TSLP, IL-33, IL-25) appear to have a critical role in IgE-mediated allergies but are also implicated in entities such as eosinophilic esophagitis. Calprotectin and defensins may play a role as disease biomarkers and could help predict response to therapy, although results in the literature are often conflicting. Despite the promising results, more studies on humans still need to be conducted. Deepening our knowledge regarding alarmins and their involvement in food allergies could lead to the development of new biological therapies, significantly impacting patients' quality of life.
Collapse
Affiliation(s)
- Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), 90146 Palermo, Italy
| | - Raffaella Chini
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Neurosciences, Sense Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Eleonora Nucera
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
11
|
Dijk W, Villa C, Benedé S, Vassilopoulou E, Mafra I, Garrido-Arandia M, Martínez Blanco M, Bouchaud G, Hoppenbrouwers T, Bavaro SL, Giblin L, Knipping K, Castro AM, Delgado S, Costa J, Bastiaan-Net S. Critical features of an in vitro intestinal absorption model to study the first key aspects underlying food allergen sensitization. Compr Rev Food Sci Food Saf 2023; 22:971-1005. [PMID: 36546415 DOI: 10.1111/1541-4337.13097] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
New types of protein sources will enter our diet in a near future, reinforcing the need for a straightforward in vitro (cell-based) screening model to test and predict the safety of these novel proteins, in particular their potential risk for de novo allergic sensitization. The Adverse Outcome Pathway (AOP) for allergen sensitization describes the current knowledge of key events underlying the complex cellular interactions that proceed allergic food sensitization. Currently, there is no consensus on the in vitro model to study the intestinal translocation of proteins as well as the epithelial activation, which comprise the first molecular initiation events (ME1-3) and the first key event of the AOP, respectively. As members of INFOGEST, we have highlighted several critical features that should be considered for any proposed in vitro model to study epithelial protein transport in the context of allergic sensitization. In addition, we defined which intestinal cell types are indispensable in a consensus model of the first steps of the AOP, and which cell types are optional or desired when there is the possibility to create a more complex cell model. A model of these first key aspects of the AOP can be used to study the gut epithelial translocation behavior of known hypo- and hyperallergens, juxtaposed to the transport behavior of novel proteins as a first screen for risk management of dietary proteins. Indeed, this disquisition forms a basis for the development of a future consensus model of the allergic sensitization cascade, comprising also the other key events (KE2-5).
Collapse
Affiliation(s)
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sara Benedé
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Emilia Vassilopoulou
- Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Mónica Martínez Blanco
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tamara Hoppenbrouwers
- Food Quality & Design, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Simona Lucia Bavaro
- Institute of Sciences of Food Production, National Research Council (Ispa-Cnr), Campus Universitario Ecotekne, Lecce, Italy
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | | | - Ana Maria Castro
- Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Susana Delgado
- Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shanna Bastiaan-Net
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
12
|
Estrada Reyes E, Zepeda Ortega B, ten Haaf D, Kudla U, Muhardi L, Hofman DL, Hageman JHJ, Huerta Hernández RE. Symptom's resolution and growth outcome of children with cow's milk protein allergy consuming two hydrolyzed formulas: A retrospective study in Mexico. FRONTIERS IN ALLERGY 2023; 4:1073430. [PMID: 36793546 PMCID: PMC9922738 DOI: 10.3389/falgy.2023.1073430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023] Open
Abstract
Background Cow's milk protein allergy (CMPA) is the leading cause of food allergy in infants and young children. An extensively hydrolyzed formula (eHF) is the first choice of dietary management, however, not all of them have similar peptide profiles and degree of hydrolysis. The aim of this retrospective study was to investigate the use of two commercially available infant formulas in the clinical management of CMPA in Mexico in terms of symptoms' resolution and growth trajectories. Methods Medical records of 79 subjects from four sites in Mexico were included to retrospectively evaluate the trajectory of atopic dermatitis, other symptoms of cow's milk protein allergy and growth outcomes. The study formulas were based on hydrolyzed whey protein (eHF-W) and hydrolyzed casein protein (eHF-C). Results Medical records of 79 patients were enrolled, 3 were excluded from analysis based on previous formula consumption. Seventy-six children with confirmed CMPA based on skin prick test and/or serum specific IgE levels were included in the analysis. 82% of patients (n = 65) consumed the eHF-C, reflecting the doctors' preference for formulas with a higher grade of hydrolysis and the high incidence of positive reactions to beta-lactoglobulin amongst subjects. During their first visit to the doctors, 55% of the subjects consuming the casein-based formula and 45% of subjects consuming the whey-based formula presented with mild or moderate dermatological symptoms. Other frequently reported symptoms included respiratory issues, enteropathies and colitis which improved during the consumption of both formulas. All CMPA-related symptoms showed improvement during formula consumption. During the period of retrospective observation, growth significantly improved for both groups. Conclusion Consumption of eHF-C and eHF-W effectively improved symptoms' resolution and growth outcomes among children with CMPA in Mexico. More preference was reported towards eHF-C due to its hydrolysate profile and lack of b-lactoglobulin. Trial registration The study was registered at ClinicalTrials.gov: NCT04596059.
Collapse
|
13
|
Tian L, Zhang Q, Cong Y, Yan W. Preparation, Identification and Application of β-Lactoglobulin Hydrolysates with Oral Immune Tolerance. Foods 2023; 12:foods12020307. [PMID: 36673400 PMCID: PMC9857568 DOI: 10.3390/foods12020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
To reveal, for the first time, the mechanism of T cell epitope release from β-lactoglobulin that induces oral immune tolerance, a strategy for the prediction, preparation, identification and application of β-lactoglobulin hydrolysate with oral immune tolerance was established using the bioinformatics method, hydrolysis, mass spectrometry, T cell proliferation assays and animal experiments. Some T cell epitope peptides of β-lactoglobulin were identified for the first time. The hydrolysates of trypsin, protamex and papain showed oral tolerance, among which the hydrolysates of protamex and papain have been reported for the first time. Although the neutral protease hydrolysate contained T cell epitopes, it still had allergenicity. The mechanism behind oral immune tolerance induction by T cell epitopes needs to be further revealed. In addition, the trypsin hydrolysate with abundant T cell epitopes was added to whey protein to prepare the product for oral immune tolerance. Overall, this study provides insights into the development of new anti-allergic milk-based products and their application in the clinical treatment of milk allergies.
Collapse
Affiliation(s)
- Linghan Tian
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Qianqian Zhang
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yanjun Cong
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| |
Collapse
|
14
|
Ribes-Koninckx C, Amil-Dias J, Espin B, Molina M, Segarra O, Diaz-Martin JJ. The use of amino acid formulas in pediatric patients with allergy to cow's milk proteins: Recommendations from a group of experts. Front Pediatr 2023; 11:1110380. [PMID: 37033186 PMCID: PMC10073469 DOI: 10.3389/fped.2023.1110380] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
One of the most common food allergies in children is cow's milk allergy (CMA). In breast-fed infants with CMA, the mother is encouraged to avoid dairy products. If this is not possible, or in formula fed infants, use of hypoallergenic replacement formulas such as extensively hydrolyzed formulas (EHF) is recommended. However, in ∼5% of patients EHFs are not tolerated and/or allergy symptoms can persist. When EHFs are ineffective and in severe forms of CMA, amino acid-based formulas (AAF) should be considered. Six pediatric gastroenterologists with extensive experience in food allergy management reviewed scientific publications and international clinical practice guidelines to provide practical recommendations on AAF. The guidelines reviewed had discrepancies and ambiguities around the specific indications for using formulas as a milk substitute. The panel recommends AAFs as the first therapeutic option in anaphylaxis due to CMA, in acute and chronic severe food protein-induced enterocolitis syndrome, in CMA associated with multiple food allergy, and in cases of eosinophilic esophagitis not responding to an extended exclusion diet or not eating solids. The main benefit of AAF is its absence of residual allergenicity, making it a safe treatment option in severe CMA patients who do not tolerate or respond to an EHF.
Collapse
Affiliation(s)
- Carmen Ribes-Koninckx
- Pediatric Gastroenterology, Hepatology and Nutrition La Fe University and Politechnic Hospital & La Fe Research Institute, Valencia, Spain
- Correspondence: Carmen Ribes-Koninckx
| | - Jorge Amil-Dias
- Emeritus, S. João University Hospital Center, Porto, Portugal
| | - Beatriz Espin
- Pediatric Gastroenterology and Nutrition Unit, Virgen del Rocio University Hospital, Seville, Spain
| | - Manuel Molina
- Department of Pediatric Gastroenterology and Nutrition, La Paz University Hospital, Madrid, Spain
| | - Oscar Segarra
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan J. Diaz-Martin
- Pediatric Gastroenterology and Nutrition, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
15
|
Coppola S, Carucci L, De Michele R, Berni Canani R. The potential role of preventive and therapeutic immunonutrition strategies for pediatric food allergy: A mini-review. Front Nutr 2022; 9:1050554. [DOI: 10.3389/fnut.2022.1050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
Food allergy (FA) represents one of the main chronic conditions of the pediatric population. The gut microbiome (GM)-immune system axis is a milestone in affecting FA susceptibility. The dynamic and bidirectional crosstalk between the GM and immune system starts early in life, and it is deeply modulated during the first 1,000 days of life. Nutritional factors during this crucial period mainly influence the proper GM-immune system development and function across the lifespan, with potential beneficial or detrimental effects on health status. Immunonutrition strategies, applied from conception, could represent an innovative target for prevention and treatment of pediatric FA. Here we described the potential role of preventive and therapeutic immunonutrition strategies for pediatric FA, highlighting putative future perspectives in this field.
Collapse
|
16
|
Goh A, Muhardi L, Ali A, Liew WK, Estrada-Reyes E, Zepeda-Ortega B, Kudla U, van Neerven RJJ, Ulfman LH, Lambers TT, Warner JO. Differences between peptide profiles of extensive hydrolysates and their influence on functionality for the management of cow's milk allergy: A short review. FRONTIERS IN ALLERGY 2022; 3:950609. [PMID: 36660742 PMCID: PMC9843608 DOI: 10.3389/falgy.2022.950609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 01/13/2023] Open
Abstract
Extensively hydrolyzed formulas (eHFs) are recommended for the dietary management of cow's milk protein allergy (CMPA) in non-exclusively breastfed infants. Studies show that peptide profiles differ between eHFs. This short review aims to highlight the variability in peptides and their ability to influence allergenicity and possibly the induction of tolerance by different eHFs. The differences between eHFs are determined by the source of the protein fraction (casein or whey), peptide size-distribution profile and residual β-lactoglobulin which is the most immunogenic and allergenic protein in bovine milk for human infants as it is not present in human breastmilk. These differences occur from the hydrolyzation process which result in variable IgE reactivity against cow's milk allergen epitopes by subjects with CMPA and differences in the Th1, Th2 and pro-inflammatory cytokine responses elicited. They also have different effects on gut barrier integrity. Results suggest that one particular eHF-casein had the least allergenic potential due to its low residual allergenic epitope content and demonstrated the greatest effect on restoring gut barrier integrity by its effects on mucin 5AC, occludin and Zona Occludens-1 in human enterocytes. It also increased the production of the tolerogenic cytokines Il-10 and IFN-γ. In addition, recent studies documented promising effects of optional functional ingredients such as pre-, pro- and synbiotics on the management of cow's milk allergy and induction of tolerance, in part via the induction of the production of short chain fatty acids. This review highlights differences in the residual allergenicity, peptide size distribution, presence of optional functional ingredients and overall functionality of several well-characterized eHFs which can impact the management of CMPA and the ability to induce immune tolerance to cow's milk protein.
Collapse
Affiliation(s)
- Anne Goh
- Department of Paediatrics, KK Women’s and Children’s Hospital, Singapore, Singapore,Correspondence: Anne Goh
| | - Leilani Muhardi
- Medical Affairs, Friesland Campina AMEA, Singapore, Singapore
| | - Adli Ali
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Center, Bangi, Malaysia
| | - Woei Kang Liew
- Paediatric Allergy Immunology Rheumatology Centre, Mount Elizabeth Novena Specialist Centre, Singapore, Singapore
| | | | - Benjamin Zepeda-Ortega
- Department of Pediatrics, Angeles Lomas Hospital Huixquilucan Mexican State, Mexico, Mexico
| | | | - R. J. Joost van Neerven
- R&D, FrieslandCampina, Amersfoort, the Netherlands,Cell Biology and Immunology, Wageningen University, Wageningen, the Netherlands
| | | | | | - John O. Warner
- National Heart and Lung Institute, Imperial College, London, United Kingdom,Departement Pediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Di Profio E, Magenes VC, Fiore G, Agostinelli M, La Mendola A, Acunzo M, Francavilla R, Indrio F, Bosetti A, D’Auria E, Borghi E, Zuccotti G, Verduci E. Special Diets in Infants and Children and Impact on Gut Microbioma. Nutrients 2022; 14:nu14153198. [PMID: 35956374 PMCID: PMC9370825 DOI: 10.3390/nu14153198] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota is a complex system that starts to take shape early in life. Several factors influence the rise of microbial gut colonization, such as term and mode of delivery, exposure to antibiotics, maternal diet, presence of siblings and family members, pets, genetics, local environment, and geographical location. Breastfeeding, complementary feeding, and later dietary patterns during infancy and toddlerhood are major players in the proper development of microbial communities. Nonetheless, if dysbiosis occurs, gut microbiota may remain impaired throughout life, leading to deleterious consequences, such as greater predisposition to non-communicable diseases, more susceptible immune system and altered gut–brain axis. Children with specific diseases (i.e., food allergies, inborn errors of metabolism, celiac disease) need a special formula and later a special diet, excluding certain foods or nutrients. We searched on PubMed/Medline, Scopus and Embase for relevant pediatric studies published over the last twenty years on gut microbiota dietary patterns and excluded case reports or series and letters. The aim of this review is to highlight the changes in the gut microbiota in infants and children fed with special formula or diets for therapeutic requirements and, its potential health implications, with respect to gut microbiota under standard diets.
Collapse
Affiliation(s)
- Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Marta Agostinelli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Alice La Mendola
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Ruggiero Francavilla
- Pediatric Section, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Flavia Indrio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Alessandra Bosetti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Correspondence:
| | - Elisa Borghi
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20144 Milan, Italy
- Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20122 Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
18
|
Xie Q, Xue W. IgE-Mediated food allergy: Current diagnostic modalities and novel biomarkers with robust potential. Crit Rev Food Sci Nutr 2022; 63:10148-10172. [PMID: 35587740 DOI: 10.1080/10408398.2022.2075312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food allergy (FA) is a serious public health issue afflicting millions of people globally, with an estimated prevalence ranging from 1-10%. Management of FA is challenging due to overly restrictive diets and the lack of diagnostic approaches with high accuracy and prediction. Although measurement of serum-specific antibodies combined with patient medical history and skin prick test is a useful diagnostic tool, it is still an imprecise predictor of clinical reactivity with a high false-positive rate. The double-blind placebo-controlled food challenge represents the gold standard for FA diagnosis; however, it requires large healthcare and involves the risk of acute onset of allergic reactions. Improvement in our understanding of the molecular mechanism underlying allergic disease pathology, development of omics-based methods, and advances in bioinformatics have boosted the generation of a number of robust diagnostic biomarkers of FA. In this review, we discuss how traditional diagnostic modalities guide appropriate diagnosis and management of FA in clinical practice, as well as uncover the potential of the latest biomarkers for the diagnosis, monitoring, and prediction of FA. We also raise perspectives for precise and targeted medical intervention to fill the gap in the diagnosis of FA.
Collapse
Affiliation(s)
- Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
19
|
Cañas JA, Núñez R, Cruz-Amaya A, Gómez F, Torres MJ, Palomares F, Mayorga C. Epigenetics in Food Allergy and Immunomodulation. Nutrients 2021; 13:4345. [PMID: 34959895 PMCID: PMC8708211 DOI: 10.3390/nu13124345] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Food allergy (FA) is an increasing problem worldwide and, over recent years, its prevalence is rising in developed countries. Nowadays, the immunological and cellular processes that occur in the allergic reactions are not fully understood, which hampers the development of in vitro diagnostic tools and further treatment options. Moreover, allergic diseases could be reinforced by environmental exposure and genetic modifications. Gene expression can be controlled by different epigenetic mechanisms like DNA methylation, histone modifications, and microRNAs. In addition, several environmental factors such as dietary components (vitamin D, butyrate, folic acid) are able to regulate this epigenetic mechanism. All these factors produce modifications in immune genes that could alter the development and function of immune cells, and therefore the etiology of the disease. Furthermore, these epigenetic mechanisms have also an influence on immunomodulation, which could explain sustained responsiveness or unresponsiveness during immunotherapy due to epigenetic modifications in key genes that induce tolerance in several FA. Thus, in this review we focus on the different epigenetic mechanisms that occur in FA and on the influence of several dietary components in these gene modifications.
Collapse
Affiliation(s)
- José A. Cañas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
| | - Rafael Núñez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
| | - Anyith Cruz-Amaya
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
| | - Francisca Gómez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain;
| | - María J. Torres
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain;
- Medicine Department, Universidad de Málaga-UMA, 29010 Málaga, Spain
| | - Francisca Palomares
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain;
| |
Collapse
|
20
|
D’Auria E, Salvatore S, Acunzo M, Peroni D, Pendezza E, Di Profio E, Fiore G, Zuccotti GV, Verduci E. Hydrolysed Formulas in the Management of Cow's Milk Allergy: New Insights, Pitfalls and Tips. Nutrients 2021; 13:2762. [PMID: 34444922 PMCID: PMC8401609 DOI: 10.3390/nu13082762] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
An allergy to cow's milk requires the avoidance of cow's milk proteins and, in some infants, the use of a hypoallergenic formula. This review aims to summarize the current evidence concerning different types of hydrolysed formulas (HF), and recommendations for the treatment of IgE- and non-IgE-mediated cow's milk allergy and functional gastrointestinal disorders in infancy, for which some dietary intervention and HF may be of benefit to both immune and motor mechanisms. Current guidelines recommend cow's milk protein (i.e., whey or casein) extensively hydrolysed formula (eHF) as the first choice for cow's milk allergy treatment, and amino acid formulas for more severe cases or those with reactions to eHF. Rice hydrolysed formulas (rHF) have also become available in recent years. Both eHF and rHF are well tolerated by the majority of children allergic to cow's milk, with no concerns regarding body growth or adverse effects. Some hydrolysates may have a pro-active effect in modulating the immune system due to the presence of small peptides and additional components, like biotics. Despite encouraging results on tolerance acquisition, evidence is still not conclusive, thus hampering our ability to draw firm conclusions. In clinical practice, the choice of hypoallergenic formula should be based on the infant's age, the severity, frequency and persistence of symptoms, immune phenotype, growth pattern, formula cost, and in vivo proof of tolerance and efficacy.
Collapse
Affiliation(s)
- Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.A.); (E.P.); (E.D.P.); (G.F.); (G.V.Z.); (E.V.)
| | - Silvia Salvatore
- Department of Pediatrics, Ospedale “F. Del Ponte”, University of Insubria, 21100 Varese, Italy;
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.A.); (E.P.); (E.D.P.); (G.F.); (G.V.Z.); (E.V.)
| | - Diego Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, 56126 Pisa, Italy;
| | - Erica Pendezza
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.A.); (E.P.); (E.D.P.); (G.F.); (G.V.Z.); (E.V.)
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.A.); (E.P.); (E.D.P.); (G.F.); (G.V.Z.); (E.V.)
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.A.); (E.P.); (E.D.P.); (G.F.); (G.V.Z.); (E.V.)
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.A.); (E.P.); (E.D.P.); (G.F.); (G.V.Z.); (E.V.)
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.A.); (E.P.); (E.D.P.); (G.F.); (G.V.Z.); (E.V.)
| |
Collapse
|
21
|
Carucci L, Coppola S, Luzzetti A, Voto L, Giglio V, Paparo L, Nocerino R, Berni Canani R. Immunonutrition for Pediatric Patients With Cow's Milk Allergy: How Early Interventions Could Impact Long-Term Outcomes. FRONTIERS IN ALLERGY 2021; 2:676200. [PMID: 35386962 PMCID: PMC8974760 DOI: 10.3389/falgy.2021.676200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Cow's milk allergy (CMA) is one of the most common food allergies and one of the main causes of food-induced anaphylaxis in the pediatric age. Moreover, up to 45% of CMA children develop other atopic manifestations later in life, a phenomenon commonly named atopic march. Thus, CMA imposes a significant cost to health care systems as well as to families, and has emerged as one of the most expensive allergic diseases. The immunonutrition strategy builds its foundation on the ability of selected dietary factors to modulate immune system development and function. Recent studies highlighted the potential of immunonutrition in the management of CMA. This review is focused on the mechanisms and long-term clinical outcomes of the immunonutrition approach in children with CMA.
Collapse
Affiliation(s)
- Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- *Correspondence: Laura Carucci
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Anna Luzzetti
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Luana Voto
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Veronica Giglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunonutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
- Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Carucci L, Coppola S, Nocerino R, Paparo L, Di Scala C, Berni Canani R. Commentary: Raw Cow Milk Consumption and Atopic March. Front Pediatr 2021; 9:684662. [PMID: 34169049 PMCID: PMC8217621 DOI: 10.3389/fped.2021.684662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Laura Carucci
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples "Federico II", Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples "Federico II", Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples "Federico II", Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples "Federico II", Naples, Italy
| | - Carmen Di Scala
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples "Federico II", Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples "Federico II", Naples, Italy.,European Laboratory for the Investigation of Food-Induced Diseases, University of Naples "Federico II", Naples, Italy.,Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| |
Collapse
|