1
|
Wittmann N, Bekeschus S, Biedenweg D, Kuthning D, Pohl C, Gramenz J, Otto O, Bossaller L, Meyer-Bahlburg A. Comparative Analysis of Canonical Inflammasome Activation by Flow Cytometry, Imaging Flow Cytometry and High-Content Imaging. Inflammation 2024:10.1007/s10753-024-02141-z. [PMID: 39256305 DOI: 10.1007/s10753-024-02141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Inflammasome activation occurs in various diseases, including rare diseases that require multicenter studies for investigation. Flow cytometric analysis of ASC speck+ cells in patient samples can be used to detect cell type-specific inflammasome activation. However, this requires standardized sample processing and the ability to compare data from different flow cytometers. To address this issue, we analyzed stimulated and unstimulated PBMCs from healthy donors using seven different flow cytometers. Additionally, human PBMCs were analyzed by fluorescence microscopy, imaging flow cytometry and high-content imaging (HCI). Flow cytometers differed significantly in their ability to detect ASC speck+ cells. Aria III, Astrios EQ, and Canto II performed best in separating ASC speck+ from diffuse ASC cells. Imaging flow cytometry and HCI provided additional insight into ASC speck formation based on image-based parameters. For optimal results, the ability to separate cells with diffuse ASC from ASC speck+ cells is decisive. Image-based parameters can also differentiate cells with diffuse ASC from ASC speck+ cells. For the first time, we analyzed ASC speck detection by HCI in PBMCs and demonstrated advantages of this technique, such as high-throughput, algorithm-driven image quantification and 3D-rendering. Thus, inflammasome activation by ASC speck formation can be detected by various technical methods. However, the results may vary depending on the device used.
Collapse
Affiliation(s)
- Nico Wittmann
- Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, 17475, Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, 17489, Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstraße 13, 18057, Rostock, Germany
| | - Doreen Biedenweg
- Institute for Physics, University of Greifswald, Greifswald, Germany
| | - Daniela Kuthning
- Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, 17475, Greifswald, Germany
| | - Christopher Pohl
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Jana Gramenz
- Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, 17475, Greifswald, Germany
| | - Oliver Otto
- Institute for Physics, University of Greifswald, Greifswald, Germany
| | - Lukas Bossaller
- Section of Rheumatology, Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Almut Meyer-Bahlburg
- Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, 17475, Greifswald, Germany.
| |
Collapse
|
2
|
Garvey M. Hospital Acquired Sepsis, Disease Prevalence, and Recent Advances in Sepsis Mitigation. Pathogens 2024; 13:461. [PMID: 38921759 PMCID: PMC11206921 DOI: 10.3390/pathogens13060461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, commonly associated with nosocomial transmission. Gram-negative bacterial species are particularly problematic due to the release of the lipopolysaccharide toxins upon cell death. The lipopolysaccharide toxin of E. coli has a greater immunogenic potential than that of other Gram-negative bacteria. The resultant dysregulation of the immune system is associated with organ failure and mortality, with pregnant women, ICU patients, and neonates being particularly vulnerable. Additionally, sepsis recovery patients have an increased risk of re-hospitalisation, chronic illness, co-morbidities, organ damage/failure, and a reduced life expectancy. The emergence and increasing prevalence of antimicrobial resistance in bacterial and fungal species has impacted the treatment of sepsis patients, leading to increasing mortality rates. Multidrug resistant pathogens including vancomycin-resistant Enterococcus, beta lactam-resistant Klebsiella, and carbapenem-resistant Acinetobacter species are associated with an increased risk of mortality. To improve the prognosis of sepsis patients, predominantly high-risk neonates, advances must be made in the early diagnosis, triage, and control of sepsis. The identification of suitable biomarkers and biomarker combinations, coupled with machine learning and artificial intelligence, show promise in early detection protocols. Rapid diagnosis of sepsis in patients is essential to inform on clinical treatment, especially with resistant infectious agents. This timely review aims to discuss sepsis prevalence, aetiology, and recent advances towards disease mitigation and control.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland; ; Tel.: +353-0719-305-529
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
3
|
Coudereau R, Bodinier M, Lukaszewicz AC, Py BF, Argaud L, Cour M, Bidar F, Cerrato E, Garnier L, Gossez M, Venet F, Monneret G. Persistent NLRP3 inflammasome activation is associated with delayed immunosuppression in septic patients. J Leukoc Biol 2024; 115:706-713. [PMID: 38146798 DOI: 10.1093/jleuko/qiad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Sepsis triggers a complex response marked by the simultaneous presence of proinflammatory and immunosuppressive elements, disrupting the mechanisms intended to maintain homeostasis. While the NLRP3 inflammasome has been demonstrated to contribute to the inflammatory side, its connection with delayed sepsis-induced immunosuppression remains unexplored. The present objective was to concomitantly and prospectively assess NLRP3 activation (IL-1β, IL-18, and soluble receptors) and features of immune failure (IL-10, mHLA-DR, myeloid-derived suppressor cells) in septic patients. To validate our findings, we conducted a transcriptomic analysis of mRNA of NLRP3-related genes (IL-18R1, IL-1R2) on an additional cohort of 107 patients. Two distinct endotypes were identified. One cluster displayed moderate inflammation rapidly returning to normal values, while the other exhibited a higher inflammatory response persisting until day 28, which was associated with persistent marked immunosuppression and higher 28-d mortality. Identifying endotypes with different pro/anti-inflammatory trajectories could hold important clinical implications for the management of sepsis.
Collapse
Affiliation(s)
- Rémy Coudereau
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Place d'Arsonval, 69437 Lyon, France
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Place d'Arsonval, 69437 Lyon, France
| | - Maxime Bodinier
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Place d'Arsonval, 69437 Lyon, France
| | - Anne-Claire Lukaszewicz
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Place d'Arsonval, 69437 Lyon, France
- Hospices Civils de Lyon, Edouard Herriot Hospital, Anesthesia and Critical Care Medicine Department, Place d'Arsonval, 69437 Lyon, France
| | - Bénédicte F Py
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Edouard Herriot Hospital, Medical Intensive Care Department, Place d'Arsonval, 69437 Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Edouard Herriot Hospital, Medical Intensive Care Department, Place d'Arsonval, 69437 Lyon, France
| | - Frank Bidar
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Place d'Arsonval, 69437 Lyon, France
- Hospices Civils de Lyon, Edouard Herriot Hospital, Anesthesia and Critical Care Medicine Department, Place d'Arsonval, 69437 Lyon, France
| | - Elisabeth Cerrato
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Place d'Arsonval, 69437 Lyon, France
| | - Lorna Garnier
- Hospices Civils de Lyon, CH Lyon-Sud, Immunology Laboratory, 69310 Pierre Bénite, France
| | - Morgane Gossez
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Place d'Arsonval, 69437 Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Place d'Arsonval, 69437 Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Place d'Arsonval, 69437 Lyon, France
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Place d'Arsonval, 69437 Lyon, France
| |
Collapse
|
4
|
Coudereau R, Monneret G, Lukaszewicz AC, Py BF, Argaud L, Cour M, Bidar F, Gossez M, Venet F. Altered Ex Vivo NLRP3 Inflammasome Activation Is Associated with 28-Day Mortality in Septic Patients. Viruses 2023; 15:2419. [PMID: 38140660 PMCID: PMC10748301 DOI: 10.3390/v15122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated response to infection. In this context, the aberrant activation of the NLRP3 inflammasome has been documented mostly through the measurement of increased plasmatic concentrations of IL-1β and IL-18. At the cellular level, contradictory results have been published. However, no study has comprehensively monitored NLRP3 inflammasome activation at the basal level and after ex vivo reactivation of whole blood monocytes and neutrophils focusing on ICU patients with bacterial and viral sepsis, including a longitudinal analysis. Thus, we conducted a prospective longitudinal study, examining NLRP3 inflammasome functionality in COVID-19 ICU patients (n = 15) and bacterial septic shock patients (n = 17) during the first week of ICU hospitalization, compared with healthy donors. Using two whole-blood flow cytometry assays, we detected ASC speck-positive monocytes (i.e., monocytes presenting the polymerization of ASC proteins) and activated caspase-1 in polymorphonuclear cells as read-outs, both at baseline and following nigericin stimulation, a drug that forms pores and activates the NLRP3 inflammasome. Our findings showed that, at baseline and regardless of the type of infection, patients exhibited reduced ASC speck-positive monocytes and decreased activated caspase-1 in PMN compared to healthy volunteers. This decrease was prominent at day 0. Following nigericin stimulation, this reduction was also observed and persisted throughout the first week of hospitalization, irrespective of the cellular population or parameter being considered. Notably, at day 0, this diminished activation and response to stimulation of NLRP3 was associated with a higher 28-day mortality rate. Consequently, our observations highlighted a concurrent decline in both basal expression and ex vivo activation of the NLRP3 inflammasome in circulating myeloid cells from patients with bacterial and viral sepsis in association with increased mortality.
Collapse
Affiliation(s)
- Rémy Coudereau
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, 69437 Lyon, France; (R.C.); (G.M.); (M.G.)
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression” (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-Biomérieux, 69437 Lyon, France; (A.-C.L.); (F.B.)
| | - Guillaume Monneret
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, 69437 Lyon, France; (R.C.); (G.M.); (M.G.)
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression” (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-Biomérieux, 69437 Lyon, France; (A.-C.L.); (F.B.)
| | - Anne-Claire Lukaszewicz
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression” (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-Biomérieux, 69437 Lyon, France; (A.-C.L.); (F.B.)
- Hospices Civils de Lyon, Edouard Herriot Hospital, Anesthesia and Critical Care Medicine Department, 69437 Lyon, France
| | - Bénédicte F. Py
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France;
| | - Laurent Argaud
- Hospices Civils de Lyon, Edouard Herriot Hospital, Medical Intensive Care Department, 69002 Lyon, France; (L.A.); (M.C.)
| | - Martin Cour
- Hospices Civils de Lyon, Edouard Herriot Hospital, Medical Intensive Care Department, 69002 Lyon, France; (L.A.); (M.C.)
| | - Frank Bidar
- EA 7426 “Pathophysiology of Injury-Induced Immunosuppression” (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-Biomérieux, 69437 Lyon, France; (A.-C.L.); (F.B.)
- Hospices Civils de Lyon, Edouard Herriot Hospital, Anesthesia and Critical Care Medicine Department, 69437 Lyon, France
| | - Morgane Gossez
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, 69437 Lyon, France; (R.C.); (G.M.); (M.G.)
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France;
| | - Fabienne Venet
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, 69437 Lyon, France; (R.C.); (G.M.); (M.G.)
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France;
| |
Collapse
|
5
|
Vigneron C, Py BF, Monneret G, Venet F. The double sides of NLRP3 inflammasome activation in sepsis. Clin Sci (Lond) 2023; 137:333-351. [PMID: 36856019 DOI: 10.1042/cs20220556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction induced by a dysregulated host immune response to infection. Immune response induced by sepsis is complex and dynamic. It is schematically described as an early dysregulated systemic inflammatory response leading to organ failures and early deaths, followed by the development of persistent immune alterations affecting both the innate and adaptive immune responses associated with increased risk of secondary infections, viral reactivations, and late mortality. In this review, we will focus on the role of NACHT, leucin-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome in the pathophysiology of sepsis. NLRP3 inflammasome is a multiproteic intracellular complex activated by infectious pathogens through a two-step process resulting in the release of the pro-inflammatory cytokines IL-1β and IL-18 and the formation of membrane pores by gasdermin D, inducing a pro-inflammatory form of cell death called pyroptosis. The role of NLRP3 inflammasome in the pathophysiology of sepsis can be ambivalent. Indeed, although it might protect against sepsis when moderately activated after initial infection, excessive NLRP3 inflammasome activation can induce dysregulated inflammation leading to multiple organ failure and death during the acute phase of the disease. Moreover, this activation might become exhausted and contribute to post-septic immunosuppression, driving impaired functions of innate and adaptive immune cells. Targeting the NLRP3 inflammasome could thus be an attractive option in sepsis either through IL-1β and IL-18 antagonists or through inhibition of NLRP3 inflammasome pathway downstream components. Available treatments and results of first clinical trials will be discussed.
Collapse
Affiliation(s)
- Clara Vigneron
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bénédicte F Py
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
6
|
Dubyak GR, Miller BA, Pearlman E. Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev 2023; 314:229-249. [PMID: 36656082 PMCID: PMC10407921 DOI: 10.1111/imr.13186] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pyroptosis is a proinflammatory mode of lytic cell death mediated by accumulation of plasma membrane (PM) macropores composed of gasdermin-family (GSDM) proteins. It facilitates two major functions in innate immunity: (i) elimination of intracellular replicative niches for pathogenic bacteria; and (ii) non-classical secretion of IL-1 family cytokines that amplify host-beneficial inflammatory responses to microbial infection or tissue damage. Physiological roles for gasdermin D (GSDMD) in pyroptosis and IL-1β release during inflammasome signaling have been extensively characterized in macrophages. This involves cleavage of GSDMD by caspase-1 to generate GSDMD macropores that mediate IL-1β efflux and progression to pyroptotic lysis. Neutrophils, which rapidly accumulate in large numbers at sites of tissue infection or damage, become the predominant local source of IL-1β in coordination with their potent microbiocidal capacity. Similar to macrophages, neutrophils express GSDMD and utilize the same spectrum of diverse inflammasome platforms for caspase-1-mediated cleavage of GSDMD. Distinct from macrophages, neutrophils possess a remarkable capacity to resist progression to GSDMD-dependent pyroptotic lysis to preserve their viability for efficient microbial killing while maintaining GSDMD-dependent mechanisms for export of bioactive IL-1β. Rather, neutrophils employ cell-specific mechanisms to conditionally engage GSDMD-mediated pyroptosis in response to bacterial pathogens that use neutrophils as replicative niches. GSDMD and pyroptosis have also been mechanistically linked to induction of NETosis, a signature neutrophil pathway that expels decondensed nuclear DNA into extracellular compartments for immobilization and killing of microbial pathogens. This review summarizes a rapidly growing number of recent studies that have produced new insights, unexpected mechanistic nuances, and some controversies regarding the regulation of, and roles for, neutrophil inflammasomes, pyroptosis, and GSDMs in diverse innate immune responses.
Collapse
Affiliation(s)
- George R. Dubyak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brandon A. Miller
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Eric Pearlman
- Department of Ophthalmology, University of California, Irvine, California, USA
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| |
Collapse
|
7
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
8
|
Wittmann N, Mishra N, Gramenz J, Kuthning D, Behrendt AK, Bossaller L, Meyer-Bahlburg A. Inflammasome activation and formation of ASC specks in patients with juvenile idiopathic arthritis. Front Med (Lausanne) 2023; 10:1063772. [PMID: 36936231 PMCID: PMC10014801 DOI: 10.3389/fmed.2023.1063772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/08/2023] [Indexed: 03/05/2023] Open
Abstract
Objective The formation of large intracellular protein aggregates of the inflammasome adaptor ASC is a hallmark of inflammasome activation and characteristic of autoinflammation. Inflammasome activated cells release the highly proinflammatory cytokine IL-1β in addition to ASC specks into the extracellular space. Autoinflammatory activity has been demonstrated in systemic JIA, however minimal data exist on the role of inflammasomes in other JIA subtypes. We therefore investigated, if pyroptotic cells are present in the circulation of oligo- and poly-articular JIA. Methods Peripheral blood of JIA patients (n = 46) was investigated for ASC speck formation, a key step in inflammasome activation, by flow cytometry and immunofluorescence. Free ASC and proinflammatory cytokine levels were determined by ELISA and multiplex assay. Results Oligo-articular JIA patients showed a significantly increased proportion of ASC speck+ monocytes compared to poly-articular JIA patients. In serum free ASC alone is not sufficient to assess inflammasome activity and does not correlate with ASC speck+ monocytes. Compared to control several cytokines were significantly elevated in samples of JIA patients. JIA serum containing antinuclear antibodies, incubated with ASC specks boosts a secondary inflammation by IL-1β production in macrophages. Conclusion For the first time, we detect ex vivo inflammasome activation by ASC speck formation in oligo- and poly-articular JIA patients. Most notably, inflammasome activation was significantly higher in oligo- compared to poly-articular JIA patients. This data suggests that inflammasome derived autoinflammation may have a greater influence in the previously thought autoimmune oligo-articular JIA patients.
Collapse
Affiliation(s)
- Nico Wittmann
- Section of Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, Greifswald, Germany
| | - Neha Mishra
- Section of Rheumatology, Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Jana Gramenz
- Section of Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, Greifswald, Germany
| | - Daniela Kuthning
- Section of Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, Greifswald, Germany
| | - Ann-Kathrin Behrendt
- Section of Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, Greifswald, Germany
| | - Lukas Bossaller
- Section of Rheumatology, Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Almut Meyer-Bahlburg
- Section of Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, Greifswald, Germany
- *Correspondence: Almut Meyer-Bahlburg, ✉
| |
Collapse
|
9
|
Wen R, Liu YP, Tong XX, Zhang TN, Yang N. Molecular mechanisms and functions of pyroptosis in sepsis and sepsis-associated organ dysfunction. Front Cell Infect Microbiol 2022; 12:962139. [PMID: 35967871 PMCID: PMC9372372 DOI: 10.3389/fcimb.2022.962139] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response to infection, is a leading cause of death in intensive care units. The development of sepsis-associated organ dysfunction (SAOD) poses a threat to the survival of patients with sepsis. Unfortunately, the pathogenesis of sepsis and SAOD is complicated, multifactorial, and has not been completely clarified. Recently, numerous studies have demonstrated that pyroptosis, which is characterized by inflammasome and caspase activation and cell membrane pore formation, is involved in sepsis. Unlike apoptosis, pyroptosis is a pro-inflammatory form of programmed cell death that participates in the regulation of immunity and inflammation. Related studies have shown that in sepsis, moderate pyroptosis promotes the clearance of pathogens, whereas the excessive activation of pyroptosis leads to host immune response disorders and SAOD. Additionally, transcription factors, non-coding RNAs, epigenetic modifications and post-translational modifications can directly or indirectly regulate pyroptosis-related molecules. Pyroptosis also interacts with autophagy, apoptosis, NETosis, and necroptosis. This review summarizes the roles and regulatory mechanisms of pyroptosis in sepsis and SAOD. As our understanding of the functions of pyroptosis improves, the development of new diagnostic biomarkers and targeted therapies associated with pyroptosis to improve clinical outcomes appears promising in the future.
Collapse
Affiliation(s)
| | | | | | | | - Ni Yang
- *Correspondence: Tie-Ning Zhang, ; Ni Yang,
| |
Collapse
|
10
|
Aymonnier K, Ng J, Fredenburgh LE, Zambrano-Vera K, Münzer P, Gutch S, Fukui S, Desjardins M, Subramaniam M, Baron RM, Raby BA, Perrella MA, Lederer JA, Wagner DD. Inflammasome activation in neutrophils of patients with severe COVID-19. Blood Adv 2022; 6:2001-2013. [PMID: 34991159 PMCID: PMC8741335 DOI: 10.1182/bloodadvances.2021005949] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/12/2021] [Indexed: 11/20/2022] Open
Abstract
Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engages the inflammasome in monocytes and macrophages and leads to the cytokine storm in COVID-19. Neutrophils, the most abundant leukocytes, release neutrophil extracellular traps (NETs), which have been implicated in the pathogenesis of COVID-19. Our recent study shows that activation of the NLRP3 inflammasome is important for NET release in sterile inflammation. However, the role of neutrophil inflammasome formation in human disease is unknown. We hypothesized that SARS-CoV-2 infection may induce inflammasome activation in neutrophils. We also aimed to assess the localization of inflammasome formation (ie, apoptosis-associated speck-like protein containing a CARD [ASC] speck assembly) and timing relative to NETosis in stimulated neutrophils by real-time video microscopy. Neutrophils isolated from severe COVID-19 patients demonstrated that ∼2% of neutrophils in both the peripheral blood and tracheal aspirates presented ASC speck. ASC speck was observed in neutrophils with an intact poly-lobulated nucleus, suggesting early formation during neutrophil activation. Additionally, 40% of nuclei were positive for citrullinated histone H3, and there was a significant correlation between speck formation and nuclear histone citrullination. Time-lapse microscopy in lipopolysaccharide -stimulated neutrophils from fluorescent ASC reporter mice showed that ASC speck formed transiently and at the microtubule organizing center long before NET release. Our study shows that ASC speck is present in neutrophils from COVID-19 patients with respiratory failure and that it forms early in NETosis. Our findings suggest that inhibition of neutrophil inflammasomes may be beneficial in COVID-19.
Collapse
Affiliation(s)
- Karen Aymonnier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Katherin Zambrano-Vera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Patrick Münzer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA
- Department of Cardiology and Angiology, University of Tübingen, Tübingen, Germany
| | - Sarah Gutch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA
| | - Shoichi Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Michael Desjardins
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Division of Infectious Diseases, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Pediatric Newborn Medicine, and
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; and
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
11
|
Udovicic I, Stanojevic I, Djordjevic D, Zeba S, Rondovic G, Abazovic T, Lazic S, Vojvodic D, To K, Abazovic D, Khan W, Surbatovic M. Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. J Clin Med 2021; 10:jcm10245815. [PMID: 34945111 PMCID: PMC8706110 DOI: 10.3390/jcm10245815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells and mediators play a crucial role in the critical care setting but are understudied. This review explores the concept of sepsis and/or injury-induced immunosuppression and immuno-inflammatory response in COVID-19 and reiterates the need for more accurate functional immunomonitoring of monocyte and neutrophil function in these critically ill patients. in addition, the feasibility of circulating and cell-surface immune biomarkers as predictors of infection and/or outcome in critically ill patients is explored. It is clear that, for critically ill, one size does not fit all and that immune phenotyping of critically ill patients may allow the development of a more personalized approach with tailored immunotherapy for the specific patient. In addition, at this point in time, caution is advised regarding the quality of evidence of some COVID-19 studies in the literature.
Collapse
Affiliation(s)
- Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
| | - Srdjan Lazic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute of Epidemiology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Kendrick To
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Dzihan Abazovic
- Emergency Medical Centar of Montenegro, Vaka Djurovica bb, 81000 Podgorica, Montenegro;
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Correspondence: ; Tel.: +381-11-2665-125
| |
Collapse
|
12
|
Wittmann N, Behrendt AK, Mishra N, Bossaller L, Meyer-Bahlburg A. Instructions for Flow Cytometric Detection of ASC Specks as a Readout of Inflammasome Activation in Human Blood. Cells 2021; 10:2880. [PMID: 34831104 PMCID: PMC8616555 DOI: 10.3390/cells10112880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasome activation is linked to the aggregation of the adaptor protein ASC into a multiprotein complex, known as the ASC speck. Redistribution of cytosolic ASC to this complex has been widely used as a readout for inflammasome activation and precedes the downstream proteolytic release of the proinflammatory cytokines, IL-1β and IL-18. Although inflammasomes are important for many diseases such as periodic fever syndromes, COVID-19, gout, sepsis, atherosclerosis and Alzheimer's disease, only a little knowledge exists on the precise and cell type specific occurrence of inflammasome activation in patient samples ex vivo. In this report, we provide detailed information about the optimal conditions to reliably identify inflammasome activated monocytes by ASC speck formation using a modified flow cytometric method introduced by Sester et al. in 2015. Since no protocol for optimal sample processing exists, we tested human blood samples for various conditions including anticoagulant, time and temperature, the effect of one freeze-thaw cycle for PBMC storage, and the fast generation of a positive control. We believe that this flow cytometric protocol will help researchers to perform high quality translational research in multicenter studies, and therefore provide a basis for investigating the role of the inflammasome in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Nico Wittmann
- Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, 17489 Greifswald, Germany; (N.W.); (A.-K.B.)
| | - Ann-Kathrin Behrendt
- Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, 17489 Greifswald, Germany; (N.W.); (A.-K.B.)
| | - Neha Mishra
- Section of Rheumatology, Department of Medicine A, University Medicine, University of Greifswald, 17489 Greifswald, Germany;
| | - Lukas Bossaller
- Section of Rheumatology, Department of Medicine A, University Medicine, University of Greifswald, 17489 Greifswald, Germany;
| | - Almut Meyer-Bahlburg
- Pediatric Rheumatology, Department Pediatric and Adolescent Medicine, University Medicine, University of Greifswald, 17489 Greifswald, Germany; (N.W.); (A.-K.B.)
| |
Collapse
|
13
|
Autophagy Regulation on Pyroptosis: Mechanism and Medical Implication in Sepsis. Mediators Inflamm 2021; 2021:9925059. [PMID: 34257519 PMCID: PMC8253640 DOI: 10.1155/2021/9925059] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis is defined as a life-threatening disease involving multiple organ dysfunction caused by dysregulated host responses to infection. To date, sepsis remains a dominant cause of death among critically ill patients. Pyroptosis is a unique form of programmed cell death mediated by the gasdermin family of proteins and causes lytic cell death and release of proinflammatory cytokines. Although there might be some positive aspects to pyroptosis, it is regarded as harmful during sepsis and needs to be restricted. Autophagy was originally characterized as a homeostasis-maintaining mechanism in living cells. In the past decade, its function in negatively modulating pyroptosis and inflammation during sepsis has attracted increased attention. Here, we present a comprehensive review of the regulatory effect of autophagy on pyroptosis during sepsis, including the latest advances in our understanding of the mechanism and signaling pathways involved, as well as the potential therapeutic application in sepsis.
Collapse
|