1
|
van Stigt AC, Gualtiero G, Cinetto F, Dalm VA, IJspeert H, Muscianisi F. The biological basis for current treatment strategies for granulomatous disease in common variable immunodeficiency. Curr Opin Allergy Clin Immunol 2024; 24:479-487. [PMID: 39431514 PMCID: PMC11537477 DOI: 10.1097/aci.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
PURPOSE OF REVIEW The pathogenesis of granulomatous disease in common variable immunodeficiency (CVID) is still largely unknown, which hampers effective treatment. This review describes the current knowledge on the pathogenesis of granuloma formation in CVID and the biological basis of the current treatment options. RECENT FINDINGS Histological analysis shows that T and B cells are abundantly present in the granulomas that are less well organized and are frequently associated with lymphoid hyperplasia. Increased presence of activation markers such as soluble IL-2 receptor (sIL-2R) and IFN-ɣ, suggest increased Th1-cell activity. Moreover, B-cell abnormalities are prominent in CVID, with elevated IgM, BAFF, and CD21low B cells correlating with granulomatous disease progression. Innate immune alterations, as M2 macrophages and neutrophil dysregulation, indicate chronic inflammation. Therapeutic regimens include glucocorticoids, DMARDs, and biologicals like rituximab. SUMMARY Our review links the biological context of CVID with granulomatous disease or GLILD to currently prescribed therapies and potential targeted treatments.
Collapse
Affiliation(s)
- Astrid C. van Stigt
- Laboratory Medical Immunology, Department of Immunology
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Giulia Gualtiero
- Hematology and Clinical Immunology Unit, Department of Medicine (DIMED)
- Veneto Institute of Molecular Medicine (VIMM)
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, Padova, Italy
| | - Virgil A.S.H. Dalm
- Laboratory Medical Immunology, Department of Immunology
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Francesco Muscianisi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Ballas ZK. "Where are they now?" Catching up with the 2019 AAAAI Faculty Development Awardees. J Allergy Clin Immunol 2024; 154:554-556. [PMID: 39038587 DOI: 10.1016/j.jaci.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Affiliation(s)
- Zuhair K Ballas
- Division of Immunology, University of Iowa, and Iowa City VA Health Care System, Iowa City, Iowa.
| |
Collapse
|
3
|
Khanbabaee G, Khazaii F, Chavoshzadeh Z, Rekabi M, Ghomi Z, Zeinali V, Pourghasem M, Soflaee M, Ghadrdan M. Interstitial lung diseases (ILD) in common variable immunodeficiency (CVID) patients: a study from Iran. BMC Immunol 2024; 25:45. [PMID: 39014337 PMCID: PMC11251223 DOI: 10.1186/s12865-024-00640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION Interstitial lung disease (ILD) is a prevalent complication in patients with common variable immunodeficiency (CVID) and is often related to other characteristics such as bronchiectasis and autoimmunity. Because the term ILD encompasses a variety of acute and chronic pulmonary conditions, diagnosis is usually based on imaging features. Histopathology is less available. This study was conducted with the aim of investigating the ILD in patients with CVID. MATERIALS AND METHODS In this retrospective cross-sectional study, sixty CVID patients who referred to the pulmonology and immunodeficiency clinics of Mofid Children's Hospital between 2013 and 2022 were included. The diagnosis of ILD were based on transbronchial lung biopsy (TBB) or clinical and radiological symptoms. The prevalence of ILD in CVID patients was determined. Also, the CVID patients with and without ILD were compared in terms of demographic characteristics, clinical, laboratory and radiologic findings. RESULTS Among all patients, ten patients had ILD (16.6%). In terms of laboratory parameters, there was a significant difference between platelets in the two groups of CVID patients with and without ILD, and the level of platelets was higher in the group of patients with ILD. Moreover, in terms of clinical symptoms, pneumonia, diarrhea and hepatomegaly were significantly different between the two groups and were statistically higher in the group of patients with ILD (P < 0.05). Autoimmunity and malignancy were not significantly different in two groups. There was a significant difference in, hyperinflation between the two groups of CVID patients with and without ILD, and the frequency of, hyperinflation was higher in the patients without ILD (P = 0.040). CONCLUSION Understanding the pathogenesis of ILD plays an essential role in revealing non-infectious pulmonary complications that occur in CVID patients. Increasing efforts to understand ILD not only shed light on its hidden pathogenesis and clinical features, but also enhance our understanding of CVID in a broader sense.
Collapse
Affiliation(s)
- Ghamartaj Khanbabaee
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khazaii
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Chavoshzadeh
- Department of Immunology and allergy, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Rekabi
- Department of Immunology and allergy, Masih daneshvari Hospital, Shahid beheshti university of medical sciences, Tehran, Iran
| | - Zahra Ghomi
- Department of clinical radiology, Mofid Children's Hospital, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Vahide Zeinali
- Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Matin Pourghasem
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maedeh Soflaee
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghadrdan
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Shi Y, You H, Liu C, Qiu Y, Lv C, Zhu Y, Xu L, Wang F, Zhang M, Tan W. Elevated serum B-cell activator factor levels predict rapid progressive interstitial lung disease in anti-melanoma differentiation associated protein 5 antibody positive dermatomyositis. Orphanet J Rare Dis 2024; 19:170. [PMID: 38637830 PMCID: PMC11027411 DOI: 10.1186/s13023-024-03153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Rapid progressive interstitial lung disease (RP-ILD) is the leading cause of anti-melanoma differentiation associated protein 5 antibody positive dermatomyositis (anti-MDA5+DM) related death. Elevated serum B-cell activating factor (BAFF) levels have been implicated in connective tissue diseases associated ILD. Here, we evaluate whether BAFF could be a prognostic biomarker for predicting RP-ILD in anti-MDA5+DM patients. METHODS Serums were collected from 39 patients with anti-MDA5+DM (20 with RP-ILD and 19 with non-RP-ILD), 20 antisynthase syndrome (ASS) patients and 20 healthy controls (HC). BAFF concentration was measured by an enzyme-linked immunosorbent assay. RESULTS Serum BAFF level was higher in anti-MDA5+DM patients than those in ASS patients and HC (3882.32 ± 1880.09 vs. 2540.89 ± 1403.04 and 2486.28 ± 767.97 pg/mL, p = 0.0056 and 0.0038, respectively). Within anti-MDA5+DM groups, RP-ILD patients exhibited higher BAFF concentration than non-RP-ILD group (4549.78 ± 1839.97 vs. 3297.28 ± 1794.69 pg/mL, p = 0.04). The BAFF concentration was positively correlated with levels of C-reactive protein (CRP), dehydrogenase (LDH) and cytokeratin (CK) in anti-MDA5+DM patients (r = 0.350, p = 0.035; r = 0.393, p = 0.016; r = 0.518, p = 0.001; respectively). The best cut-off value of BAFF concentration was 2971.5 pg/mL by ROC curve (AUC area = 0.690, p = 0.045) and BAFF > 2971.5 pg/mL was an independent risk factor for RP-ILD using multivariate analysis (OR = 9.389, 95% CI = 1.609-54.769; p = 0.013). CONCLUSIONS Serum BAFF could be a useful prognostic biomarker for early detecting RP-ILD risk in anti-MDA5+DM patients.
Collapse
Affiliation(s)
- Yumeng Shi
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Hanxiao You
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Chang Liu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Yulu Qiu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Chengyin Lv
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Yujing Zhu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Lingxiao Xu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
| | - Fang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Miaojia Zhang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China.
| | - Wenfeng Tan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China.
| |
Collapse
|
5
|
de Melo DB, Pereira RMR, Sini B, Levy D, Takayama L, Kokron CM, Berselli Marinho AK, Grecco O, Filho JEK, Barros MT. Bone Mineral Density is Related to CD4 + T Cell Counts and Muscle Mass is Associated with B Cells in Common Variable Immunodeficiency Patients. Endocr Metab Immune Disord Drug Targets 2024; 24:242-254. [PMID: 37608677 DOI: 10.2174/1871530323666230822100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by chronic/recurrent respiratory infections, bronchiectasis, autoimmunity, inflammatory, gastrointestinal diseases and malignancies associated with a chronic inflammatory state and increased risk of osteoporosis and muscle loss. AIM The aim of this study was to evaluate bone mineral density (BMD), body composition and their relationship with lymphocyte subpopulations in CVID patients. METHODS Dual-energy X-ray absorptiometry was performed to assess BMD, lean mass, and fat mass in CVID patients. Peripheral blood CD4+, CD8+, and CD19+ cells were measured using flow cytometry. RESULTS Thirty-three patients (37.3 ± 10.8 years old) were examined. Although only 11.8% of the individuals were malnourished (BMI <18.5 kg/m2), 27.7% of them had low skeletal muscle mass index (SMI), and 57.6% of them had low BMD. Patients with osteopenia/osteoporosis presented lower weight (p = 0.007), lean mass (p = 0.011), appendicular lean mass (p = 0.011), SMI (p = 0.017), and CD4+ count (p = 0.030). Regression models showed a positive association between CD4+ count and bone/muscle parameters, whereas CD19+ B cell count was only associated with muscle variables. Analysis of ROC curves indicated a cutoff value of CD4+ count (657 cells/mm3; AUC: 0.71, 95% CI 0.52-0.90) which was related to low BMD. Weight (p = 0.004), lean mass (p = 0.027), appendicular lean mass (p = 0.022), SMI (p = 0.029), total bone mineral content (p = 0.005), lumbar (p = 0.005), femoral neck (p = 0.035), and total hip BMD (p<0.001) were found to be lower in patients with CD4+ count below the cutoff. CONCLUSION CVID patients presented with low BMD, which was associated with CD4+ count. Moreover, low muscle parameters were correlated with B cell count.
Collapse
Affiliation(s)
- Daniel Barreto de Melo
- Clinical Immunology and Allergy Division, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Bruno Sini
- Clinical Immunology and Allergy Division, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Débora Levy
- Laboratory of Histo-compatibility and Cellular Immunity - LIM19, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Lilian Takayama
- Rheumatology Division, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cristina Maria Kokron
- Clinical Immunology and Allergy Division, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Octavio Grecco
- Clinical Immunology and Allergy Division, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jorge Elias Kalil Filho
- Clinical Immunology and Allergy Division, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Myrthes Toledo Barros
- Clinical Immunology and Allergy Division, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Sullivan NP, Maniam N, Maglione PJ. Interstitial lung diseases in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:500-506. [PMID: 37823528 DOI: 10.1097/aci.0000000000000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Our goal is to review current understanding of interstitial lung disease (ILD) affecting patients with inborn errors of immunity (IEI). This includes understanding how IEI might predispose to and promote development or progression of ILD as well as how our growing understanding of IEI can help shape treatment of ILD in these patients. Additionally, by examining current knowledge of ILD in IEI, we hope to identify key knowledge gaps that can become focus of future investigative efforts. RECENT FINDINGS Recent identification of novel IEI associated with ILD and the latest reports examining treatment of ILD in IEI are included. Of noted interest, are recent clinical studies of immunomodulatory therapy for ILD in common variable immunodeficiency. SUMMARY ILD is a frequent complication found in many IEI. This article provides a guide to identifying manifestations of ILD in IEI. We review a broad spectrum of IEI that develop ILD, including antibody deficiency and immune dysregulation disorders that promote autoimmunity and autoinflammation. This work integrates clinical information with molecular mechanisms of disease and diagnostic assessments to provide an expedient overview of a clinically relevant and expanding topic.
Collapse
Affiliation(s)
| | - Nivethietha Maniam
- Section of Pulmonary, Allergy, Sleep and Critical Care Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Paul J Maglione
- Section of Pulmonary, Allergy, Sleep and Critical Care Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Cabanero-Navalon MD, Garcia-Bustos V, Mira A, Moral Moral P, Salavert-Lleti M, Forner Giner MJ, Núñez Beltrán M, Todolí Parra J, Bracke C, Carda-Diéguez M. Dysimmunity in common variable immunodeficiency is associated with alterations in oral, respiratory, and intestinal microbiota. Clin Immunol 2023; 256:109796. [PMID: 37774905 DOI: 10.1016/j.clim.2023.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency characterized by decreased immunoglobulins and recurrent infections. Its aetiology remains unknown, and some patients present with severe non-infectious autoimmune or inflammatory complications with elevated associated morbimortality. Recently, intestinal dysbiosis has been proposed as a driver of immune dysregulation. In this study, we assessed the oral, respiratory, and gastrointestinal microbiota of 41 CVID patients (24 with dysimmune and 17 with infection complications) and 15 healthy volunteers using 16S rRNA gene sequencing to explore associations between microbiome profiles and CVID phenotypes. Profound differences in the composition of the microbiota in saliva, sputum, and stool were detected between dysimmune CVID patients and healthy individuals. Globally, respiratory species diversity and faecal bacterial richness were lower in CVID individuals with immune complications. Although a single species could not be identified as a robust predictor of dysimmunity, a combination of around 5-7 bacterial species in each type of sample could predict this severe phenotype with an accuracy of around 90% in the study population. Our study provides new insights into these previously unexplored but highly interrelated ecological niches among themselves and with patient profiles. Our data suggest that this disease-related systemic dysbiosis could be implicated in the immune dysregulation associated with severe cases of CVID.
Collapse
Affiliation(s)
- Marta Dafne Cabanero-Navalon
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain; Research Group of Chronic Diseases and HIV Infection, Health Research Institute La Fe, Valencia, Spain
| | - Victor Garcia-Bustos
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain; Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain.
| | - Alex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | - Pedro Moral Moral
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain; Research Group of Chronic Diseases and HIV Infection, Health Research Institute La Fe, Valencia, Spain
| | - Miguel Salavert-Lleti
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain; Unit of Infectious Diseases, Department of Internal Medicine of the University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - María Núñez Beltrán
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - José Todolí Parra
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain; Research Group of Chronic Diseases and HIV Infection, Health Research Institute La Fe, Valencia, Spain
| | - Carme Bracke
- Department of Infectious Diseases, Germans Trias i Pujol Hospital, Badalona, Spain
| | | |
Collapse
|
8
|
Poto R, Laniro G, de Paulis A, Spadaro G, Marone G, Gasbarrini A, Varricchi G. Is there a role for microbiome-based approach in common variable immunodeficiency? Clin Exp Med 2023; 23:1981-1998. [PMID: 36737487 PMCID: PMC9897624 DOI: 10.1007/s10238-023-01006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by low levels of serum immunoglobulins and increased susceptibility to infections, autoimmune disorders and cancer. CVID embraces a plethora of heterogeneous manifestations linked to complex immune dysregulation. While CVID is thought to be due to genetic defects, the exact cause of this immune disorder is unknown in the large majority of cases. Compelling evidences support a linkage between the gut microbiome and the CVID pathogenesis, therefore a potential for microbiome-based treatments to be a therapeutic pathway for this disorder. Here we discuss the potential of treating CVID patients by developing a gut microbiome-based personalized approach, including diet, prebiotics, probiotics, postbiotics and fecal microbiota transplantation. We also highlight the need for a better understanding of microbiota-host interactions in CVID patients to prime the development of improved preventive strategies and specific therapeutic targets.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità (ISS), Rome, Italy
| | - Gianluca Laniro
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
9
|
Smits B, Goldacker S, Seneviratne S, Malphettes M, Longhurst H, Mohamed OE, Witt-Rautenberg C, Leeman L, Schwaneck E, Raymond I, Meghit K, Uhlmann A, Winterhalter C, van Montfrans J, Klima M, Workman S, Fieschi C, Lorenzo L, Boyle S, Onyango-Odera S, Price S, Schmalzing M, Aurillac V, Prasse A, Hartmann I, Meerburg JJ, Kemner-van de Corput M, Tiddens H, Grimbacher B, Kelleher P, Patel SY, Korganow AS, Viallard JF, Tony HP, Bethune C, Schulze-Koops H, Witte T, Huissoon A, Baxendale H, Grigoriadou S, Oksenhendler E, Burns SO, Warnatz K. The efficacy and safety of systemic corticosteroids as first line treatment for granulomatous lymphocytic interstitial lung disease. J Allergy Clin Immunol 2023; 152:528-537. [PMID: 36587851 DOI: 10.1016/j.jaci.2022.12.813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Granulomatous and lymphocytic interstitial lung disease (gl-ILD) is a major cause of morbidity and mortality among patients with common variable immunodeficiency. Corticosteroids are recommended as first-line treatment for gl-ILD, but evidence for their efficacy is lacking. OBJECTIVES This study analyzed the effect of high-dose corticosteroids (≥0.3 mg/kg prednisone equivalent) on gl-ILD, measured by high-resolution computed tomography (HRCT) scans, and pulmonary function test (PFT) results. METHODS Patients who had received high-dose corticosteroids but no other immunosuppressive therapy at the time (n = 56) and who underwent repeated HRCT scanning or PFT (n = 39) during the retrospective and/or prospective phase of the Study of Interstitial Lung Disease in Primary Antibody Deficiency (STILPAD) were included in the analysis. Patients without any immunosuppressive treatment were selected as controls (n = 23). HRCT scans were blinded, randomized, and scored using the Hartman score. Differences between the baseline and follow-up HRCT scans and PFT were analyzed. RESULTS Treatment with high-dose corticosteroids significantly improved HRCT scores and forced vital capacity. Carbon monoxide diffusion capacity significantly improved in both groups. Of 18 patients, for whom extended follow-up data was available, 13 achieved a long-term, maintenance therapy independent remission. All patients with relapse were retreated with corticosteroids, but only one-fifth of them responded. Two opportunistic infections were found in the corticosteroid treatment group, while overall infection rate was similar between cohorts. CONCLUSIONS Induction therapy with high-dose corticosteroids improved HRCT scans and PFT results of patients with gl-ILD and achieved long-term remission in 42% of patients. It was not associated with major side effects. Low-dose maintenance therapy provided no benefit and efficacy was poor in relapsing disease.
Collapse
Affiliation(s)
- Bas Smits
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sigune Goldacker
- Division of Immunodeficiency, Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Hilary Longhurst
- Department of Immunology and Department of Haemato-Oncology, Barts Health National Health Service Trust, The Royal London Hospital, London, United Kingdom
| | - Omar E Mohamed
- West Midlands Primary Immunodeficiency Centre, Birmingham Heartlands Hospital, Birmingham, United Kingdom
| | - Carla Witt-Rautenberg
- Division of Rheumatology and Clinical Immunology, Department of Medicine IV, University of Munich, Munich, Germany
| | - Lucy Leeman
- Peninsula Immunology and Allergy Service, University Hospitals Plymouth, Plymouth, United Kingdom
| | - Eva Schwaneck
- Rheumatology/Clinical Immunology, University Hospital of Wuerzburg, Wuerzburg, Germany; Rheumatology/Clinical Immunology Asklepios Klinik Altona, Hamburg, Germany
| | - Isabelle Raymond
- Department of Internal Medicine, Centre Hospitalier Universitaire of Bordeaux, Bordeaux, France
| | - Kilifa Meghit
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Autoimmune Diseases, University Hospitals of Strasbourg, Strasbourg, France
| | - Annette Uhlmann
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinical Trials Unit, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Winterhalter
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinical Trials Unit, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marion Klima
- Division of Immunodeficiency, Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarita Workman
- Department of Clinical Immunology, Royal Free Hospital, London, United Kingdom
| | - Claire Fieschi
- Département d'Immunologie, Hôpital Saint-Louis, Paris, France
| | - Lorena Lorenzo
- Department of Immunology and Department of Haemato-Oncology, Barts Health National Health Service Trust, The Royal London Hospital, London, United Kingdom
| | - Sonja Boyle
- Clinical Immunology, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Shamin Onyango-Odera
- West Midlands Primary Immunodeficiency Centre, Birmingham Heartlands Hospital, Birmingham, United Kingdom
| | - Suzanne Price
- Peninsula Immunology and Allergy Service, University Hospitals Plymouth, Plymouth, United Kingdom
| | - Marc Schmalzing
- Rheumatology/Clinical Immunology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Valerie Aurillac
- Department of Internal Medicine, Centre Hospitalier Universitaire of Bordeaux, Bordeaux, France
| | - Antje Prasse
- Department of Respiratory Medicine, Medizinische Hochschule Hannover, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, Deutsches Zentrum für Lungenforschung, Hannover, Germany
| | - Ieneke Hartmann
- Department of Pediatric Respiratory Medicine, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Radiology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jennifer J Meerburg
- Department of Pediatric Respiratory Medicine, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Radiology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Mariette Kemner-van de Corput
- Department of Pediatric Respiratory Medicine, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Radiology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Harm Tiddens
- Department of Pediatric Respiratory Medicine, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Radiology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Bodo Grimbacher
- Division of Immunodeficiency, Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; Resolving Infection Susceptibility, Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Peter Kelleher
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Smita Y Patel
- Department of Clinical Immunology, Oxford University Hospitals National Health Service Foundation Trust, United Kingdom; National Institute for Health and Care Research Biomedical Research Unit, University of Oxford, United Kingdom
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Autoimmune Diseases, University Hospitals of Strasbourg, Strasbourg, France
| | - Jean-Francois Viallard
- Department of Internal Medicine, Centre Hospitalier Universitaire of Bordeaux, Bordeaux, France
| | - Hans-Peter Tony
- Rheumatology/Clinical Immunology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Claire Bethune
- Peninsula Immunology and Allergy Service, University Hospitals Plymouth, Plymouth, United Kingdom
| | | | - Torsten Witte
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Aarnoud Huissoon
- West Midlands Primary Immunodeficiency Centre, Birmingham Heartlands Hospital, Birmingham, United Kingdom
| | - Helen Baxendale
- Clinical Immunology, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Sofia Grigoriadou
- Department of Immunology and Department of Haemato-Oncology, Barts Health National Health Service Trust, The Royal London Hospital, London, United Kingdom
| | - Eric Oksenhendler
- Département d'Immunologie, Hôpital Saint-Louis, Paris, France; Department of Clinical Immunology and Université de Paris, Paris, France
| | - Siobhan O Burns
- Department of Clinical Immunology, Royal Free Hospital, London, United Kingdom; Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Klaus Warnatz
- Division of Immunodeficiency, Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Rossi M, Anerillas C, Idda ML, Munk R, Shin CH, Donega S, Tsitsipatis D, Herman AB, Martindale JL, Yang X, Piao Y, Mazan-Mamczarz K, Fan J, Ferrucci L, Johnson PF, De S, Abdelmohsen K, Gorospe M. Pleiotropic effects of BAFF on the senescence-associated secretome and growth arrest. eLife 2023; 12:e84238. [PMID: 37083495 PMCID: PMC10121226 DOI: 10.7554/elife.84238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/26/2023] [Indexed: 04/22/2023] Open
Abstract
Senescent cells release a variety of cytokines, proteases, and growth factors collectively known as the senescence-associated secretory phenotype (SASP). Sustained SASP contributes to a pattern of chronic inflammation associated with aging and implicated in many age-related diseases. Here, we investigated the expression and function of the immunomodulatory cytokine BAFF (B-cell activating factor; encoded by the TNFSF13B gene), a SASP protein, in multiple senescence models. We first characterized BAFF production across different senescence paradigms, including senescent human diploid fibroblasts (WI-38, IMR-90) and monocytic leukemia cells (THP-1), and tissues of mice induced to undergo senescence. We then identified IRF1 (interferon regulatory factor 1) as a transcription factor required for promoting TNFSF13B mRNA transcription in senescence. We discovered that suppressing BAFF production decreased the senescent phenotype of both fibroblasts and monocyte-like cells, reducing IL6 secretion and SA-β-Gal staining. Importantly, however, the influence of BAFF on the senescence program was cell type-specific: in monocytes, BAFF promoted the early activation of NF-κB and general SASP secretion, while in fibroblasts, BAFF contributed to the production and function of TP53 (p53). We propose that BAFF is elevated across senescence models and is a potential target for senotherapy.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Maria Laura Idda
- Institute for Genetic and Biomedical Research (IRGB), National Research CouncilSassaryItaly
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Stefano Donega
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
- Translational Gerontology Branch, NIA IRP, NIHBaltimoreUnited States
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Luigi Ferrucci
- Translational Gerontology Branch, NIA IRP, NIHBaltimoreUnited States
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute IRPFrederickUnited States
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| |
Collapse
|
11
|
Fevang B. Treatment of inflammatory complications in common variable immunodeficiency (CVID): current concepts and future perspectives. Expert Rev Clin Immunol 2023; 19:627-638. [PMID: 36996348 DOI: 10.1080/1744666x.2023.2198208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Patients with Common variable immunodeficiency (CVID) have a high frequency of inflammatory complications like autoimmune cytopenias, interstitial lung disease and enteropathy. These patients have poor prognosis and effective, timely and safe treatment of inflammatory complications in CVID are essential, but guidelines and consensus on therapy are often lacking. AREAS COVERED This review will focus on current medical treatment of inflammatory complications in CVID and point out some future perspectives based on literature indexed in PubMed. There are a number of good observational studies and case reports on treatment of specific complications but randomized controlled trials are scarce. EXPERT OPINION In clinical practice, the most urgent issues that need to be addressed are the preferred treatment of GLILD, enteropathy and liver disease. Treating the underlying immune dysregulation and immune exhaustion in CVID is an alternative approach that potentially could alleviate these and other organ-specific inflammatory complications. Therapies of potential interest and wider use in CVID include mTOR-inhibitors like sirolimus, JAK-inhibitors like tofacitinib, the monoclonal IL-12/23 antibody ustekinumab, the anti-BAFF antibody belimumab and abatacept. For all inflammatory complications, there is a need for prospective therapeutic trials, preferably randomized controlled trials, and multi-center collaborations with larger cohorts of patients will be essential.
Collapse
Affiliation(s)
- Børre Fevang
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Sacco KA, Gazzin A, Notarangelo LD, Delmonte OM. Granulomatous inflammation in inborn errors of immunity. Front Pediatr 2023; 11:1110115. [PMID: 36891233 PMCID: PMC9986611 DOI: 10.3389/fped.2023.1110115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
Granulomas have been defined as inflammatory infiltrates formed by recruitment of macrophages and T cells. The three-dimensional spherical structure typically consists of a central core of tissue resident macrophages which may merge into multinucleated giant cells surrounded by T cells at the periphery. Granulomas may be triggered by infectious and non-infectious antigens. Cutaneous and visceral granulomas are common in inborn errors of immunity (IEI), particularly among patients with chronic granulomatous disease (CGD), combined immunodeficiency (CID), and common variable immunodeficiency (CVID). The estimated prevalence of granulomas in IEI ranges from 1%-4%. Infectious agents causing granulomas such Mycobacteria and Coccidioides presenting atypically may be 'sentinel' presentations for possible underlying immunodeficiency. Deep sequencing of granulomas in IEI has revealed non-classical antigens such as wild-type and RA27/3 vaccine-strain Rubella virus. Granulomas in IEI are associated with significant morbidity and mortality. The heterogeneity of granuloma presentation in IEI presents challenges for mechanistic approaches to treatment. In this review, we discuss the main infectious triggers for granulomas in IEI and the major forms of IEI presenting with 'idiopathic' non-infectious granulomas. We also discuss models to study granulomatous inflammation and the impact of deep-sequencing technology while searching for infectious triggers of granulomatous inflammation. We summarize the overarching goals of management and highlight the therapeutic options reported for specific granuloma presentations in IEI.
Collapse
Affiliation(s)
- Keith A Sacco
- Department of Pulmonology, Section of Allergy-Immunology, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Andrea Gazzin
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, United States
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Gutierrez MJ, Nino G, Sun D, Restrepo-Gualteros S, Sadreameli SC, Fiorino EK, Wu E, Vece T, Hagood JS, Maglione PJ, Kurland G, Koumbourlis A, Sullivan KE. The lung in inborn errors of immunity: From clinical disease patterns to molecular pathogenesis. J Allergy Clin Immunol 2022; 150:1314-1324. [PMID: 36244852 PMCID: PMC9826631 DOI: 10.1016/j.jaci.2022.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022]
Abstract
In addition to being a vital organ for gas exchange, the lung is a crucial immune organ continuously exposed to the external environment. Genetic defects that impair immune function, called inborn errors of immunity (IEI), often have lung disease as the initial and/or primary manifestation. Common types of lung disease seen in IEI include infectious complications and a diverse group of diffuse interstitial lung diseases. Although lung damage in IEI has been historically ascribed to recurrent infections, contributions from potentially targetable autoimmune and inflammatory pathways are now increasingly recognized. This article provides a practical guide to identifying the diverse pulmonary disease patterns in IEI based on lung imaging and respiratory manifestations, and integrates this clinical information with molecular mechanisms of disease and diagnostic assessments in IEI. We cover the entire IEI spectrum, including immunodeficiencies and immune dysregulation with monogenic autoimmunity and autoinflammation, as well as recently described IEI with pulmonary manifestations. Although the pulmonary manifestations of IEI are highly relevant for all age groups, special emphasis is placed on the pediatric population, because initial presentations often occur during childhood. We also highlight the pivotal role of genetic testing in the diagnosis of IEI involving the lungs and the critical need to develop multidisciplinary teams for the challenging evaluation of these rare but potentially life-threatening disorders.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University, Baltimore, Md.
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine, Washington, DC
| | - Di Sun
- Division of Pediatric Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Sonia Restrepo-Gualteros
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia; Division of Pediatric Pulmonology, Fundacion Hospital La Misericordia, Bogotá, Colombia
| | - Sarah C Sadreameli
- Division of Pediatric Pulmonology and Sleep Medicine, Johns Hopkins University, Baltimore, Md
| | - Elizabeth K Fiorino
- Departments of Science Education and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Eveline Wu
- Division of Pediatric Allergy, Immunology and Rheumatology, University of North Carolina, Chapel Hill, NC
| | - Timothy Vece
- Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC
| | - James S Hagood
- Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC
| | - Paul J Maglione
- Division of Allergy and Immunology, Boston University, Boston, Mass
| | - Geoffrey Kurland
- Division of Pediatric Pulmonology and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Anastassios Koumbourlis
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine, Washington, DC
| | - Kathleen E Sullivan
- Division of Pediatric Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| |
Collapse
|
14
|
Alturaiki W. Considerations for Novel COVID-19 Mucosal Vaccine Development. Vaccines (Basel) 2022; 10:1173. [PMID: 35893822 PMCID: PMC9329946 DOI: 10.3390/vaccines10081173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Mucosal surfaces are the first contact sites of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most SARS-CoV-2 vaccines induce specific IgG responses but provide limited mucosal immunity. Cytokine B-cell activation factor (BAFF) and A proliferation-inducing ligand (APRIL) in the tumor necrosis factor (TNF) superfamily play key immunological functions during B cell development and antibody production. Furthermore, homeostatic chemokines, such as C-X-C motif chemokine ligand 13 (CXCL13), chemokine (C-C motif) ligand 19 (CCL19), and CCL21, can induce B- and T-cell responses to infection and promote the formation of inducible bronchus-associated lymphoid tissues (iBALT), where specific local immune responses and memory cells are generated. We reviewed the role of BAFF, APRIL, CXCL13, CCL19, and CCL21 in the activation of local B-cell responses and antibody production, and the formation of iBALT in the lung following viral respiratory infections. We speculate that mucosal vaccines may offer more efficient protection against SARS-CoV-2 infection than systematic vaccines and hypothesize that a novel SARS-CoV-2 mRNA mucosal vaccine using BAFF/APRIL or CXCL13 as immunostimulants combined with the spike protein-encoding mRNA may enhance the efficiency of the local immune response and prevent the early stages of SARS-CoV-2 replication and the rapid viral clearance from the airways.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| |
Collapse
|
15
|
Pulvirenti F, Di Cecca S, Sinibaldi M, Piano Mortari E, Terreri S, Albano C, Guercio M, Sculco E, Milito C, Ferrari S, Locatelli F, Quintarelli C, Carsetti R, Quinti I. T-Cell Defects Associated to Lack of Spike-Specific Antibodies after BNT162b2 Full Immunization Followed by a Booster Dose in Patients with Common Variable Immune Deficiencies. Cells 2022; 11:1918. [PMID: 35741048 PMCID: PMC9221747 DOI: 10.3390/cells11121918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Following the third booster dose of the mRNA vaccine, Common Variable Immune Deficiencies (CVID) patients may not produce specific antibodies against the virus spike protein. The T-cell abnormalities associated with the absence of antibodies are still a matter of investigation. Spike-specific IgG and IgA, peripheral T cell subsets, CD40L and cytokine expression, and Spike-specific specific T-cells responses were evaluated in 47 CVID and 26 healthy donors after three doses of BNT162b2 vaccine. Testing was performed two weeks after the third vaccine dose. Thirty-six percent of the patients did not produce anti-SARS-CoV-2 IgG or IgA antibodies. Non responder patients had lower peripheral blood lymphocyte counts, circulating naïve and central memory T-cells, low CD40L expression on the CD4+CD45+RO+ and CD8+CD45+RO+ T-cells, high frequencies of TNFα and IFNγ expressing CD8+ T-cells, and defective release of IFNγ and TNFα following stimulation with Spike peptides. Non responders had a more complex disease phenotype, with higher frequencies of structural lung damage and autoimmunity, especially autoimmune cytopenia. Thirty-five percent of them developed a SARS-CoV-2 infection after immunization in comparison to twenty percent of CVID who responded to immunization with antibodies production. CVID-associated T cell abnormalities contributed to the absence of SARS-CoV-2 specific antibodies after full immunization.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy;
| | - Stefano Di Cecca
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Matilde Sinibaldi
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| | - Sara Terreri
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
| | - Christian Albano
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
| | - Marika Guercio
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| | - Simona Ferrari
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Franco Locatelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| |
Collapse
|
16
|
Mertowska P, Mertowski S, Podgajna M, Grywalska E. The Importance of the Transcription Factor Foxp3 in the Development of Primary Immunodeficiencies. J Clin Med 2022; 11:947. [PMID: 35207219 PMCID: PMC8874698 DOI: 10.3390/jcm11040947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Transcription factors are an extremely important group of proteins that are responsible for the process of selective activation or deactivation of other cellular proteins, usually at the last stage of signal transmission in the cell. An important family of transcription factors that regulate the body's response is the FOX family which plays an important role in regulating the expression of genes involved in cell growth, proliferation, and differentiation. The members of this family include the intracellular protein Foxp3, which regulates the process of differentiation of the T lymphocyte subpopulation, and more precisely, is responsible for the development of regulatory T lymphocytes. This protein influences several cellular processes both directly and indirectly. In the process of cytokine production regulation, the Foxp3 protein interacts with numerous proteins and transcription factors such as NFAT, nuclear factor kappa B, and Runx1/AML1 and is involved in the process of histone acetylation in condensed chromatin. Malfunctioning of transcription factor Foxp3 caused by the mutagenesis process affects the development of disorders of the immune response and autoimmune diseases. This applies to the impairment or inability of the immune system to fight infections due to a disruption of the mechanisms supporting immune homeostasis which in turn leads to the development of a special group of disorders called primary immunodeficiencies (PID). The aim of this review is to provide information on the role of the Foxp3 protein in the human body and its involvement in the development of two types of primary immunodeficiency diseases: IPEX (Immunodysregulation Polyendocrinopathy Enteropathy X-linked syndrome) and CVID (Common Variable Immunodeficiency).
Collapse
Affiliation(s)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.M.); (M.P.); (E.G.)
| | | | | |
Collapse
|
17
|
Quinti I, Locatelli F, Carsetti R. The Immune Response to SARS-CoV-2 Vaccination: Insights Learned From Adult Patients With Common Variable Immune Deficiency. Front Immunol 2022; 12:815404. [PMID: 35126372 PMCID: PMC8807657 DOI: 10.3389/fimmu.2021.815404] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
CVID patients have an increased susceptibility to vaccine-preventable infections. The question on the potential benefits of immunization of CVID patients against SARS-CoV-2 offered the possibility to analyze the defective mechanisms of immune responses to a novel antigen. In CVID, as in immunocompetent subjects, the role of B and T cells is different between infected and vaccinated individuals. Upon vaccination, variable anti-Spike IgG responses have been found in different CVID cohorts. Immunization with two doses of mRNA vaccine did not generate Spike-specific classical memory B cells (MBCs) but atypical memory B cells (ATM) with low binding capacity to Spike protein. Spike-specific T-cells responses were also induced in CVID patients with a variable frequency, differently from specific T cells produced after multiple exposures to viral antigens following influenza virus immunization and infection. The immune response elicited by SARS-CoV-2 infection was enhanced by subsequent immunization underlying the need to immunize convalescent COVID-19 CVID patients after recovery. In particular, immunization after SARS-Cov-2 infection generated Spike-specific classical memory B cells (MBCs) with low binding capacity to Spike protein and Spike-specific antibodies in a high percentage of CVID patients. The search for a strategy to elicit an adequate immune response post-vaccination in CVID patients is necessary. Since reinfection with SARS-CoV-2 has been documented, at present SARS-CoV-2 positive CVID patients might benefit from new preventing strategy based on administration of anti-SARS-CoV-2 monoclonal antibodies.
Collapse
Affiliation(s)
- Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Isabella Quinti,
| | - Franco Locatelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Dipartimento Materno-Infantile e Scienze Urologiche, Sapienza University of Rome, Rome, Italy
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Diagnostic Immunology Clinical Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
18
|
The pediatric common variable immunodeficiency - from genetics to therapy: a review. Eur J Pediatr 2022; 181:1371-1383. [PMID: 34939152 PMCID: PMC8964589 DOI: 10.1007/s00431-021-04287-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/20/2021] [Accepted: 10/03/2021] [Indexed: 12/15/2022]
Abstract
UNLABELLED Common variable immunodeficiency (CVID) is the most prevalent antibody deficiency, characterized by remarkable genetic, immunological, and clinical heterogeneity. The diagnosis of pediatric CVID is challenging due to the immaturity of the immune response and sustained actively developing antibody affinity to antigens and immunological memory that may overlap with the inborn error of immunity. Significant progress has been recently done in the field of immunogenetics, yet a paucity of experimental and clinical studies on different systemic manifestations and immunological features of CVID in children may contribute to a delayed diagnosis and therapy. In this review, we aimed at defining the variable epidemiological, etiological, and clinical aspects of pediatric CVID with special emphasis on predominating infectious and non-infectious phenotypes in affected children. CONCLUSION While pediatric CVID is a multifaceted and notorious disease, increasing the pediatricians' awareness of this disease entity and preventing the diagnostic and therapeutic delay are needed, thereby improving the prognosis and survival of pediatric CVID patients. WHAT IS KNOWN • CVID is an umbrella diagnosis characterized by complex pathophysiology with an antibody deficiency as a common denominator. • It is a multifaceted disease characterized by marked genetic, immunological, and clinical heterogeneity.. WHAT IS NEW • The diagnosis of pediatric CVID is challenging due to the immaturity of innate and adaptive immune response. • Increasing the pediatricians' awareness of CVID for the early disease recognition, timely therapeutic intervention, and improving the prognosis is needed.
Collapse
|
19
|
Quartuccio L, De Marchi G, Longhino S, Manfrè V, Rizzo MT, Gandolfo S, Tommasini A, De Vita S, Fox R. Shared Pathogenetic Features Between Common Variable Immunodeficiency and Sjögren's Syndrome: Clues for a Personalized Medicine. Front Immunol 2021; 12:703780. [PMID: 34322134 PMCID: PMC8311857 DOI: 10.3389/fimmu.2021.703780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Common variable immunodeficiency disorders (CVID) are a group of rare diseases of the immune system and the most common symptomatic primary antibody deficiency in adults. The “variable” aspect of CVID refers to the approximately half of the patients who develop non-infective complications, mainly autoimmune features, in particular organ specific autoimmune diseases including thyroiditis, and cytopenias. Among these associated conditions, the incidence of lymphoma, including mucosal associated lymphoid tissue (MALT) type, is increased. Although these associated autoimmune disorders in CVID are generally attributed to Systemic Lupus Erythematosus (SLE), we propose that Sjogren’s syndrome (SS) is perhaps a better candidate for the associated disease. SS is an autoimmune disorder characterized by the lymphocytic infiltrates of lacrimal and salivary glands, leading to dryness of the eyes and mouth. Thus, it is a lymphocyte aggressive disorder, in contrast to SLE where pathology is generally attributed to auto-antibody and complement activation. Although systemic lupus erythematosus (SLE) shares these features with SS, a much higher frequency of MALT lymphoma distinguishes SS from SLE. Also, the higher frequency of germ line encoded paraproteins such as the monoclonal rheumatoid factor found in SS patients would be more consistent with the failure of B-cell VDJ switching found in CVID; and in contrast to the hypermutation that characterizes SLE autoantibodies. Thus, we suggest that SS may fit as a better “autoimmune” association with CVID. Examining the common underlying biologic mechanisms that promote lymphoid infiltration by dysregulated lymphocytes and lymphoma in CVID may provide new avenues for treatment in both the diseases. Since the diagnosis of SLE or rheumatoid arthritis is usually based on specific autoantibodies, the associated autoimmune features of CVID patients may not be recognized in the absence of autoantibodies.
Collapse
Affiliation(s)
- Luca Quartuccio
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | | | - Simone Longhino
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Valeria Manfrè
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Maria Teresa Rizzo
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | | | - Alberto Tommasini
- Pediatric Immunology, IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Salvatore De Vita
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Robert Fox
- Rheumatology Clinic, Scripps Memorial Hospital and Research Foundation, La Jolla, CA, United States
| |
Collapse
|