1
|
Thakur A, Sharma V, Averbek S, Liang L, Pandya N, Kumar G, Cili A, Zhang K. Immune landscape and redox imbalance during neurological disorders in COVID-19. Cell Death Dis 2023; 14:593. [PMID: 37673862 PMCID: PMC10482955 DOI: 10.1038/s41419-023-06102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19) has prompted the scientific community to explore potential treatments or vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the illness. While SARS-CoV-2 is mostly considered a respiratory pathogen, several neurological complications have been reported, raising questions about how it may enter the Central Nervous System (CNS). Receptors such as ACE2, CD147, TMPRSS2, and NRP1 have been identified in brain cells and may be involved in facilitating SARS-CoV-2 entry into the CNS. Moreover, proteins like P2X7 and Panx-1 may contribute to the pathogenesis of COVID-19. Additionally, the role of the immune system in the gravity of COVID-19 has been investigated with respect to both innate and adaptive immune responses caused by SARS-CoV-2 infection, which can lead to a cytokine storm, tissue damage, and neurological manifestations. A redox imbalance has also been linked to the pathogenesis of COVID-19, potentially causing mitochondrial dysfunction, and generating proinflammatory cytokines. This review summarizes different mechanisms of reactive oxygen species and neuro-inflammation that may contribute to the development of severe COVID-19, and recent progress in the study of immunological events and redox imbalance in neurological complications of COVID-19, and the role of bioinformatics in the study of neurological implications of COVID-19.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong SAR, Hong Kong.
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sera Averbek
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Lifan Liang
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Nirali Pandya
- Department of Chemistry, Faculty of Sciences, National University of Singapore, Singapore, Singapore
| | - Gaurav Kumar
- School of Biosciences and Biomedical Engineering, Department of Clinical Research, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Alma Cili
- Clinic of Hematology, University of Medicine, University Hospital center "Mother Teresa", Tirane, Albania
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass sciences, Southwest University, Chongqing, China.
- Cancer Centre, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Dey J, Mahapatra SR, Singh PK, Prabhuswamimath SC, Misra N, Suar M. Designing of multi-epitope peptide vaccine against Acinetobacter baumannii through combined immunoinformatics and protein interaction-based approaches. Immunol Res 2023; 71:639-662. [PMID: 37022613 PMCID: PMC10078064 DOI: 10.1007/s12026-023-09374-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
Acinetobacter baumannii is one of the major pathogenic ESKAPE bacterium, which is responsible for about more than 722,000 cases in a year, globally. Despite the alarming increase in multidrug resistance, a safe and effective vaccine for Acinetobacter infections is still not available. Hence in the current study, a multiepitope vaccine construct was developed using linear B cell, cytotoxic T cell, and helper T cell epitopes from the antigenic and well-conserved lipopolysaccharide assembly proteins employing systematic immunoinformatics and structural vaccinology strategies. The multi-peptide vaccine was predicted to be highly antigenic, non-allergenic, non-toxic, and cover maximum population coverage worldwide. Further, the vaccine construct was modeled along with adjuvant and peptide linkers and validated to achieve a high-quality three-dimensional structure which was subsequently utilized for cytokine prediction, disulfide engineering, and docking analyses with Toll-like receptor (TLR4). Ramachandran plot showed 98.3% of the residues were located in the most favorable and permitted regions, thereby corroborating the feasibility of the modeled vaccine construct. Molecular dynamics simulation for a 100 ns timeframe further confirmed the stability of the binding vaccine-receptor complex. Finally, in silico cloning and codon adaptation were also performed with the pET28a (+) plasmid vector to determine the efficiency of expression and translation of the vaccine. Immune simulation studies demonstrated that the vaccine could trigger both B and T cell responses and can elicit strong primary, secondary, and tertiary immune responses. The designed multi-peptide subunit vaccine would certainly expedite the experimental approach for the development of a vaccine against A. baumannii infection.
Collapse
Affiliation(s)
- Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, -751024, Bhubaneswar, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, -751024, Bhubaneswar, India
| | | | - Samudyata C Prabhuswamimath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, -570015, Mysuru, Karnataka, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, -751024, Bhubaneswar, India.
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, -751024, Bhubaneswar, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, -751024, Bhubaneswar, India.
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, -751024, Bhubaneswar, India.
| |
Collapse
|
3
|
Chour W, Choi J, Xie J, Chaffee ME, Schmitt TM, Finton K, DeLucia DC, Xu AM, Su Y, Chen DG, Zhang R, Yuan D, Hong S, Ng AHC, Butler JZ, Edmark RA, Jones LC, Murray KM, Peng S, Li G, Strong RK, Lee JK, Goldman JD, Greenberg PD, Heath JR. Large libraries of single-chain trimer peptide-MHCs enable antigen-specific CD8+ T cell discovery and analysis. Commun Biol 2023; 6:528. [PMID: 37193826 PMCID: PMC10186326 DOI: 10.1038/s42003-023-04899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
The discovery and characterization of antigen-specific CD8+ T cell clonotypes typically involves the labor-intensive synthesis and construction of peptide-MHC tetramers. We adapt single-chain trimer (SCT) technologies into a high throughput platform for pMHC library generation, showing that hundreds can be rapidly prepared across multiple Class I HLA alleles. We use this platform to explore the impact of peptide and SCT template mutations on protein expression yield, thermal stability, and functionality. SCT libraries were an efficient tool for identifying T cells recognizing commonly reported viral epitopes. We then construct SCT libraries to capture SARS-CoV-2 specific CD8+ T cells from COVID-19 participants and healthy donors. The immunogenicity of these epitopes is validated by functional assays of T cells with cloned TCRs captured using SCT libraries. These technologies should enable the rapid analyses of peptide-based T cell responses across several contexts, including autoimmunity, cancer, or infectious disease.
Collapse
Affiliation(s)
- William Chour
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jongchan Choi
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Jingyi Xie
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Mary E Chaffee
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Thomas M Schmitt
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kathryn Finton
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Diana C DeLucia
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Alexander M Xu
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Daniel G Chen
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Microbiology and Department of Informatics, University of Washington, Seattle, WA, 98195, USA
| | - Rongyu Zhang
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Dan Yuan
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Sunga Hong
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Alphonsus H C Ng
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jonah Z Butler
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Rick A Edmark
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Kim M Murray
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Guideng Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Chinese Academy of Medical Sciences, Beijing, China
| | - Roland K Strong
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jason D Goldman
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA, 98104, USA
- Division of Infectious Disease, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Philip D Greenberg
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
- Department of Immunology, University of Washington, Seattle, WA, 98195, USA
| | - James R Heath
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Gouda AM, Soltan MA, Abd-Elghany K, Sileem AE, Elnahas HM, Ateya MAM, Elbatreek MH, Darwish KM, Bogari HA, Lashkar MO, Aldurdunji MM, Elhady SS, Ahmad TA, Said AM. Integration of immunoinformatics and cheminformatics to design and evaluate a multitope vaccine against Klebsiella pneumoniae and Pseudomonas aeruginosa coinfection. Front Mol Biosci 2023; 10:1123411. [PMID: 36911530 PMCID: PMC9999731 DOI: 10.3389/fmolb.2023.1123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Klebsiella pneumoniae (K. pneumoniae) and Pseudomonas aeruginosa (P. aeruginosa) are the most common Gram-negative bacteria associated with pneumonia and coinfecting the same patient. Despite their high virulence, there is no effective vaccine against them. Methods: In the current study, the screening of several proteins from both pathogens highlighted FepA and OmpK35 for K. pneumonia in addition to HasR and OprF from P. aeruginosa as promising candidates for epitope mapping. Those four proteins were linked to form a multitope vaccine, that was formulated with a suitable adjuvant, and PADRE peptides to finalize the multitope vaccine construct. The final vaccine's physicochemical features, antigenicity, toxicity, allergenicity, and solubility were evaluated for use in humans. Results: The output of the computational analysis revealed that the designed multitope construct has passed these assessments with satisfactory scores where, as the last stage, we performed a molecular docking study between the potential vaccine construct and K. pneumonia associated immune receptors, TLR4 and TLR2, showing affinitive to both targets with preferentiality for the TLR4 receptor protein. Validation of the docking studies has proceeded through molecular dynamics simulation, which estimated a strong binding and supported the nomination of the designed vaccine as a putative solution for K. pneumoniae and P. aeruginosa coinfection. Here, we describe the approach for the design and assessment of our potential vaccine.
Collapse
Affiliation(s)
- Ahmed M Gouda
- Department of Pharmacy Practice, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Khalid Abd-Elghany
- Department of Microbiology-Microbial Biotechnology, Egyptian Drug Authority, Giza, Egypt
| | - Ashraf E Sileem
- Department of Chest Diseases, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanan M Elnahas
- Department of Pharmaceutical and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Mahmoud H Elbatreek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Hanin A Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manar O Lashkar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarek A Ahmad
- Library Sector, Bibliotheca Alexandrina, Alexandria, Egypt
| | - Ahmed Mohamed Said
- Department of Chest Diseases, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Heath J, Chour W, Choi J, Xie J, Chaffee M, Schmitt T, Finton K, Delucia D, Xu A, Su Y, Chen D, Zhang R, Yuan D, Hong S, Ng A, Butler J, Edmark R, Jones L, Murray K, Peng S, Li G, Strong R, Lee J, Goldman J, Greenberg P. Large libraries of single-chain trimer peptide-MHCs enable rapid antigen-specific CD8+ T cell discovery and analysis. RESEARCH SQUARE 2022:rs.3.rs-1090664. [PMID: 36415462 PMCID: PMC9681053 DOI: 10.21203/rs.3.rs-1090664/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CD8 + cytotoxic T cell responses against viral infection represent a major element of the adaptive immune response. We describe the development of a peptide antigen - major histompatibility complex (pMHC) library representing the full SARS-CoV-2 viral proteome, and comprised of 634 pMHC multimers representing the A*02.01, A*24.02, and B*07.02 HLA alleles, as well as specific antigens associated with the cytomegalovirus (CMV). These libraries were used to capture non-expanded CD8 + T cells from blood samples collected from 64 infected individuals, and then analyzed using single cell RNA-seq. The discovery and characterization of antigen-specific CD8 + T cell clonotypes typically involves the labor-intensive synthesis and construction of peptide-MHC tetramers. We adapted single-chain trimer (SCT) technologies into a high throughput platform for pMHC library generation, showing that hundreds can be rapidly prepared across multiple Class I HLA alleles. We used this platform to explore the impact of peptide and SCT template mutations on protein expression yield, thermal stability, and functionality. SCT libraries were an efficient tool for identifying T cells recognizing commonly reported viral epitopes. We then constructed SCT libraries designed to capture SARS-CoV-2 specific CD8 + T cells from COVID-19 participants and healthy donors. The immunogenicity of these epitopes was validated by functional assays of T cells with cloned TCRs captured using SCT libraries. These technologies should enable the rapid analyses of peptide-based T cell responses across several contexts, including autoimmunity, cancer, or infectious disease.
Collapse
|
6
|
Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Soltan MA, Abdulsahib WK, Amer M, Refaat AM, Bagalagel AA, Diri RM, Albogami S, Fayad E, Eid RA, Sharaf SMA, Elhady SS, Darwish KM, Eldeen MA. Mining of Marburg Virus Proteome for Designing an Epitope-Based Vaccine. Front Immunol 2022; 13:907481. [PMID: 35911751 PMCID: PMC9334820 DOI: 10.3389/fimmu.2022.907481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/16/2022] [Indexed: 12/11/2022] Open
Abstract
Marburg virus (MARV) is one of the most harmful zoonotic viruses with deadly effects on both humans and nonhuman primates. Because of its severe outbreaks with a high rate of fatality, the world health organization put it as a risk group 4 pathogen and focused on the urgent need for the development of effective solutions against that virus. However, up to date, there is no effective vaccine against MARV in the market. In the current study, the complete proteome of MARV (seven proteins) was analyzed for the antigenicity score and the virulence or physiological role of each protein where we nominated envelope glycoprotein (Gp), Transcriptional activator (VP30), and membrane-associated protein (VP24) as the candidates for epitope prediction. Following that, a vaccine construct was designed based on CTL, HTL, and BCL epitopes of the selected protein candidates and to finalize the vaccine construct, several amino acid linkers, β-defensin adjuvant, and PADRE peptides were incorporated. The generated potential vaccine was assessed computationally for several properties such as antigenicity, allergenicity, stability, and other structural features where the outcomes of these assessments nominated this potential vaccine to be validated for its binding affinity with two molecular targets TLR-8 and TLR-4. The binding score and the stability of the vaccine-receptor complex, which was deeply studied through molecular docking-coupled dynamics simulation, supported the selection of our designed vaccine as a putative solution for MARV that should be validated through future wet-lab experiments. Here, we describe the computational approach for designing and analysis of this potential vaccine.
Collapse
Affiliation(s)
- Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
- *Correspondence: Mohamed A. Soltan, ; Muhammad Alaa Eldeen,
| | - Waleed K. Abdulsahib
- Department of pharmacology and Toxicology, College of Pharmacy, Al- Farahidi University, Baghdad, Iraq
| | - Mahmoud Amer
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Refaat
- Zoology Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Alaa A. Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem M. Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
- *Correspondence: Mohamed A. Soltan, ; Muhammad Alaa Eldeen,
| |
Collapse
|
8
|
Febrianti RA, Narulita E. In-silico analysis of recombinant protein vaccines based on the spike protein of Indonesian SARS-CoV-2 through a reverse vaccinology approach. J Taibah Univ Med Sci 2022; 17:467-478. [PMID: 35250426 PMCID: PMC8881762 DOI: 10.1016/j.jtumed.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/04/2022] [Accepted: 02/09/2022] [Indexed: 01/23/2023] Open
Abstract
Objectives This study aimed to produce a recombinant protein vaccine candidate based on an epitope of spike protein from Indonesian SARS-CoV-2 to provide immunogenicity and protection against future infection. Methods A reverse vaccinology approach was used to identify potential vaccine candidates by screening the pathogen's genome through computational analyses. Results Epitope vaccine candidates with the amino acid sequence of FKNHTSPDV were selected. This peptide is hydrophilic, does not induce autoimmune and allergic reactions, is antigenic, is classified as a stable protein, and is predicted to be present in the cell membrane. The selected epitope sequences were inserted into the plasmid vector pcDNA3.1(+) N-GST (thrombin). Inclusion of additional features of the gene encoding glutathione-S transferase, which can increase antigen expression and solubility, and the genes encoding NSP 1-4 proteins, which are essential in replication, added value to the produced recombinant protein. Conclusion Recombinant protein vaccine candidates with the FKNHTSPDV epitope have parameters sufficient for production on a laboratory scale for further testing.
Collapse
Affiliation(s)
- Riska A. Febrianti
- Department of Biotechnology, Postgraduate Program, University of Jember, Indonesia
| | - Erlia Narulita
- Department of Biotechnology, Postgraduate Program, University of Jember, Indonesia
- Department of Biology Education, University of Jember, Indonesia
| |
Collapse
|
9
|
Soraci L, Lattanzio F, Soraci G, Gambuzza ME, Pulvirenti C, Cozza A, Corsonello A, Luciani F, Rezza G. COVID-19 Vaccines: Current and Future Perspectives. Vaccines (Basel) 2022; 10:608. [PMID: 35455357 PMCID: PMC9025326 DOI: 10.3390/vaccines10040608] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
Currently available vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are highly effective but not able to keep the coronavirus disease 2019 (COVID-19) pandemic completely under control. Alternative R&D strategies are required to induce a long-lasting immunological response and to reduce adverse events as well as to favor rapid development and large-scale production. Several technological platforms have been used to develop COVID-19 vaccines, including inactivated viruses, recombinant proteins, DNA- and RNA-based vaccines, virus-vectored vaccines, and virus-like particles. In general, mRNA vaccines, protein-based vaccines, and vectored vaccines have shown a high level of protection against COVID-19. However, the mutation-prone nature of the spike (S) protein affects long-lasting vaccine protection and its effectiveness, and vaccinated people can become infected with new variants, also showing high virus levels. In addition, adverse effects may occur, some of them related to the interaction of the S protein with the angiotensin-converting enzyme 2 (ACE-2). Thus, there are some concerns that need to be addressed and challenges regarding logistic problems, such as strict storage at low temperatures for some vaccines. In this review, we discuss the limits of vaccines developed against COVID-19 and possible innovative approaches.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (IRCCS INRCA), 60121 Ancona, Italy;
| | - Giulia Soraci
- Department of Obstetrics and Gynecology, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Elsa Gambuzza
- Territorial Office of Messina, Italian Ministry of Health, 98122 Messina, Italy
| | | | - Annalisa Cozza
- Laboratory of Pharmacoepidemiology and Biostatistics, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy;
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
- Laboratory of Pharmacoepidemiology and Biostatistics, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy;
| | - Filippo Luciani
- Infectious Diseases Unit of Annunziata Hospital, 87100 Cosenza, Italy;
| | - Giovanni Rezza
- Health Prevention Directorate, Italian Ministry of Health, 00144 Rome, Italy;
| |
Collapse
|
10
|
Forestal RL, Pi S. A hybrid approach based on
ELECTRE III
‐genetic algorithm and
TOPSIS
method for selection of optimal
COVID
‐19 vaccines. JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS 2021. [PMCID: PMC8646624 DOI: 10.1002/mcda.1772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
COVID‐19 pandemic poses unprecedented challenges to the world health system, prompting academics and health professionals to develop appropriate solutions. Researchers reported different COVID‐19 vaccines introduced by institutions and companies around the globe, which are at different stages of development. However, research developing an integrated framework for selecting and ranking the optimal potential vaccine against COVID‐19 is minimal. This paper aimed to fill this gap by using a hybrid methodology based on ELimination Et Choice Translating REality III (ELECTRE III)–Genetic Algorithm (GA) and Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) approach to select the optimal SARS‐CoV‐2 vaccine. ELECTRE III method yields a fathomable analysis of the concordance index, while GA is known for its ability to disaggregate decision‐making preferences from holistic decisions. TOPSIS is preferred for picking an ideal and an anti‐ideal solution. Thus, combining ELECTRE III‐GA and TOPSIS is considered the best model to assess vaccines against the pandemic. The results confirm that the best vaccines rely on a high level of safety, efficacy, and availability. Our developed evaluation framework can help healthcare professionals and researchers gain research information and make critical decisions regarding potential vaccines against the disease.
Collapse
Affiliation(s)
| | - Shih‐Ming Pi
- Department of Information Management Chung Yuan Christian University Taoyuan Taiwan
| |
Collapse
|
11
|
Poland GA, Ovsyannikova IG, Kennedy RB. Pharmacogenomics and Vaccine Development. Clin Pharmacol Ther 2021; 110:546-548. [PMID: 34097754 PMCID: PMC8239825 DOI: 10.1002/cpt.2288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Gregory A. Poland
- Mayo Clinic Vaccine Research GroupDivision of General Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research GroupDivision of General Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research GroupDivision of General Internal MedicineMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
12
|
Sarno A, Daltro CB, Mendes CMC, Barbosa T. Distribution of HLA-DRB1 alleles in BRICS countries with a high tuberculosis burden: a systematic review and meta-analysis. Rev Soc Bras Med Trop 2021; 54:e00172021. [PMID: 34320128 PMCID: PMC8313104 DOI: 10.1590/0037-8682-0017-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Tuberculosis (TB) is the leading cause of death worldwide caused by a single infectious disease agent. Brazil, Russia, India, China, and South Africa (BRICS) account for more than half of the world's TB cases. Bacillus Calmette-Guérin (BCG) remains the only vaccine available despite its variable efficacy. Promising antigen-based vaccines have been proposed as prophylactic and/or immunotherapeutic approaches to boost BCG vaccination. Relevant antigens must interact with the range of human leukocyte antigen (HLA) molecules present in target populations; yet this information is currently not available. METHODS MEDLINE and EMBASE were systematically searched for articles published during 2013-2020 to measure the allelic frequencies of HLA-DRB1 in the BRICS. RESULTS In total, 67 articles involving 3,207,861 healthy individuals were included in the meta-analysis. HLA-DRB1 alleles *03, *04, *07, *11, *13, and *15 were consistently identified at high frequencies across the BRICS, with a combined estimated frequency varying from 52% to 80%. HLA-DRB1 alleles *01, *08, *09, *10, *12, and *14 were found to be relevant in only one or two BRICS populations. CONCLUSIONS By combining these alleles, it is possible to ensure at least 80% coverage throughout the BRICS populations.
Collapse
Affiliation(s)
- Alice Sarno
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Salvador, BA,
Brasil
| | | | | | - Theolis Barbosa
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Salvador, BA,
Brasil
- Rede Brasileira de Pesquisas em Tuberculose, Rio de Janeiro, RJ,
Brasil
| |
Collapse
|
13
|
He Q, Mao Q, Zhang J, Bian L, Gao F, Wang J, Xu M, Liang Z. COVID-19 Vaccines: Current Understanding on Immunogenicity, Safety, and Further Considerations. Front Immunol 2021; 12:669339. [PMID: 33912196 PMCID: PMC8071852 DOI: 10.3389/fimmu.2021.669339] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The world has entered the second wave of the COVID-19 pandemic, and its intensity is significantly higher than that of the first wave of early 2020. Many countries or regions have been forced to start the second round of lockdowns. To respond rapidly to this global pandemic, dozens of COVID-19 vaccine candidates have been developed and many are undergoing clinical testing. Evaluating and defining effective vaccine candidates for human use is crucial for prioritizing vaccination programs against COVID-19. In this review, we have summarized and analyzed the efficacy, immunogenicity and safety data from clinical reports on different COVID-19 vaccines. We discuss the various guidelines laid out for the development of vaccines and the importance of biological standards for comparing the performance of vaccines. Lastly, we highlight the key remaining challenges, possible strategies for addressing them and the expected improvements in the next generation of COVID-19 vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|