1
|
Su QY, Gao HY, Duan YR, Luo J, Wang WZ, Qiao XC, Zhang SX. The immunologic role of IL-23 in psoriatic arthritis: a potential therapeutic target. Expert Opin Biol Ther 2024; 24:1119-1132. [PMID: 39230202 DOI: 10.1080/14712598.2024.2401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a debilitating chronic condition characterized by inflammation of the joints, bones, enthesis, and skin. The pivotal role of interleukin-23 (IL-23) in the pathogenesis of PsA has become increasingly evident. This proinflammatory cytokine is markedly elevated in patients with PsA, suggesting its potential as a therapeutic target. Consequently, IL-23 inhibitors have emerged as promising first-line biologic treatments for PsA. AREAS COVERED This review delves into the immunopathogenic mechanisms of IL-23 at the cellular and molecular levels in PsA. Furthermore, it provides the recent efficacy and safety profiles of IL-23 inhibitors. We conducted a literature search in PubMed for the following terms: 'IL-23 and psoriatic arthritis,' 'Ustekinumab,' 'Guselkumab,' 'Risankizumab,' and 'Tildrakizumab.' In addition, we retrieved clinical trials involving IL-23 inhibitors registered in ClinicalTrials.gov, EudraCT, and ICTRP. EXPERT OPINION Despite the promising outcomes observed with IL-23 inhibitors, several challenges persist. The long-term effects of these agents require further investigation through prospective studies, and their limited accessibility worldwide necessitates urgent attention. Additionally, ongoing research is warranted to explore other potential drug targets within the IL-23/IL-23 R axis. The development of reliable biomarkers could greatly enhance early detection, tailored management strategies, and personalized treatment approaches for patients with PsA.
Collapse
Affiliation(s)
- Qin-Yi Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Heng-Yan Gao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Yue-Ru Duan
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Jing Luo
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Wei-Ze Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Xi-Chao Qiao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi medical university, Taiyuan, China
| |
Collapse
|
2
|
Zhang J, Ding W, Yin Z, Liu S, Zhao M, Xu Y, Liu J, Pan W, Peng S, Wei C, Zheng Z, Qin JJ, Wan J, Wang M. Interleukin-12p40 deficiency attenuates myocardial ferroptosis in doxorubicin-induced chronic cardiomyopathy by inhibiting Th17 differentiation and interleukin-17A production. Cardiovasc Res 2024:cvae208. [PMID: 39298642 DOI: 10.1093/cvr/cvae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/07/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS Interleukin (IL)-12p40 is a common subunit of the bioactive cytokines IL-12 and IL-23, and it also has its own intrinsic functional activity. However, its role in doxorubicin-induced chronic cardiomyopathy (DICCM) as well as the underlying mechanisms are still unknown. METHODS AND RESULTS In this study, we used IL-12p40-knockout mice, IL-23p19-knockout mice, Rag1-knockout mice, a ferroptosis inhibitor, recombinant IL-12 (rIL-12), rIL-23, rIL-12p40, rIL-12p80, and anti-IL17A to investigate the effects of IL-12p40 on DICCM and elucidate the underlying mechanisms. We found that myocardial ferroptosis were increased in DICCM and that the inhibition of ferroptosis protected against DICCM. The expression of IL-12p40 was upregulated, and IL-12p40 was predominantly expressed by CD4+ T cells in the hearts of mice with DICCM. IL-12p40 knockout attenuated cardiac dysfunction, fibrosis and ferroptosis in DICCM, and similar results were observed in the context of CD4+ T cell IL-12p40 deficiency in Rag1-/- mice. Treatment with rIL-23, but not rIL-12, rIL-12p40 monomer or rIL-12p80, abolished the protective effects of IL-12p40 knockout. Moreover, rIL-23 treatment and IL-23p19 knockout exacerbated and ameliorated DICCM, respectively. IL-12p40 knockout might protect against DICCM by inhibiting Th17 differentiation and IL-17A production but not Th1, Th2 and Treg differentiation. Neutralizing IL-17A with an antibody also attenuated cardiac dysfunction, fibrosis and ferroptosis. The IL-12p40/Th17/IL-17A axis might promote cardiomyocyte ferroptosis by activating TNF receptor-associated factor 6 (TRAF6)/mitogen-activated protein kinase (MAPK)/P53 signaling in DICCM. CONCLUSIONS Interleukin-12p40 deficiency protects against DICCM by inhibiting Th17 differentiation and the production of IL-17A, which plays critical roles in cardiomyocyte ferroptosis in DICCM via activating TRAF6/MAPK/P53 signaling. Our study may provide novel insights for the identification of therapeutic targets for treating DICCM in the clinic.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
3
|
Ding Y, Cao Q, Yang W, Xu J, Xiao P. Macrophage: Hidden Criminal in Therapy Resistance. J Innate Immun 2024; 16:188-202. [PMID: 38442696 PMCID: PMC10990480 DOI: 10.1159/000538212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Although substantial efforts have been made by researchers to develop drugs, a disappointing reality is that the emergence of drug resistance is an unavoidable reality for the majority of patients. In recent years, emerging evidence suggests a connection between drug resistance and immune dysregulation. SUMMARY As a ubiquitously distributed, versatile innate immune cell, macrophages play essential roles in maintaining tissue homeostasis in a steady state. Nevertheless, it is becoming aware that macrophages undermine the action of therapeutic drugs across various disease types. Reprogramming macrophage function has been proven to be effective in restoring patient responsiveness to treatment. Herein, we comprehensively reviewed how macrophages respond to drugs and the mechanisms by which they contribute to treatment unresponsiveness in cancer, inflammatory diseases, and metabolic diseases. In addition, future prospects in macrophage-based combination therapy were discussed. KEY MESSAGES Targeting macrophages is a promising strategy for overcoming drug resistance in immune disorders.
Collapse
Affiliation(s)
- Yimin Ding
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjuan Yang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Zhu Q, Zhao L, Ding H, Song J, Zhang Q, Yu S, Wang Y, Wang H. Interleukins and Psoriasis. J Cutan Med Surg 2024; 28:NP19-NP35. [PMID: 38314729 DOI: 10.1177/12034754241227623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Psoriasis is an immune-mediated chronic inflammatory skin disease that affects 2% to 3% of the world's population. It is widely assumed that immune cells and cytokines acting together play a crucial part in the pathophysiology of psoriasis by promoting the excessive proliferation of skin keratinocytes and inflammatory infiltration. Interleukins (ILs), as a critical component of cytokines, have been closely associated with the pathogenesis and progression of psoriasis. This review summarizes the current contribution of ILs to psoriasis and describes the role each IL performs in psoriasis. Furthermore, the paper presents the therapeutic effects and application prospects of biologics developed for ILs in clinical treatment and experiments. The study aims to further the research on ILs in the treatment of psoriasis.
Collapse
Affiliation(s)
- Qi Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haining Ding
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingna Song
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuhua Yu
- Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Yi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongmei Wang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
5
|
Slavick A, Furer V, Polachek A, Tzemach R, Elkayam O, Gertel S. Circulating and Synovial Monocytes in Arthritis and Ex-Vivo Model to Evaluate Therapeutic Modulation of Synovial Monocytes. Immunol Invest 2023; 52:832-855. [PMID: 37615125 DOI: 10.1080/08820139.2023.2247438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Monocytes are innate immune cells that play a dual role in protection of host against pathogens and initiation and perpetuation of inflammatory disorders including joint diseases. During inflammation, monocytes migrate from peripheral blood to tissues via chemokine receptors where they produce inflammatory factors. Monocytes are classified into three subsets, namely: classical, intermediate and non-classical, each subset has particular function. Synovium of patients with inflammatory joint diseases, such as rheumatoid arthritis and psoriatic arthritis as well as osteoarthritis, is enriched by monocytes that differ from circulatory ones by distinct subsets distribution. Several therapeutic agents used systemically or locally through intra-articular injections in arthritis management modulate monocyte subsets. This scoping review summarized the existing literature delineating the effect of common therapeutic agents used in arthritis management on circulating and synovial monocytes/macrophages. As certain agents have an inhibitory effect on monocytes, we propose to test their potential to inhibit synovial monocytes via an ex-vivo platform based on cultured synovial fluid mononuclear cells derived from patients with rheumatic diseases. Information obtained from the ex-vivo platform can be applied to explore the therapeutic potential of medications in clinical practice.
Collapse
Affiliation(s)
- Adam Slavick
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Furer
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ari Polachek
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Reut Tzemach
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ori Elkayam
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Smadar Gertel
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Lu X, Kuai L, Huang F, Jiang J, Song J, Liu Y, Chen S, Mao L, Peng W, Luo Y, Li Y, Dong H, Li B, Shi J. Single-atom catalysts-based catalytic ROS clearance for efficient psoriasis treatment and relapse prevention via restoring ESR1. Nat Commun 2023; 14:6767. [PMID: 37880231 PMCID: PMC10600197 DOI: 10.1038/s41467-023-42477-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Psoriasis is a common inflammatory disease of especially high recurrence rate (90%) which is suffered by approximately 3% of the world population. The overexpression of reactive oxygen species (ROS) plays a critical role in psoriasis progress. Here we show that biomimetic iron single-atom catalysts (FeN4O2-SACs) with broad-spectrum ROS scavenging capability can be used for psoriasis treatment and relapse prevention via related gene restoration. FeN4O2-SACs demonstrate attractive multiple enzyme-mimicking activities based on atomically dispersed Fe active structures, which are analogous to those of natural antioxidant enzymes, iron superoxide dismutase, human erythrocyte catalase, and ascorbate peroxidase. Further, in vitro and in vivo experiments show that FeN4O2-SACs can effectively ameliorate psoriasis-like symptoms and prevent the relapse with augmented efficacy compared with the clinical drug calcipotriol. Mechanistically, estrogen receptor 1 (ESR1) is identified as the core protein upregulated in psoriasis treatment through RNA sequencing and bioinformatic analysis. Together, this study provides a proof of concept of psoriasis catalytic therapy (PCT) and multienzyme-inspired bionics (MIB).
Collapse
Affiliation(s)
- Xiangyu Lu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fang Huang
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yiqiong Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Si Chen
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
| | - Lijie Mao
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
| | - Wei Peng
- Institute of Waste Treatment and Reclamation, College of Environment Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Bin Li
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Jianlin Shi
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, Clinical Center For Brain And Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China.
| |
Collapse
|
7
|
Ciliento MS, Venturelli V, Schettini N, Bertola R, Garaffoni C, Lanza G, Gafà R, Borghi A, Corazza M, Zabotti A, Missiroli S, Boncompagni C, Patergnani S, Perrone M, Giorgi C, Pinton P, Govoni M, Scirè CA, Bortoluzzi A, Silvagni E. Evaluation of the Synovial Effects of Biological and Targeted Synthetic DMARDs in Patients with Psoriatic Arthritis: A Systematic Literature Review and Meta-Analysis. Int J Mol Sci 2023; 24:5006. [PMID: 36902437 PMCID: PMC10002880 DOI: 10.3390/ijms24055006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The aims of this systematic literature review (SLR) were to identify the effects of approved biological and targeted synthetic disease modifying antirheumatic drugs (b/tsDMARDs) on synovial membrane of psoriatic arthritis (PsA) patients, and to determine the existence of histological/molecular biomarkers of response to therapy. A search was conducted on MEDLINE, Embase, Scopus, and Cochrane Library (PROSPERO:CRD42022304986) to retrieve data on longitudinal change of biomarkers in paired synovial biopsies and in vitro studies. A meta-analysis was conducted by adopting the standardized mean difference (SMD) as a measure of the effect. Twenty-two studies were included (19 longitudinal, 3 in vitro). In longitudinal studies, TNF inhibitors were the most used drugs, while, for in vitro studies, JAK inhibitors or adalimumab/secukinumab were assessed. The main technique used was immunohistochemistry (longitudinal studies). The meta-analysis showed a significant reduction in both CD3+ lymphocytes (SMD -0.85 [95% CI -1.23; -0.47]) and CD68+ macrophages (sublining, sl) (SMD -0.74 [-1.16; -0.32]) in synovial biopsies from patients treated for 4-12 weeks with bDMARDs. Reduction in CD3+ mostly correlated with clinical response. Despite heterogeneity among the biomarkers evaluated, the reduction in CD3+/CD68+sl cells during the first 3 months of treatment with TNF inhibitors represents the most consistent variation reported in the literature.
Collapse
Affiliation(s)
- Maria Sofia Ciliento
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Cona, Italy
- Department of Precision Medicine, University della Campania L. Vanvitelli, 80138 Naples, Italy
| | - Veronica Venturelli
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Cona, Italy
| | - Natale Schettini
- Section of Dermatology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Riccardo Bertola
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Cona, Italy
| | - Carlo Garaffoni
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Cona, Italy
| | - Giovanni Lanza
- Anatomic Pathology, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Roberta Gafà
- Anatomic Pathology, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Borghi
- Section of Dermatology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Monica Corazza
- Section of Dermatology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Alen Zabotti
- Department of Medical and Biological Sciences, Rheumatology Institute, University Hospital Santa Maria della Misericordia, 33100 Udine, Italy
| | - Sonia Missiroli
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Caterina Boncompagni
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mariasole Perrone
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Marcello Govoni
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Cona, Italy
| | - Carlo Alberto Scirè
- School of Medicine, University of Milano Bicocca, 20126 Milan, Italy
- Epidemiology Unit, Italian Society for Rheumatology, 20121 Milan, Italy
| | - Alessandra Bortoluzzi
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Cona, Italy
| | - Ettore Silvagni
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Cona, Italy
| |
Collapse
|
8
|
Phenotypic heterogeneity in psoriatic arthritis: towards tissue pathology-based therapy. Nat Rev Rheumatol 2023; 19:153-165. [PMID: 36596924 DOI: 10.1038/s41584-022-00874-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 01/04/2023]
Abstract
Psoriatic arthritis (PsA) is a heterogeneous disease involving multiple potential tissue domains. Most outcome measures used so far in randomized clinical trials do not sufficiently reflect this domain heterogeneity. The concept that pathogenetic mechanisms might vary across tissues within a single disease, underpinning such phenotype diversity, could explain tissue-distinct levels of response to different therapies. In this Review, we discuss the tissue, cellular and molecular mechanisms that drive clinical heterogeneity in PsA phenotypes, and detail existing tissue-based research, including data generated using sophisticated interrogative technologies with single-cell precision. Finally, we discuss how these elements support the need for tissue-based therapy in PsA in the context of existing and new therapeutic modes of action, and the implications for future PsA trial outcomes and design.
Collapse
|
9
|
Gong T, Si K, Liu H, Zhang X. Research advances in the role of MAPK cascade in regulation of cell growth, immunity, inflammation, and cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1721-1728. [PMID: 36748383 PMCID: PMC10930265 DOI: 10.11817/j.issn.1672-7347.2022.220155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 02/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascade system is one of the highly conserved signal systems in eukaryotic cells, which participates in the regulation of many biological processes. Under the stimulation of different signals (such as cytokines, neurotransmitters, and hormones), MAPK cascade activates downstream targets and controls a variety of cellular processes, including growth, immunity, inflammation, and stress response. In different cells, the effects of MAPK cascade on cells vary with the stimuli and the duration of stimulation. MAPK cascade induces Th differentiation and participates in T cell receptor signal pathway and B cell receptor signal pathway. MAPK cascades regulate various cellular activities related to the occurrence and development of cancer. A thorough and systematic understanding of the specific regulatory effects of MAPK cascade on various cellular processes will provide theoretical guidance for treating various diseases.
Collapse
Affiliation(s)
- Tingting Gong
- State Key Laboratory of Food Nutrition and Safety; Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Kai Si
- State Key Laboratory of Food Nutrition and Safety; Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiping Liu
- State Key Laboratory of Food Nutrition and Safety; Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaowei Zhang
- State Key Laboratory of Food Nutrition and Safety; Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
10
|
Akoumianakis I, Polkinghorne M, Antoniades C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:783-797. [PMID: 35697779 PMCID: PMC9191761 DOI: 10.1038/s41569-022-00718-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
WNT signalling comprises a diverse spectrum of receptor-mediated pathways activated by a large family of WNT ligands and influencing fundamental biological processes. WNT signalling includes the β-catenin canonical pathway and the non-canonical pathways, namely the planar cell polarity and the calcium-dependent pathways. Advances over the past decade have linked non-canonical WNT signalling with key mechanisms of atherosclerosis, including oxidative stress, endothelial dysfunction, macrophage activation and vascular smooth muscle cell phenotype regulation. In addition, non-canonical WNT signalling is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and oxidative stress. Importantly, non-canonical WNT signalling activation has complex effects in adipose tissue in the context of obesity, thereby potentially linking metabolic and vascular diseases. Tissue-specific targeting of non-canonical WNT signalling might be associated with substantial risks of off-target tumorigenesis, challenging its therapeutic potential. However, novel technologies, such as monoclonal antibodies, recombinant decoy receptors, tissue-specific gene silencing with small interfering RNAs and gene editing with CRISPR-Cas9, might enable more efficient therapeutic targeting of WNT signalling in the cardiovascular system. In this Review, we summarize the components of non-canonical WNT signalling, their links with the main mechanisms of atherosclerosis, heart failure and arrhythmias, and the rationale for targeting individual components of non-canonical WNT signalling for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Murray Polkinghorne
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Damian LO, Miclea D, Vulturar R, Crăciun A. Osteogenesis imperfecta and rheumatoid arthritis: connective issues. Osteoporos Int 2022; 33:2237-2239. [PMID: 35984463 DOI: 10.1007/s00198-022-06530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coexistence of osteogenesis imperfecta and inflammatory arthritis has been very rarely described. Nevertheless, systemic inflammation has been found in osteogenesis imperfecta. The COL1A1 mutations may affect collagen synthesis as well as post-translational modifications, extracellular matrix interactions, and receptor-mediated signaling. Major collagen binding ligands forming the interactome, such as cytokines, cell adhesion molecules, matrix metalloproteinases, proteoglycans, and other molecules, are autoimmunity targets involved in rheumatoid arthritis pathogenesis. Cross-talk between bone remodeling and inflammatory pathways involving osteoclasts is important in osteogenesis imperfecta and rheumatoid arthritis. In osteogenesis imperfecta, the structural abnormalities and repeated traumatism, including fractures, could activate locally the innate immunity and trigger arthritis, similar to post-traumatic arthritis. Currently, the therapy of osteogenesis imperfecta is a suboptimally met need. Understanding the complex putative pathogenic links between osteogenesis imperfecta and inflammatory arthritis could hopefully lead to new therapeutic targets. Raising awareness regarding a possible association between osteogenesis imperfecta and arthritis could help improve the quality of life in these patients.
Collapse
Affiliation(s)
- Laura Otilia Damian
- Rheumatology Dept, Emergency Clinical County Hospital Cluj, 2-4 Clinicilor St, 400006, Cluj-Napoca-Napoca, Romania.
- CMI Reumatologie Dr Damian, 6-8 Petru Maior St, 400002, Cluj-Napoca-Napoca, Romania.
| | - Diana Miclea
- Department of Medical Genetics, Emergency Pediatric Hospital, Cluj-Napoca-Napoca, Romania
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hatieganu, " 6 Pasteur St, 400349, Cluj-Napoca-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hatieganu, " 6 Pasteur St, 400349, Cluj-Napoca-Napoca, Romania
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30 Fântânele St, 400294, Cluj-Napoca-Napoca, Romania
| | - Alexandra Crăciun
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hatieganu, " 6 Pasteur St, 400349, Cluj-Napoca-Napoca, Romania
| |
Collapse
|
12
|
Choi C, Saha A, An S, Cho YK, Kim H, Noh M, Lee YH. Macrophage-Specific Connexin 43 Knockout Protects Mice from Obesity-Induced Inflammation and Metabolic Dysfunction. Front Cell Dev Biol 2022; 10:925971. [PMID: 35800892 PMCID: PMC9253378 DOI: 10.3389/fcell.2022.925971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Adipose tissue macrophages are a major immune cell type contributing to homeostatic maintenance and pathological adipose tissue remodeling. However, the mechanisms underlying macrophage recruitment and polarization in adipose tissue during obesity remain poorly understood. Previous studies have suggested that the gap junctional protein, connexin 43 (Cx43), plays a critical role in macrophage activation and phagocytosis. Herein, we investigated the macrophage-specific roles of Cx43 in high fat diet (HFD)-induced pathological remodeling of adipose tissue. Expression levels of Cx43 were upregulated in macrophages co-cultured with dying adipocytes in vitro, as well as in macrophages associated with dying adipocytes in the adipose tissue of HFD-fed mice. Cx43 knockdown reduced lipopolysaccharide (LPS)-induced ATP release from macrophages and decreased inflammatory responses of macrophages co-cultured with dying adipocytes. Based on global gene expression profiling, macrophage-specific Cx43-knockout (Cx43-MKO) mice were resistant to HFD-induced inflammatory responses in adipose tissue, potentially via P2X7-mediated signaling pathways. Cx43-MKO mice exhibited reduced HFD-induced macrophage recruitment in adipose tissue. Moreover, Cx43-MKO mice showed reduced inflammasome activation in adipose tissues and improved glucose tolerance. Collectively, these findings demonstrate that Cx43 expression in macrophages facilitates inflammasome activation, which, in turn, contributes to HFD-induced metabolic dysfunction.
Collapse
|
13
|
Chen GY, Luo J, Liu Y, Yu XB, Liu XY, Tao QW. Network Pharmacology Analysis and Experimental Validation to Investigate the Mechanism of Total Flavonoids of Rhizoma Drynariae in Treating Rheumatoid Arthritis. Drug Des Devel Ther 2022; 16:1743-1766. [PMID: 35702063 PMCID: PMC9188779 DOI: 10.2147/dddt.s354946] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/26/2022] [Indexed: 12/16/2022] Open
Abstract
Objective The study aimed to explore the mechanism of total flavonoids of Rhizoma Drynariae (TFRD) in the treatment of rheumatoid arthritis (RA) based on network pharmacology and experimental validation. Methods The active components of TFRD were identified from TCMSP and TCMID databases. Relevant targets of the active compounds of TFRD and RA-related targets were predicted by public databases online. A component-target (C-T) regulatory network was constructed by Cytoscape. The genes of TFRD regulating RA were imported into STRING database to construct a protein-protein interaction (PPI) network in order to predict the key targets. KEGG enrichment analysis was performed to predict the crucial mechanism of TFRD against RA. The active components of TFRD underwent molecular docking with the key proteins. Collagen-induced arthritis (CIA) model of rats and inflammatory factors-stimulated fibroblast-like synoviocytes were used in vivo and in vitro to validate the efficacy and predicted critical mechanisms of TFRD. Results Network Pharmacology analysis revealed that TFRD had 14 active compounds, corresponding to 213 targets, and RA related to 2814 genes. There were 137 intersection genes between TFRD and RA. KEGG indicated that therapeutic effects of TFRD on RA involves T cell receptor signaling pathway, Th17 cell differentiation, IL-17 signaling pathway, TNF signaling pathway, MAPK signaling pathway and PI3K/AKT signaling pathway. In vivo experiments suggested TFRD can alleviate the inflammatory response, joint swelling and synovial abnormality of CIA rats. TFRD contributed to the decrease of Th17 cells and the down-regulated secretion of IL-17A and TNF-α of activated lymphocyte in CIA model. In vitro experiments confirmed TFRD can effectively inhibit the inflammatory response of fibroblast-like synoviocytes and suppress the abnormal activation of MAPK, PI3K/AKT and NFκB signaling pathways. Conclusion The treatment of RA with TFRD is closely related to inhibiting Th17 differentiation and inflammatory response of synoviocytes.
Collapse
Affiliation(s)
- Guang-yao Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Jing Luo
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Yi Liu
- Humanities School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xin-bo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xiao-yu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Qing-wen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
14
|
Liu Y, Wang H, Taylor M, Cook C, Martínez-Berdeja A, North JP, Harirchian P, Hailer AA, Zhao Z, Ghadially R, Ricardo-Gonzalez RR, Grekin RC, Mauro TM, Kim E, Choi J, Purdom E, Cho RJ, Cheng JB. Classification of human chronic inflammatory skin disease based on single-cell immune profiling. Sci Immunol 2022; 7:eabl9165. [PMID: 35427179 PMCID: PMC9301819 DOI: 10.1126/sciimmunol.abl9165] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inflammatory conditions represent the largest class of chronic skin disease, but the molecular dysregulation underlying many individual cases remains unclear. Single-cell RNA sequencing (scRNA-seq) has increased precision in dissecting the complex mixture of immune and stromal cell perturbations in inflammatory skin disease states. We single-cell-profiled CD45+ immune cell transcriptomes from skin samples of 31 patients (7 atopic dermatitis, 8 psoriasis vulgaris, 2 lichen planus (LP), 1 bullous pemphigoid (BP), 6 clinical/histopathologically indeterminate rashes, and 7 healthy controls). Our data revealed active proliferative expansion of the Treg and Trm components and universal T cell exhaustion in human rashes, with a relative attenuation of antigen-presenting cells. Skin-resident memory T cells showed the greatest transcriptional dysregulation in both atopic dermatitis and psoriasis, whereas atopic dermatitis also demonstrated recurrent abnormalities in ILC and CD8+ cytotoxic lymphocytes. Transcript signatures differentiating these rash types included genes previously implicated in T helper cell (TH2)/TH17 diatheses, segregated in unbiased functional networks, and accurately identified disease class in untrained validation data sets. These gene signatures were able to classify clinicopathologically ambiguous rashes with diagnoses consistent with therapeutic response. Thus, we have defined major classes of human inflammatory skin disease at the molecular level and described a quantitative method to classify indeterminate instances of pathologic inflammation. To make this approach accessible to the scientific community, we created a proof-of-principle web interface (RashX), where scientists and clinicians can visualize their patient-level rash scRNA-seq-derived data in the context of our TH2/TH17 transcriptional framework.
Collapse
Affiliation(s)
- Yale Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi 710004, P. R. China
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Hao Wang
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mark Taylor
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Christopher Cook
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | - Jeffrey P North
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Paymann Harirchian
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Ashley A Hailer
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Zijun Zhao
- Santa Clara Valley Medical Center, Santa Clara, CA 95128, USA
| | - Ruby Ghadially
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Roberto R Ricardo-Gonzalez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roy C Grekin
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Theodora M Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Esther Kim
- Department of Plastic Surgery, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
15
|
Felten R, Rosine N. Responding to and Driving Change in Rheumatology: Report from the 12th International Immunology Summit 2021. Rheumatol Ther 2022; 9:705-719. [PMID: 35279812 PMCID: PMC8917828 DOI: 10.1007/s40744-022-00437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/25/2022] [Indexed: 11/28/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has accelerated changes to rheumatology daily clinical practice. The main goal of the 12th International Immunology Summit, held 25-26 June, 2021 (virtual meeting), was to provide direction for these active changes rather than undergoing change reactively in order to improve patient outcomes. This review describes and explores the concept of change in rheumatology clinical practice based on presentations from the Immunology Summit. Many of the changes to rheumatology practice brought about by the COVID-19 pandemic may be considered as having a positive impact on disease management and may help with the long-term development of more patient-focused treatment. Rheumatologists can contribute key knowledge regarding the use of immunosuppressive agents in the context of the pandemic, and according to the European League Against Rheumatism, they should be involved in any multidisciplinary COVID-19 guideline committees. New technologies, including telemedicine and artificial intelligence, represent an opportunity for physicians to individualise patient treatment and improve disease management. Despite major advances in the treatment of rheumatic diseases, the efficacy of available disease-modifying anti-rheumatic drugs (DMARDs) remains suboptimal and data regarding serological biomarkers are limited. Synovial tissue biomarkers, such as CD68+ macrophages, have shown promise in elucidating pathogenesis and targeting treatment to the individual patient. In spondyloarthritis (SpA) or psoriatic arthritis (PsA), information regarding the effectiveness of the available agents with different mechanisms of action may be integrated to manage patients using a treat-to-target approach. Early diagnosis of SpA and PsA is important for optimisation of treatment response and long-term outcomes. Improving our understanding of disease pathogenesis and practice methods may help reduce diagnostic delays, thereby optimising disease outcomes in patients with rheumatic diseases.
Collapse
Affiliation(s)
- Renaud Felten
- Service de Rhumatologie and CNR RESO, Hôpitaux Universitaires de Strasbourg, 1, Avenue Molière, BP 83049, 67098, Strasbourg, France.
| | - Nicolas Rosine
- Service de Rhumatologie, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
16
|
Martínez-Ramos S, Rafael-Vidal C, Pego-Reigosa JM, García S. Monocytes and Macrophages in Spondyloarthritis: Functional Roles and Effects of Current Therapies. Cells 2022; 11:cells11030515. [PMID: 35159323 PMCID: PMC8834543 DOI: 10.3390/cells11030515] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Spondyloarthritis (SpA) is a family of chronic inflammatory diseases, being the most prevalent ankylosing spondylitis (AS) and psoriatic arthritis (PsA). These diseases share genetic, clinical and immunological features, such as the implication of human leukocyte antigen (HLA) class I molecule 27 (HLA-B27), the inflammation of peripheral, spine and sacroiliac joints and the presence of extra-articular manifestations (psoriasis, anterior uveitis, enthesitis and inflammatory bowel disease). Monocytes and macrophages are essential cells of the innate immune system and are the first line of defence against external agents. In rheumatic diseases including SpA, the frequency and phenotypic and functional characteristics of both cell types are deregulated and are involved in the pathogenesis of these diseases. In fact, monocytes and macrophages play key roles in the inflammatory processes characteristics of SpA. The aim of this review is analysing the characteristics and functional roles of monocytes and macrophages in these diseases, as well as the impact of different current therapies on these cell types.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - Carlos Rafael-Vidal
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - José M. Pego-Reigosa
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - Samuel García
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
- Correspondence: ; Tel.: +34-986-217-463
| |
Collapse
|
17
|
Hammoura I, Fiechter RH, Bryant SH, Westmoreland S, Kingsbury G, Waegell W, Tas SW, Baeten DL, van de Sande MGH, van Tok MN, van Duivenvoorde LM. Dual Blockade of TNF and IL-17A Inhibits Inflammation and Structural Damage in a Rat Model of Spondyloarthritis. Int J Mol Sci 2022; 23:ijms23020859. [PMID: 35055042 PMCID: PMC8776047 DOI: 10.3390/ijms23020859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/20/2022] Open
Abstract
The tumor necrosis factor (TNF) and IL-23/IL-17 axes are the main therapeutic targets in spondyloarthritis. Despite the clinical efficacy of blocking either pathway, monotherapy does not induce remission in all patients and its effect on new bone formation remains unclear. We aimed to study the effect of TNF and IL-17A dual inhibition on clinical disease and structural damage using the HLA-B27/human β2-microglobulin transgenic rat model of SpA. Immunized rats were randomized according to arthritis severity, 1 week after arthritis incidence reached 50%, to be treated twice weekly for a period of 5 weeks with either a dual blockade therapy of an anti-TNF antibody and an anti-IL-17A antibody, a single therapy of either antibody, or PBS as vehicle control. Treatment-blinded observers assessed inflammation and structural damage clinically, histologically and by micro-CT imaging. Both single therapies as well as TNF and IL-17A dual blockade therapy reduced clinical spondylitis and peripheral arthritis effectively and similarly. Clinical improvement was confirmed for all treatments by a reduction of histological inflammation and pannus formation (p < 0.05) at the caudal spine. All treatments showed an improvement of structural changes at the axial and peripheral joints on micro-CT imaging, with a significant decrease for roughness (p < 0.05), which reflects both erosion and new bone formation, at the level of the caudal spine. The effect of dual blockade therapy on new bone formation was more prominent at the axial than the peripheral level. Collectively, our study showed that dual blockade therapy significantly reduces inflammation and structural changes, including new bone formation. However, we could not confirm a more pronounced effect of dual inhibition compared to single inhibition.
Collapse
Affiliation(s)
- Ihsan Hammoura
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.H.); (R.H.F.); (S.W.T.); (D.L.B.); (M.N.v.T.); (L.M.v.D.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Renee H. Fiechter
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.H.); (R.H.F.); (S.W.T.); (D.L.B.); (M.N.v.T.); (L.M.v.D.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Shaughn H. Bryant
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (S.H.B.); (S.W.); (G.K.); (W.W.)
| | - Susan Westmoreland
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (S.H.B.); (S.W.); (G.K.); (W.W.)
| | - Gillian Kingsbury
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (S.H.B.); (S.W.); (G.K.); (W.W.)
| | - Wendy Waegell
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (S.H.B.); (S.W.); (G.K.); (W.W.)
| | - Sander W. Tas
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.H.); (R.H.F.); (S.W.T.); (D.L.B.); (M.N.v.T.); (L.M.v.D.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Dominique L. Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.H.); (R.H.F.); (S.W.T.); (D.L.B.); (M.N.v.T.); (L.M.v.D.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marleen G. H. van de Sande
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.H.); (R.H.F.); (S.W.T.); (D.L.B.); (M.N.v.T.); (L.M.v.D.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| | - Melissa N. van Tok
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.H.); (R.H.F.); (S.W.T.); (D.L.B.); (M.N.v.T.); (L.M.v.D.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Leonie M. van Duivenvoorde
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.H.); (R.H.F.); (S.W.T.); (D.L.B.); (M.N.v.T.); (L.M.v.D.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
18
|
Romero-López JP, Elewaut D, Pacheco-Tena C, Burgos-Vargas R. Inflammatory Foot Involvement in Spondyloarthritis: From Tarsitis to Ankylosing Tarsitis. Front Med (Lausanne) 2021; 8:730273. [PMID: 34692724 PMCID: PMC8531414 DOI: 10.3389/fmed.2021.730273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Spondyloarthritis (SpA) is a group that includes a wide spectrum of clinically similar diseases manifested by oligoarticular arthritis and axial or peripheral ankylosis. Although axial SpA is predominant in Caucasians and adult-onset patients, juvenile-onset and Latin American patients are characterized by severe peripheral arthritis and particularly foot involvement. The peripheral involvement of SpA can vary from tarsal arthritis to the most severe form named ankylosing tarsitis (AT). Although the cause and etiopathogenesis of axSpA are often studied, the specific characteristics of pSpA are unknown. Several animal models of SpA develop initial tarsitis and foot ankylosis as the main signs, emphasizing the role of foot inflammation in the overall SpA spectrum. In this review, we attempt to highlight the clinical characteristics of foot involvement in SpA and update the knowledge regarding its pathogenesis, focusing on animal models and the role of mechanical forces in inflammation.
Collapse
Affiliation(s)
- José Pablo Romero-López
- Laboratorio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
- Laboratorio de Inmunología Clínica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional de México, Ciudad de México, Mexico
| | - Dirk Elewaut
- Ghent University Hospital, Ghent University, Ghent, Belgium
| | - César Pacheco-Tena
- Facultad de Medicina, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Rubén Burgos-Vargas
- Department of Rheumatology, Hospital General de México, “Dr. Eduardo Liceaga”, Ciudad de México, Mexico
| |
Collapse
|
19
|
Yeremenko N. Out of the shadow of interleukin-17A: the role of interleukin-17F and other interleukin-17 family cytokines in spondyloarthritis. Curr Opin Rheumatol 2021; 33:333-340. [PMID: 34001692 PMCID: PMC8183488 DOI: 10.1097/bor.0000000000000805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The last decade has witnessed tremendous advances in revealing an important role for the interleukin (IL)-17 cytokine family in the pathogenesis of spondyloarthritis (SpA). Although most attention has been focused on IL-17A, a potential role of other IL-17 family members in inflammation and tissue remodelling is emerging. Herein, I review recent studies covering the role of IL-17B-F cytokines in the pathogenesis of SpA. RECENT FINDINGS Several recent studies provided new insights into the cellular source, regulation and function of IL-17F. IL-17F/IL-17A expression ratio is higher in psoriatic skin compared to SpA synovitis. IL-17F-expressing T cells produce different proinflammatory mediators than IL-17A-expressing cells, and IL-17F and IL-17A signal through different receptor complex. Dual IL-17A and IL-17F neutralization resulted in greater suppression of downstream inflammatory and tissue remodelling responses. Furthermore, there is additional evidence of IL-23-independent IL-17 production. In contrast to IL-17A, IL-17F and IL-17C, which play proinflammatory roles in skin and joint inflammation, an anti-inflammatory function is proposed for IL-17D. An increase in IL-17E is associated with subclinical gut microbiome alterations after anti-IL-17A therapy in SpA patients. SUMMARY IL-17 family cytokines may act as agonists or antagonists to IL-17A contributing in concert to local inflammatory responses. Understanding their function and identifying their cellular sources, and molecular mechanisms driving their expression will be the key to designing rational therapies in SpA.
Collapse
Affiliation(s)
- Nataliya Yeremenko
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Chen C, Liu YQ, Qiu SX, Li Y, Yu NJ, Liu K, Zhong LM. Five metastasis-related mRNAs signature predicting the survival of patients with liver hepatocellular carcinoma. BMC Cancer 2021; 21:693. [PMID: 34116652 PMCID: PMC8194172 DOI: 10.1186/s12885-021-08431-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
Backgrounds Liver hepatocellular carcinoma (HCC) is one of the most malignant tumors, of which prognosis is unsatisfactory in most cases and metastatic of HCC often results in poor prognosis. In this study, we aimed to construct a metastasis- related mRNAs prognostic model to increase the accuracy of prediction of HCC prognosis. Methods Three hundred seventy-four HCC samples and 50 normal samples were downloaded from The Cancer Genome Atlas (TCGA) database, involving transcriptomic and clinical data. Metastatic-related genes were acquired from HCMBD website at the same time. Two hundred thirty-three samples were randomly divided into train dataset and test dataset with a proportion of 1:1 by using caret package in R. Kaplan-Meier method and univariate Cox regression analysis and lasso regression analysis were performed to obtain metastasis-related mRNAs which played significant roles in prognosis. Then, using multivariate Cox regression analysis, a prognostic prediction model was established. Transcriptome and clinical data were combined to construct a prognostic model and a nomogram for OS evaluation. Functional enrichment in high- and low-risk groups were also analyzed by GSEA. An entire set based on The International Cancer Genome Consortium(ICGC) database was also applied to verify the model. The expression levels of SLC2A1, CDCA8, ATG10 and HOXD9 are higher in tumor samples and lower in normal tissue samples. The expression of TPM1 in clinical sample tissues is just the opposite. Results One thousand eight hundred ninety-five metastasis-related mRNAs were screened and 6 mRNAs were associated with prognosis. The overall survival (OS)-related prognostic model based on 5 MRGs (TPM1,SLC2A1, CDCA8, ATG10 and HOXD9) was significantly stratified HCC patients into high- and low-risk groups. The AUC values of the 5-gene prognostic signature at 1 year, 2 years, and 3 years were 0.786,0.786 and 0.777. A risk score based on the signature was a significantly independent prognostic factor (HR = 1.434; 95%CI = 1.275–1.612; P < 0.001) for HCC patients. A nomogram which incorporated the 5-gene signature and clinical features was also built for prognostic prediction. GSEA results that low- and high-risk group had an obviously difference in part of pathways. The value of this model was validated in test dataset and ICGC database. Conclusion Metastasis-related mRNAs prognostic model was verified that it had a predictable value on the prognosis of HCC, which could be helpful for gene targeted therapy.
Collapse
Affiliation(s)
- Chao Chen
- North Sichuan Medical College, School of Medical Imaging, Nanchong, 637000, Sichuan, China.,Nanchong Central Hospital,The Second Clinical Medical College of North Sichuan Medical College, Institute of Tissue Engineering and Stem Cell Research, Nanchong, 637000, Sichuan, China.,Department of Interventional Radiology, The Second Clinical College of North Sichuan Medical College, Nan Chong Central Hospital, Nan Chong, 637000, Sichuan, China
| | - Yan Qun Liu
- North Sichuan Medical College, School of Medical Imaging, Nanchong, 637000, Sichuan, China.,Nanchong Central Hospital,The Second Clinical Medical College of North Sichuan Medical College, Institute of Tissue Engineering and Stem Cell Research, Nanchong, 637000, Sichuan, China
| | - Shi Xiang Qiu
- North Sichuan Medical College, School of Medical Imaging, Nanchong, 637000, Sichuan, China.,Nanchong Central Hospital,The Second Clinical Medical College of North Sichuan Medical College, Institute of Tissue Engineering and Stem Cell Research, Nanchong, 637000, Sichuan, China.,Department of Interventional Radiology, The Second Clinical College of North Sichuan Medical College, Nan Chong Central Hospital, Nan Chong, 637000, Sichuan, China
| | - Ya Li
- North Sichuan Medical College, School of Medical Imaging, Nanchong, 637000, Sichuan, China.,Nanchong Central Hospital,The Second Clinical Medical College of North Sichuan Medical College, Institute of Tissue Engineering and Stem Cell Research, Nanchong, 637000, Sichuan, China.,Department of Interventional Radiology, The Second Clinical College of North Sichuan Medical College, Nan Chong Central Hospital, Nan Chong, 637000, Sichuan, China
| | - Ning Jun Yu
- North Sichuan Medical College, School of Medical Imaging, Nanchong, 637000, Sichuan, China
| | - Kang Liu
- Nanchong Central Hospital,The Second Clinical Medical College of North Sichuan Medical College, Institute of Tissue Engineering and Stem Cell Research, Nanchong, 637000, Sichuan, China
| | - Li Ming Zhong
- Department of Interventional Radiology, The Second Clinical College of North Sichuan Medical College, Nan Chong Central Hospital, Nan Chong, 637000, Sichuan, China.
| |
Collapse
|