1
|
Younes S. The role of nutrition on the treatment of Covid 19. HUMAN NUTRITION & METABOLISM 2024; 36:200255. [DOI: 10.1016/j.hnm.2024.200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
|
2
|
Serhan CN, Bäck M, Chiurchiù V, Hersberger M, Mittendorfer B, Calder PC, Waitzberg DL, Stoppe C, Klek S, Martindale RG. Expert consensus report on lipid mediators: Role in resolution of inflammation and muscle preservation. FASEB J 2024; 38:e23699. [PMID: 38805158 DOI: 10.1096/fj.202400619r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
This meeting report presents a consensus on the biological aspects of lipid emulsions in parenteral nutrition, emphasizing the unanimous support for the integration of lipid emulsions, particularly those containing fish oil, owing to their many potential benefits beyond caloric provision. Lipid emulsions have evolved from simple energy sources to complex formulations designed to improve safety profiles and offer therapeutic benefits. The consensus highlights the critical role of omega-3 polyunsaturated fatty acids (PUFAs), notably eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), found in fish oil and other marine oils, for their anti-inflammatory properties, muscle mass preservation, and as precursors to the specialized pro-resolving mediators (SPMs). SPMs play a significant role in immune modulation, tissue repair, and the active resolution of inflammation without impairing host defense mechanisms. The panel's agreement underscores the importance of incorporating fish oil within clinical practices to facilitate recovery in conditions like surgery, critical illness, or immobility, while cautioning against therapies that might disrupt natural inflammation resolution processes. This consensus not only reaffirms the role of specific lipid components in enhancing patient outcomes, but also suggests a shift towards nutrition-based therapeutic strategies in clinical settings, advocating for the proactive evidence-based use of lipid emulsions enriched with omega-3 PUFAs. Furthermore, we should seek to apply our knowledge concerning DHA, EPA, and their SPM derivatives, to produce more informative randomized controlled trial protocols, thus allowing more authoritative clinical recommendations.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Hale Building for Transformative Medicine, Boston, Massachusetts, USA
| | - Magnus Bäck
- Department of Medicine Solna, Karolinska Institute, Solna, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- INSERM U1116, Université de Lorraine, Nancy University Hospital, Vandoeuvre les Nancy, France
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council of Rome, Rome, Italy
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bettina Mittendorfer
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Department of Nutrition & Exercise Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Philip C Calder
- Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Dan L Waitzberg
- Department of Gastroenterology, School of Medicine, University of Sao Paulo, Hospital das Clínicas LIM 35, Ganep-Human Nutrition, Sao Paulo, Brazil
| | - Christian Stoppe
- Department of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| | - Stanislaw Klek
- Surgical Oncology Clinic, The Maria Sklodowska-Curie National Cancer Institute, Krakow, Poland
| | - Robert G Martindale
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Meng H, Sengupta A, Ricciotti E, Mrčela A, Mathew D, Mazaleuskaya LL, Ghosh S, Brooks TG, Turner AP, Schanoski AS, Lahens NF, Tan AW, Woolfork A, Grant G, Susztak K, Letizia AG, Sealfon SC, Wherry EJ, Laudanski K, Weljie AM, Meyer NJ, FitzGerald GA. Deep phenotyping of the lipidomic response in COVID-19 and non-COVID-19 sepsis. Clin Transl Med 2023; 13:e1440. [PMID: 37948331 PMCID: PMC10637636 DOI: 10.1002/ctm2.1440] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.
Collapse
Affiliation(s)
- Hu Meng
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emanuela Ricciotti
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Antonijo Mrčela
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Immunology and Immune HealthPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Liudmila L. Mazaleuskaya
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Soumita Ghosh
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas G. Brooks
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alexandra P. Turner
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Nicholas F. Lahens
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ai Wen Tan
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ashley Woolfork
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Greg Grant
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of GeneticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Katalin Susztak
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrew G. Letizia
- Naval Medical Research CenterSilver SpringMarylandUSA
- Naval Medical Research Unit TWOSingaporeSingapore
| | - Stuart C. Sealfon
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - E. John Wherry
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Immunology and Immune HealthPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical CarePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Aalim M. Weljie
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nuala J. Meyer
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Garret A. FitzGerald
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Li J, Xiao Y, Zhang Y, Li S, Zhao M, Xia T, Meng H. Pulmonary Delivery of Specialized Pro-Resolving Mediators-Based Nanotherapeutics Attenuates Pulmonary Fibrosis in Preclinical Animal Models. ACS NANO 2023; 17:15354-15370. [PMID: 37535431 DOI: 10.1021/acsnano.2c10388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic lung disease characterized by excess extracellular matrix deposition and prolonged inflammation that fails to resolve and is druggable. Using resolvins and their precursors for inflammation resolution, we demonstrate a nano-enabled approach for accomplishing robust antifibrotic effects in bleomycin- or engineered nanomaterial-induced mouse and rat PF models. Targeting the lipid peroxidation-triggered NLRP3 inflammasome and NF-κB pathway in macrophages and the ROS-mediated TGF-β/Smad and S1P signaling in epithelial cells results in these potent protective effects at the ng/mL dosimetry. We further develop an inhalable biocompatible nanoparticle that encapsulates fish oil, a chosen resolvin precursor, with phosphatidylcholine and polyethylene glycol to enhance drug permeability and facilitate crossing the mucosal barrier, forming "fish-oilsome" (FOS). Oropharyngeal aspiration and inhalation of FOS improved the anti-inflammatory status, histological characteristics, and pulmonary function in fibrotic lungs, which was mechanistically supported by transcriptomic and proteomic analyses. Further, scale-up engineered FOS samples with the desired physicochemical properties, anti-PF efficacy, and in vivo biocompatibility were validated in different batch sizes (up to 0.2 L/batch). This study provides a practical and translatable approach to promoting inflammation resolution and PF treatment.
Collapse
Affiliation(s)
- Jiulong Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Yu Xiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yumo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Department of Environment and Life, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Silu Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Minzhi Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| |
Collapse
|
5
|
Meng H, Sengupta A, Ricciotti E, Mrčela A, Mathew D, Mazaleuskaya LL, Ghosh S, Brooks TG, Turner AP, Schanoski AS, Lahens NF, Tan AW, Woolfork A, Grant G, Susztak K, Letizia AG, Sealfon SC, Wherry EJ, Laudanski K, Weljie AM, Meyer NB, FitzGerald GA. Deep Phenotyping of the Lipidomic Response in COVID and non-COVID Sepsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543298. [PMID: 37398323 PMCID: PMC10312560 DOI: 10.1101/2023.06.02.543298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lipids may influence cellular penetrance by pathogens and the immune response that they evoke. Here we find a broad based lipidomic storm driven predominantly by secretory (s) phospholipase A 2 (sPLA 2 ) dependent eicosanoid production occurs in patients with sepsis of viral and bacterial origin and relates to disease severity in COVID-19. Elevations in the cyclooxygenase (COX) products of arachidonic acid (AA), PGD 2 and PGI 2 , and the AA lipoxygenase (LOX) product, 12-HETE, and a reduction in the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients, correlate with the inflammatory response and link to disease severity. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflect disease severity in COVID-19. AA and LA metabolites and LPC-O-16:0 linked variably to the immune response. These studies yield prognostic biomarkers and therapeutic targets for patients with sepsis, including COVID-19. An interactive purpose built interactive network analysis tool was developed, allowing the community to interrogate connections across these multiomic data and generate novel hypotheses.
Collapse
|
6
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
7
|
Akhtar E, Mily A, Sarker P, Chanda BC, Haque F, Kuddusi RU, Haq MA, Lourda M, Brighenti S, Raqib R. Immune cell landscape in symptomatic and asymptomatic SARS-CoV-2 infected adults and children in urban Dhaka, Bangladesh. Immunobiology 2023; 228:152350. [PMID: 36822063 PMCID: PMC9938758 DOI: 10.1016/j.imbio.2023.152350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/08/2022] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES The study of cellular immunity to SARS-CoV-2 is crucial for evaluating the course of the COVID-19 disease and for improving vaccine development. We aimed to assess the phenotypic landscape of circulating lymphocytes and mononuclear cells in adults and children who were seropositive to SARS-CoV-2 in the past 6 months. METHODS Blood samples (n = 350) were collected in a cross-sectional study in Dhaka, Bangladesh (Oct 2020-Feb 2021). Plasma antibody responses to SARS-CoV-2 were determined by an electrochemiluminescence immunoassay while lymphocyte and monocyte responses were assessed using flow cytometry including dimensionality reduction and clustering algorithms. RESULTS SARS-CoV-2 seropositivity was observed in 52% of adults (18-65 years) and 56% of children (10-17 years). Seropositivity was associated with reduced CD3+T cells in both adults (beta(β) = -2.86; 95% Confidence Interval (CI) = -5.98, 0.27) and children (β = -8.78; 95% CI = -13.8, -3.78). The frequencies of T helper effector (CD4+TEFF) and effector memory cells (CD4+TEM) were increased in seropositive compared to seronegative children. In adults, seropositivity was associated with an elevated proportion of cytotoxic T central memory cells (CD8+TCM). Overall, diverse manifestations of immune cell dysregulations were more prominent in seropositive children compared to adults, who previously had COVID-like symptoms. These changes involved reduced frequencies of CD4+TEFF cells and CD163+CD64+ classical monocytes, but increased levels of intermediate or non-classical monocytes, as well as CD8+TEM cells in symptomatic children. CONCLUSION Seropositive individuals in convalescence showed increased central and effector memory T cell phenotypes and pro-resolving/healing monocyte phenotypes compared to seronegative subjects. However, seropositive children with a previous history of COVID-like symptoms, displayed an ongoing innate inflammatory trait.
Collapse
Affiliation(s)
- Evana Akhtar
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | - Akhirunnesa Mily
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Protim Sarker
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | | | - Farjana Haque
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | | | - Md Ahsanul Haq
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | - Magda Lourda
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52, Huddinge, Sweden; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh.
| |
Collapse
|
8
|
Kumar V, Yasmeen N, Chaudhary AA, Alawam AS, Al-Zharani M, Suliman Basher N, Harikrishnan S, Goud MD, Pandey A, Lakhawat SS, Sharma PK. Specialized pro-resolving lipid mediators regulate inflammatory macrophages: A paradigm shift from antibiotics to immunotherapy for mitigating COVID-19 pandemic. Front Mol Biosci 2023; 10:1104577. [PMID: 36825200 PMCID: PMC9942001 DOI: 10.3389/fmolb.2023.1104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The most severe clinical manifestations of the horrifying COVID-19 disease, that claimed millions of lives during the pandemic time, were Acute respiratory distress syndrome (ARDS), Coagulopathies, septic shock leading eventually to death. ARDS was a consequence of Cytokine storm. The viral SARS-COV2infection lead to avalanche of cytokines and eicosanoids causing "cytokine storm" and "eicosanoid storm." Cytokine storm is one of the macrophage-derived inflammatory responses triggered by binding of virus particles to ACE2 receptors of alveolar macrophages, arise mainly due to over production of various pro-inflammatory mediators like cytokines, e.g., interleukin (IL)-1, IL-2, and tumor necrosis factor (TNF)- α, causing pulmonary edema, acute respiratory distress, and multi-organ failure. Cytokine storm was regarded as the predictor of severity of the disease and was deemed one of the causes of the high mortality rates due to the COVID-19. The basis of cytokine storm is imbalanced switching between an inflammation increasing - pro-inflammatory (M1) and an inflammation regulating-anti-inflammatory (M2) forms of alveolar macrophages which further deteriorates if opportunistic secondary bacterial infections prevail in the lungs. Lack of sufficient knowledge regarding the virus and its influence on co-morbidities, clinical treatment of the diseases included exorbitant use of antibiotics to mitigate secondary bacterial infections, which led to the unwarranted development of multidrug resistance (MDR) among the population across the globe. Antimicrobial resistance (AMR) needs to be addressed from various perspectives as it may deprive future generations of the basic health immunity. Specialized pro-resolving mediators (SPMs) are generated from the stereoselective enzymatic conversions of essential fatty acids that serve as immune resolvents in controlling acute inflammatory responses. SPMs facilitate the clearance of injured tissue and cell debris, the removal of pathogens, and augment the concentration of anti-inflammatory lipid mediators. The SPMs, e.g., lipoxins, protectins, and resolvins have been implicated in exerting inhibitory influence on with cytokine storm. Experimental evidence suggests that SPMS lower antibiotic requirement. Therefore, in this review potential roles of SPMs in enhancing macrophage polarization, triggering immunological functions, hastening inflammation resolution, subsiding cytokine storm and decreasing antibiotic requirement that can reduce AMR load are discussed.
Collapse
Affiliation(s)
- Vikram Kumar
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India,*Correspondence: Vikram Kumar,
| | - Nusrath Yasmeen
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nosiba Suliman Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - S. Harikrishnan
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | | | - Aishwarya Pandey
- INRS, Eau Terre Environnement Research Centre, Québec, QC, Canada
| | | | | |
Collapse
|
9
|
Navarini L, Vomero M, Currado D, Berardicurti O, Biaggi A, Marino A, Bearzi P, Corberi E, Rigon A, Arcarese L, Leuti A, Fava M, Fogolari M, Mattei A, Ruscitti P, Di Cola I, Sambuco F, Travaglino F, Angeletti S, Ursini F, Mariani E, Cipriani P, Agrò FE, Iagnocco A, Antonelli Incalzi R, Maccarrone M, Giacomelli R. The specialized pro-resolving lipid mediator Protectin D1 affects macrophages differentiation and activity in Adult-onset Still's disease and COVID-19, two hyperinflammatory diseases sharing similar transcriptomic profiles. Front Immunol 2023; 14:1148268. [PMID: 37153620 PMCID: PMC10160453 DOI: 10.3389/fimmu.2023.1148268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction COVID-19 and autoinflammatory diseases, such as Adult-onset Still's Disease (AOSD), are characterized by hyperinflammation, in which it is observed massive production and uncontrolled secretion of pro-inflammatory cytokines. The specialized pro-resolving lipid mediators (SPMs) family is one the most important processes counteracting hyperinflammation inducing tissue repair and homeostasis restoration. Among SPMs, Protectin D1 (PD1) is able to exert antiviral features, at least in animal models. The aim of this study was to compare the transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with AOSD and COVID-19 and to evaluate the role of PD1 on those diseases, especially in modulating macrophages polarization. Methods This study enrolled patients with AOSD, COVID-19, and healthy donors HDs, undergoing clinical assessment and blood sample collection. Next-generation deep sequencing was performed to identify differences in PBMCs transcripts profiles. Plasma levels of PD1 were assessed by commercial ELISA kits. Monocyte-derived macrophages were polarized into M1 and M2 phenotypes. We analyzed the effect of PD1 on macrophages differentiation. At 10 days, macrophages were analyzed for surface expression of subtypes markers by flow cytometry. Cytokines production was measured in supernatants by Bio-Plex Assays. Results In the transcriptomes from AOSD patients and COVID-19 patients, genes involved in inflammation, lipid catabolism, and monocytes activation were specifically dysregulated in AOSD and COVID-19 patients when compared to HDs. Patients affected by COVID-19, hospitalized in intensive care unit (ICU), showed higher levels of PD1 when compared to not-ICU hospitalized patients and HDs (ICU COVID-19 vs not-ICU COVID-19, p= 0.02; HDs vs ICU COVID-19, p= 0.0006). PD1 levels were increased in AOSD patients with SS ≥1 compared to patients with SS=0 (p=0.028) and HDs (p=0.048). In vitro treatment with PD1 of monocytes-derived macrophages from AOSD and COVID-19 patients induced a significant increase of M2 polarization vs control (p<0.05). Furthermore, a significant release of IL-10 and MIP-1β from M2 macrophages was observed when compared to controls (p<0.05). Discussion PD1 is able to induce pro-resolutory programs in both AOSD and COVID-19 increasing M2 polarization and inducing their activity. In particular, PD1-treated M2 macrophages from AOSD and COVID-19 patients increased the production of IL-10 and enhanced homeostatic restoration through MIP-1β production.
Collapse
Affiliation(s)
- Luca Navarini
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
- *Correspondence: Luca Navarini,
| | - Marta Vomero
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Damiano Currado
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Onorina Berardicurti
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Alice Biaggi
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Annalisa Marino
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Pietro Bearzi
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Erika Corberi
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Amelia Rigon
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Luisa Arcarese
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Alessandro Leuti
- Neurochemistry of Lipids Unit, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Marina Fava
- Neurochemistry of Lipids Unit, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Marta Fogolari
- Operative Research Unit of Clinical Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Clinical Laboratory Science, Department of Medicine, University of Rome “Campus Biomedico”, Rome, Italy
| | - Alessia Mattei
- Operative Research Unit of Anaesthesia, Intensive Care and Pain Management, Fondazione Policiclinico Campus Biomedico, Rome, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Ilenia Di Cola
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Federica Sambuco
- Emergency Department, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Francesco Travaglino
- Emergency Department, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Silvia Angeletti
- Operative Research Unit of Clinical Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Clinical Laboratory Science, Department of Medicine, University of Rome “Campus Biomedico”, Rome, Italy
| | - Francesco Ursini
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Erminia Mariani
- Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paola Cipriani
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Felice Eugenio Agrò
- Operative Research Unit of Anaesthesia, Intensive Care and Pain Management, Fondazione Policiclinico Campus Biomedico, Rome, Italy
- Research Unit of Anaesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Annamaria Iagnocco
- Academic Rheumatology Centre - AO Mauriziano Torino, Cattedra di Reumatologia - Dipartimento Scienze Cliniche e Biologiche, Università degli Studi di Torino, Turin, Italy
| | - Raffaele Antonelli Incalzi
- Unit of Geriatrics, University of Rome “Campus Biomedico”, Rome, Italy
- Internal Medicine, Fondazione Policlinico Campus Biomedico, Rome, Italy
| | - Mauro Maccarrone
- Neurochemistry of Lipids Unit, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| |
Collapse
|
10
|
Ávila G, Di Mauro S, Filipe J, Agazzi A, Comi M, Lecchi C, Ceciliani F. Immunomodulatory effects of long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) on porcine monocytes (CD14 +) immune response in vitro. Vet Immunol Immunopathol 2022; 254:110523. [PMID: 36463585 DOI: 10.1016/j.vetimm.2022.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are omega-3 long-chain polyunsaturated fatty acids (n-3 PUFA) found mostly in fish oil. They have been commonly used as dietary integrators in human and animal nutrition, modulating the immune system, mostly by exerting anti-inflammatory activities as demonstrated by in vivo and in vitro studies. The precise mechanisms of action at the background of EPA and DHA immunomodulatory activity are still not fully elucidated. Moreover, no information on their effects on porcine monocytes immune response is available yet. To cover this gap, the study aimed to evaluate DHA and EPA's in vitro impact on porcine monocytes (CD14 +) defensive functions. Briefly, monocytes were isolated from the blood of twenty-six healthy pigs, using a magnetic-activated cell sorting technique (MACS). Monocytes were first treated with increasing concentrations of DHA and EPA (25, 50, 100 and 200 µM) and apoptosis and viability were measured to assess potential cytotoxic effects. Once determined EPA and DHA subtoxic working concentrations (25, 50 and 100 µM), their effects on chemotaxis, phagocytosis and total, intracellular and extracellular reactive oxygen species (ROS) production were evaluated. DHA and EPA only decreased porcine monocytes viability at the highest concentration (200 µM), but their apoptosis was unaffected. DHA (100 µM) decreased the cells' chemotaxis, while EPA (25 µM) increased their intracellular ROS production after 60 min under non-inflammatory or resting conditions and at 90 min under pro-inflammatory conditions (PMA challenge). EPA (50 µM) decreased monocytes' intracellular ROS levels only under resting conditions at 30 min. No effects were observed on porcine monocytes phagocytic capacity. In conclusion, this study demonstrates that DHA and EPA can exert differential in vitro immunomodulatory effects in pigs, by dampening monocytes chemotaxis and potentiating their oxidative burst, respectively. Thus, our results suggest these n-3 PUFA might exert both anti-inflammatory and/or immune-enhancing effects in pigs.
Collapse
Affiliation(s)
- Gabriela Ávila
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| | - Susanna Di Mauro
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Alessandro Agazzi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Marcello Comi
- Department of Human Science and Quality of Life Promotion, Università Telematica San Raffaele, Via di Val Cannuta 247, 00166 Roma, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| |
Collapse
|
11
|
Costa BTD, Araújo GRL, da Silva Júnior RT, Santos LKDS, Lima de Souza Gonçalves V, Lima DBA, Cuzzuol BR, Santos Apolonio J, de Carvalho LS, Marques HS, Silva CS, Barcelos IDS, Oliveira MV, Freire de Melo F. Effects of nutrients on immunomodulation in patients with severe COVID-19: Current knowledge. World J Crit Care Med 2022; 11:201-218. [PMID: 36051942 PMCID: PMC9305681 DOI: 10.5492/wjccm.v11.i4.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that critically ill patients with coronavirus disease 2019 (COVID-19) show significant immune system dysregulation. Due to that, some nutrients that influence immunomodulation have been suggested as a form of treatment against the infection. This review collected the information on the impact of vitamins on the prognosis of COVID-19, with the intention of facilitating treatment and prevention of the disease risk status in patients. The collected information was obtained using the PubMed electronic database by searching for articles that relate COVID-19 and the mechanisms/effects of the nutrients: Proteins, glucose, lipids, vitamin B12, vitamin D, calcium, iron, copper, zinc, and magnesium, including prospective, retrospective, and support articles. The findings reveal an optimal response related mainly to omega-3, eicosapentaenoic acid, docosahexaenoic acid, calcium, and iron that might represent benefits in the treatment of critically ill patients. However, nutrient supplementation should be done with caution due to the limited availability of randomized controlled studies.
Collapse
Affiliation(s)
- Bruna Teixeira da Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Glauber Rocha Lima Araújo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Daniel Bastos Alves Lima
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Camilo Santana Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Isadora de Souza Barcelos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
12
|
Radbakhsh S, Katsiki N, Santos RD, Mikhailidis DP, Mantzoros CS, Sahebkar A. Effects of statins on specialized pro-resolving mediators: An additional pathway leading to resolution of inflammation. Metabolism 2022; 132:155211. [PMID: 35533891 DOI: 10.1016/j.metabol.2022.155211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022]
Abstract
Statins are a class of cholesterol-lowering drugs that inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Anti-inflammatory and antioxidant properties, as well as improvement of endothelial function and plaque stabilization have also been proposed as parts of the pleiotropic effects of statins. Specialized pro-resolving mediators (SPMs) are endogenous lipid-derived molecules originating from ω-6 and ω-3 polyunsaturated fatty acids, such as arachidonic, docosahexaenoic and eicosapentaenoic acid that trigger and modulate the resolution of inflammation. Impaired SPM biosynthesis can lead to excessive or chronic inflammation and is implicated in the pathogenesis of several diseases. Exogenous administration of SPMs, including lipoxin, maresin, protectin, have been shown to improve both bacterial and viral infections, mainly in preclinical models, thus minimizing inflammation. Statin-triggered-SPM production in several in vitro and in vivo models may represent another anti-inflammatory pathway involving these drugs. This commentary discusses scientific publications on the effects of statins on SPMs and the resolution of inflammation process.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niki Katsiki
- First Department of Internal Medicine, Diabetes Center, Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital campus, University College London, London, UK
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Western Australia, Mashhad, Iran.
| |
Collapse
|
13
|
Generation of resolving memory neutrophils through pharmacological training with 4-PBA or genetic deletion of TRAM. Cell Death Dis 2022; 13:345. [PMID: 35418110 PMCID: PMC9007399 DOI: 10.1038/s41419-022-04809-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Neutrophils are the dominant leukocytes in circulation and the first responders to infection and inflammatory cues. While the roles of neutrophils in driving inflammation have been widely recognized, the contribution of neutrophils in facilitating inflammation resolution is under-studied. Here, through single-cell RNA sequencing analysis, we identified a subpopulation of neutrophils exhibiting pro-resolving characteristics with greater Cd200r and Cd86 expression at the resting state. We further discovered that 4-PBA, a peroxisomal stress-reducing agent, can potently train neutrophils into the resolving state with enhanced expression of CD200R, CD86, as well as soluble pro-resolving mediators Resolvin D1 and SerpinB1. Resolving neutrophils trained by 4-PBA manifest enhanced phagocytosis and bacterial-killing functions. Mechanistically, the generation of resolving neutrophils is mediated by the PPARγ/LMO4/STAT3 signaling circuit modulated by TLR4 adaptor molecule TRAM. We further demonstrated that genetic deletion of TRAM renders the constitutive expansion of resolving neutrophils, with an enhanced signaling circuitry of PPARγ/LMO4/STAT3. These findings may have profound implications for the effective training of resolving neutrophils with therapeutic potential in the treatment of both acute infection as well as chronic inflammatory diseases.
Collapse
|
14
|
Abstract
Coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been an ongoing pandemic causing significant morbidity and mortality worldwide. The “cytokine storm” is a critical driving force in severe COVID-19 cases, leading to hyperinflammation, multi-system organ failure, and death. A paradigm shift is emerging in our understanding of the resolution of inflammation from a passive course to an active biochemical process driven by endogenous specialized pro-resolving mediators (SPMs), such as resolvins, protectins, lipoxins, and maresins. SPMs stimulate macrophage-mediated debris clearance and counter pro-inflammatory cytokine production, a process collectively termed as the “resolution of inflammation.” Hyperinflammation is not unique to COVID-19 and also occurs in neoplastic conditions, putting individuals with underlying health conditions such as cancer at elevated risk of severe SARS-CoV-2 infection. Despite approaches to block systemic inflammation, there are no current therapies designed to stimulate the resolution of inflammation in patients with COVID-19 or cancer. A non-immunosuppressive therapeutic approach that reduces the cytokine storm in patients with COVID-19 and cancer is urgently needed. SPMs are potent immunoresolvent and organ-protective lipid autacoids that stimulate the resolution of inflammation, facilitate clearance of infections, reduce thrombus burden, and promote a return to tissue homeostasis. Targeting endogenous lipid mediators, such as SPMs, offers an entirely novel approach to control SARS-CoV-2 infection and cancer by increasing the body’s natural reserve of pro-resolving mediators without overt toxicity or immunosuppression.
Collapse
Affiliation(s)
- Chantal Barksdale
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Shreya Tripathy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Biagini D, Franzini M, Oliveri P, Lomonaco T, Ghimenti S, Bonini A, Vivaldi F, Macera L, Balas L, Durand T, Oger C, Galano JM, Maggi F, Celi A, Paolicchi A, Di Francesco F. MS-based targeted profiling of oxylipins in COVID-19: A new insight into inflammation regulation. Free Radic Biol Med 2022; 180:236-243. [PMID: 35085774 PMCID: PMC8786407 DOI: 10.1016/j.freeradbiomed.2022.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
The key role of inflammation in COVID-19 induced many authors to study the cytokine storm, whereas the role of other inflammatory mediators such as oxylipins is still poorly understood. IMPRECOVID was a monocentric retrospective observational pilot study with COVID-19 related pneumonia patients (n = 52) admitted to Pisa University Hospital between March and April 2020. Our MS-based analytical platform permitted the simultaneous determination of sixty plasma oxylipins in a single run at ppt levels for a comprehensive characterisation of the inflammatory cascade in COVID-19 patients. The datasets containing oxylipin and cytokine plasma levels were analysed by principal component analysis (PCA), computation of Fisher's canonical variable, and a multivariate receiver operating characteristic (ROC) curve. Differently from cytokines, the panel of oxylipins clearly differentiated samples collected in COVID-19 wards (n = 43) and Intensive Care Units (ICUs) (n = 27), as shown by the PCA and the multivariate ROC curve with a resulting AUC equal to 0.92. ICU patients showed lower (down to two orders of magnitude) plasma concentrations of anti-inflammatory and pro-resolving lipid mediators, suggesting an impaired inflammation response as part of a prolonged and unsolvable pro-inflammatory status. In conclusion, our targeted oxylipidomics platform helped shedding new light in this field. Targeting the lipid mediator class switching is extremely important for a timely picture of a patient's ability to respond to the viral attack. A prediction model exploiting selected lipid mediators as biomarkers seems to have good chances to classify patients at risk of severe COVID-19.
Collapse
Affiliation(s)
- Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy.
| | - Maria Franzini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | | | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy
| | - Federico Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy
| | - Lisa Macera
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, University of Montpellier, CNRS, EBNSCM, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, University of Montpellier, CNRS, EBNSCM, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, University of Montpellier, CNRS, EBNSCM, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, University of Montpellier, CNRS, EBNSCM, France
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, Italy
| | - Alessandro Celi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Italy
| | - Aldo Paolicchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy.
| |
Collapse
|
16
|
Christopoulos PF. Hacking macrophages to combat cancer and inflammatory diseases-Current advances and challenges. Scand J Immunol 2022; 95:e13140. [PMID: 35000232 DOI: 10.1111/sji.13140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Recently, immunotherapy has been served as the treatment of choice for various human pathophysiologies, including inflammatory diseases and cancer. Though most of the current approaches target the lymphoid compartment, macrophages intimately implicated in the induction or resolution of inflammation have rationally gained their place into the therapeutics arena. In this review, I discuss the past and novel groundbreaking strategies focusing on macrophages in different human diseases and highlight the current challenges and considerations underlying their translational potentials.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Pathology, section of Research, Rikshospitalet, Oslo University Hospital and University of Oslo, 0424, Oslo, Norway
| |
Collapse
|
17
|
Mundi MS, Mechanick JI, Patel JJ, Laviano A, Martindale RG, Zimmers TA. Case presentation and panel discussion: Nutrition issues in cancer. JPEN J Parenter Enteral Nutr 2021; 45:41-46. [PMID: 34897739 DOI: 10.1002/jpen.2220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/17/2021] [Indexed: 11/09/2022]
Abstract
Advances in treatment of malignancy including novel pharmacologic therapies and surgical interventions has led to significant improvement in survival. As cancer becomes a chronic disease, nutrition interventions play an increasingly important role in short- and long-term outcomes. The current manuscript presents a case of a 66-year-old male with new diagnosis of pancreatic cancer diagnosed incidentally in the setting of COVID-19. Expert panelists in the field of nutrition discuss optimal strategies for diagnosis of malnutrition along with preoperative, perioperative, and postoperative optimization of nutrition. This discussion focuses on the use of probiotics, immune-modulating nutrition, fish oil, specialized proresolving mediators, and use of enteral and parenteral nutrition support.
Collapse
Affiliation(s)
- Manpreet S Mundi
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey I Mechanick
- Kravis Center for Clinical Cardiovascular Health at Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jayshil J Patel
- Division of Pulmonary Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Robert G Martindale
- Division of Gastrointestinal and General Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|