1
|
Zhang YS, Ma R, Liu B, Zhang Q, Hai Y. Occupational exposure protection and perioperative management of sudden infectious diseases from the perspective of COVID-19. J Int Med Res 2024; 52:3000605241266234. [PMID: 39301802 PMCID: PMC11418532 DOI: 10.1177/03000605241266234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/18/2024] [Indexed: 09/22/2024] Open
Abstract
The coronavirus disease (COVID-19) SARS-CoV-2 virus epidemic continues to exhibit a sporadic onset trend due to the continuous variation of the novel coronavirus. However, the psychological impact of the pandemic persists. It is crucial to reflect on our experiences to better prepare for future large-scale infectious diseases. During outbreaks of infectious diseases, patients may still require orthopaedic surgery. It is crucial to prioritize the safety of medical staff and establish procedures to ensure their protection. However, with the implementation of a series of standardized operational protection procedures, orthopaedic surgeons can safely perform their duties without the risk of contracting COVID-19. There is no doubt that the orthopaedic occupational exposure protection process and perioperative management plan for global infectious diseases, such as COVID-19, require a standardized summarization process and a narrative review.
Collapse
Affiliation(s)
- Yao-Shen Zhang
- Department of Orthopaedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Rui Ma
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopaedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Dibakou SE, Mbani Mpega Ntigui CN, Oyegue-Liabagui SL, Otsague Ekore D, Okomo Nguema LY, Lekana-Douki JB, Ngoubangoye B. Neopterin production in relation to COVID-19 in the Haut-Ogooué Province, Gabon. BMC Infect Dis 2024; 24:872. [PMID: 39198763 PMCID: PMC11351030 DOI: 10.1186/s12879-024-09766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND In sub-Saharan Africa, understanding of the immune process associated with the COVID-19 pandemic remains scarce. This study aimed to investigate the relationship between plasma neopterin concentrations and COVID-19 infection, focusing on changes over time and age-related changes in immune response. METHODS A retrospective case study was conducted during the first wave of COVID-19 from March to August 2020. Whole blood and associated symptoms and comorbidities were collected from patients of all ages and sexes. Concentrations of plasma neopterin were measured using a commercial competitive neopterin ELISA (Neopterin ELISA, IBL International GmbH, Germany). RESULTS We analyzed data for 325 patients: 38% (n = 124) with COVID-19, and 62% (n = 201) without COVID-19, as a control group. We found that plasma neopterin concentrations were significantly higher in the COVID-19 group (mean value 45.1 nmol/L (SD 19)) than in the control group (mean value 33.8 nmol/L (SD 13)) (p = 0.004). In addition, neopterin levels decreased gradually over time in patients with COVID-19 (p < 0.001). Moreover, ROC analysis found that the best cut-off value for diagnosing COVID-19 patients based on plasma neopterin levels was 38.85 nmol/L with 70% sensitivity and 82% specificity (AUC, 0.74 [0.69-0.82], p < 0.05). We also found an increase in neopterin production with increasing age (p < 0.001). CONCLUSION Our findings contribute to our growing understanding of neopterin levels as a promising biomarker for the detection of COVID-19 cases in sub-Saharan Africa.
Collapse
Affiliation(s)
- Serge Ely Dibakou
- Département de Primatologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon.
| | - Chérone Nancy Mbani Mpega Ntigui
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
- Ecole Doctorale Régionale d'Afrique Centrale en Infectiologie Tropicale (ECODRAC), Université des Sciences et Techniques de Masuku, BP 876, Franceville, Gabon
| | - Sandrine Lydie Oyegue-Liabagui
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
- Ecole Doctorale Régionale d'Afrique Centrale en Infectiologie Tropicale (ECODRAC), Université des Sciences et Techniques de Masuku, BP 876, Franceville, Gabon
- Département de Biologie, Faculté des Sciences, Université des Sciences et Techniques de Masuku (USTM), BP 914, Franceville, Gabon
| | - Desire Otsague Ekore
- Département de Primatologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Linaa Yasmine Okomo Nguema
- Département de Primatologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Jean Bernard Lekana-Douki
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
- Département de Parasitologie-Mycologie, Université des Sciences de la Santé (USS), Libreville, Gabon
| | - Barthelemy Ngoubangoye
- Département de Primatologie, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| |
Collapse
|
3
|
Guo Q, Wang T, Huang Y, Wang F, Hao P, Fang L. Multiple sclerosis and COVID-19: a northern China survey. Neurol Sci 2024; 45:3563-3571. [PMID: 38722503 PMCID: PMC11254961 DOI: 10.1007/s10072-024-07578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND There is insufficient data on severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) infection in Chinese patients with multiple sclerosis (pwMS). This study aims to explore the manifestation of pwMS during the Coronavirus disease 2019 (COVID-19) pandemic and the effect of SARS-CoV-2 infection on the prognosis of MS in northern China. METHODS In this cross-sectional study, an online self-administered questionnaire and telephone interviews were conducted among pwMS of northern China. Clinical correlation of SARS-CoV-2 infection since the onset of the COVID-19 pandemic in northern China was analyzed. RESULTS 164 patients with an average age of 38.9 ± 12.2 years were included, of which 57.3% had a disease course ≤ 5 years. 33.5% of the patients were COVID-19 vaccinated. 87.2% received disease-modifying therapy (DMT), and the average immunotherapy duration was 1.9 ± 1.6 years. 83.5% were SARS-CoV-2 infected, 14.6% reported worsening of their original condition after infection, and 5.1% had a relapse of MS. Shorter disease course was independently related to infection risk (P = 0.046), whereas increasing age was related to aggravated behavioral symptoms (P = 0.008). However, gender, vaccination, and DMT were not associated with susceptibility or poor prognosis. CONCLUSION A shorter disease course is independently associated with an increased risk of SARS-CoV-2 infection, and age is associated with worsening disability. It seems to be safe and necessary to use DMT during the pandemic, however, the use of B cell-depletion agents should be approached with caution.
Collapse
Affiliation(s)
- Qian Guo
- Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130000, China
| | - Tianwei Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Yusen Huang
- Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130000, China
| | - Fangruyue Wang
- The Third Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Pingping Hao
- Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130000, China
| | - Le Fang
- Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130000, China.
| |
Collapse
|
4
|
Vacaroiu IA, Șerban-Feier LF, Georgescu DE, Balan DG, Lupușoru MOD, Cuiban E, Mihai AD, Balcangiu-Stroescu AE. Long-Term Interplay Between SARS-CoV-2 and Renal Impairment. Cureus 2024; 16:e66553. [PMID: 39252712 PMCID: PMC11381964 DOI: 10.7759/cureus.66553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction The SARS-CoV-2 virus causes the highly contagious coronavirus disease 2019 (COVID-19), which most commonly manifests as severe acute respiratory syndrome. The virus is part of the Coronaroviridae family, a group of viruses that can cause various diseases, such as the common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). The World Health Organization (WHO) declared the outbreak of COVID-19 as a pandemic on March 11, 2020. On February 26, 2020, Romania confirmed the first case of COVID-19, initiating a series of challenges that negatively impacted the lives of thousands of people. The COVID-19 pandemic has had a disproportionate effect on patients at risk of kidney damage. Patients with chronic kidney disease (CKD) are at high risk of SARS-CoV-2 infection and mortality associated with COVID-19. CKD is associated with pronounced immunodeficiency and represents a risk factor for contracting the infection, but also increases the risk of hospitalization, oxygen therapy, and prolonged treatments. The evidence regarding the management of patients with CKD undergoing renal replacement therapy (RRT) infected with SARS-CoV-2 is still misleading. While these are high-risk patients due to the presence of multiple comorbidities, especially cardiovascular, e.g., hypertension, left ventricular hypertrophy, but also diabetes, the question remains whether RRT itself is associated with a worse prognosis in patients infected with SARS-CoV-2, although infections generally induce severe complications in patients with CKD and RRT. Methods This retrospective study aims to analyze the evolution of COVID-19 disease in patients with CKD, focusing on the association with some common comorbidities such as ischemic coronary disease (ICD), obesity, and diabetes. The study included 72 hemodialyzed patients; they were hospitalized between November 2020 and February 2021 at "Sf. Ioan" Clinical Emergency Hospital, Nephrology and Dialysis Clinic; peritoneal dialysis patients were excluded. Results Older age was found to be an important risk factor for death in hemodialyzed patients admitted with COVID-19 infection. Obese patients were found to be at greater risk of mortality. Discussion This study showed that there is a complex relationship between COVID-19 infection and increased mortality in patients with CKD associating ischemic coronary disease, obesity, and diabetes.
Collapse
Affiliation(s)
- Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Department of Nephrology, "Sf. Ioan" Clinical Emergency Hospital, Bucharest, ROU
| | - Larisa Florina Șerban-Feier
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Department of Nephrology, "Sf. Ioan" Clinical Emergency Hospital, Bucharest, ROU
| | - Dragos Eugen Georgescu
- Department of General Surgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Department of General Surgery, Dr. I. Cantacuzino Clinical Hospital, Bucharest, ROU
| | - Daniela-Gabriela Balan
- Department of Physiology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Mircea Ovidiu Denis Lupușoru
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Elena Cuiban
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Department of Nephrology, "Sf. Ioan" Clinical Emergency Hospital, Bucharest, ROU
| | - Andrada Doina Mihai
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | | |
Collapse
|
5
|
Ahmad S, Singh AP, Bano N, Raza K, Singh J, Medigeshi GR, Pandey R, Gautam HK. Integrative analysis discovers Imidurea as dual multitargeted inhibitor of CD69, CD40, SHP2, lysozyme, GATA3, cCBL, and S-cysteinase from SARS-CoV-2 and M. tuberculosis. Int J Biol Macromol 2024; 270:132332. [PMID: 38768914 DOI: 10.1016/j.ijbiomac.2024.132332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Two of the deadliest infectious diseases, COVID-19 and tuberculosis (TB), have combined to establish a worldwide pandemic, wreaking havoc on economies and claiming countless lives. The optimised, multitargeted medications may diminish resistance and counter them together. Based on computational expression studies, 183 genes were co-expressed in COVID-19 and TB blood samples. We used the multisampling screening algorithms on the top ten co-expressed genes (CD40, SHP2, Lysozyme, GATA3, cCBL, SIVmac239 Nef, CD69, S-adenosylhomocysteinase, Chemokine Receptor-7, and Membrane Protein). Imidurea is a multitargeted inhibitor for COVID-19 and TB, as confirmed by extensive screening and post-filtering utilising MM\GBSA algorithms. Imidurea has shown docking and MM\GBSA scores of -8.21 to -4.75 Kcal/mol and -64.16 to -29.38 Kcal/mol, respectively. The DFT, pharmacokinetics, and interaction patterns suggest that Imidurea may be a drug candidate, and all ten complexes were tested for stability and bond strength using 100 ns for all MD atoms. The modelling findings showed the complex's repurposing potential, with a cumulative deviation and fluctuation of <2 Å and significant intermolecular interaction, which validated the possibilities. Finally, an inhibition test was performed to confirm our in-silico findings on SARS-CoV-2 Delta variant infection, which was suppressed by adding imidurea to Vero E6 cells after infection.
Collapse
Affiliation(s)
- Shaban Ahmad
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India.
| | - Akash Pratap Singh
- Division of Immunology and Infectious Disease Biology, Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India; Academy of Innovative and Scientific Research (AcSIR), Ghaziabad 201002, India; Department of Botany, Maitreyi College, University of Delhi, New Delhi 110021, India.
| | - Nagmi Bano
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India.
| | - Khalid Raza
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India.
| | - Janmejay Singh
- Bioassay Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.
| | - Guruprasad R Medigeshi
- Bioassay Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.
| | - Rajesh Pandey
- Academy of Innovative and Scientific Research (AcSIR), Ghaziabad 201002, India; Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE), Institute of Genomics and Integrative Biology (IGIB), Mall Road, New Delhi 110007, India.
| | - Hemant K Gautam
- Division of Immunology and Infectious Disease Biology, Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India; Academy of Innovative and Scientific Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Das S, Mondal S, Ghosh D. Carbon quantum dots in bioimaging and biomedicines. Front Bioeng Biotechnol 2024; 11:1333752. [PMID: 38318419 PMCID: PMC10841552 DOI: 10.3389/fbioe.2023.1333752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Carbon quantum dots (CQDs) are gaining a lot more attention than traditional semiconductor quantum dots owing to their intrinsic fluorescence property, chemical inertness, biocompatibility, non-toxicity, and simple and inexpensive synthetic route of preparation. These properties allow CQDs to be utilized for a broad range of applications in various fields of scientific research including biomedical sciences, particularly in bioimaging and biomedicines. CQDs are a promising choice for advanced nanomaterials research for bioimaging and biomedicines owing to their unique chemical, physical, and optical properties. CQDs doped with hetero atom, or polymer composite materials are extremely advantageous for biochemical, biological, and biomedical applications since they are easy to prepare, biocompatible, and have beneficial properties. This type of CQD is highly useful in phototherapy, gene therapy, medication delivery, and bioimaging. This review explores the applications of CQDs in bioimaging and biomedicine, highlighting recent advancements and future possibilities to increase interest in their numerous advantages for therapeutic applications.
Collapse
Affiliation(s)
- Surya Das
- Department of Chemistry, University of Kalyani, Kalyani, India
| | - Somnath Mondal
- Department of Chemistry, Pennsylvania State University, State College, PA, United States
| | - Dhiman Ghosh
- Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| |
Collapse
|
7
|
Bingham GC, Muehling LM, Li C, Huang Y, Ma SF, Abebayehu D, Noth I, Sun J, Woodfolk JA, Barker TH, Bonham CA. High-dimensional comparison of monocytes and T cells in post-COVID and idiopathic pulmonary fibrosis. Front Immunol 2024; 14:1308594. [PMID: 38292490 PMCID: PMC10824838 DOI: 10.3389/fimmu.2023.1308594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Up to 30% of hospitalized COVID-19 patients experience persistent sequelae, including pulmonary fibrosis (PF). Methods We examined COVID-19 survivors with impaired lung function and imaging worrisome for developing PF and found within six months, symptoms, restriction and PF improved in some (Early-Resolving COVID-PF), but persisted in others (Late-Resolving COVID-PF). To evaluate immune mechanisms associated with recovery versus persistent PF, we performed single-cell RNA-sequencing and multiplex immunostaining on peripheral blood mononuclear cells from patients with Early- and Late-Resolving COVID-PF and compared them to age-matched controls without respiratory disease. Results and discussion Our analysis showed circulating monocytes were significantly reduced in Late-Resolving COVID-PF patients compared to Early-Resolving COVID-PF and non-diseased controls. Monocyte abundance correlated with pulmonary function forced vital capacity and diffusion capacity. Differential expression analysis revealed MHC-II class molecules were upregulated on the CD8 T cells of Late-Resolving COVID-PF patients but downregulated in monocytes. To determine whether these immune signatures resembled other interstitial lung diseases, we analyzed samples from Idiopathic Pulmonary Fibrosis (IPF) patients. IPF patients had a similar marked decrease in monocyte HLA-DR protein expression compared to Late-Resolving COVID-PF patients. Our findings indicate decreased circulating monocytes are associated with decreased lung function and uniquely distinguish Late-Resolving COVID-PF from Early-Resolving COVID-PF, IPF, and non-diseased controls.
Collapse
Affiliation(s)
- Grace C. Bingham
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Lyndsey M. Muehling
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Chaofan Li
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Yong Huang
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, United States
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, United States
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, United States
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Judith A. Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Catherine A. Bonham
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
8
|
Najimi N, Kadi C, Elmtili N, Seghrouchni F, Bakri Y. Unravelling humoral immunity in SARS-CoV-2: Insights from infection and vaccination. Hum Antibodies 2024; 32:85-106. [PMID: 38758995 DOI: 10.3233/hab-230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Following infection and vaccination against SARS-CoV-2, humoral components of the adaptive immune system play a key role in protecting the host. Specifically, B cells generate high-affinity antibodies against various antigens of the virus. In this review, we discuss the mechanisms of immunity initiation through both natural infection and vaccination, shedding light on the activation of B cell subsets in response to SARS-CoV-2 infection and vaccination. The innate immune system serves as the initial line of primary and nonspecific defence against viruses. However, within several days following infection or a vaccine dose, a virus-specific immune response is initiated, primarily by B cells that produce antibodies. These antibodies contribute to the resolution of the disease. Subsequently, these B cells transition into memory B cells, which play a crucial role in providing long-term immunity against the virus. CD4+ T helper cells initiate a cascade, leading to B cell somatic hypermutation, germinal center memory B cells, and the production of neutralizing antibodies. B-cell dysfunction can worsen disease severity and reduce vaccine efficacy. Notably, individuals with B cell immunodeficiency show lower IL-6 production. Furthermore, this review delves into several aspects of immune responses, such as hybrid immunity, which has shown promise in boosting broad-spectrum protection. Cross-reactive immunity is under scrutiny as well, as pre-existing antibodies can offer protection against the disease. We also decipher breakthrough infection mechanisms, especially with the novel variants of the virus. Finally, we discuss some potential therapeutic solutions regarding B cells including convalescent plasma therapy, B-1 cells, B regulatory cell (Breg) modulation, and the use of neutralizing monoclonal antibodies in combating the infection. Ongoing research is crucial to grasp population immunity trends and assess the potential need for booster doses in maintaining effective immune responses against potential viral threats.
Collapse
Affiliation(s)
- Nouhaila Najimi
- Laboratory of Human Pathologies Biology and Center of Genomic of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Chaimae Kadi
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Laboratory of Biology and Health, Faculty of Sciences of Tétouan, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Noureddine Elmtili
- Laboratory of Biology and Health, Faculty of Sciences of Tétouan, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Fouad Seghrouchni
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology and Center of Genomic of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
9
|
Ding H, Zhang W, Wang SA, Li C, Li W, Liu J, Yu F, Tao Y, Cheng S, Xie H, Chen Y. A semi-quantitative upconversion nanoparticle-based immunochromatographic assay for SARS-CoV-2 antigen detection. Front Microbiol 2023; 14:1289682. [PMID: 38149276 PMCID: PMC10750388 DOI: 10.3389/fmicb.2023.1289682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
The unprecedented public health and economic impact of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been met with an equally unprecedented scientific response. Sensitive point-of-care methods to detect SARS-CoV-2 antigens in clinical specimens are urgently required for the rapid screening of individuals with viral infection. Here, we developed an upconversion nanoparticle-based lateral flow immunochromatographic assay (UCNP-LFIA) for the high-sensitivity detection of SARS-CoV-2 nucleocapsid (N) protein. A pair of rabbit SARS-CoV-2 N-specific monoclonal antibodies was conjugated to UCNPs, and the prepared UCNPs were then deposited into the LFIA test strips for detecting and capturing the N protein. Under the test conditions, the limit of detection (LOD) of UCNP-LFIA for the N protein was 3.59 pg/mL, with a linear range of 0.01-100 ng/mL. Compared with that of the current colloidal gold-based LFIA strips, the LOD of the UCNP-LFIA-based method was increased by 100-fold. The antigen recovery rate of the developed method in the simulated pharyngeal swab samples ranged from 91.1 to 117.3%. Furthermore, compared with the reverse transcription-polymerase chain reaction, the developed UCNP-LFIA method showed a sensitivity of 94.73% for 19 patients with COVID-19. Thus, the newly established platform could serve as a promising and convenient fluorescent immunological sensing approach for the efficient screening and diagnosis of COVID-19.
Collapse
Affiliation(s)
- Hai Ding
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanying Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu-an Wang
- Department of Clinic Nutrition, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chuang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanting Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Liu
- Polariton Life Technologies Ltd., Soochow, Jiangsu, China
| | - Fang Yu
- Polariton Life Technologies Ltd., Soochow, Jiangsu, China
| | - Yanru Tao
- Polariton Life Technologies Ltd., Soochow, Jiangsu, China
| | - Siyun Cheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Xie
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Hussein HAM, Thabet AAA, Mohamed TIA, Elnosary ME, Sobhy A, El-Adly AM, Wardany AA, Bakhiet EK, Afifi MM, Abdulraouf UM, Fathy S.M, Sayed NG, Zahran AM. Phenotypical changes of hematopoietic stem and progenitor cells in COVID-19 patients: Correlation with disease status. Cent Eur J Immunol 2023; 48:97-110. [PMID: 37692025 PMCID: PMC10485691 DOI: 10.5114/ceji.2023.129981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/12/2023] [Indexed: 09/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play a crucial role in the context of viral infections and their associated diseases. The link between HSCs and HPCs and disease status in COVID-19 patients is largely unknown. This study aimed to monitor the kinetics and contributions of HSCs and HPCs in severe and non-severe COVID-19 patients and to evaluate their diagnostic performance in differentiating between healthy and COVID-19 patients as well as severe and non-severe cases. Peripheral blood (PB) samples were collected from 48 COVID-19 patients, 16 recovered, and 27 healthy controls and subjected to deep flow cytometric analysis to determine HSCs and progenitor cells. Their diagnostic value and correlation with C-reactive protein (CRP), D-dimer, and ferritin levels were determined. The percentages of HSCs and common myeloid progenitors (CMPs) declined significantly, while the percentage of multipotent progenitors (MPPs) increased significantly in COVID-19 patients. There were no significant differences in the percentages of megakaryocyte-erythroid progenitors (MEPs) and granulocyte-macrophage progenitors (GMPs) between all groups. Severe COVID-19 patients had a significantly low percentage of HSCs, CMPs, and GMPs compared to non-severe cases. Contrarily, the levels of CRP, D-dimer, and ferritin increased significantly in severe COVID-19 patients. MPPs and CMPs showed excellent diagnostic performance in distinguishing COVID-19 patients from healthy controls and severe from non-severe COVID-19 patients, respectively. Collectively, our study indicated that hematopoietic stem and progenitor cells are significantly altered by COVID-19 and could be used as therapeutic targets and diagnostic biomarkers for severe COVID-19.
Collapse
Affiliation(s)
- Hosni A. M. Hussein
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Ali A. A. Thabet
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Taha I. A. Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed E. Elnosary
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ali Sobhy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Ahmed M. El-Adly
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Ahmed A. Wardany
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Elsayed K. Bakhiet
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Magdy M. Afifi
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Usama M. Abdulraouf
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Samah . M. Fathy
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Noha G. Sayed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Mansourabadi AH, Aghamajidi A, Dorfaki M, Keshavarz F, Shafeghat Z, Moazzeni A, Arab FL, Rajabian A, Roozbehani M, Falak R, Faraji F, Jafari R. B lymphocytes in COVID-19: a tale of harmony and discordance. Arch Virol 2023; 168:148. [PMID: 37119286 PMCID: PMC10147999 DOI: 10.1007/s00705-023-05773-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/29/2023] [Indexed: 05/01/2023]
Abstract
B lymphocytes play a vital role in the human defense against viral infections by producing specific antibodies. They are also critical for the prevention of infectious diseases by vaccination, and their activation influences the efficacy of the vaccination. Since the beginning of coronavirus disease 2019 (COVID-19), which became the main concern of the world health system, many efforts have been made to treat and prevent the disease. However, for the development of successful therapeutics and vaccines, it is necessary to understand the interplay between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, and the immune system. The innate immune system provides primary and nonspecific defense against the virus, but within several days after infection, a virus-specific immune response is provided first by antibody-producing B cells, which are converted after the resolution of disease to memory B cells, which provide long-term immunity. Although a failure in B cell activation or B cell dysfunction can cause a severe form of the disease and also lead to vaccination inefficiency, some individuals with B cell immunodeficiency have shown less production of the cytokine IL-6, resulting in a better disease outcome. In this review, we present the latest findings on the interaction between SARS-CoV-2 and B lymphocytes during COVID-19 infection.
Collapse
Affiliation(s)
- Amir Hossein Mansourabadi
- Department of Immunology, School of medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunogenetics Research Network (IgReN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Dorfaki
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Keshavarz
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Shafeghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, School of Medicine, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Institue of Immunology and Infectious diseases, Hazrat-e Rasool General Hospital, Floor 3, Building no. 3, Niyayesh St, Sattar Khan St, 1445613131, Tehran, Iran.
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd, P.O. Box: 1138, 57147, Urmia, Iran.
| |
Collapse
|
12
|
Alomair BM, Al‐Kuraishy HM, Al‐Gareeb AI, Al‐Buhadily AK, Alexiou A, Papadakis M, Alshammari MA, Saad HM, Batiha GE. Mixed storm in SARS-CoV-2 infection: A narrative review and new term in the Covid-19 era. Immun Inflamm Dis 2023; 11:e838. [PMID: 37102645 PMCID: PMC10132185 DOI: 10.1002/iid3.838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Coronavirus disease 2019 (Covid-19) is caused by a novel severe acute respiratory syndrome coronavirus virus type 2 (SARS-CoV-2) leading to the global pandemic worldwide. Systemic complications in Covid-19 are mainly related to the direct SARS-CoV-2 cytopathic effects, associated hyperinflammation, hypercytokinemia, and the development of cytokine storm (CS). As well, Covid-19 complications are developed due to the propagation of oxidative and thrombotic events which may progress to a severe state called oxidative storm and thrombotic storm (TS), respectively. In addition, inflammatory and lipid storms are also developed in Covid-19 due to the activation of inflammatory cells and the release of bioactive lipids correspondingly. Therefore, the present narrative review aimed to elucidate the interrelated relationship between different storm types in Covid-19 and the development of the mixed storm (MS). In conclusion, SARS-CoV-2 infection induces various storm types including CS, inflammatory storm, lipid storm, TS and oxidative storm. These storms are not developing alone since there is a close relationship between them. Therefore, the MS seems to be more appropriate to be related to severe Covid-19 than CS, since it develops in Covid-19 due to the intricate interface between reactive oxygen species, proinflammatory cytokines, complement activation, coagulation disorders, and activated inflammatory signaling pathway.
Collapse
Affiliation(s)
- Basil Mohammed Alomair
- Department of Medicine, College of Medicine, Internal Medicine and EndocrinologyJouf UniversityAl‐JoufSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Al‐Buhadily
- Department of Clinical Pharmacology, Medicine, and Therapeutic, Medical Faculty, College of MedicineAl‐Mustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Majed Ayed Alshammari
- Department of MedicinePrince Mohammed Bin Abdulaziz Medical CitySakakaAl‐JoufSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsaMatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
13
|
Abd El-Baky N, Amara AA, Redwan EM. HLA-I and HLA-II Peptidomes of SARS-CoV-2: A Review. Vaccines (Basel) 2023; 11:548. [PMID: 36992131 PMCID: PMC10058130 DOI: 10.3390/vaccines11030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The adaptive (T-cell-mediated) immune response is a key player in determining the clinical outcome, in addition to neutralizing antibodies, after SARS-CoV-2 infection, as well as supporting the efficacy of vaccines. T cells recognize viral-derived peptides bound to major histocompatibility complexes (MHCs) so that they initiate cell-mediated immunity against SARS-CoV-2 infection or can support developing a high-affinity antibody response. SARS-CoV-2-derived peptides bound to MHCs are characterized via bioinformatics or mass spectrometry on the whole proteome scale, named immunopeptidomics. They can identify potential vaccine targets or therapeutic approaches for SARS-CoV-2 or else may reveal the heterogeneity of clinical outcomes. SARS-CoV-2 epitopes that are naturally processed and presented on the human leukocyte antigen class I (HLA-I) and class II (HLA-II) were identified for immunopeptidomics. Most of the identified SARS-CoV-2 epitopes were canonical and out-of-frame peptides derived from spike and nucleocapsid proteins, followed by membrane proteins, whereby many of which are not caught by existing vaccines and could elicit effective responses of T cells in vivo. This review addresses the detection of SARS-CoV-2 viral epitopes on HLA-I and HLA-II using bioinformatics prediction and mass spectrometry (HLA peptidomics). Profiling the HLA-I and HLA-II peptidomes of SARS-CoV-2 is also detailed.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Amro A. Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 80203, Saudi Arabia
| |
Collapse
|
14
|
Lee CM, Choe PG, Kang CK, Lee E, Song KH, Bang JH, Kim E, Kim HB, Kim NJ, Kim HR, Kim Y, Lee CH, Shin H, Park SW, Park WB, Oh MD. Low humoral and cellular immune responses early after breakthrough infection may contribute to severe COVID-19. Front Immunol 2023; 14:1106664. [PMID: 37033936 PMCID: PMC10073433 DOI: 10.3389/fimmu.2023.1106664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Background Little is known about the immune determinants for severe coronavirus disease 2019 (COVID-19) in individuals vaccinated against severe acute respiratory syndrome coronavirus 2. We therefore attempted to identify differences in humoral and cellular immune responses between patients with non-severe and severe breakthrough COVID-19. Methods We prospectively enrolled hospitalized patients with breakthrough COVID-19 (severe and non-severe groups) and uninfected individuals who were vaccinated at a similar time (control group). Severe cases were defined as those who required oxygen therapy while hospitalized. Enzyme-linked immunosorbent assays and flow cytometry were used to evaluate humoral and cellular immune responses, respectively. Results Anti-S1 IgG titers were significantly lower in the severe group than in the non-severe group within 1 week of symptom onset and higher in the non-severe group than in the control group. Compared with the control group, the cellular immune response tended to be diminished in breakthrough cases, particularly in the severe group. In multivariate analysis, advanced age and low anti-S1 IgG titer were associated with severe breakthrough COVID-19. Conclusions Severe breakthrough COVID-19 might be attributed by low humoral and cellular immune responses early after infection. In the vaccinated population, delayed humoral and cellular immune responses may contribute to severe breakthrough COVID-19.
Collapse
Affiliation(s)
- Chan Mi Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eunyoung Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Hwan Bang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hang-Rae Kim
- Department of Anatomy & Cell Biology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngju Kim
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Han Lee
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Mu Shin
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
- *Correspondence: Hyun Mu Shin, ; Sang-Won Park, ; Wan Beom Park,
| | - Sang-Won Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- *Correspondence: Hyun Mu Shin, ; Sang-Won Park, ; Wan Beom Park,
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- *Correspondence: Hyun Mu Shin, ; Sang-Won Park, ; Wan Beom Park,
| | - Myoung-don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
15
|
Ye Q, Liu H, Mao J, Shu Q. Nonpharmaceutical interventions for COVID-19 disrupt the dynamic balance between influenza A virus and human immunity. J Med Virol 2023; 95:e28292. [PMID: 36367115 PMCID: PMC9877879 DOI: 10.1002/jmv.28292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
During the COVID-19 epidemic, nonpharmaceutical interventions (NPIs) blocked the transmission route of respiratory diseases. This study aimed to investigate the impact of NPIs on the influenza A virus (IAV) outbreak. The present study enrolled all children with respiratory tract infections who came to the Children's Hospital of Zhejiang University between January 2019 and July 2022. A direct immunofluorescence assay kit detected IAV. Virus isolation and Sanger sequencing were performed. From June to July 2022, in Hangzhou, China, the positive rate of IAV infection in children has increased rapidly, reaching 30.41%, and children over 3 years old are the main infected population, accounting for 75% of the total number of infected children. Influenza A (H3N2) viruses are representative strains during this period. In this outbreak, H3N2 was isolated from a cluster of its own and is highly homologous with A/South_Dakota/22/2022 (2021-2022 Northern Hemisphere). Between isolated influenza A (H3N2) viruses and A/South_Dakota/22/2022, the nucleotide homology of the HA gene ranged from 97.3% to 97.5%; the amino acid homology was 97%-97.2%, and the genetic distance of nucleotides ranged from 0.05 to 0.052. Compared with A/South_Dakota/22/2022, the isolated H3N2 showed S156H, N159Y, I160T, D186S, S198P, I48T, S53D, and K171N mutations. There was no variation in 13 key amino acid sites associated with neuraminidase inhibitor resistance in NA protein. Long-term NPIs have significantly affected the evolution and transmission of the influenza virus and human immunity, breaking the dynamic balance between the IAV and human immunity.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| | - Huihui Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| | - Qiang Shu
- Department of Thoracic & Cardiovascular Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| |
Collapse
|
16
|
COVID-19 diagnostics: Molecular biology to nanomaterials. Clin Chim Acta 2023; 538:139-156. [PMID: 36403665 PMCID: PMC9673061 DOI: 10.1016/j.cca.2022.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
The SARS-CoV-2 pandemic has claimed around 6.4 million lives worldwide. The disease symptoms range from mild flu-like infection to life-threatening complications. The widespread infection demands rapid, simple, and accurate diagnosis. Currently used methods include molecular biology-based approaches that consist of conventional amplification by RT-PCR, isothermal amplification-based techniques such as RT-LAMP, and gene editing tools like CRISPR-Cas. Other methods include immunological detection including ELISA, lateral flow immunoassay, chemiluminescence, etc. Radiological-based approaches are also being used. Despite good analytical performance of these current methods, there is an unmet need for less costly and simpler tests that may be performed at point of care. Accordingly, nanomaterial-based testing has been extensively pursued. In this review, we discuss the currently used diagnostic techniques for SARS-CoV-2, their usefulness, and limitations. In addition, nanoparticle-based approaches have been highlighted as another potential means of detection. The review provides a deep insight into the current diagnostic methods and future trends to combat this deadly menace.
Collapse
|
17
|
Zhu H, Guo L, Yu D, Du X. New insights into immunomodulatory properties of lactic acid bacteria fermented herbal medicines. Front Microbiol 2022; 13:1073922. [DOI: 10.3389/fmicb.2022.1073922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
The COVID-19 pandemic has brought more attention to the immune system, the body’s defense against infectious diseases. The immunomodulatory ability of traditional herbal medicine has been confirmed through clinical trial research, and has obvious advantages over prescription drugs due to its high number of potential targets and low toxicity. The active compounds of herbal drugs primarily include polysaccharides, saponins, flavonoids, and phenolics and can be modified to produce new active compounds after lactic acid bacteria (LAB) fermentation. LAB, primary source of probiotics, can produce additional immunomodulatory metabolites such as exopolysaccharides, short-chain fatty acids, and bacteriocins. Moreover, several compounds from herbal medicines can promote the growth and production of LAB-based immune active metabolites. Thus, LAB-mediated fermentation of herbal medicines has become a novel strategy for regulating human immune responses. The current review discusses the immunomodulatory properties and active compounds of LAB fermented herbal drugs, the interaction between LAB and herbal medicines, and changes in immunoregulatory components that occur during fermentation. This study also discusses the mechanisms by which LAB-fermented herbal medicines regulate the immune response, including activation of the innate or adaptive immune system and the maintenance of intestinal immune homeostasis.
Collapse
|
18
|
Fawzy S, Ahmed MM, Alsayed BA, Mir R, Amle D. IL-2 and IL-1β Patient Immune Responses Are Critical Factors in SARS-CoV-2 Infection Outcomes. J Pers Med 2022; 12:1729. [PMID: 36294868 PMCID: PMC9605386 DOI: 10.3390/jpm12101729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Immune dysregulation has been linked to morbidity and mortality in COVID-19 patients. Understanding the immunology of COVID-19 is critical for developing effective therapies, diagnostics, and prophylactic strategies to control the disease. AIM The aim of this study was to correlate cytokine and chemokine serum levels with COVID-19 disease severity and mortality. SUBJECTS AND METHODS A total of 60 hospitalized patients from the Tabuk region of Saudi Arabia with confirmed COVID-19 were included in the study. At hospital admission, the IL-1 β, IL-2, IL-8, IL-10, LT-B4, and CCL-2 serum levels were measured. The cytokine levels in COVID-19 patients were compared to the levels in 30 healthy matched control subjects. RESULTS The IL-1 β, IL-2, LTB-4, CCL-2, and IL-8 levels (but not IL-10) were significantly higher in all COVID-19 patients (47 survivors and 13 non-survivors) compared with the levels in the healthy control group. In the non-survivor COVID-19 patients, patients' age, D-dimer, and creatinine kinase were significantly higher, and IL-1 β, IL-2, and IL-8 were significantly lower compared with the levels in the survivors. CONCLUSION Mortality rates in COVID-19 patients are associated with increased age and a failure to mount an effective immune response rather than developing a cytokine storm. These results warrant the personalized treatment of COVID-19 patients based on cytokine profiling.
Collapse
Affiliation(s)
- Shereen Fawzy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mesaik M. Ahmed
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Badr A. Alsayed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Dnyanesh Amle
- Department of Biochemistry, All India Institute of Medical Sciences, Nagpur 441108, India
| |
Collapse
|
19
|
COVID-19 Salivary Protein Profile: Unravelling Molecular Aspects of SARS-CoV-2 Infection. J Clin Med 2022; 11:jcm11195571. [PMID: 36233441 PMCID: PMC9570692 DOI: 10.3390/jcm11195571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022] Open
Abstract
COVID-19 is the most impacting global pandemic of all time, with over 600 million infected and 6.5 million deaths worldwide, in addition to an unprecedented economic impact. Despite the many advances in scientific knowledge about the disease, much remains to be clarified about the molecular alterations induced by SARS-CoV-2 infection. In this work, we present a hybrid proteomics and in silico interactomics strategy to establish a COVID-19 salivary protein profile. Data are available via ProteomeXchange with identifier PXD036571. The differential proteome was narrowed down by the Partial Least-Squares Discriminant Analysis and enrichment analysis was performed with FunRich. In parallel, OralInt was used to determine interspecies Protein-Protein Interactions between humans and SARS-CoV-2. Five dysregulated biological processes were identified in the COVID-19 proteome profile: Apoptosis, Energy Pathways, Immune Response, Protein Metabolism and Transport. We identified 10 proteins (KLK 11, IMPA2, ANXA7, PLP2, IGLV2-11, IGHV3-43D, IGKV2-24, TMEM165, VSIG10 and PHB2) that had never been associated with SARS-CoV-2 infection, representing new evidence of the impact of COVID-19. Interactomics analysis showed viral influence on the host immune response, mainly through interaction with the degranulation of neutrophils. The virus alters the host’s energy metabolism and interferes with apoptosis mechanisms.
Collapse
|
20
|
He Q, Shi Y, Xing H, Tang Q, Liu J, Li C, Zhang H, Zhang B, Zhang J, Chen X. Modulating effect of Xuanfei Baidu granule on host metabolism and gut microbiome in rats. Front Pharmacol 2022; 13:922642. [PMID: 36147334 PMCID: PMC9486314 DOI: 10.3389/fphar.2022.922642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Xuanfei Baidu granule (XFBD) is a recommended patented drug for the prevention and treatment of Corona Virus Disease 2019 (COVID-19), which is approved by the National Medical Products Administration. XFBD suppresses the over-activated immune response caused by inflammatory factor storms in COVID-19 infection. The intestine plays a crucial role in the immune system. The mass spectrometry based fecal metabolomics with 16S rDNA sequencing were combined to evaluate the effects of XFBD on host metabolism and gut microbiome. Short-chain fatty acids (SCFAs) contents in fecal matter were quantified by gas chromatography-mass spectrometry (GC-MS). Plasma samples were used to detect immune and inflammatory levels. The results were verified with a rat model of intestinal disorder. Results indicated that XFBD could increase the immune level of Immunoglobulin A (IgA), Immunoglobulin G (IgG) and Immunoglobulin M (IgM) (p < 0.05). The OPLS-DA analysis results showed that a total of 271 differential metabolites (178 up-regulated and 93 down-regulated) were identified based on the VIP ≥1, p < 0.05, FC ≥ 2 and FC ≤ 0.5. The metabolic pathways mainly involved D-Glutamine and D-glutamate metabolism, Arginine biosynthesis, Biotin metabolism, et al. XFBD modified the gut bacteria structure according to the principal component analysis (PCA), that is, 2 phyla, 3 classes, 5 orders, 11 families and 14 genera were significantly different based on taxonomic assignment. In addition, it could partially callback the relative abundance of intestinal microflora in bacterial disorder rats caused by antibiotics. It is suggested that the intervention mechanism of XFBD might be related to the regulation of intestinal flora composition. The evidence obtained in the study provides a useful reference for understanding the mechanism of XFBD.
Collapse
|
21
|
Flores-Lovon K, Ortiz-Saavedra B, Cueva-Chicaña LA, Aperrigue-Lira S, Montes-Madariaga ES, Soriano-Moreno DR, Bell B, Macedo R. Immune responses in COVID-19 and tuberculosis coinfection: A scoping review. Front Immunol 2022; 13:992743. [PMID: 36090983 PMCID: PMC9459402 DOI: 10.3389/fimmu.2022.992743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aim Patients with COVID-19 and tuberculosis coinfection are at an increased risk of severe disease and death. We therefore sought to evaluate the current evidence which assessed the immune response in COVID-19 and tuberculosis coinfection. Methods We searched Pubmed/MEDLINE, EMBASE, Scopus, and Web of Science to identify articles published between 2020 and 2021. We included observational studies evaluating the immune response in patients with tuberculosis and COVID-19 compared to patients with COVID-19 alone. Results Four cross-sectional studies (372 participants) were identified. In patients with asymptomatic COVID-19 and latent tuberculosis (LTBI), increased cytokines, chemokines, growth factors and humoral responses were found. In addition, patients with symptomatic COVID-19 and LTBI had higher leukocytes counts and less inflammation. Regarding patients with COVID-19 and active tuberculosis (aTB), they exhibited decreased total lymphocyte counts, CD4 T cells specific against SARS-CoV-2 and responsiveness to SARS-CoV-2 antigens compared to patients with only COVID-19. Conclusion Although the evidence is limited, an apparent positive immunomodulation is observed in patients with COVID-19 and LTBI. On the other hand, patients with COVID-19 and aTB present a dysregulated immune response. Longitudinal studies are needed to confirm these findings and expand knowledge.
Collapse
Affiliation(s)
- Kevin Flores-Lovon
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
- Grupo de Investigación en Inmunología – GII, UNSA, Arequipa, Peru
| | - Brando Ortiz-Saavedra
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
- Grupo de Investigación en Inmunología – GII, UNSA, Arequipa, Peru
| | - Luis A. Cueva-Chicaña
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
- Grupo de Investigación en Inmunología – GII, UNSA, Arequipa, Peru
| | - Shalom Aperrigue-Lira
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
- Grupo de Investigación en Inmunología – GII, UNSA, Arequipa, Peru
| | - Elizbet S. Montes-Madariaga
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
- Grupo de Investigación en Inmunología – GII, UNSA, Arequipa, Peru
| | | | - Brett Bell
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rodney Macedo
- Grupo de Investigación en Inmunología – GII, UNSA, Arequipa, Peru
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
22
|
Tomaiuolo R, Di Resta C, Viganò M, Banfi G, Russo C, Linardos G, Ranno S, Perno CF, Giuffrida F. Six months SARS-CoV-2 serology in a cohort of mRNA vaccinated subjects over 90 years old. Sci Rep 2022; 12:12446. [PMID: 35858893 PMCID: PMC9298708 DOI: 10.1038/s41598-022-15148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Ageing is associated with a progressive decline and remodelling of the immune system. Also, the efficacy of COVID-19 vaccines has been observed to depend on subjects' age. The post-vaccination data about patients aged > 90 years old is scarcely represented in the literature. The antibody titre profiles of elderly vaccinated subjects (age > 90 years old) were evaluated and compared with profiles obtained in a younger population (age 23-69 years old). To the best of our knowledge, this is the first report providing post-vaccination serological data in subjects aged 90 + years old. This study suggests that distinct SARS-CoV-2 viral-specific antibody response profiles vary based on anti-N serostatus, age, and sex in the very elderly adults. The data obtained could impact the organisation of the vaccination campaign (i.e., prioritisation strategies, administration of additional doses) and the factors that facilitate intentions to receive the vaccination among elderly adults (i.e., vaccine effectiveness).
Collapse
Affiliation(s)
| | | | - Marco Viganò
- IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Giuseppe Banfi
- Vita-Salute San Raffaele University, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Al-Attiyah R, Safar HA, Botras L, Botras M, Al-Kandari F, Chehadeh W, Mustafa AS. Immune Cells Profiles In The Peripheral Blood Of Patients With Moderate To Severe COVID-19 And Healthy Subjects With and Without Vaccination With The Pfizer-BioNTech mRNA Vaccine. Front Immunol 2022; 13:851765. [PMID: 35898494 PMCID: PMC9309529 DOI: 10.3389/fimmu.2022.851765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19), has caused a global crisis. Patients with COVID-19 present with a range of clinical manifestations, from no symptoms to severe illness. However, little is known about the profiles of immune cells required to protect against SARS-CoV-2. This study was performed to determine the immune cells profiles in the peripheral blood of COVID-19 patients with moderate to severe disease (n=52), and compare the findings with those from healthy subjects vaccinated with Pfizer BioNTech mRNA vaccine (VS) (n=62), and non-vaccinated healthy subjects (HS) (n=30) from Kuwait. Absolute counts and percentages of total lymphocytes and lymphocyte subsets (CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD16+CD56+ NK cells) in the peripheral blood of the three groups were analyzed using flow cytometry. The results showed that the absolute counts of total lymphocytes, CD3+, CD4+, and CD8+ T cells, CD19+ B cells, and CD56+ NK cells, were significantly lower in COVID-19 patients than normal healthy controls and vaccinated subjects. The percentages of CD3+ and CD4+ T lymphocytes were also significantly lower in the COVID-19 patients. However, the percentage of CD16+CD56+ NK cells was significantly higher in the peripheral blood of COVID-19 patients, compared to the HS and VS groups with no detectable differences in the percentages of CD8+ T cells and CD19+ B cells between the three groups. Analysis of the monocyte subsets has showed a significantly higher percentage of CD14+HLA-DR+ monocytes in COVID-19 patients compared to HS whereas the inflammatory CD14+CD16+ HLA-DR+ monocytes, and the non-classical CD16+HLA-DR+ monocytes showed significantly lower frequency in the blood of the patients than that of HS. These findings demonstrate perturbations of both innate and adaptive immune cell subsets that reflect dysregulated host responses in COVID-19 patients with moderate to severe disease.
Collapse
Affiliation(s)
- Raja’a Al-Attiyah
- Department of Microbiology, Faculty of Medicine, Health Sciences Center, Kuwait University, Kuwait, Kuwait
- *Correspondence: Raja’a Al-Attiyah,
| | - Hussain A. Safar
- Genomics, Proteomics and Cellomics Sciences Research Unit (OMICSRU), Research Core Facility, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Lotfy Botras
- Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait, Kuwait
| | - Marina Botras
- Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait, Kuwait
| | | | - Wassim Chehadeh
- Department of Microbiology, Faculty of Medicine, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
24
|
Shao W. Accurate Interpretation of SARS-CoV-2 Antigen Detection by Immunochromatography. Front Med (Lausanne) 2022; 9:949554. [PMID: 35847813 PMCID: PMC9276965 DOI: 10.3389/fmed.2022.949554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
SARS-CoV-2 is a serious infectious respiratory virus that can cause lung, heart, kidney, and liver damage and even cause death. Early diagnosis of SARS-CoV-2 infection is vital for epidemic prevention and control. At present, the gold standard of COVID-19 diagnosis is nucleic acid detection of SARS-CoV-2. However, the nucleic acid detection of SARS-CoV-2 requires high site requirements and technology requirements, and the detection is time-consuming and cannot fully meet clinical needs. Although SARS-CoV-2 antigen test results cannot be directly used to diagnose COVID-19, positive results can be used for the early triage and rapid management of suspected populations. However, due to the limitations of the methodology itself, the SARS-CoV-2 antigen test is prone to produce false-positive and false-negative results in the process of detection. It is urgent to develop a batch of SARS-CoV-2 antigen reagents based on new detection technology and detection principles to overcome the defects of existing technologies.
Collapse
Affiliation(s)
- Wenxia Shao
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Moga E, Lynton-Pons E, Domingo P. The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Front Immunol 2022; 13:904686. [PMID: 35833134 PMCID: PMC9271749 DOI: 10.3389/fimmu.2022.904686] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
Two years after the appearance of the SARS-CoV-2 virus, the causal agent of the current global pandemic, it is time to analyze the evolution of the immune protection that infection and vaccination provide. Cellular immunity plays an important role in limiting disease severity and the resolution of infection. The early appearance, breadth and magnitude of SARS-CoV-2 specific T cell response has been correlated with disease severity and it has been thought that T cell responses may be sufficient to clear infection with minimal disease in COVID-19 patients with X-linked or autosomal recessive agammaglobulinemia. However, our knowledge of the phenotypic and functional diversity of CD8+ cytotoxic lymphocytes, CD4+ T helper cells, mucosal-associated invariant T (MAIT) cells and CD4+ T follicular helper (Tfh), which play a critical role in infection control as well as long-term protection, is still evolving. It has been described how CD8+ cytotoxic lymphocytes interrupt viral replication by secreting antiviral cytokines (IFN-γ and TNF-α) and directly killing infected cells, negatively correlating with stages of disease progression. In addition, CD4+ T helper cells have been reported to be key pieces, leading, coordinating and ultimately regulating antiviral immunity. For instance, in some more severe COVID-19 cases a dysregulated CD4+ T cell signature may contribute to the greater production of pro-inflammatory cytokines responsible for pathogenic inflammation. Here we discuss how cellular immunity is the axis around which the rest of the immune system components revolve, since it orchestrates and leads antiviral response by regulating the inflammatory cascade and, as a consequence, the innate immune system, as well as promoting a correct humoral response through CD4+ Tfh cells. This review also analyses the critical role of cellular immunity in modulating the development of high-affinity neutralizing antibodies and germinal center B cell differentiation in memory and long-lived antibody secreting cells. Finally, since there is currently a high percentage of vaccinated population and, in some cases, vaccine booster doses are even being administered in certain countries, we have also summarized newer approaches to long-lasting protective immunity and the cross-protection of cellular immune response against SARS-CoV-2.
Collapse
Affiliation(s)
- Esther Moga
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Esther Moga,
| | - Elionor Lynton-Pons
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Domingo
- Unidad de enfermedades infecciosas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
26
|
Mohammed RN, Tamjidifar R, Rahman HS, Adili A, Ghoreishizadeh S, Saeedi H, Thangavelu L, Shomali N, Aslaminabad R, Marofi F, Tahavvori M, Danishna S, Akbari M, Ercan G. A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19). Cell Commun Signal 2022; 20:79. [PMID: 35655192 PMCID: PMC9162381 DOI: 10.1186/s12964-022-00856-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease (COVID-19) is a viral infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The infection was reported in Wuhan, China, in late December 2019 and has become a major global concern due to severe respiratory infections and high transmission rates. Evidence suggests that the strong interaction between SARS-CoV-2 and patients' immune systems leads to various clinical symptoms of COVID-19. Although the adaptive immune responses are essential for eliminating SARS-CoV-2, the innate immune system may, in some cases, cause the infection to progress. The cytotoxic CD8+ T cells in adaptive immune responses demonstrated functional exhaustion through upregulation of exhaustion markers. In this regard, humoral immune responses play an essential role in combat SARS-CoV-2 because SARS-CoV-2 restricts antigen presentation through downregulation of MHC class I and II molecules that lead to the inhibition of T cell-mediated immune response responses. This review summarizes the exact pathogenesis of SARS-CoV-2 and the alteration of the immune response during SARS-CoV-2 infection. In addition, we've explained the exhaustion of the immune system during SARS-CoV-2 and the potential immunomodulation approach to overcome this phenomenon. Video Abstract.
Collapse
Affiliation(s)
- Rebar N. Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihlan University of Sulaimaniya, Kurdistan Region, Iraq
- College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Rozita Tamjidifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sarchinar District, Sulaimaniyah, Iraq
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Aslaminabad
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Tahavvori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gülinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Ege University, Izmir, Turkey
| |
Collapse
|
27
|
Tian D, Sun Y, Xu H, Ye Q. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J Med Virol 2022; 94:2376-2383. [PMID: 35118687 PMCID: PMC9015498 DOI: 10.1002/jmv.27643] [Citation(s) in RCA: 301] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/07/2022]
Abstract
Recently, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) was first identified in Botswana in November 2021. It was first reported to the World Health Organization (WHO) on November 24. On November 26, 2021, according to the advice of scientists who are part of the WHO's Technical Advisory Group on SARS-CoV-2 Virus Evolution (TAG-VE), the WHO defined the strain as a variant of concern (VOC) and named it Omicron. Compared to the other four VOCs (Alpha, Beta, Gamma, and Delta), the Omicron variant was the most highly mutated strain, with 50 mutations accumulated throughout the genome. The Omicron variant contains at least 32 mutations in the spike protein, which was twice as many as the Delta variant. Studies have shown that carrying many mutations can increase infectivity and immune escape of the Omicron variant compared with the early wild-type strain and the other four VOCs. The Omicron variant is becoming the dominant strain in many countries worldwide and brings new challenges to preventing and controlling coronavirus disease 2019 (COVID-19). The current review article aims to analyze and summarize information data about the biological characteristics of amino acid mutations, the epidemic characteristics, immune escape, and vaccine reactivity of the Omicron variant, hoping to provide a scientific reference for monitoring, prevention, and vaccine development strategies for the Omicron variant.
Collapse
Affiliation(s)
- Dandan Tian
- Department of clinical laboratoryNational Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Yanhong Sun
- Department of clinical laboratoryNational Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Huihong Xu
- Department of clinical laboratoryNational Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Qing Ye
- Department of clinical laboratoryNational Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
28
|
Shao W, Zhang W, Fang X, Yu D, Wang X. Challenges of SARS-CoV-2 Omicron Variant and appropriate countermeasures. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:387-394. [PMID: 35501267 PMCID: PMC9040366 DOI: 10.1016/j.jmii.2022.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
The Omicron (B.1.1.529) variant was first reported in South Africa and rapidly spread worldwide in early November 2021. This caused panic in various countries, so it is necessary to understand Omicron Variant. This paper summarizes omicron variant-related research achievements. Studies have shown that Omicron Variant contains many mutations that make it more infectious and transmissible. At the same time, immune escape is also caused, resulting in reduced efficacy of existing vaccines, increased risk of reinfection, treatment failure or reduction of monoclonal antibody therapies, and detection failure. However, current data indicate that Omicron Variant causes mild clinical symptoms and few severe cases and deaths. Omicron Variant is valid for a range of nonpharmaceutical interventions against SARS-CoV-2. Improving diagnostic accuracy and enabling timely isolation and treatment of diagnosed cases is also critical to interrupting the spread of omicron variants. COVID-19 vaccine boosters could undoubtedly help control Omicron spread and infection. However, developing a vaccine specific to Omicron Variant is also imminent.
Collapse
Affiliation(s)
- Wenxia Shao
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Weiying Zhang
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Fang
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daojun Yu
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xianjun Wang
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
29
|
Ye Q, Shao W, Meng H. Performance and Application Evaluation of SARS-CoV-2 Antigen Assay. J Med Virol 2022; 94:3548-3553. [PMID: 35445404 PMCID: PMC9088371 DOI: 10.1002/jmv.27798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) nucleic acid detection is the gold standard for the laboratory diagnosis of coronavirus disease 2019 (COVID‐19). However, this method has high requirements for practitioners' skills and testing sites, so it is not easy to popularize and promote the application in places other than large hospitals. In addition, the detection flux of SARS‐CoV‐2 nucleic acid is small, and the whole detection process takes much time, which cannot meet the actual needs of rapid screening in large quantities. The WHO conditionally approved a batch of SARS‐CoV‐2 antigen reagents for clinical application to alleviate this contradiction. SARS‐CoV‐2 antigen detection offers a trade‐off among clinical performance, speed and accessibility. With the gradual increase in clinical application, the accumulated clinical data show that the sensitivity and specificity of the SARS‐CoV‐2 antigen assay are over 80% and 97%, respectively, which can basically meet the requirements of the WHO. However, the sensitivity of the SARS‐CoV‐2 Antigen Assay among asymptomatic people in low prevalence areas of COVID‐19 cannot meet the standard, leading to a large number of missed diagnoses. In addition, the detection ability of SARS‐CoV‐2 antigen reagent for different SARS‐CoV‐2 mutant strains differs greatly, especially for those escaping the COVID‐19 vaccines. In terms of results interpretation, it is highly reliable to exclude SARS‐CoV‐2 infection based on the high negative predictive value of the SARS‐CoV‐2 antigen assay. However, in the low prevalence environment, the probability of false positives of the SARS‐CoV‐2 antigen assay is high, so the positive results need to be confirmed by the SARS‐CoV‐2 nucleic acid reagent. The SARS‐CoV‐2 antigen assay is only a supplement to SARS‐CoV‐2 nucleic acid detection and can never completely replace it. To date, SARS‐CoV‐2 nucleic acid detection continues to be the standard laboratory method for COVID‐19 diagnosis.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Wenxia Shao
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanyan Meng
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| |
Collapse
|
30
|
Walter LO, Cardoso CC, Santos‐Pirath ÍM, Costa HZ, Gartner R, Werle I, Mohr ETB, da Rosa JS, Felisberto M, Kretzer IF, Masukawa II, Vanny PDA, Luiz MC, de Moraes ACR, Dalmarco EM, Santos‐Silva MC. The relationship between peripheral immune response and disease severity in SARS-CoV-2-infected subjects: A cross-sectional study. Immunology 2022; 165:481-496. [PMID: 35146763 PMCID: PMC9111570 DOI: 10.1111/imm.13457] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and marked by an intense inflammatory response and immune dysregulation in the most severe cases. In order to better clarify the relationship between peripheral immune system changes and the severity of COVID-19, this study aimed to evaluate the frequencies and absolute numbers of peripheral subsets of neutrophils, monocytes, and dendritic cells (DCs), in addition to quantifying the levels of inflammatory mediators. One hundred fifty-seven COVID-19 patients were stratified into mild, moderate, severe, and critical disease categories. The cellular components and circulating cytokines were assessed by flow cytometry. Nitric oxide (NOx) and myeloperoxidase (MPO) levels were measured by colourimetric tests. COVID-19 patients presented neutrophilia, with signs of emergency myelopoiesis. Alterations in the monocytic component were observed in patients with moderate to critical illness, with an increase in classical monocytes and a reduction in nonclassical monocytes, in addition to a reduction in the expression of HLA-DR in all subtypes of monocytes, indicating immunosuppression. DCs, especially plasmacytoid DCs, also showed a large reduction in moderate to critical patients. COVID-19 patients showed an increase in MPO, interleukin (IL)-12, IL-6, IL-10, and IL-8, accompanied by a reduction in IL-17A and NOx. IL-10 levels ≥14 pg/ml were strongly related to the worst outcome, with a sensitivity of 78·3% and a specificity of 79·1%. The results of this study indicate the presence of systemic effects induced by COVID-19, which appear to be related to the pathophysiology of the disease, highlighting the potential of IL-10 as a possible prognostic biomarker for COVID-19.
Collapse
Affiliation(s)
- Laura Otto Walter
- Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Chandra Chiappin Cardoso
- Division of Clinical AnalysisFlow Cytometry ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Íris Mattos Santos‐Pirath
- Division of Clinical AnalysisFlow Cytometry ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Heloisa Zorzi Costa
- Division of Clinical AnalysisFlow Cytometry ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Rafaela Gartner
- Clinical Analysis DepartmentHealth Sciences Center, Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Isabel Werle
- Clinical Analysis DepartmentHealth Sciences Center, Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | | | - Julia Salvan da Rosa
- Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Mariano Felisberto
- Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Iara Fabricia Kretzer
- Clinical Analysis DepartmentHealth Sciences Center, Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Ivete Ioshiko Masukawa
- Infectious Disease ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
- Infectious Disease ServiceNereu Ramos Hospital. State Health DepartmentFlorianópolisSanta CatarinaBrazil
| | - Patrícia de Almeida Vanny
- Infectious Disease ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Magali Chaves Luiz
- Infectious Disease ServiceNereu Ramos Hospital. State Health DepartmentFlorianópolisSanta CatarinaBrazil
| | - Ana Carolina Rabello de Moraes
- Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
- Division of Clinical AnalysisFlow Cytometry ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Eduardo Monguilhott Dalmarco
- Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
- Division of Clinical AnalysisFlow Cytometry ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Maria Cláudia Santos‐Silva
- Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
- Division of Clinical AnalysisFlow Cytometry ServiceUniversity Hospital of the Federal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
- Clinical Analysis DepartmentHealth Sciences Center, Postgraduate Program in PharmacyFederal University of Santa CatarinaFlorianópolisSanta CatarinaBrazil
| |
Collapse
|
31
|
Phillips JM, Ooi SL, Pak SC. Health-Promoting Properties of Medicinal Mushrooms and Their Bioactive Compounds for the COVID-19 Era—An Appraisal: Do the Pro-Health Claims Measure Up? Molecules 2022; 27:molecules27072302. [PMID: 35408701 PMCID: PMC9000601 DOI: 10.3390/molecules27072302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023] Open
Abstract
Many mushroom species are consumed as food, while significant numbers are also utilised medicinally. Mushrooms are rich in nutrients and bioactive compounds. A growing body of in vitro, in vivo, and human research has revealed their therapeutic potentials, which include such properties as anti-pathogenic, antioxidant, anti-inflammatory, immunomodulatory, gut microbiota enhancement, and angiotensin-converting enzyme 2 specificity. The uses of medicinal mushrooms (MMs) as extracts in nutraceuticals and other functional food and health products are burgeoning. COVID-19 presents an opportunity to consider how, and if, specific MM compounds might be utilised therapeutically to mitigate associated risk factors, reduce disease severity, and support recovery. As vaccines become a mainstay, MMs may have the potential as an adjunct therapy to enhance immunity. In the context of COVID-19, this review explores current research about MMs to identify the key properties claimed to confer health benefits. Considered also are barriers or limitations that may impact general recommendations on MMs as therapy. It is contended that the extraction method used to isolate bioactive compounds must be a primary consideration for efficacious targeting of physiological endpoints. Mushrooms commonly available for culinary use and obtainable as a dietary supplement for medicinal purposes are included in this review. Specific properties related to these mushrooms have been considered due to their potential protective and mediating effects on human exposure to the SARS CoV-2 virus and the ensuing COVID-19 disease processes.
Collapse
Affiliation(s)
- Jennifer Mary Phillips
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.M.P.); (S.L.O.)
- LAGOM NutriHealing, 16 Gentile Court, Hobart, TAS 7010, Australia
| | - Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.M.P.); (S.L.O.)
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.M.P.); (S.L.O.)
- Correspondence: ; Tel.: +61-2-6338-4952; Fax: +61-2-6338-4993
| |
Collapse
|
32
|
COVID-19 Vaccination Limits Systemic Danger Signals in SARS-CoV-2 Infected Patients. Viruses 2022; 14:v14030565. [PMID: 35336973 PMCID: PMC8949226 DOI: 10.3390/v14030565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Vaccination with an mRNA COVID-19 vaccine determines not only a consistent reduction in the risk of SARS-CoV-2 infection but also contributes to disease attenuation in infected people. Of note, hyperinflammation and damage-associated molecular patterns (DAMPs) have been clearly associated with severe illness and poor prognosis in COVID-19 patients. In this report, we revealed a significant reduction in the levels of IL-1ß and DAMPs molecules, as S100A8 and High Mobility Group Protein B1 (HMGB1), in vaccinated patients as compared to non-vaccinated ones. COVID-19 vaccination indeed prevents severe clinical manifestations in patients and limits the release of systemic danger signals in SARS-CoV-2 infected people.
Collapse
|
33
|
Abstract
Similar to the pathogenesis of autoimmune disease, SARS-CoV-2 (COVID-19) infection has been shown to be associated with dysregulated and persistent inflammatory reactions and production of some antibodies. We report 3 pediatric patients found to have serum SARS-CoV-2 antibodies who presented with neurologic findings suggestive of postinfectious autoimmune-mediated encephalitis. All 3 cases showed lymphocytic pleocytosis on cerebrospinal fluid studies and marked improvement in neurologic symptoms after high-dose intravenous corticosteroids. The manifestations of SARS-CoV-2 infection in the pediatric population are still an evolving area of study, and these cases suggest autoimmune-mediated encephalitis as yet another SARS-CoV-2 related complication.
Collapse
Affiliation(s)
- Mark Hilado
- Pediatrics, 23336Los Angeles County+USC Medical CenterLos Angeles, CA, USA
| | - Michelle Banh
- Internal Medicine and Pediatrics, 23336Los Angeles County+USC Medical Center, Los Angeles, CA, USA,Michelle Banh, Internal Medicine and Pediatrics, Los Angeles County+USC Medical Center, 2020 Zonal Ave, IRD 115, Los Angeles, CA 90033, USA.
| | - James Homans
- Pediatric Infectious Diseases, 23336Los Angeles County+USC Medical Center, Los Angeles, CA, USA
| | - Arthur Partikian
- Pediatric Neurology, 23336Los Angeles County+USC Medical Center, Los Angeles, CA, USA
| |
Collapse
|
34
|
Elkrief A, Wu JT, Jani C, Enriquez KT, Glover M, Shah MR, Shaikh HG, Beeghly-Fadiel A, French B, Jhawar SR, Johnson DB, McKay RR, Rivera DR, Reuben DY, Shah S, Tinianov SL, Vinh DC, Mishra S, Warner JL. Learning through a Pandemic: The Current State of Knowledge on COVID-19 and Cancer. Cancer Discov 2022; 12:303-330. [PMID: 34893494 PMCID: PMC8831477 DOI: 10.1158/2159-8290.cd-21-1368] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has left patients with current or past history of cancer facing disparate consequences at every stage of the cancer trajectory. This comprehensive review offers a landscape analysis of the current state of the literature on COVID-19 and cancer, including the immune response to COVID-19, risk factors for severe disease, and impact of anticancer therapies. We also review the latest data on treatment of COVID-19 and vaccination safety and efficacy in patients with cancer, as well as the impact of the pandemic on cancer care, including the urgent need for rapid evidence generation and real-world study designs. SIGNIFICANCE: Patients with cancer have faced severe consequences at every stage of the cancer journey due to the COVID-19 pandemic. This comprehensive review offers a landscape analysis of the current state of the field regarding COVID-19 and cancer. We cover the immune response, risk factors for severe disease, and implications for vaccination in patients with cancer, as well as the impact of the COVID-19 pandemic on cancer care delivery. Overall, this review provides an in-depth summary of the key issues facing patients with cancer during this unprecedented health crisis.
Collapse
Affiliation(s)
- Arielle Elkrief
- Division of Medical Oncology (Department of Medicine), McGill University Health Centre, Montreal, Quebec, Canada
| | - Julie T Wu
- Stanford University, Palo Alto, California
| | - Chinmay Jani
- Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - Kyle T Enriquez
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Mansi R Shah
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | | | | | - Sachin R Jhawar
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | | - Rana R McKay
- University of California San Diego, San Diego, California
| | - Donna R Rivera
- Division of Cancer Control and Population Services, National Cancer Institute, Rockville, Maryland
| | - Daniel Y Reuben
- Medical University of South Carolina, Charleston, South Carolina
| | - Surbhi Shah
- Hematology and Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Stacey L Tinianov
- Advocates for Collaborative Education, UCSF Breast Science Advocacy Core, San Francisco, California
| | - Donald Cuong Vinh
- Division of Infectious Diseases (Department of Medicine), Divisions of Medical Microbiology and of Molecular Diagnostics (OptiLab), McGill University Health Centre, Montreal, Quebec, Canada
| | - Sanjay Mishra
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy L Warner
- Vanderbilt University Medical Center, Nashville, Tennessee.
- Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
35
|
Rahimmanesh I, Shariati L, Dana N, Esmaeili Y, Vaseghi G, Haghjooy Javanmard S. Cancer Occurrence as the Upcoming Complications of COVID-19. Front Mol Biosci 2022; 8:813175. [PMID: 35155571 PMCID: PMC8831861 DOI: 10.3389/fmolb.2021.813175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies suggested that patients with comorbidities including cancer had a higher risk of mortality or developing more severe forms of COVID-19. The interaction of cancer and COVID-19 is unrecognized and potential long-term effects of COVID-19 on cancer outcome remain to be explored. Furthermore, whether COVID-19 increases the risk of cancer in those without previous history of malignancies, has not yet been studied. Cancer progression, recurrence and metastasis depend on the complex interaction between the tumor and the host inflammatory response. Extreme proinflammatory cytokine release (cytokine storm) and multi-organ failure are hallmarks of severe COVID-19. Besides impaired T-Cell response, elevated levels of cytokines, growth factors and also chemokines in the plasma of patients in the acute phase of COVID-19 as well as tissue damage and chronic low-grade inflammation in "long COVID-19" syndrome may facilitate cancer progression and recurrence. Following a systemic inflammatory response syndrome, some counterbalancing compensatory anti-inflammatory mechanisms will be activated to restore immune homeostasis. On the other hand, there remains the possibility of the integration of SARS- CoV-2 into the host genome, which potentially may cause cancer. These mechanisms have also been shown to be implicated in both tumorigenesis and metastasis. In this review, we are going to focus on potential mechanisms and the molecular interplay, which connect COVID-19, inflammation, and immune-mediated tumor progression that may propose a framework to understand the possible role of COVID-19 infection in tumorgenesis and cancer progression.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
36
|
Meng H, Mao J, Ye Q. Booster vaccination strategy: Necessity, Immunization Objectives, Immunization Strategy and Safety. J Med Virol 2022; 94:2369-2375. [PMID: 35028946 DOI: 10.1002/jmv.27590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
At present, the global COVID-19 epidemic has not been completely controlled, and epidemic prevention and control still face severe challenges. As there is no specific treatment for COVID-19, promoting roll-out vaccinations and building herd immunity are still the most effective and economic measures to control the COVID-19 pandemic. However, the neutralizing antibody level in the recipients decreases with time, and the vaccine's protective efficacy gradually weakens. It is still inconclusive whether it is necessary to carry out booster vaccination to strengthen the immune barrier to infection. In this paper, we combined the existing data on the effectiveness and persistence of COVID-19 vaccines. We found that it is necessary to carry out a booster vaccination strategy. However, not all subjects need to receive one more dose of vaccine six months after the initial immunization. Priority should be given to the high-risk groups, such as the elderly and people with immunodeficiency. A heterologous booster can induce higher immune responses and enhance immune protection than homologous vaccinations. However, more scientific data and clinical studies are needed to verify the safety of heterologous vaccination strategies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hanyan Meng
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Jianhua Mao
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Qing Ye
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| |
Collapse
|
37
|
Ye Q, Wang D. Epidemiological changes of common respiratory viruses in children during the COVID-19 pandemic. J Med Virol 2022; 94:1990-1997. [PMID: 34981839 PMCID: PMC9015628 DOI: 10.1002/jmv.27570] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/24/2021] [Accepted: 01/02/2022] [Indexed: 12/27/2022]
Abstract
A variety of non‐pharmaceutical interventions (NPIs) have been implemented to control the transmission of COVID‐19 in China. The effect of NPIs on other common respiratory viruses in children of different age groups has not been examined thus far. Respiratory specimens of children were collected to detect common childhood respiratory viruses, including influenza A (FluA), influenza B (FluB), adenovirus, and respiratory syncytial virus (RSV), at the Children's Hospital of Zhejiang University School of Medicine from January 1, 2019 to December 31, 2020. The epidemiological characteristics of the respiratory viruses in 2020 were compared with those in 2019. From January 2019 to December 2020, 165 622 specimens were collected. The proportion of infants aged 0−28 days (683, 2.24% vs. 1295, 0.96%, p = 0.000) and 1−12 months (8560, 28.12% vs. 20 875, 15.43%, p = 0.000) in 2020 increased significantly compared with that in 2019. There were two obvious increases in April and September in the number of specimens in children aged 4−6 years and >7 years. FluA, FluB, and RSV's age distribution patterns were surprisingly consistent with each other in 2020, and the positive rates of children aged 1−12 months were the highest in all age groups (FluA: 4.45%, FluB: 3.30%, RSV: 7.35%). Our study further confirms that the NPIs significantly decreased the transmission of common childhood respiratory viruses. The change in circulation characteristics of common respiratory viruses of children in different age groups varied. Therefore, we recommend that different protection strategies should be introduced for children of different age groups. The epidemiological characteristics of common childhood respiratory viruses varied during the COVID‐19 pandemic. The non‐pharmaceutical interventions significantly decreased the transmission of common childhood respiratory viruses. Different protection strategies should be introduced for children of varying age groups. COVID‐19 article requiring a fast track process.
Collapse
Affiliation(s)
- Qing Ye
- Department of clinical laboratory, The Children's Hospital,Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Dongjie Wang
- Department of clinical laboratory, The Children's Hospital,Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
38
|
Psychological Symptoms in COVID-19 Patients: Insights into Pathophysiology and Risk Factors of Long COVID-19. BIOLOGY 2022; 11:biology11010061. [PMID: 35053059 PMCID: PMC8773222 DOI: 10.3390/biology11010061] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Abstract
There is growing evidence of studies associating COVID-19 survivors with increased mental health consequences. Mental health implications related to a COVID-19 infection include both acute and long-term consequences. Here we discuss COVID-19-associated psychiatric sequelae, particularly anxiety, depression, and post-traumatic stress disorder (PTSD), drawing parallels to past coronavirus outbreaks. A literature search was completed across three databases, using keywords to search for relevant articles. The cause may directly correlate to the infection through both direct and indirect mechanisms, but the underlying etiology appears more complex and multifactorial, involving environmental, psychological, and biological factors. Although most risk factors and prevalence rates vary across various studies, being of the female gender and having a history of psychiatric disorders seem consistent. Several studies will be presented, demonstrating COVID-19 survivors presenting higher rates of mental health consequences than the general population. The possible mechanisms by which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the brain, affecting the central nervous system (CNS) and causing these psychiatric sequelae, will be discussed, particularly concerning the SARS-CoV-2 entry via the angiotensin-converting enzyme 2 (ACE-2) receptors and the implications of the immune inflammatory signaling on neuropsychiatric disorders. Some possible therapeutic options will also be considered.
Collapse
|
39
|
Wang G, Lv C, Liu C, Shen W. Neutrophil-to-lymphocyte ratio as a potential biomarker in predicting influenza susceptibility. Front Microbiol 2022; 13:1003380. [PMID: 36274727 PMCID: PMC9583527 DOI: 10.3389/fmicb.2022.1003380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Human population exposed to influenza viruses exhibited wide variation in susceptibility. The ratio of neutrophils to lymphocytes (NLR) has been examined to be a marker of systemic inflammation. We sought to investigate the relationship between influenza susceptibility and the NLR taken before influenza virus infection. METHODS We investigated blood samples from five independent influenza challenge cohorts prior to influenza inoculation at the cellular level by using digital cytometry. We used multi-cohort gene expression analysis to compare the NLR between the symptomatic infected (SI) and asymptomatic uninfected (AU) subjects. We then used a network analysis approach to identify host factors associated with NLR and influenza susceptibility. RESULTS The baseline NLR was significantly higher in the SI group in both discovery and validation cohorts. The NLR achieved an AUC of 0.724 on the H3N2 data, and 0.736 on the H1N1 data in predicting influenza susceptibility. We identified four key modules that were not only significantly correlated with the baseline NLR, but also differentially expressed between the SI and AU groups. Genes within these four modules were enriched in pathways involved in B cell-mediated immune responses, cellular metabolism, cell cycle, and signal transduction, respectively. CONCLUSIONS This study identified the NLR as a potential biomarker for predicting disease susceptibility to symptomatic influenza. An elevated NLR was detected in susceptible hosts, who may have defects in B cell-mediated immunity or impaired function in cellular metabolism, cell cycle or signal transduction. Our work can serve as a comparative model to provide insights into the COVID-19 susceptibility.
Collapse
Affiliation(s)
- Guoyun Wang
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Cheng Lv
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Cheng Liu
- Department of Computer Science, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
| | - Wenjun Shen
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
- *Correspondence: Wenjun Shen
| |
Collapse
|
40
|
Widjaja SS, Rusdiana R, Amelia R. Curcumin: Boosting the immunity of COVID-19-vaccinated populations. J Adv Pharm Technol Res 2022; 13:187-190. [PMID: 35935700 PMCID: PMC9355048 DOI: 10.4103/japtr.japtr_54_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
The ongoing, highly infectious COVID-19 pandemic has prompted various drugs, vaccines, and phytochemical research to control the disease. The accelerated development of vaccines showed the importance of immune boosters against the virus. This study aims to elucidate the role of curcumin, a phytochemical with an immunoediting profile potentially able to boost immunity after vaccination. Eighty participants were enrolled to receive curcumin supplementation (n = 40) and without (n = 40) after the first vaccination until 4 weeks after the second vaccination. Total antibody formation for SARS-CoV-2 was measured using an enzyme-linked immunosorbent assay 4 weeks after the second vaccination. The average antibody formed in groups treated with curcumin supplementation showed a statistically significant increase compared to the control group (262.6 ± 324.2 vs. 42.8 ± 53.5, P < 0.01). Age, sex, and comorbidities did not affect the production of antibodies within groups. Curcumin showed potential as a complementary supplementation during the period of vaccination as it can increase antibodies produced post vaccinations. Further investigation should be conducted on more subjects and a longer period in concordance to vaccine boosters and emerging new variants.
Collapse
Affiliation(s)
- Sry Suryani Widjaja
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia,Address for correspondence: Dr. Sry Suryani Widjaja, Jl. Joserizal No. 33E/51, Medan 20214, Indonesia. E-mail:
| | - Rusdiana Rusdiana
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rina Amelia
- Department of Community Medicine/Public Health, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
41
|
Al-Ansari RY, Abdalla LM, Qomawi YA, Alromaih LJ, Bakkar MO, Shilash AS, Zakary NY. Coronavirus disease 2019 (COVID-19) in special groups: A single-center experience in sickle cell disease patients in Saudi Arabia. J Family Community Med 2022; 29:71-78. [PMID: 35197731 PMCID: PMC8802730 DOI: 10.4103/jfcm.jfcm_376_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sickle cell disease (SCD) is a group of hereditary diseases, inherited as autosomal recessive disorder, which causes mutation in the β-globin gene. As a result, there is a change in the sixth amino acid from glutamic acid to valine. The affected red blood cell is then prone to polymerization and sickling crisis under conditions of low oxygen tension. One of the major causes of mortality in SCD is acute chest syndrome (ACS). On the other hand, coronavirus disease 2019 (COVID-19) is a pandemic disease that carries significant mortality and morbidity worldwide with unknown outcomes in the affected SCD population. This study was created for that reason. MATERIALS AND METHODS We report a case series of ten SCD patients who were affected by COVID-19 and required admission between May 1, 2020, and October 30, 2020, at a tertiary care hospital in Dhahran, eastern region of Saudi Arabia. Historical data were obtained retrospectively from electronic records. MS Excel was used for data entry, and SPSS version 23 was used for data analysis. RESULTS The mean age of the patients involved in the study was 32 years, and the mean duration of symptoms was 5.7 days. None required critical care admission, and there was no mortality. All patients were discharged from hospital in good condition with no requirement of home oxygen. CONCLUSION Although we expected a fatal outcome of SCD patients affected by COVID-19 infection, our limited case series showed favorable disease behavior and outcome, with a suspicion of underlying unclear protective mechanism from serious complications. However, further studies are required to better understand COVID-19 behavior in SCD patients.
Collapse
Affiliation(s)
- Rehab Y. Al-Ansari
- Department of Internal Medicine, Adult Hematology Unit, KFMMC, Dhahran, Saudi Arabia
| | | | | | | | | | - Amal S. Shilash
- Department of Infectious Control, KFMMC, Dhahran, Saudi Arabia
| | - Nawaf Y. Zakary
- Department of Internal Medicie, Gastroentorology Unit, KFMMC, Dhahran, Saudi Arabia
| |
Collapse
|
42
|
Alicioglu B, Bayav M. Study of thymus volume and density in COVID-19 patients: Is there a correlation in terms of pulmonary CT severity score? THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022; 53:233. [PMCID: PMC9643947 DOI: 10.1186/s43055-022-00917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/29/2022] [Indexed: 08/30/2023] Open
Abstract
Background Thymus has a pivotal role in combating infectious diseases. Although some reviews have been published about its critical role in COVID-19, there is not enough research. In this study, the size and density of thymus related to computed tomography pulmonary severity score (CT-SS) were researched. Results A total of 196 patients were analyzed with a mean age of 52.54 ± 18.78 years; 97 (49.5%) of them were RT-PCR (−) and 99 (50.5%) were RT-PCR (+). Within RT-PCR (+) group 62 (62.6%) of them had pneumonia with a mean CT-SS of 9.37 ± 8.83; within RT-PCR (−) group 20 (20.6%) of them had pneumonia with the mean CT-SS of 12.00 ± 10.18. CT-SS had moderate negative correlation with thymus volume and thymus maximum diameter in patients having nodular-type thymus (R = −0.591, P = 0.02; R = −0.515, P = 0.049, respectively). Homogenous fat infiltration was more commonly seen in RT-PCR (−) group while reticular and nodular types were commonly seen in RT-PCR (+) group (p = 0.015). The mean volume and maximum diameter of thymus were statistically significantly higher in RT-PCR (+) group (p = 0.027 and p = 0.048, respectively). Conclusion This study showed the higher thymic volume and maximum diameter and more involution in COVID-19 patients. CT-SS had a moderate negative correlation with thymus volume and thymus maximum diameter. Pneumonia was more frequent in COVID patients, but mean CT-SS of the non-COVID cases was higher.
Collapse
Affiliation(s)
- Banu Alicioglu
- Radiology Department, Faculty of Medicine, Zonguldak Bulent Ecevit University, 67100 Kozlu, Zonguldak, Turkey
| | - Murat Bayav
- Radiology Department, Faculty of Medicine, Zonguldak Bulent Ecevit University, 67100 Kozlu, Zonguldak, Turkey
| |
Collapse
|
43
|
Li W, Qiao J, You Q, Zong S, Peng Q, Liu Y, Hu S, Liu W, Li S, Shu X, Sun B. SARS-CoV-2 Nsp5 Activates NF-κB Pathway by Upregulating SUMOylation of MAVS. Front Immunol 2021; 12:750969. [PMID: 34858407 PMCID: PMC8631293 DOI: 10.3389/fimmu.2021.750969] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/21/2021] [Indexed: 12/28/2022] Open
Abstract
The COVID-19 is an infectious disease caused by SARS-CoV-2 infection. A large number of clinical studies found high-level expression of pro-inflammatory cytokines in patients infected with SARS-CoV-2, which fuels the rapid development of the disease. However, the specific molecular mechanism is still unclear. In this study, we found that SARS-CoV-2 Nsp5 can induce the expression of cytokines IL-1β, IL-6, TNF-α, and IL-2 in Calu-3 and THP1 cells. Further research found that Nsp5 enhances cytokine expression through activating the NF-κB signaling pathway. Subsequently, we investigated the upstream effectors of the NF-κB signal pathway on Nsp5 overexpression and discovered that Nsp5 increases the protein level of MAVS. Moreover, Nsp5 can promote the SUMOylation of MAVS to increase its stability and lead to increasing levels of MAVS protein, finally triggering activation of NF-κB signaling. The knockdown of MAVS and the inhibitor of SUMOylation treatment can attenuate Nsp5-mediated NF-κB activation and cytokine induction. We identified a novel role of SARS-CoV-2 Nsp5 to enhance cytokine production by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weiling Li
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qiang You
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Shan Zong
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qian Peng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yuchen Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Song Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Shufen Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
44
|
Ye Q, Liu H. Impact of non-pharmaceutical interventions during the COVID-19 pandemic on common childhood respiratory viruses - A epidemiological study based on hospital data. Microbes Infect 2021; 24:104911. [PMID: 34871774 PMCID: PMC8641407 DOI: 10.1016/j.micinf.2021.104911] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 12/16/2022]
Abstract
Considering common childhood respiratory viruses and SARS-CoV-2 share similar transmission routes, non-pharmaceutical interventions (NPIs) to prevent SARS-CoV-2 may affect the epidemiology of respiratory viruses. Therefore, our study aimed to observe the epidemiologic characteristics of common childhood respiratory viruses in 2020 (after the pandemic) compared with 2019 (before the pandemic) in Hangzhou, China. The data were compared between 2019 and 2020 based on age and month, respectively. One or more viruses were detected in 3135/21452 (14.61%) specimens in 2019, which was significantly lower in 1110/8202 (13.53%) specimens in 2020. Respiratory syncytial virus (RSV) was the most commonly detected virus in 2019 and 2020. The positive rate of adenovirus (ADV), parainfluenza virus (PIV)1, PIV2, and PIV3 in 2020 was significantly decreased in 2019. In 2020, RSV replaced ADV as the most predominant virus in children aged 1–6 years, and the positive rate of influenza virus A (FluA), influenza virus B (FluB), PIV1, and PIV2 was not correlated to age. FluA, FluB, and PIV2 were not almost detected from February 2020. The positive rates of ADV and PIV1 were uncorrelated to the month in 2020. By strict NPIs, besides controlling the COVID-19 pandemic, incredible progress has been made to reduce the prevalence of common childhood respiratory viruses.
Collapse
Affiliation(s)
- Qing Ye
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.
| | - Huihui Liu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| |
Collapse
|
45
|
Tian D, Sun Y, Zhou J, Ye Q. The Global Epidemic of the SARS-CoV-2 Delta Variant, Key Spike Mutations and Immune Escape. Front Immunol 2021; 12:751778. [PMID: 34917076 PMCID: PMC8669155 DOI: 10.3389/fimmu.2021.751778] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
During the COVID-19 pandemic, SARS-CoV-2 variants have emerged and spread worldwide. The Delta (B.1.617.2) variant was first reported in India in October 2020 and was classified as a "variant of concern (VOC)" by the WHO on 11 May, 2021. Compared to the wild-type strain, several studies have shown that the Delta variant is more transmissible and has higher viral loads in infected samples. COVID-19 patients infected with the Delta variant have a higher risk of hospitalization, intensive care unit (ICU) admission, and mortality. The Delta variant is becoming the dominant strain in many countries around the world. This review summarizes and analyses the biological characteristics of key amino acid mutations, the epidemic characteristics, and the immune escape of the Delta variant. We hope to provide scientific reference for the monitoring and prevention measures of the SARS-CoV-2 Delta variant and the development strategy of a second-generation vaccine.
Collapse
Affiliation(s)
| | | | | | - Qing Ye
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
Arazi H, Falahati A, Suzuki K. Moderate Intensity Aerobic Exercise Potential Favorable Effect Against COVID-19: The Role of Renin-Angiotensin System and Immunomodulatory Effects. Front Physiol 2021; 12:747200. [PMID: 34867452 PMCID: PMC8634264 DOI: 10.3389/fphys.2021.747200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is caused by a novel coronavirus (CoV) named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As the angiotensin converting enzyme 2 (ACE2) is the cellular receptor of SARS-CoV-2, it has a strong interaction with the renin angiotensin system (RAS). Experimental studies have shown that the higher levels of ACE2 or increasing ACE2/ACE1 ratio improve COVID-19 outcomes through lowering inflammation and death. Aerobic moderate intensity physical exercise fights off infections by two mechanisms, the inhibition of ACE/Ang II/AT1-R pathway and the stimulation of ACE2/Ang-(1-7)/MasR axis. Exercise can also activate the anti-inflammatory response so that it can be a potential therapeutic strategy against COVID-19. Here, we summarize and focus the relation among COVID-19, RAS, and immune system and describe the potential effect of aerobic moderate intensity physical exercise against CoV as a useful complementary tool for providing immune protection against SARS-CoV-2 virus infection, which is a novel intervention that requires further investigation.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Akram Falahati
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|