1
|
Hamilton A, Zhang Q, Gao R, Hill TG, Salehi A, Knudsen JG, Draper MB, Johnson PRV, Rorsman P, Tarasov AI. Nicotinic Signaling Stimulates Glucagon Secretion in Mouse and Human Pancreatic α-Cells. Diabetes 2025; 74:53-64. [PMID: 39475504 DOI: 10.2337/db23-0809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/10/2024] [Indexed: 12/22/2024]
Abstract
Smoking is widely regarded as a risk factor for type 2 diabetes because nicotine contributes to insulin resistance by desensitizing the insulin receptors in muscle, liver, or fat. Little is known, however, about the immediate regulation of islet hormonal output by nicotine, an agonist of ionotropic cholinergic receptors. We investigated this by imaging cytosolic Ca2+ dynamics in mouse and human islets using confocal microscopy and measuring glucagon secretion in response to the alkaloid from isolated mouse islets. Nicotine acutely stimulated cytosolic Ca2+ in glucagon-secreting α-cells but not in insulin-secreting β-cells. The 2.8- ± 0.5-fold (P < 0.05) increase in Ca2+, observed in >70% of α-cells, correlated well with a 2.5- ± 0.3-fold stimulation of glucagon secretion. Nicotine-induced elevation of cytosolic Ca2+ relied on influx from the extracellular compartment rather than release of the cation from intracellular depots. Metabotropic cholinergic signaling, monitored at the level of intracellular diacylglycerol, was limited to 69% of α-cells versus 94% of β-cells. We conclude that parasympathetic regulation of pancreatic islet hormone release uses different signaling pathways in β-cells (metabotropic) and α-cells (metabotropic and ionotropic), resulting in the fine-tuning of acetylcholine-induced glucagon exocytosis. Sustained nicotinic stimulation is, therefore, likely to attenuate insulin sensitivity by increasing glucagon release. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Alexander Hamilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- Unit of Molecular Metabolism, Clinical Research Centre, Lund University Diabetes Centre, Lund University and Malmö University Hospital, Malmö, Sweden
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Thomas G Hill
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
| | - Albert Salehi
- Unit of Molecular Metabolism, Clinical Research Centre, Lund University Diabetes Centre, Lund University and Malmö University Hospital, Malmö, Sweden
- Metabolic Research Unit, Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew B Draper
- School of Biomedical Sciences, Ulster University, Coleraine, U.K
| | - Paul R V Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- Oxford Biomedical Research Centre, National Institute for Health Research, Oxford, U.K
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- Metabolic Research Unit, Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
- School of Biomedical Sciences, Ulster University, Coleraine, U.K
- Oxford Biomedical Research Centre, National Institute for Health Research, Oxford, U.K
| | - Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and Churchill Hospital, Oxford, U.K
- School of Biomedical Sciences, Ulster University, Coleraine, U.K
| |
Collapse
|
2
|
Thakur P, Mittal N, Chaudhary J, Kamboj S, Jain A. Unveiling the substantial role of rutin in the management of drug-induced nephropathy using network pharmacology and molecular docking. Int Immunopharmacol 2024; 146:113911. [PMID: 39733639 DOI: 10.1016/j.intimp.2024.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
INTRODUCTION Flavonoids including quercetin, kaempferol, myricetin, rutin etc. have always been a part of traditional Chinese medicine for the treatment of several ailments. Rutin (RT), also known as rutoside, sophorin is one of the flavanol glycoside having structure resemblance with quercetin. It is found to exhibit several biological activities viz. anti-inflammatory, anticancer, antioxidant, cardioprotective, antidepressant, neuroprotective etc. but the mechanisms by which it exhibits these effects is still under research. AIM The protective effects of rutin against drug induced nephropathy have already been discovered. Therefore, in this study, the main focus is to explore the mechanism by which rutin provides protection against drug-induced nephropathy using modern method like network pharmacology and molecular docking. MATERIALS AND METHODS Genes linked to drug-induced nephropathy and targets connected with rutin were obtained by searching through a number of extensive databases, including David software, Venn plot database, Swiss target prediction database, String database, Gene card & OMIM database, and Pubchem. In order to locate mapping targets, the acquired targets were examined and intersected. A protein-protein interaction (PPI) network was then built to find potential targets. RESULTS From the KEGG pathway, the target pathway responsible for drug-induced nephropathy were found to be XDH, HSD17B2, MET, PRKCB, CD38, ALDH2, CDK1, PTK2, CYP19A1, TNF, F2, PTGS2, ESR1, GSK3B, GLO1, ALOX12, MMP3, PRKCZ, CXCR1, CA4, EGFR, PDE5A, F10, AKR1B1, DRD4, TERT, CA3, PLG, TP53, PRKCH, PIK3R1, PRKACA, CYP1B1, ALOX5, PLK1, CHEK1, KCNH2, PRKCD, MAPT, MPO, NOX4, AVPR2, ACHE, MCL1, KDR, ABCG2, CCR1, PIK3CG, FLT3, ADORA1, IL2, SYK, IGF1R, CA2, SERPINE1, INSR, PRKCA, APP, MMP9. From these identified targets, the 14 selected pathways which have major role in providing protection in drug-induced nephropathy have been discussed. CONCLUSION As RT can inhibit various metabolic and proinflammatory pathways involved, it can help in prevention and treatment of drug-induced nephropathy. FUTURE ASPECTS The revelation of mode of action of bioactive constituent rutin against drug-induced nephropathy provides a theoretical basis for designing more promising compounds in future for treatment of nephropathy.
Collapse
Affiliation(s)
- Prashant Thakur
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, India
| | - Nitish Mittal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, India
| | - Jasmine Chaudhary
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, India
| | - Sonia Kamboj
- Ch. Devi Lal College of Pharmacy, Jagadhri, Haryana, India
| | - Akash Jain
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, India.
| |
Collapse
|
3
|
Filippenkov IB, Shpetko YY, Stavchansky VV, Denisova AE, Gubsky LV, Andreeva LA, Myasoedov NF, Limborska SA, Dergunova LV. ACTH-like Peptides Compensate Rat Brain Gene Expression Profile Disrupted by Ischemia a Day After Experimental Stroke. Biomedicines 2024; 12:2830. [PMCID: PMC11673339 DOI: 10.3390/biomedicines12122830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
Background: Ischemic stroke results from a disruption of cerebral blood flow. Adrenocorticotropic hormone (ACTH) serves as the basis for the creation of synthetic peptides as neuroprotective agents for stroke therapy. Previously, using RNA-Seq we first revealed differential expressed genes (DEGs) associated with ACTH(4–7)PGP (Semax) and ACTH(6–9)PGP peptides under cerebral ischemia conditions. Analysis was carried out at 4.5 h after transient middle cerebral artery occlusion (tMCAO) model in the ipsilateral frontal cortex of a rat brain. Methods: Here, we analyzed the penumbra-associated frontal cortex of rats and actions under the same peptides at 24 h after tMCAO using RNA-Seq. Results: 3774 DEGs (fold change > 1.5 and Padj < 0.05) were identified under ischemia conditions, whereas 1539 and 2066 DEGs were revealed under Semax and ACTH(6–9)PGP peptides at 24 h after tMCAO. Furthermore, both peptides significantly reduced expression distortions caused by ischemia for 1171 genes associated with immune and neurosignaling pathways. Concomitantly, there were 32 DEGs under ACTH(6–9)PGP versus Semax administration at 24 h after tMCAO. Besides, neurogenesis-, angiogenesis-, protein kinase- and growth factor-related DEGs were revealed under peptides action. Previously, we observed the neuroprotective effect of peptides at the histological level in rat brains at 24 h after tMCAO. Thus, here we demonstrate the transcriptome manifestation of this histological effect. Furthermore, comparison with previous data at the 4.5 h post-tMCAO time point showed that the pattern of peptide action on the transcriptome depends on the time elapsed after tMCAO. Conclusions: We revealed that the effect of ACTH(6–9)PGP was more similar to Semax than different from it a day after tMCAO. At this time point, ACTH-like peptides compensated rat brain gene expression profiles disrupted by ischemia. Thus, our results may be useful for selecting more effective structures for future anti-stroke drugs and appropriate post-stroke time points for their testing.
Collapse
Affiliation(s)
- Ivan B. Filippenkov
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (Y.Y.S.); (V.V.S.); (L.A.A.); (N.F.M.); (S.A.L.); (L.V.D.)
| | - Yana Yu. Shpetko
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (Y.Y.S.); (V.V.S.); (L.A.A.); (N.F.M.); (S.A.L.); (L.V.D.)
- Department of Biotechnology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, Building 1, 125047 Moscow, Russia
| | - Vasily V. Stavchansky
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (Y.Y.S.); (V.V.S.); (L.A.A.); (N.F.M.); (S.A.L.); (L.V.D.)
| | - Alina E. Denisova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (A.E.D.); (L.V.G.)
| | - Leonid V. Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (A.E.D.); (L.V.G.)
- Federal Center for the Brain and Neurotechnologies, Federal Biomedical Agency, Ostrovitianov Str. 1, Building 10, 117997 Moscow, Russia
| | - Lyudmila A. Andreeva
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (Y.Y.S.); (V.V.S.); (L.A.A.); (N.F.M.); (S.A.L.); (L.V.D.)
| | - Nikolay F. Myasoedov
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (Y.Y.S.); (V.V.S.); (L.A.A.); (N.F.M.); (S.A.L.); (L.V.D.)
| | - Svetlana A. Limborska
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (Y.Y.S.); (V.V.S.); (L.A.A.); (N.F.M.); (S.A.L.); (L.V.D.)
| | - Lyudmila V. Dergunova
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (Y.Y.S.); (V.V.S.); (L.A.A.); (N.F.M.); (S.A.L.); (L.V.D.)
| |
Collapse
|
4
|
Camici M, Del Duca G, Brita AC, Antinori A. Connecting dots of long COVID-19 pathogenesis: a vagus nerve- hypothalamic-pituitary- adrenal-mitochondrial axis dysfunction. Front Cell Infect Microbiol 2024; 14:1501949. [PMID: 39735263 PMCID: PMC11671747 DOI: 10.3389/fcimb.2024.1501949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
The pathogenesis of long COVID (LC) still presents many areas of uncertainty. This leads to difficulties in finding an effective specific therapy. We hypothesize that the key to LC pathogenesis lies in the presence of chronic functional damage to the main anti-inflammatory mechanisms of our body: the three reflexes mediated by the vagus nerve, the hypothalamic-pituitary-adrenal (HPA) hormonal axis, and the mitochondrial redox status. We will illustrate that this neuro-endocrine-metabolic axis is closely interconnected and how the SARS-CoV-2 can damage it at all stages through direct, immune-inflammatory, epigenetic damage mechanisms, as well as through the reactivation of neurotropic viruses. According to our theory, the direct mitochondrial damage carried out by the virus, which replicates within these organelles, and the cellular oxidative imbalance, cannot be countered in patients who develop LC. This is because their anti-inflammatory mechanisms are inconsistent due to reduced vagal tone and direct damage to the endocrine glands of the HPA axis. We will illustrate how acetylcholine (ACh) and cortisol, with its cytoplasmatic and cellular receptors respectively, are fundamental players in the LC process. Both Ach and cortisol play multifaceted and synergistic roles in reducing inflammation. They achieve this by modulating the activity of innate and cell-mediated immunity, attenuating endothelial and platelet activation, and modulating mitochondrial function, which is crucial for cellular energy production and anti-inflammatory mechanisms. In our opinion, it is essential to study the sensitivity of the glucocorticoids receptor in people who develop LC and whether SARS-CoV-2 can cause long-term epigenetic variations in its expression and function.
Collapse
Affiliation(s)
- Marta Camici
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giulia Del Duca
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Clelia Brita
- Department of Clinical Psychology, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Antinori
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
5
|
Pochini L, Tedesco GE, Mazza T, Scalise M, Indiveri C. OCTN1 mediates acetylcholine transport in the A549 lung cancer cells: possible pathophysiological implications. Front Mol Biosci 2024; 11:1512530. [PMID: 39719963 PMCID: PMC11666908 DOI: 10.3389/fmolb.2024.1512530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
A role for acetylcholine in cell proliferation, epithelial mesenchymal transition and invasion has been well assessed and related to the presence of the non-neuronal cholinergic system in lung cancer. For the operation of this non-neuronal system, acetylcholine should be released by a transporter mediated non-quantal process. OCTN1 is one of the transporters able to catalyse acetylcholine efflux in vitro and ex vivo. Using the A549 cell line as a lung cancer model, it has been found that these cells express OCTN1 at a higher level with respect to other cancer cells. The transport capacity of OCTN1 extracted from A549 and reconstituted into proteoliposomes reflects the protein expression profile. The properties of the acetylcholine transport mediated by OCTN1 of A549 in terms of specificity to ligands and ability to catalyse efflux of acetylcholine correspond to those previously described for the same transporter in other cells or to those of the human recombinant protein. OCTN1 is the major player in acetylcholine release in A549 and, therefore, may represent a target for inhibitors able to block the acetylcholine action in this type of aggressive tumors.
Collapse
Affiliation(s)
- Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| | - Giusi Elisabetta Tedesco
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Tiziano Mazza
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| |
Collapse
|
6
|
Niu Q, Li D, Zhang J, Piao Z, Xu B, Xi Y, Mohamed Kamal NNSN, Lim V, Li P, Yin Y. The new perspective of Alzheimer's Disease Research: Mechanism and therapeutic strategy of neuronal senescence. Ageing Res Rev 2024; 102:102593. [PMID: 39566741 DOI: 10.1016/j.arr.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD), commonly known as senile dementia, is a neurodegenerative disease with insidious onset and gradually worsening course. The brain is particularly sensitive to senescence, and neuronal senescence is an important risk factor for the occurrence of AD. However, the exact pathogenesis between neuronal senescence and AD has not been fully elucidated so far. Neuronal senescence is characterized by the permanent stagnation of the cell cycle, and the changes in its structure, function, and microenvironment are closely related to the pathogenesis and progression of AD. In recent years, studies such as the Aβ cascade hypothesis and Tau protein phosphorylation have provided new strategies for the therapy of AD, but due to the complexity of the etiology of AD, there are still no effective treatment measures. This article aims to deeply analyze the pathogenesis between AD and neuronal senescence, and sort out various existing therapeutic methods, to provide new ideas and references for the clinical treatment of AD.
Collapse
Affiliation(s)
- Qianqian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Danjie Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Jiayin Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Zhengji Piao
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Bo Xu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Yuting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia; Dementia Multidisciplinary Research Program of IPPT (DMR-IPPT), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Vuanghao Lim
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China.
| | - Yaling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
7
|
Halder N, Yadav S, Lal G. Neuroimmune communication of the cholinergic system in gut inflammation and autoimmunity. Autoimmun Rev 2024; 23:103678. [PMID: 39500481 DOI: 10.1016/j.autrev.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Neuroimmune communication in the body forms a bridge between two central regulatory systems of the body, i.e., nervous and immune systems. The cholinergic system is a crucial modulatory neurotransmitter in the central and peripheral nervous system. It includes the neurotransmitter acetylcholine (ACh), the enzyme required for the synthesis of ACh (choline acetyltransferase, ChAT), the enzyme required for its degradation (acetylcholinesterase, AChE), and cholinergic receptors (Nicotinic acetylcholine receptors and muscarinic acetylcholine receptors). The cholinergic system in neurons is well known for its role in cognitive function, sensory perception, motor control, learning, and memory processes. It has been shown that the non-neuronal cholinergic system (NNCS) is present in various tissues and immune cells and forms a neuroimmune communications system. In the present review, we discussed the NNCS on immune cells, its role in homeostasis and inflammatory reactions in the gut, and how it can be exploited in treating inflammatory responses.
Collapse
Affiliation(s)
- Namrita Halder
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Sourabh Yadav
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
8
|
Tae HS, Hung A, Clark RJ, Adams DJ. Molecular determinants of the selectivity and potency of α-conotoxin Vc1.1 for human nicotinic acetylcholine receptors. J Biol Chem 2024; 301:108017. [PMID: 39608712 DOI: 10.1016/j.jbc.2024.108017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/02/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
The α-conotoxins (α-Ctxs) are short, disulfide-rich peptides derived from the venom of the Conus marine snails, primarily acting as antagonists of nicotinic acetylcholine receptors (nAChRs). Specifically, α-Ctx Vc1.1, a 16-amino acid peptide from Conus victoriae, competitively antagonizes non-muscle nAChRs, inhibits nicotine-induced currents in bovine chromaffin cells, and alleviates neuropathic pain in rat models. Although Vc1.1 selectively inhibits rat α9α10 nAChRs, its potency and selectivity across human nAChR subtypes remain unresolved. In this study, we assessed the activity of Vc1.1 on human (h) nAChRs heterologously expressed in Xenopus laevis oocytes using the two-electrode voltage clamp technique and simulated interactions using computational modeling. Vc1.1 selectively antagonized homomeric α9 and heteromeric α3β2 nAChRs, with half-maximal inhibitory concentrations (IC50) of 160 nM and 232 nM, respectively. At hα9[N179A]α10, Vc1.1 exhibited a 20-fold decrease in potency compared to hα9α10, due to the loss of hydrogen bonding with Vc1.1-D11. Conversely, Vc1.1 was four-fold more potent at hα3β2[E86A] compared to hα3β2, possibly influenced by the proximal residue β2-K104, as suggested by molecular dynamics (MD) simulations. Additionally, Vc1.1's potency doubled at hα9[N213K]α10, whereas it remained unchanged at hα9[N213R]α10 nAChRs. MD simulations indicate that altered interactions between the mutant hα9 N179A, N213K, and N213R side chains and Vc1.1-D5 may partly explain these changes in potency. The inhibitory action of Vc1.1 at α9-containing nAChRs is particularly relevant given their role in neuroinflammation, presenting a potential therapeutic pathway for alleviating neuropathic and inflammatory pain. This study provides valuable insights into the rational design of Vc1.1-derived α-Ctxs with enhanced nAChR subtype selectivity.
Collapse
Affiliation(s)
- Han-Shen Tae
- Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, Australia.
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - David J Adams
- Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
9
|
Gamus D, Shoenfeld Y. Acupuncture therapy in autoimmune diseases: A narrative review. Autoimmun Rev 2024:103709. [PMID: 39586390 DOI: 10.1016/j.autrev.2024.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
We provide a narrative review of experimental and clinical evidence for the effect of acupuncture in autoimmune diseases, based on randomized controlled studies, systematic review and meta-analyses, published between the years 2000-2023. Acupuncture in experimental models of rheumatoid arthritis (RA), multiple sclerosis, psoriasis, ulcerative colitis (UC) downregulated inflammatory cytokine expression, increased IL-10 expression, improved Treg cell differentiation, and also modulated macrophage polarization in RA and UC models. The anti-inflammatory effect of acupuncture in autoimmune disorders has been demonstrated to involve vagal-adrenal and cholinergic anti-inflammatory pathways. The analgesic effect of acupuncture involves both peripheral and central anti-nociceptive mechanisms. Randomized controlled studies support the use of acupuncture in rheumatoid arthritis, fibromyalgia, Crohn's disease and in Sjogren's syndrome. Some evidence indicates that acupuncture may be beneficial as a symptomatic treatment for multiple sclerosis, myasthenia gravis, psoriasis and ankylosing spondylitis.
Collapse
Affiliation(s)
- Dorit Gamus
- Complementary and Integrative Medicine Service, Sheba Medical Center, Tel-Hashomer 5265601, Israel.
| | - Yehuda Shoenfeld
- Reichman University, Herzelia, Israel; Zabludowicz Center for Autoimmune Diseases (Founder), Sheba Medical Center, Tel-Hashomer 5265601, Israel.
| |
Collapse
|
10
|
Zhu R, Tong X, Du Y, Liu J, Xu X, He Y, Wen L, Wang Z. Improvement of chlorpyrifos-induced cognitive impairment by mountain grape anthocyanins based on PI3K/Akt signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106172. [PMID: 39477625 DOI: 10.1016/j.pestbp.2024.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024]
Abstract
The organophosphorus insecticide Chlorpyrifos (CPF) is widely used worldwide due to its high effectiveness. However, when ingested through the mouth and nose, it can cause severe neurotoxic effects and cognitive impairment. Natural anthocyanins show great potential in improving cognitive impairment. In this paper, we will delve into the protective effect of anthocyanins on CPF-induced cognitive impairment and its mechanism through the PI3K/Akt signaling pathway. Morris water maze, histopathological, ELISA and western blot analyses showed that anthocyanins effectively ameliorated CPF-induced spatial learning memory impairment in mice by ameliorating CPF-induced AChE inhibition, oxidative stress, and neuroinflammation and by modulating the levels of apoptosis (Caspase-3, Caspase-9) and autophagy (LC3II/ LC3I, Beclin1, p62, mTOR) biomarkers, in order to restore damaged hippocampal tissue morphology, neuron and synapse structures. To identify the action pathway of anthocyanins, we used KEGG and GO pathway enrichment analysis for screening prediction and western blot and molecular docking to verify that anthocyanins improve CPF-induced cognitive impairment by activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Rongchen Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuewen Tong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuhan Du
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jiahua Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuefei Xu
- Jilin Province Product Quality Supervision and Inspection Institute of Light Industrial and Chemical Products Inspection, Changchun 130022, China
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
11
|
Fan H, Liang X, Tang Y. Neuroscience in peripheral cancers: tumors hijacking nerves and neuroimmune crosstalk. MedComm (Beijing) 2024; 5:e784. [PMID: 39492832 PMCID: PMC11527832 DOI: 10.1002/mco2.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer neuroscience is an emerging field that investigates the intricate relationship between the nervous system and cancer, gaining increasing recognition for its importance. The central nervous system governs the development of the nervous system and directly affects brain tumors, and the peripheral nervous system (PNS) shapes the tumor microenvironment (TME) of peripheral tumors. Both systems are crucial in cancer initiation and progression, with recent studies revealing a more intricate role of the PNS within the TME. Tumors not only invade nerves but also persuade them through remodeling to further promote malignancy, creating a bidirectional interaction between nerves and cancers. Notably, immune cells also contribute to this communication, forming a triangular relationship that influences protumor inflammation and the effectiveness of immunotherapy. This review delves into the intricate mechanisms connecting the PNS and tumors, focusing on how various immune cell types influence nerve‒tumor interactions, emphasizing the clinical relevance of nerve‒tumor and nerve‒immune dynamics. By deepening our understanding of the interplay between nerves, cancer, and immune cells, this review has the potential to reshape tumor biology insights, inspire innovative therapies, and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua‐Yang Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral PathologyWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
12
|
Khodadadi H, Salles ÉL, Naeini SE, Bhandari B, Rogers HM, Gouron J, Meeks W, Terry AV, Pillai A, Yu JC, Morgan JC, Vaibhav K, Hess DC, Dhandapani KM, Wang LP, Baban B. Boosting Acetylcholine Signaling by Cannabidiol in a Murine Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:11764. [PMID: 39519315 PMCID: PMC11546302 DOI: 10.3390/ijms252111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a challenging medical issue that requires efficacious treatment options to improve long-term quality of life. Cannabidiol (CBD) is a cannabis-derived phytocannabinoid with potential health benefits, including reports from our laboratory and others showing a therapeutic role in the pre-clinical treatment of AD; however, the mechanisms whereby CBD affects AD progression remain undefined. Innate lymphoid cells (ILCs) are recently discovered immune cells that initiate and orchestrate inflammatory responses. ILC2, a sub-class of ILCs, is proposed to have a role in cognitive function via unknown mechanisms. In this present study, we explored whether CBD ameliorates AD symptoms via the enhancement of acetylcholine (ACh), a cholinergic neurotransmitter involved in cognition that may regulate ILC2. 5xFAD mice were chronically treated by inhalation of a formulation of broad-spectrum CBD for seven months. ACh production, ILC2s profile, brain histopathology, and long-term behavior were assessed. Together, our studies showed that long-term inhalation of CBD improved cognitive function and reduced senile plaques in a murine AD model, effects that were associated with enhanced ACh production and altered ILC2s distribution within the CNS. These findings indicate that inhaled CBD could offer a cost-effective, non-invasive, and effective treatment for managing AD. The beneficial effects of CBD inhalation may be linked to increased ACh production and an altered distribution of ILC2s, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Hesam Khodadadi
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bidhan Bhandari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Hannah M. Rogers
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jules Gouron
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William Meeks
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alvin V. Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Anilkumar Pillai
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
| | - Jack C. Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - John C. Morgan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.V.); (K.M.D.)
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Krishnan M. Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.V.); (K.M.D.)
| | - Lei P. Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
13
|
Dos Santos TFO, Melo JEC, Santos HF, Souza JLS, Santos EDR, de Oliveira MCS, Bispo JMM, Medeiros KAAL, Lins LCRF, Menezes EC, de Gois AM, Silva RH, Ribeiro AM, Dos Santos JR. Repeated balance exercise promotes cholinergic neuroprotection of the pedunculopontine nucleus in a progressive model of Parkinson's disease. Physiol Behav 2024; 288:114722. [PMID: 39490803 DOI: 10.1016/j.physbeh.2024.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Vestibular rehabilitation (VR) is a therapeutic approach that minimizes the impacts of balance alterations by enhancing the central vestibular compensation mechanism. The present study investigates the effect of repeated balance exercises on the central vestibular compensation mechanism in a reserpine-induced progressive model of parkinsonism in aged rats. Male Wistar rats were assigned to three cohort experiments: Exp 1: repeated balance exercises (narrow beam test) - performed every 48 h during 20 days; Exp 2: balance exercises performed on the 0th and 8th days; Exp 3: balance exercises performed only on the 0th and 20th days. For each experiment, the animals were divided into two groups (n = 7 per group): CTL (vehicle) and RES (reserpine 0.1 mg/kg). The animals received 4 (exp. 2) or 10 (exp 1 and 3) s.c. injections (0.1 mg/kg), one every 48 h. The cohorts were evaluated using catalepsy and open field tests (0th, 8th and 20th days). After completion of behavioral tests, the brains were analyzed for immunohistochemistry for tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT). The RES group presented motor deficits in the catalepsy and open field tests on day 20, but not on day 8. There was no decrease in the number of TH neurons and terminals in the substantia nigra pars compacta (SNpc), ventral tegmental area (VTA) and dorsal striatum (DS) for animals from Exp. 2. However, a decrease was observed in the SNpc, VTA and striatum of animals from Exp 1 and Exp 3. In the balance beam test, the animals in the RES group showed a longer crossing time from day 8 to day 14 (Exp 1), on the 8th day (Exp 2) and on the 20th day (Exp. 3). This finding was correlated with a decrease in the number of ChAT immunoreactive cells in the pedunculopontine tegmental nucleus (PPN) for the animals that performed the dynamic balance test only once (Exp. 2 and 3), but no reduction was observed in the animals that performed the test repeatedly (Epx. 1). Thus, it was possible to verify that repeated exposure of the animals to balance assessment tasks potentiated the performance of the central vestibular compensation mechanism in the animal model of parkinsonism.
Collapse
Affiliation(s)
- Thassya F O Dos Santos
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - João E C Melo
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Heitor F Santos
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil; Federal University of Sergipe, Neurophysiology Laboratory, Department of Physiology, São Cristóvão, SE, Brazil
| | - José L S Souza
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Edson de R Santos
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Maria C S de Oliveira
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - José M M Bispo
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Katty A A L Medeiros
- Federal University of Sergipe, Professor Antônio Garcia Filho Center, Department of Nursing, Lagarto, SE, Brazil
| | - Lívia C R F Lins
- Federal University of Sergipe, Neurophysiology Laboratory, Department of Physiology, São Cristóvão, SE, Brazil
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Auderlan M de Gois
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Regina H Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | - José R Dos Santos
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil.
| |
Collapse
|
14
|
Breivik TJ, Gjermo P, Gundersen Y, Opstad PK, Murison R, Hugoson A, von Hörsten S, Fristad I. Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000 2024; 96:20-41. [PMID: 39233381 PMCID: PMC11579829 DOI: 10.1111/prd.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
This review highlights the significance of interactions between the microbiota, immune system, nervous and hormonal systems, and the brain on periodontal health and disease. Microorganisms in the microbiota, immune cells, and neurons communicate via homeostatic nervous and hormonal systems, regulating vital body functions. By modulating pro-inflammatory and anti-inflammatory adaptive immune responses, these systems control the composition and number of microorganisms in the microbiota. The strength of these brain-controlled responses is genetically determined but is sensitive to early childhood stressors, which can permanently alter their responsiveness via epigenetic mechanisms, and to adult stressors, causing temporary changes. Clinical evidence and research with humans and animal models indicate that factors linked to severe periodontitis enhance the responsiveness of these homeostatic systems, leading to persistent hyperactivation. This weakens the immune defense against invasive symbiotic microorganisms (pathobionts) while strengthening the defense against non-invasive symbionts at the gingival margin. The result is an increased gingival tissue load of pathobionts, including Gram-negative bacteria, followed by an excessive innate immune response, which prevents infection but simultaneously destroys gingival and periodontal tissues. Thus, the balance between pro-inflammatory and anti-inflammatory adaptive immunity is crucial in controlling the microbiota, and the responsiveness of brain-controlled homeostatic systems determines periodontal health.
Collapse
Affiliation(s)
- Torbjørn Jarle Breivik
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
| | - Yngvar Gundersen
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Kristian Opstad
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Robert Murison
- Department of Biological and Medical Psychology, Faculty of PsychologyUniversity of BergenBergenNorway
| | - Anders Hugoson
- Department of Periodontology, Institute of OdontologyThe Sahlgrenska Academy at University of Gothenburg and School of Health and WelfareGothenburgSweden
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental CenterFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
| |
Collapse
|
15
|
Liu X, Wang Z, Teng C, Wang Z. Changes in gut microbiota and metabolites of mice with intravenous graphene oxide-induced embryo toxicity. Toxicol Res 2024; 40:571-584. [PMID: 39345742 PMCID: PMC11436620 DOI: 10.1007/s43188-024-00242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 10/01/2024] Open
Abstract
The expanding applications of graphene oxide (GO) nanomaterials have attracted interest in understanding their potential adverse effects on embryonic and fetal development. Numerous studies have revealed the importance of the maternal gut microbiota in pregnancy. In this study, we established a mouse GO exposure model to evaluate embryo toxicity induced by intravenous administration of GO during pregnancy. We also explored the roles of gut microbiota and fecal metabolites using a fecal microbiota transplantation (FMT) intervention model. We found that administration of GO at doses up to 1.25 mg/kg caused embryo toxicity, characterized by significantly increased incidences of fetal resorption, stillbirths, and decreased birth weight. In pregnant mice with embryo toxicity, the richness of the maternal gut microbiota was dramatically decreased, and components of the microbial community were disturbed. FMT alleviated the decrease in birth weight by remodeling the gut microbiota, especially via upregulation of the Firmicutes/Bacteroidetes ratio. We subsequently used untargeted metabolomics to identify characteristic fecal metabolites associated with GO exposure. These metabolites were closely correlated with the phyla Actinobacteria, Proteobacteria, and Cyanobacteria. Our findings offer new insights into the embryo toxic effects of GO exposure during pregnancy; they emphasize the roles of gut microbiota-metabolite interactions in adverse pregnancy outcomes induced by GO or other external exposures, as demonstrated through FMT intervention. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00242-3.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191 China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191 China
| | - Zengjin Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
| | - Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
| |
Collapse
|
16
|
Qu HQ, Kao C, Hakonarson H. Implications of the non-neuronal cholinergic system for therapeutic interventions of inflammatory skin diseases. Exp Dermatol 2024; 33:e15181. [PMID: 39422283 DOI: 10.1111/exd.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
The pivotal roles of acetylcholine (ACh) in physiological processes encompass both the nervous and non-neuronal cholinergic systems (NNCS). This review delineates the synthesis, release, receptor interactions, and degradation of ACh within the nervous system, and explores the NNCS in depth within skin cells including keratinocytes, endothelial cells, fibroblasts, macrophages, and other immune cells. We highlight the NNCS's essential functions in maintaining epidermal barrier integrity, promoting wound healing, regulating microcirculation, and modulating inflammatory responses. The potential of the NNCS as a therapeutic target for localized ACh regulation in the skin is discussed, though the translation of these findings into clinical practice remains uncertain due to the complexity of cholinergic signalling and the lack of comprehensive human studies. The review progresses to therapeutic modulation strategies of the NNCS, including AChE inhibitors, nicotinic and muscarinic receptor agonists and antagonists, choline uptake enhancers, and botulinum toxin, highlighting their relevance in dermatology. We highlight the impact of the NNCS on prevalent skin diseases such as psoriasis, atopic dermatitis, rosacea, acne, bullous diseases, hyperhidrosis and hypohidrosis, illustrating its significance in disease pathogenesis and therapy. This comprehensive overview aims to enhance understanding of the NNCS's role in skin health and disease, offering a foundation for future research and therapeutic innovation.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
17
|
Wu Y, Wang X, Zhang W, Fu J, Jiang K, Shen Y, Li C, Gao H. Modulation of choline and lactate metabolism by basic fibroblast growth factor mitigates neuroinflammation in type 2 diabetes: Insights from 1H-NMR metabolomics analysis. Neuropharmacology 2024; 257:110049. [PMID: 38901641 DOI: 10.1016/j.neuropharm.2024.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Type 2 diabetes (T2D), a chronic metabolic disease, occurs brain dysfunction accompanied with neuroinflammation and metabolic disorders. The neuroprotective effects of the basic fibroblast growth factor (bFGF) have been well studied. However, the mechanism underlying the anti-inflammatory effects of bFGF remains elusive. METHODS In this study, db/db mice were employed as an in vivo model, while high glucose (HG)-induced SY5Y cells and LPS-induced BV2 cells were used as in vitro models. Liposomal transfection of MyD88 DNA plasmid was used for MyD88-NF-κB pathway studies. And western blotting, flow cytometry and qPCR were employed. 1H-NMR metabolomics was used to find out metabolic changes. RESULTS bFGF mitigated neuroinflammatory and metabolic disorders by inhibiting cortical inflammatory factor secretion and microglia hyperactivation in the cortex of db/db mice. Also, bFGF was observed to inhibit the MyD88-NF-κB pathway in high glucose (HG)-induced SY5Y cells and LPS-induced BV2 cells in in vitro experiments. Moreover, the 1H-NMR metabolomics results showed that discernible disparities between the cortical metabolic profiles of bFGF-treated db/db mice and their untreated counterparts. Notably, excessive lactate and choline deficiency attenuated the anti-inflammatory protective effect of bFGF in SY5Y cells. CONCLUSION bFGF ameliorates neuroinflammation in db/db mice by inhibiting the MyD88-NF-kB pathway. This finding expands the potential application of bFGF in the treatment of neuroinflammation-related cognitive dysfunction.
Collapse
Affiliation(s)
- Yali Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, 325035, China
| | - Xinyi Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, 325035, China
| | - Wenli Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, 325035, China
| | - Jun Fu
- Innocation Academy of Testing Technology, Wenzhou Medical University, China
| | - Kaidong Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, 325035, China
| | - Yuying Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, 325035, China
| | - Chen Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, 325035, China.
| | - Hongchang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Innocation Academy of Testing Technology, Wenzhou Medical University, China; Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
18
|
Ngoc APT, Zahoor A, Kim DG, Yang SH. Using Synbiotics as a Therapy to Protect Mental Health in Alzheimer's Disease. J Microbiol Biotechnol 2024; 34:1739-1747. [PMID: 39099195 PMCID: PMC11485767 DOI: 10.4014/jmb.2403.03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that represents a major cause of dementia worldwide. Its pathogenesis involves multiple pathways, including the amyloid cascade, tau protein, oxidative stress, and metal ion dysregulation. Recent studies have suggested a critical link between changes in gut microbial diversity and the disruption of the gut-brain axis in AD. Previous studies primarily explored the potential benefits of probiotics and prebiotics in managing AD. However, studies have yet to fully describe a novel promising approach involving the use of synbiotics, which include a combination of active probiotics and new-generation prebiotics. Synbiotics show potential for mitigating the onset and progression of AD, thereby offering a holistic approach to address the multifaceted nature of AD. This review article primarily aims to gain further insights into the mechanisms of AD, specifically the intricate interaction between gut bacteria and the brain via the gut-brain axis. By understanding this relationship, we can identify potential targets for intervention and therapeutic strategies to combat AD effectively. This review also discusses substantial evidence supporting the role of synbiotics as a promising AD treatment that surpasses traditional probiotic or prebiotic interventions. We find that synbiotics may be used not only to address cognitive decline but also to reduce AD-related psychological burden, thus enhancing the overall quality of life of patients with AD.
Collapse
Affiliation(s)
- Anh Pham Thi Ngoc
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Adil Zahoor
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Dong Gyun Kim
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
19
|
Chai W, Mao X, Li C, Zhu L, He Z, Wang B. Neurotransmitter acetylcholine mediates the mummification of Ophiocordyceps sinensis-infected Thitarodes xiaojinensis larvae. Appl Environ Microbiol 2024; 90:e0033324. [PMID: 39109874 PMCID: PMC11409639 DOI: 10.1128/aem.00333-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 09/19/2024] Open
Abstract
Parasites can manipulate host behavior to facilitate parasite transmission. One such host-pathogen interaction occurs between the fungus Ophiocordyceps sinensis and the ghost moth Thitarodes xiaojinensis. O. sinensis is involved in the mummification process of infected host larvae. However, the underlying molecular and chemical mechanism for this phenomenon is unknown. We characterized the small molecules regulating host behaviors and the altered metabolites in infected and mummified host larvae. Lipid-related metabolites, such as phosphatidylcholine, were identified in infected and mummified larvae. Decreased levels of the neurotransmitter acetylcholine (ACh) and elevated choline levels were observed in the brains of both the infected and mummified larvae. The aberrant activity of acetylcholinesterase (AChE) and relative mRNA expression of ACE2 (acetylcholinesterase) may mediate the altered transformation between ACh and choline, leading to the brain dysfunction of mummified larvae. Caspofungin treatment inhibited the mummification of infected larvae and the activity of AChE. These findings indicate the importance of ACh in the mummification of host larvae after O. sinensis infection.IMPORTANCEOphiocordyceps sinensis-infected ghost moth larvae are manipulated to move to the soil surface with their heads up in death. A fruiting body then grows from the caterpillar's head, eventually producing conidia for dispersal. However, the underlying molecular and chemical mechanism has not been characterized. In this study, we describe the metabolic profile of Thitarodes xiaojinensis host larvae after O. sinensis infection. Altered metabolites, particularly lipid-related metabolites, were identified in infected and mummified larvae, suggesting that lipids are important in O. sinensis-mediated behavioral manipulation of host larvae. Decreased levels of the neurotransmitter acetylcholine were observed in both infected and mummified larvae brains. This suggests that altered or reduced acetylcholine can mediate brain dysfunction and lead to aberrant behavior. These results reveal the critical role of acetylcholine in the mummification process of infected host larvae.
Collapse
Affiliation(s)
- Wenmin Chai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xianbing Mao
- Chongqing Xinstant Biotechnology Co., Ltd., Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongyi He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
20
|
Alshanskaia EI, Portnova GV, Liaukovich K, Martynova OV. Pupillometry and autonomic nervous system responses to cognitive load and false feedback: an unsupervised machine learning approach. Front Neurosci 2024; 18:1445697. [PMID: 39290713 PMCID: PMC11405740 DOI: 10.3389/fnins.2024.1445697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives Pupil dilation is controlled both by sympathetic and parasympathetic nervous system branches. We hypothesized that the dynamic of pupil size changes under cognitive load with additional false feedback can predict individual behavior along with heart rate variability (HRV) patterns and eye movements reflecting specific adaptability to cognitive stress. To test this, we employed an unsupervised machine learning approach to recognize groups of individuals distinguished by pupil dilation dynamics and then compared their autonomic nervous system (ANS) responses along with time, performance, and self-esteem indicators in cognitive tasks. Methods Cohort of 70 participants were exposed to tasks with increasing cognitive load and deception, with measurements of pupillary dynamics, HRV, eye movements, and cognitive performance and behavioral data. Utilizing machine learning k-means clustering algorithm, pupillometry data were segmented to distinct responses to increasing cognitive load and deceit. Further analysis compared clusters, focusing on how physiological (HRV, eye movements) and cognitive metrics (time, mistakes, self-esteem) varied across two clusters of different pupillary response patterns, investigating the relationship between pupil dynamics and autonomic reactions. Results Cluster analysis of pupillometry data identified two distinct groups with statistically significant varying physiological and behavioral responses. Cluster 0 showed elevated HRV, alongside larger initial pupil sizes. Cluster 1 participants presented lower HRV but demonstrated increased and pronounced oculomotor activity. Behavioral differences included reporting more errors and lower self-esteem in Cluster 0, and faster response times with more precise reactions to deception demonstrated by Cluster 1. Lifestyle variations such as smoking habits and differences in Epworth Sleepiness Scale scores were significant between the clusters. Conclusion The differentiation in pupillary dynamics and related metrics between the clusters underlines the complex interplay between autonomic regulation, cognitive load, and behavioral responses to cognitive load and deceptive feedback. These findings underscore the potential of pupillometry combined with machine learning in identifying individual differences in stress resilience and cognitive performance. Our research on pupillary dynamics and ANS patterns can lead to the development of remote diagnostic tools for real-time cognitive stress monitoring and performance optimization, applicable in clinical, educational, and occupational settings.
Collapse
Affiliation(s)
- Evgeniia I Alshanskaia
- Faculty of Social Sciences, School of Psychology, National Research University Higher School of Economics, Moscow, Russia
| | - Galina V Portnova
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Krystsina Liaukovich
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Olga V Martynova
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
21
|
Honwad HH, Najibi M, Koscso B, Bogunovic M, Irazoqui JE. TFEB-Mediated Pro-inflammatory Response in Murine Macrophages Induced by Acute Alpha7 Nicotinic Receptor Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577408. [PMID: 39211236 PMCID: PMC11361017 DOI: 10.1101/2024.01.26.577408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Transcription factors TFEB and TFE3 are crucial for regulating autophagy, lysosomal biogenesis, and lipid metabolism, and have significant roles in macrophage function and innate immunity. The alpha7 nicotinic acetylcholine receptor (α7nAChR), a ligand-gated Ca 2+ channel known for its therapeutic potential in neurological and inflammatory disorders, has been implicated in modulating immune responses by modulating macrophage function. Stimulation of α7nAChR with chemical agonists has been claimed to activate TFEB in pancreatic acinar cells and neurons. However, the impact of α7nAChR activation on TFEB and TFE3 in macrophages remained unknown, posing an important question due to the potential implications for inflammation regulation. This study investigates the effects of acute α7nAChR activation on TFEB-mediated responses in murine macrophages using the specific agonist PNU-282987. We demonstrate that α7nAChR stimulation triggers TFEB nuclear translocation and lysosomal expansion. Surprisingly, PNU-282987 induces a broad pro-inflammatory gene signature without concomitant cytokine secretion, suggesting an uncoupling of gene expression from cytokine release. Mechanistically, TFEB activation requires the lysosomal Ca 2+ exporter MCOLN1 and the Ca 2+ -dependent phosphatase PPP3/calcineurin. Additionally, PNU-282987 elevates reactive oxygen species (ROS) levels, and ROS are involved in TFEB activation by PNU-282987. Notably, even with α7nAChR deletion, compensatory ROS-mediated TFEB activation persists, suggesting the involvement of additional nicotinic receptors. Our findings reveal a novel α7nAChR-TFEB signaling axis in macrophages, offer new insights into the cholinergic regulation of immune responses, establish a baseline for comparison with disease states, and identify potential therapeutic targets for modulating inflammation.
Collapse
|
22
|
He L, Li M, Zhang Y, Li Q, Fang S, Chen G, Xu X. Neuroinflammation Plays a Potential Role in the Medulla Oblongata After Moderate Traumatic Brain Injury in Mice as Revealed by Nontargeted Metabonomics Analysis. J Neurotrauma 2024; 41:e2026-e2038. [PMID: 38695184 DOI: 10.1089/neu.2023.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Moderate traumatic brain injury (mTBI) involves a series of complex pathophysiological processes in not only the area in direct contact with mechanical violence but also in other brain regions far from the injury site, which may be important factors influencing subsequent neurological dysfunction or death. The medulla oblongata (MO) is a key area for the maintenance of basic respiratory and circulatory functions, whereas the pathophysiological processes after mTBI have rarely drawn the attention of researchers. In this study, we established a closed-head cortical contusion injury model, identified 6 different time points that covered the acute, subacute, and chronic phases, and then used nontargeted metabolomics to identify and analyze the changes in differential metabolites (DMs) and metabolic pathways in the MO region. Our results showed that the metabolic profile of the MO region underwent specific changes over time: harmaline, riboflavin, and dephospho-coenzyme A were identified as the key DMs and play important roles in reducing inflammation, enhancing antioxidation, and maintaining homeostasis. Choline and glycerophospholipid metabolism was identified as the key pathway related to the changes in MO metabolism at different phases. In addition, we confirmed increases in the levels of inflammatory factors and the activation of astrocytes and microglia by Western blot and immunofluorescence staining, and these findings were consistent with the nontargeted metabolomic results. These findings suggest that neuroinflammation plays a central role in MO neuropathology after mTBI and provide new insights into the complex pathophysiologic mechanisms involved after mTBI.
Collapse
Affiliation(s)
- Liangchao He
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Mingming Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Yonghao Zhang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Shiyong Fang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Guang Chen
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Xiang Xu
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
23
|
Boyle J, Yau J, Slade JL, Butts DA, Zhang Y, Legesse TB, Cellini A, Clark K, Park JY, Wimbush J, Ambulos N, Yin J, Hussain A, Onukwugha E, Knott CL, Wheeler DC, Barry KH. Neighborhood Disadvantage and Prostate Tumor RNA Expression of Stress-Related Genes. JAMA Netw Open 2024; 7:e2421903. [PMID: 38995644 PMCID: PMC11245728 DOI: 10.1001/jamanetworkopen.2024.21903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/09/2024] [Indexed: 07/13/2024] Open
Abstract
Importance African American men experience greater prostate cancer incidence and mortality than White men. Growing literature supports associations of neighborhood disadvantage, which disproportionately affects African American men, with aggressive prostate cancer; chronic stress and downstream biological impacts (eg, increased inflammation) may contribute to these associations. Objective To examine whether several neighborhood disadvantage metrics are associated with prostate tumor RNA expression of stress-related genes. Design, Setting, and Participants This cross-sectional study leveraged prostate tumor transcriptomic data for African American and White men with prostate cancer who received radical prostatectomy at the University of Maryland Medical Center between August 1992 and January 2021. Data were analyzed from May 2023 to April 2024. Exposures Using addresses at diagnosis, 2 neighborhood deprivation metrics (Area Deprivation Index [ADI] and validated bayesian Neighborhood Deprivation Index) as well as the Racial Isolation Index (RI) and historical redlining were applied to participants' addresses. Self-reported race was determined using electronic medical records. Main Outcomes and Measures A total of 105 stress-related genes were evaluated with each neighborhood metric using linear regression, adjusting for race, age, and year of surgery. Genes in the Conserved Transcriptional Response to Adversity (CTRA) and stress-related signaling genes were included. Results A total of 218 men (168 [77%] African American, 50 [23%] White) with a median (IQR) age of 58 (53-63) years were included. African American participants experienced greater neighborhood disadvantage than White participants (median [IQR] ADI, 115 [100-130] vs 92 [83-104]; median [IQR] RI, 0.68 [0.34-0.87] vs 0.11 [0.06-0.14]). ADI was positively associated with expression for 11 genes; HTR6 (serotonin pathway) remained significant after multiple-comparison adjustment (β = 0.003; SE, 0.001; P < .001; Benjamini-Hochberg q value = .01). Several genes, including HTR6, were associated with multiple metrics. We observed higher expression of 5 proinflammatory genes in the CTRA with greater neighborhood disadvantage (eg, CXCL8 and ADI, β = 0.008; SE, 0.003; P = .01; q value = .21). Conclusions and Relevance In this cross-sectional study, the expression of several stress-related genes in prostate tumors was higher among men residing in disadvantaged neighborhoods. This study is one of the first to suggest associations of neighborhood disadvantage with prostate tumor RNA expression. Additional research is needed in larger studies to replicate findings and further investigate interrelationships of neighborhood factors, tumor biology, and aggressive prostate cancer to inform interventions to reduce disparities.
Collapse
Affiliation(s)
- Joseph Boyle
- Department of Biostatistics, Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center, Richmond, Virginia
| | - Jessica Yau
- Department of Cellular and Molecular Biomedical Science, University of Maryland School of Medicine, Baltimore
| | - Jimmie L. Slade
- Maryland Community Health Engagement Partnership, Upper Marlboro
| | | | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
- Program in Oncology, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore
| | - Teklu B. Legesse
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Ashley Cellini
- Pathology Biorepository Shared Service, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore
| | - Kimberly Clark
- Pathology Biorepository Shared Service, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore
| | - Jong Y. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jessica Wimbush
- University of Maryland Greenebaum Comprehensive Cancer Center Tumor Registry, Baltimore
| | - Nicholas Ambulos
- Program in Oncology, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore
| | - Jing Yin
- Program in Oncology, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore
| | - Arif Hussain
- Program in Oncology, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore
- Department of Medicine, University of Maryland School of Medicine, Baltimore
- Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| | - Eberechukwu Onukwugha
- Program in Oncology, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore
- Department of Practice, Sciences, and Health Outcomes Research, University of Maryland School of Pharmacy, Baltimore
| | - Cheryl L. Knott
- Program in Oncology, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore
- Department of Behavioral and Community Health, University of Maryland, College Park, College Park
| | - David C. Wheeler
- Department of Biostatistics, Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center, Richmond, Virginia
| | - Kathryn Hughes Barry
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
- Program in Oncology, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore
| |
Collapse
|
24
|
Andleeb H, Papke RL, Stokes C, Richter K, Herz SM, Chiang K, Kanumuri SRR, Sharma A, Damaj MI, Grau V, Horenstein NA, Thakur GA. Explorations of Agonist Selectivity for the α9* nAChR with Novel Substituted Carbamoyl/Amido/Heteroaryl Dialkylpiperazinium Salts and Their Therapeutic Implications in Pain and Inflammation. J Med Chem 2024; 67:8642-8666. [PMID: 38748608 PMCID: PMC11181317 DOI: 10.1021/acs.jmedchem.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
There is an urgent need for nonopioid treatments for chronic and neuropathic pain to provide effective alternatives amid the escalating opioid crisis. This study introduces novel compounds targeting the α9 nicotinic acetylcholine receptor (nAChR) subunit, which is crucial for pain regulation, inflammation, and inner ear functions. Specifically, it identifies novel substituted carbamoyl/amido/heteroaryl dialkylpiperazinium iodides as potent agonists selective for human α9 and α9α10 over α7 nAChRs, particularly compounds 3f, 3h, and 3j. Compound 3h (GAT2711) demonstrated a 230 nM potency as a full agonist at α9 nAChRs, being 340-fold selective over α7. Compound 3c was 10-fold selective for α9α10 over α9 nAChR. Compounds 2, 3f, and 3h inhibited ATP-induced interleukin-1β release in THP-1 cells. The analgesic activity of 3h was fully retained in α7 knockout mice, suggesting that analgesic effects were potentially mediated through α9* nAChRs. Our findings provide a blueprint for developing α9*-specific therapeutics for pain.
Collapse
Affiliation(s)
- Hina Andleeb
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Roger L. Papke
- Department
of Pharmacology and Therapeutics, University
of Florida, P.O. Box 100267, Gainesville, Florida 32610, United States
| | - Clare Stokes
- Department
of Pharmacology and Therapeutics, University
of Florida, P.O. Box 100267, Gainesville, Florida 32610, United States
| | - Katrin Richter
- Department
of General and Thoracic Surgery, Laboratory of Experimental Surgery,
Justus-Liebig-University, German Center for Lung Research [DZL], Cardio-Pulmonary Institute [CPI], Giessen 35385, Germany
| | - Sara M. Herz
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Ka Chiang
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Siva R. Raju Kanumuri
- Department
of Pharmaceutics, University of Florida, Gainesville, Florida 32610, United States
| | - Abhisheak Sharma
- Department
of Pharmaceutics, University of Florida, Gainesville, Florida 32610, United States
| | - M. Imad Damaj
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Veronika Grau
- Department
of General and Thoracic Surgery, Laboratory of Experimental Surgery,
Justus-Liebig-University, German Center for Lung Research [DZL], Cardio-Pulmonary Institute [CPI], Giessen 35385, Germany
| | - Nicole A. Horenstein
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Ganesh A. Thakur
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
25
|
Ben-Azu B, Adebayo OG, Fokoua AR, Oritsemuelebi B, Chidebe EO, Nwogueze CB, Kumanwee L, Uyere GE, Emuakpeje MT. Antipsychotic effect of diosgenin in ketamine-induced murine model of schizophrenia: Involvement of oxidative stress and cholinergic transmission. IBRO Neurosci Rep 2024; 16:86-97. [PMID: 38282757 PMCID: PMC10818187 DOI: 10.1016/j.ibneur.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
A decrease in the levels of antioxidant arsenals exacerbate generation of reactive oxygen/nitrogen species, leading to neurochemical dysfunction, with significant impact on the pathogenesis of psychotic disorders such as schizophrenia. This study examined the preventive and reversal effects of diosgenin, a phyto-steroidal saponin with antioxidant functions in mice treated with ketamine which closely replicates schizophrenia-like symptoms in human and laboratory animals. In the preventive phase, adult mice cohorts were clustered into 5 groups (n = 9). Groups 1 and 2 received saline (10 mL/kg, i.p.), groups 3 and 4 were pretreated with diosgenin (25 and 50 mg/kg), and group 5 received risperidone (0.5 mg/kg) orally for 14 days. Mice in groups 2-5 additionally received a daily dose of ketamine (20 mg/kg, i.p.) or saline (10 mL/kg/day, i.p.). In the reversal phase, mice received intraperitoneal injection of ketamine or saline for 14 consecutive days prior to diosgenin (25 and 50 mg/kg/p.o./day) and risperidone (0.5 mg/kg/p.o./day) treatment from days 8-14. Mice were assessed for behavioral changes. Oxidative, nitrergic markers, and cholinergic (acetylcholinesterase activity) transmission were examined in the striatum, prefrontal-cortex and hippocampus. Diosgenin prevented and reversed hyperlocomotion, cognitive and social deficits in mice treated with ketamine relative to ketamine groups. The increased acetylcholinesterase, malondialdehyde and nitrite levels produced by ketamine were reduced by diosgenin in the striatum, prefrontal-cortex and hippocampus, but did not reverse striatal nitrite level. Diosgenin increased glutathione, and catalase levels, except for hippocampal catalase activity when compared with ketamine controls. Conclusively, these biochemical changes might be related to the behavioral deficits in ketamine-treated mice, which were prevented and reversed by diosgenin.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Olusegun G. Adebayo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aliance Romain Fokoua
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
- Research unit of Neuroinflammatory and Cardiovascular Pharmacology, Department of Animal Biology, Faculty of Sciences, University of Dschang, Cameroon
| | - Benjamin Oritsemuelebi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emmanuel O. Chidebe
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Chukwuebuka B. Nwogueze
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Lenatababari Kumanwee
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - God'swill E. Uyere
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Micheal T. Emuakpeje
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
26
|
Li X, Zheng T, Zhang J, Chen H, Xiang C, Sun Y, Dang Y, Ding P, Hu G, Yu Y. Photoaged polystyrene microplastics result in neurotoxicity associated with neurotransmission and neurodevelopment in zebrafish larvae (Danio rerio). ENVIRONMENTAL RESEARCH 2024; 250:118524. [PMID: 38401682 DOI: 10.1016/j.envres.2024.118524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Microplastics (MPs) are emerging pollutants widely distributed in the environment, inducing toxic effects in various organisms. However, the neurotoxicity and underlying mechanisms of simulated sunlight-aged MPs have rarely been investigated. In this study, zebrafish (Danio rerio) were exposed to environmentally relevant concentrations (0, 0.1, 1, 10, and 100 μg/L) of virgin polystyrene (V-PS) and aged polystyrene (A-PS) for 120 hpf to evaluate the neurotoxicity. The results demonstrated that simulated sunlight irradiation altered the physicochemical properties (morphology, functional groups, and chemical composition) of V-PS. Exposure to A-PS causes greater toxicity on locomotor ability in larval zebrafish than V-PS. Motor neuron development was disrupted by transgenic (hb9-GFP) zebrafish larvae exposed to A-PS, with significant alterations in neurotransmitter levels (ACh, DA, 5-HT, and GABA) and enzyme activity (AChE, ChAT, and ChE). Further investigation found that exposure to A-PS had a significantly impact on the expression of neurotransmission and neurodevelopment-related genes in zebrafish. These findings suggest that A-PS induces neurotoxicity by its effects on neurotransmission and neurodevelopment. This study highlights the neurotoxic effects and mechanisms of simulated sunlight irradiation of MPs, providing new insights for assessing the ecological risks of photoaged MPs in the environment.
Collapse
Affiliation(s)
- Xintong Li
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chongdan Xiang
- Department of Public Health Emergency Preparedness and Response, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Yanan Sun
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Guocheng Hu
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
27
|
Wu Q, Xia Y, Guo MS, Au TY, Yuen GKW, Kong I, Wang Z, Lin Y, Dong TTX, Tsim KWK. Acetylcholinesterase is regulated by exposure of ultraviolet B in skin keratinocytes: A potential inducer of cholinergic urticaria. FASEB J 2024; 38:e23641. [PMID: 38690717 DOI: 10.1096/fj.202400146r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Cholinergic urticaria is a dermatological disease characterized by the presence of large patches of red skin and transient hives triggered by factors, such as exercise, sweating, and psychological tension. This skin problem is hypothesized to be attributed to a reduced expression of acetylcholinesterase (AChE), an enzyme responsible for hydrolyzing acetylcholine (ACh). Consequently, ACh is thought to the leak from sympathetic nerves to skin epidermis. The redundant ACh stimulates the mast cells to release histamine, triggering immune responses in skin. Here, the exposure of ultraviolet B in skin suppressed the expression of AChE in keratinocytes, both in in vivo and in vitro models. The decrease of the enzyme was resulted from a declined transcription of ACHE gene mediated by micro-RNAs, that is, miR-132 and miR-212. The levels of miR-132 and miR-212 were markedly induced by exposure to ultraviolet B, which subsequently suppressed the transcriptional rate of ACHE. In the presence of low level of AChE, the overflow ACh caused the pro-inflammatory responses in skin epidermis, including increased secretion of cytokines and COX-2. These findings suggest that ultraviolet B exposure is one of the factors contributing to cholinergic urticaria in skin.
Collapse
Affiliation(s)
- Qiyun Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen, China
| | - Yingjie Xia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Maggie Suisui Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tsz Yu Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gary K W Yuen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ivan Kong
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhengqi Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yingyi Lin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina T X Dong
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen, China
| | - Karl W K Tsim
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen, China
| |
Collapse
|
28
|
Panda SP, Kesharwani A, Datta S, Prasanth DSNBK, Panda SK, Guru A. JAK2/STAT3 as a new potential target to manage neurodegenerative diseases: An interactive review. Eur J Pharmacol 2024; 970:176490. [PMID: 38492876 DOI: 10.1016/j.ejphar.2024.176490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Neurodegenerative diseases (NDDs) are a collection of incapacitating disorders in which neuroinflammation and neuronal apoptosis are major pathological consequences due to oxidative stress. Neuroinflammation manifests in the impacted cerebral areas as a result of pro-inflammatory cytokines stimulating the Janus Kinase2 (JAK2)/Signal Transducers and Activators of Transcription3 (STAT3) pathway via neuronal cells. The pro-inflammatory cytokines bind to their respective receptor in the neuronal cells and allow activation of JAK2. Activated JAK2 phosphorylates tyrosines on the intracellular domains of the receptor which recruit the STAT3 transcription factor. The neuroinflammation issues are exacerbated by the active JAK2/STAT3 signaling pathway in conjunction with additional transcription factors like nuclear factor kappa B (NF-κB), and the mammalian target of rapamycin (mTOR). Neuronal apoptosis is a natural process made worse by persistent neuroinflammation and immunological responses via caspase-3 activation. The dysregulation of micro-RNA (miR) expression has been observed in the consequences of neuroinflammation and neuronal apoptosis. Neuroinflammation and neuronal apoptosis-associated gene amplification may be caused by dysregulated miR-mediated aberrant phosphorylation of JAK2/STAT3 signaling pathway components. Therefore, JAK2/STAT3 is an attractive therapeutic target for NDDs. Numerous synthetic and natural small molecules as JAK2/STAT3 inhibitors have therapeutic advances against a wide range of diseases, and many are now in human clinical studies. This review explored the interactive role of the JAK2/STAT3 signaling system with key pathological factors during the reinforcement of NDDs. Also, the clinical trial data provides reasoning evidence about the possible use of JAK2/STAT3 inhibitors to abate neuroinflammation and neuronal apoptosis in NDDs.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Samaresh Datta
- Department of Pharmaceutical Chemistry, Birbhum Pharmacy School, Sadaipur, Birbhum, West Bengal, India
| | - D S N B K Prasanth
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad, 509301, India
| | | | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
29
|
Li WW, Shi XY, Wei T, Guo TZ, Kingery WS, Clark JD. Alpha-7 Nicotinic Acetylcholine Receptor Activation Inhibits Trauma Induced Pronociceptive Autoimmune Responses. THE JOURNAL OF PAIN 2024; 25:104422. [PMID: 37951284 PMCID: PMC11058031 DOI: 10.1016/j.jpain.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Both autonomic nervous system dysfunction and immune system activation are characteristic of chronic pain after limb injuries. Cholinergic agonists reduce immune system activation in many settings. We hypothesized, therefore, that alpha-7 nicotinic acetylcholine receptor (α7nAChR) agonist administration would reduce nociceptive and immune changes after tibia fracture and cast immobilization in mice. Fracture mice were treated with either vehicle, a low (.2 mg/kg) dose, or a high (1 mg/kg) dose of the selective α7nAChR agonist PNU-282987 for 4 weeks. We assessed hindpaw allodynia and weight bearing as behavioral outcomes. The assessment of adaptive immune responses included regional lymph node hypertrophy, germinal center formation, α7nAChR expression, and IgM deposition. Assessment of innate immune system activation focused on IL-1β and IL-6 generation in fractured hindlimb skin. We observed that mechanical allodynia and unweighting were alleviated by PNU-282987 treatment. Drug treatment also reduced popliteal lymph node hypertrophy and germinal center formation. Immunohistochemical studies localized α7nAChR to germinal center B lymphocytes, and this expression increased after fracture. Analysis of fracture limb hindpaw skin demonstrated increased inflammatory mediator (IL-1β and IL-6) levels and IgM deposition, which were abrogated by PNU-282987. Serum analyses demonstrated fracture-induced IgM reactivity against keratin 16, histone 3.2, GFAP, and NMDAR-2B. Administration of PNU-282987 reduced the enhancement of IgM reactivity. Collectively, these data suggest that the α7nAChR is involved in regulating posttraumatic innate and adaptive immune responses and the associated nociceptive sensitization. PERSPECTIVE: These studies evaluate the effects of a selective α7nAChR agonist in a tibial fracture/cast immobilization model of limb pain. Administration of the drug reduced nociceptive and functional changes 4 weeks after injury. These novel findings suggest that well-tolerated α7nAChR agonists may be viable analgesics for chronic pain after limb injuries.
Collapse
Affiliation(s)
- Wen-wu Li
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Xiao-you Shi
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Tian-Zhi Guo
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - J. David Clark
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
- Anesthesiology Service Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| |
Collapse
|
30
|
Xing L, Ma P, Chen F. A novel turn-on near-infrared fluorescent probe for highly sensitive in vitro and in vivo detection of acetylcholinesterase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123954. [PMID: 38290281 DOI: 10.1016/j.saa.2024.123954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
Acetylcholinesterase (AChE) is a key enzyme in the cholinergic pathway of the nervous systems, with its aberrant expression linked to various diseases. In this study, we have developed a novel Turn-On near-infrared fluorescent probe, TQ-AChE, for the sensitive and selective detection of AChE activity. Characterized by its near-infrared emission at 740 nm, TQ-AChE effectively overcomes the limitations of traditional fluorescent probes, such as short excitation wavelengths and limited tissue penetration, crucial for both in vitro and in vivo applications. The probe's low limit of detection (LOD) of 0.02 U/mL for AChE makes it highly sensitive, enabling rapid quantification of AChE activity in serum effectively. Cell imaging studies demonstrate that TQ-AChE can confirm higher AChE activity expression in normal liver cells compared to liver cancer cells. TQ-AChE can also monitor AChE fluctuations in APAP-induced acute effectively, facilitating the evaluation of the efficacy of liver detoxifying agents. Additionally, in vivo studies in mouse models validate the potential of the probe in real-time monitoring of AChE expression in liver injury. The ability of TQ-AChE to visualize AChE expression signifies its potential as a promising tool for early liver disease diagnosis and therapeutic monitoring, opening new possibilities in hepatological research and clinical diagnostics.
Collapse
Affiliation(s)
- Lei Xing
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130030, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130030, China.
| |
Collapse
|
31
|
Knox D, Parikh V. Basal forebrain cholinergic systems as circuits through which traumatic stress disrupts emotional memory regulation. Neurosci Biobehav Rev 2024; 159:105569. [PMID: 38309497 PMCID: PMC10948307 DOI: 10.1016/j.neubiorev.2024.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Contextual and spatial systems facilitate changes in emotional memory regulation brought on by traumatic stress. Cholinergic basal forebrain (chBF) neurons provide input to contextual/spatial systems and although chBF neurons are important for emotional memory, it is unknown how they contribute to the traumatic stress effects on emotional memory. Clusters of chBF neurons that project to the prefrontal cortex (PFC) modulate fear conditioned suppression and passive avoidance, while clusters of chBF neurons that project to the hippocampus (Hipp) and PFC (i.e. cholinergic medial septum and diagonal bands of Broca (chMS/DBB neurons) are critical for fear extinction. Interestingly, neither Hipp nor PFC projecting chMS/DBB neurons are critical for fear extinction. The retrosplenial cortex (RSC) is a contextual/spatial memory system that receives input from chMS/DBB neurons, but whether this chMS/DBB-RSC circuit facilitates traumatic stress effects on emotional memory remain unexplored. Traumatic stress leads to neuroinflammation and the buildup of reactive oxygen species. These two molecular processes may converge to disrupt chBF circuits enhancing the impact of traumatic stress on emotional memory.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, Behavioral Neuroscience Program, University of Delaware, Newark, DE, USA.
| | - Vinay Parikh
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
32
|
Pochini L, Galluccio M, Console L, Scalise M, Eberini I, Indiveri C. Inflammation and Organic Cation Transporters Novel (OCTNs). Biomolecules 2024; 14:392. [PMID: 38672410 PMCID: PMC11048549 DOI: 10.3390/biom14040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammation is a physiological condition characterized by a complex interplay between different cells handled by metabolites and specific inflammatory-related molecules. In some pathological situations, inflammation persists underlying and worsening the pathological state. Over the years, two membrane transporters namely OCTN1 (SLC22A4) and OCTN2 (SLC22A5) have been shown to play specific roles in inflammation. These transporters form the OCTN subfamily within the larger SLC22 family. The link between these proteins and inflammation has been proposed based on their link to some chronic inflammatory diseases such as asthma, Crohn's disease (CD), and rheumatoid arthritis (RA). Moreover, the two transporters show the ability to mediate the transport of several compounds including carnitine, carnitine derivatives, acetylcholine, ergothioneine, and gut microbiota by-products, which have been specifically associated with inflammation for their anti- or proinflammatory action. Therefore, the absorption and distribution of these molecules rely on the presence of OCTN1 and OCTN2, whose expression is modulated by inflammatory cytokines and transcription factors typically activated by inflammation. In the present review, we wish to provide a state of the art on OCTN1 and OCTN2 transport function and regulation in relationships with inflammation and inflammatory diseases focusing on the metabolic signature collected in different body districts and gene polymorphisms related to inflammatory diseases.
Collapse
Affiliation(s)
- Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Michele Galluccio
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
| | - Lara Console
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
| | - Mariafrancesca Scalise
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Cesare Indiveri
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
33
|
Su J, Yang L, Sun Z, Zhan X. Personalized Drug Therapy: Innovative Concept Guided With Proteoformics. Mol Cell Proteomics 2024; 23:100737. [PMID: 38354979 PMCID: PMC10950891 DOI: 10.1016/j.mcpro.2024.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Personalized medicine can reduce adverse effects, enhance drug efficacy, and optimize treatment outcomes, which represents the essence of personalized medicine in the pharmacy field. Protein drugs are crucial in the field of personalized drug therapy and are currently the mainstay, which possess higher target specificity and biological activity than small-molecule chemical drugs, making them efficient in regulating disease-related biological processes, and have significant potential in the development of personalized drugs. Currently, protein drugs are designed and developed for specific protein targets based on patient-specific protein data. However, due to the rapid development of two-dimensional gel electrophoresis and mass spectrometry, it is now widely recognized that a canonical protein actually includes multiple proteoforms, and the differences between these proteoforms will result in varying responses to drugs. The variation in the effects of different proteoforms can be significant and the impact can even alter the intended benefit of a drug, potentially making it harmful instead of lifesaving. As a result, we propose that protein drugs should shift from being targeted through the lens of protein (proteomics) to being targeted through the lens of proteoform (proteoformics). This will enable the development of personalized protein drugs that are better equipped to meet patients' specific needs and disease characteristics. With further development in the field of proteoformics, individualized drug therapy, especially personalized protein drugs aimed at proteoforms as a drug target, will improve the understanding of disease mechanisms, discovery of new drug targets and signaling pathways, provide a theoretical basis for the development of new drugs, aid doctors in conducting health risk assessments and making more cost-effective targeted prevention strategies conducted by artificial intelligence/machine learning, promote technological innovation, and provide more convenient treatment tailored to individualized patient profile, which will benefit the affected individuals and society at large.
Collapse
Affiliation(s)
- Junwen Su
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lamei Yang
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziran Sun
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
34
|
Lemos IDS, Torres CA, Alano CG, Matiola RT, de Figueiredo Seldenreich R, Padilha APZ, De Pieri E, Effting PS, Machado-De-Ávila RA, Réus GZ, Leipnitz G, Streck EL. Memantine Improves Memory and Neurochemical Damage in a Model of Maple Syrup Urine Disease. Neurochem Res 2024; 49:758-770. [PMID: 38104040 DOI: 10.1007/s11064-023-04072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is a metabolic disease characterized by the accumulation of branched-chain amino acids (BCAA) in different tissues due to a deficit in the branched-chain alpha-ketoacid dehydrogenase complex. The most common symptoms are poor feeding, psychomotor delay, and neurological damage. However, dietary therapy is not effective. Studies have demonstrated that memantine improves neurological damage in neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Therefore, we hypothesize that memantine, an NMDA receptor antagonist can ameliorate the effects elicited by BCAA in an MSUD animal model. For this, we organized the rats into four groups: control group (1), MSUD group (2), memantine group (3), and MSUD + memantine group (4). Animals were exposed to the MSUD model by the administration of BCAA (15.8 µL/g) (groups 2 and 4) or saline solution (0.9%) (groups 1 and 3) and treated with water or memantine (5 mg/kg) (groups 3 and 4). Our results showed that BCAA administration induced memory alterations, and changes in the levels of acetylcholine in the cerebral cortex. Furthermore, induction of oxidative damage and alterations in antioxidant enzyme activities along with an increase in pro-inflammatory cytokines were verified in the cerebral cortex. Thus, memantine treatment prevented the alterations in memory, acetylcholinesterase activity, 2',7'-Dichlorofluorescein oxidation, thiobarbituric acid reactive substances levels, sulfhydryl content, and inflammation. These findings suggest that memantine can improve the pathomechanisms observed in the MSUD model, and may improve oxidative stress, inflammation, and behavior alterations.
Collapse
Affiliation(s)
- Isabela da Silva Lemos
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Antunes Torres
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Giassi Alano
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rafaela Tezza Matiola
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rejane de Figueiredo Seldenreich
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Alex Paulo Zeferino Padilha
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ellen De Pieri
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Pauline Souza Effting
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ricardo Andrez Machado-De-Ávila
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Gislaine Zilli Réus
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Emilio Luiz Streck
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
35
|
Moftah HK, Mousa MHA, Elrazaz EZ, Kamel AS, Lasheen DS, Georgey HH. Novel quinazolinone Derivatives: Design, synthesis and in vivo evaluation as potential agents targeting Alzheimer disease. Bioorg Chem 2024; 143:107065. [PMID: 38150939 DOI: 10.1016/j.bioorg.2023.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Since Alzheimer disease is one of the most prevalent types of dementia with a high mortality and disability rate, so development of multi-target drugs becomes the major strategy for battling AD. This study shows the development of a series of quinazolinone based derivatives as novel, multifunctional anti-AD drugs that exhibit both cholinesterase inhibitoryand anti-inflammatory properties. The preliminary results of the in vitro AChE inhibition activity showed that compounds 4b, 5a, 6f, 6h and 7b were better represented for further evaluation. Furthermore, in-vivo AChE inhibition activity and behavior Morris water maze test against donepezil as reference drug were evaluated. Additionally, hippocampal inflammatory markers; TNF-α, NFĸB, IL-1β and IL-6 and antioxidant markers; SOD and MDA were assessed to evaluate the efficacy of quinazolinone derivatives against AD hallmarks. The results showed that 6f, 6h and 7b have promising anti-acetylcholinesterase, anti-inflammatory and antioxidant activities thus, have a significant effect in treatment of AD. Moreover, Histopathological examination revealed that 6f, 6h and 7b derivatives have neuroprotective effect against neuronal damage caused by induced scopolamine model in mice. Finally, the binding ability of the synthesized derivatives to the target, AChE was investigated through molecular docking which reflected significant interactions to the target based on their docking binding scores. Hence, the newly designed quinazolinone derivatives possess promising anti-acetylcholinesterase activity and challenging for the management of AD in the future.
Collapse
Affiliation(s)
- Hadeer K Moftah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez st, PO 11786, Cairo, Egypt
| | - Mai H A Mousa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez st, PO 11786, Cairo, Egypt
| | - Eman Z Elrazaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez st, PO 11786 Cairo, Egypt
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt
| | - Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| |
Collapse
|
36
|
Rivera-García LG, Francis-Malavé AM, Castillo ZW, Uong CD, Wilson TD, Ferchmin PA, Eterovic V, Burton MD, Carrasquillo Y. Anti-hyperalgesic and anti-inflammatory effects of 4R-tobacco cembranoid in a mouse model of inflammatory pain. J Inflamm (Lond) 2024; 21:2. [PMID: 38267952 PMCID: PMC10809744 DOI: 10.1186/s12950-023-00373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
4R is a tobacco cembranoid that binds to and modulates cholinergic receptors and exhibits neuroprotective and anti-inflammatory activity. Given the established function of the cholinergic system in pain and inflammation, we propose that 4R is also analgesic. Here, we tested the hypothesis that systemic 4R treatment decreases pain-related behaviors and peripheral inflammation via modulation of the alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) in a mouse model of inflammatory pain. We elicited inflammation by injecting Complete Freund's Adjuvant (CFA) into the hind paw of male and female mice. We then assessed inflammation-induced hypersensitivity to cold, heat, and tactile stimulation using the Acetone, Hargreaves, and von Frey tests, respectively, before and at different time points (2.5 h - 8d) after a single systemic 4R (or vehicle) administration. We evaluated the contribution of α7 nAChRs 4R-mediated analgesia by pre-treating mice with a selective antagonist of α7 nAChRs followed by 4R (or vehicle) administration prior to behavioral tests. We assessed CFA-induced paw edema and inflammation by measuring paw thickness and quantifying immune cell infiltration in the injected hind paw using hematoxylin and eosin staining. Lastly, we performed immunohistochemical and flow cytometric analyses of paw skin in α7 nAChR-cre::Ai9 mice to measure the expression of α7 nAChRs on immune subsets. Our experiments show that systemic administration of 4R decreases inflammation-induced peripheral hypersensitivity in male and female mice and inflammation-induced paw edema in male but not female mice. Notably, 4R-mediated analgesia and anti-inflammatory effects lasted up to 8d after a single systemic administration on day 1. Pretreatment with an α7 nAChR-selective antagonist prevented 4R-mediated analgesia and anti-inflammatory effects, demonstrating that 4R effects are via modulation of α7 nAChRs. We further show that a subset of immune cells in the hind paw expresses α7 nAChRs. However, the number of α7 nAChR-expressing immune cells is unaltered by CFA or 4R treatment, suggesting that 4R effects are independent of α7 nAChR-expressing immune cells. Together, our findings identify a novel function of the 4R tobacco cembranoid as an analgesic agent in both male and female mice that reduces peripheral inflammation in a sex-dependent manner, further supporting the pharmacological targeting of the cholinergic system for pain treatment.
Collapse
Affiliation(s)
- Luis G Rivera-García
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA
- Department of Neuroscience, Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico, USA
| | - Adela M Francis-Malavé
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA
| | - Zachary W Castillo
- Neuroimmunology and Behavior Group, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| | - Calvin D Uong
- Neuroimmunology and Behavior Group, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| | - Torri D Wilson
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA
| | - P A Ferchmin
- Department of Neuroscience, Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico, USA
| | - Vesna Eterovic
- Department of Neuroscience, Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Group, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas, Dallas, USA
| | - Yarimar Carrasquillo
- Division of Intramural Research National Center for Complementary and Integrative Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA.
- National Institute On Drug Abuse, National Institutes of Health, 35 Convent Drive, Building 35A / Room 1E-410, Bethesda, MD, 20892, USA.
| |
Collapse
|
37
|
Wei Y, Edstorp J, Feychting M, Andersson T, Carlsson S. Prenatal and adult exposure to smoking and incidence of type 1 diabetes in children and adults-a nationwide cohort study with a family-based design. THE LANCET REGIONAL HEALTH. EUROPE 2024; 36:100775. [PMID: 38019976 PMCID: PMC10652139 DOI: 10.1016/j.lanepe.2023.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Background Prenatal exposure to smoking is linked to a reduced risk of type 1 diabetes in children. We wanted to find out if the risk of adult-onset type 1 diabetes is reduced in individuals who are exposed to smoking prenatally or during adulthood. Methods We linked Swedish, nationwide registers and prospectively analyzed incidence of type 1 diabetes in relation to maternal smoking during pregnancy and adult smoking. Everyone was followed until age 30 or year 2019. We employed cohort and sibling design and used adjusted Cox regression and conditional logistic regression. Findings For analyses of maternal smoking there were 3,170,386 individuals (18,745 cases of type 1 diabetes) and for adult smoking 1,608,291 individuals (1274 cases). Prenatal exposure to smoking was associated with lower incidence of type 1 diabetes during childhood and young adulthood (age 20-24, Hazard ratio (HR) 0.76, 95% Confidence interval 0.67-0.87), but not at higher ages. The HR associated with adult smoking was estimated at 1.14 (CI 1.00-1.31) overall and 1.34 (CI 1.03-1.75) in those with family history of diabetes. In sibling analyses, the odds ratio (OR) of type 1 diabetes in relation to prenatal exposure was 0.71 (CI 0.62-0.81) in children and 1.06 (CI 0.75-1.51) in adults (age 19-30), while adult smoking conferred an OR of 1.59 (CI 1.08-2.35). Interpretation These findings indicate that a reduced risk conferred by tobacco exposure is limited to the prenatal period and type 1 diabetes developing during childhood. Adult smoking may be a risk factor for adult-onset type 1 diabetes, especially in people with family history of diabetes. Funding Swedish Research Councils, Swedish Diabetes and Novo Nordisk Foundations, China Scholarship Council.
Collapse
Affiliation(s)
- Yuxia Wei
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm S-171 77, Sweden
| | - Jessica Edstorp
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm S-171 77, Sweden
| | - Maria Feychting
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm S-171 77, Sweden
| | - Tomas Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm S-171 77, Sweden
- Center for Occupational and Environmental Medicine, Region Stockholm, Solnavägen 4, Stockholm S-113 65, Sweden
| | - Sofia Carlsson
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm S-171 77, Sweden
| |
Collapse
|
38
|
Rasmi Y, Shokati A, Hatamkhani S, Farnamian Y, Naderi R, Jalali L. Assessment of the relationship between the dopaminergic pathway and severe acute respiratory syndrome coronavirus 2 infection, with related neuropathological features, and potential therapeutic approaches in COVID-19 infection. Rev Med Virol 2024; 34:e2506. [PMID: 38282395 DOI: 10.1002/rmv.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/06/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Dopamine is a known catecholamine neurotransmitter involved in several physiological processes, including motor control, motivation, reward, cognition, and immune function. Dopamine receptors are widely distributed throughout the nervous system and in immune cells. Several viruses, including human immunodeficiency virus and Japanese encephalitis virus, can use dopaminergic receptors to replicate in the nervous system and are involved in viral neuropathogenesis. In addition, studies suggest that dopaminergic receptors may play a role in the progression and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. When SARS-CoV-2 binds to angiotensin-converting enzyme 2 receptors on the surface of neuronal cells, the spike protein of the virus can bind to dopaminergic receptors on neighbouring cells to accelerate its life cycle and exacerbate neurological symptoms. In addition, recent research has shown that dopamine is an important regulator of the immune-neuroendocrine system. Most immune cells express dopamine receptors and other dopamine-related proteins, indicating the importance of dopaminergic immune regulation. The increase in dopamine concentration during SARS-CoV2 infection may reduce immunity (innate and adaptive) that promotes viral spread, which could lead to neuronal damage. In addition, dopaminergic signalling in the nervous system may be affected by SARS-CoV-2 infection. COVID -19 can cause various neurological symptoms as it interacts with the immune system. One possible treatment strategy for COVID -19 patients could be the use of dopamine antagonists. To fully understand how to protect the neurological system and immune cells from the virus, we need to study the pathophysiology of the dopamine system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
39
|
Jovičić SM. Enzyme ChE, cholinergic therapy and molecular docking: Significant considerations and future perspectives. Int J Immunopathol Pharmacol 2024; 38:3946320241289013. [PMID: 39367568 PMCID: PMC11526157 DOI: 10.1177/03946320241289013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
Enzyme Che plays an essential role in cholinergic and non-cholinergic functions. It is present in the fertilized/unfertilized eggs and sperm of different species. Inclusion criteria for data collection from electronic databases NCBI and Google Scholar are enzyme AChE/BChE, cholinergic therapy, genomic organization and gene transcription, enzyme structure, biogenesis, transport, processing and localization, molecular signaling and biological function, polymorphism and influencing factors. Enzyme Che acts as a signaling receptor during hematopoiesis, protein adhesion, amyloid fiber formation, neurite outgrowth, bone development, and maturation, explaining the activity out of synaptic neurotransmission. Polymorphism in the Che genes correlates to various diseases and diverse drug responses. In particular, change accompanies cancer, neurodegenerative, and cardiovascular disease. Literature knowledge indicates the importance of Che inhibitors that influence biochemical and molecular pathways in disease treatment, genomic organization, gene transcription, structure, biogenesis, transport, processing, and localization of Che enzyme. Enzyme Che polymorphism changes indicate the possibility of efficient and new inhibitor drug target mechanisms in diverse research areas.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
40
|
Pan C, Liu J, Gao Y, Yang M, Hu H, Liu C, Qian M, Yuan HY, Yang S, Zheng MH, Wang L. Hepatocyte CHRNA4 mediates the MASH-promotive effects of immune cell-produced acetylcholine and smoking exposure in mice and humans. Cell Metab 2023; 35:2231-2249.e7. [PMID: 38056431 DOI: 10.1016/j.cmet.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/28/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading risk factor for liver cirrhosis and hepatocellular carcinoma. Here, we report that CHRNA4, a subunit of nicotinic acetylcholine receptors (nAChRs), is an accelerator of MASH progression. CHRNA4 also mediates the MASH-promotive effects induced by smoking. Chrna4 was expressed specifically in hepatocytes and exhibited increased levels in mice and patients with MASH. Elevated CHRNA4 levels were positively correlated with MASH severity. We further revealed that during MASH development, acetylcholine released from immune cells or nicotine derived from smoking functioned as an agonist to activate hepatocyte-intrinsic CHRNA4, inducing calcium influx and activation of inflammatory signaling. The communication between immune cells and hepatocytes via the acetylcholine-CHRNA4 axis led to the production of a variety of cytokines, eliciting inflammation in liver and promoting the pathogenesis of MASH. Genetic and pharmacological inhibition of CHRNA4 protected mice from diet-induced MASH. Targeting CHRNA4 might be a promising strategy for MASH therapeutics.
Collapse
Affiliation(s)
- Chuyue Pan
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Jun Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Yingsheng Gao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Maohui Yang
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China
| | - Haiyang Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Chang Liu
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China
| | - Minyi Qian
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Hai-Yang Yuan
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Song Yang
- Department of Hepatology, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing 100015, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| | - Lirui Wang
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
41
|
Nolte TM. 300-fold higher neuro- and immunotoxicity from low-redox transformation of carbamazepine. Toxicol Rep 2023; 11:319-329. [PMID: 37927955 PMCID: PMC10622881 DOI: 10.1016/j.toxrep.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023] Open
Abstract
Current challenges in (eco)toxicology are in understanding the transformation of (reactive) substances, and how transformation affects toxic modes of action. Empirical assessment of transformation products of, practically an infinite number of substances, via experimentation, is impossible. Predicting transformation products for (benchmarking) compounds from conditions, facilitates risk analyses. This study applied calculus to predict transformation products of an important environmental and medicinal/toxicological marker, carbamazepine. As radicals are ubiquitous in humans and the environment, we looked into radical-mediated transformations of carbamazepine as a benchmark. We calculated proportions of their speciation states as function of redox conditions, which we took as pH and O2 concentration, describing transformation via covalent and ionic interactions. Formation of ring-contracted products with neuro-immunological activity is thermodynamically favored under anaerobic conditions and at low pH. Experimentally observed product distributions and toxicities reflect that pattern. Our predictive method may support toxicity predictions for other substances and conditions 'similar' to the current case study via interpolation. This paves the way for a more coherent, effective and easier risk assessment of transformation products.
Collapse
Affiliation(s)
- Tom M. Nolte
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud, University Nijmegen, 6500 GL Nijmegen, the Netherlands
- Eidgenössische Technische Hochschule (ETH) Zurich, Laboratory of Inorganic Chemistry, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
42
|
Jain SK, Justin Margret J, Lally M. Positive association of acetylcholinesterase (AChE) with the neutrophil-to-lymphocyte ratio and HbA1c, and a negative association with hydrogen sulfide (H 2S) levels among healthy African Americans, and H 2S-inhibition and high-glucose-upregulation of AChE in cultured THP-1 human monocytes. Free Radic Biol Med 2023; 209:185-190. [PMID: 37866755 DOI: 10.1016/j.freeradbiomed.2023.10.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The incidence of Alzheimer's disease (AD) is higher in people over the age of 65 and in African Americans (AA). Elevated acetylcholinesterase (AChE) activity has been considered a major player in the onset of AD symptoms. As a result, many FDA-approved AD drugs target AChE inhibition to treat AD patients. Hydrogen sulfide (H2S) is a signaling molecule known to downregulate oxidative stress and inflammation. The neutrophil-to-lymphocyte ratio (NLR) in the blood is widely used as a biomarker to monitor inflammation and immunity. This study examined the hypothesis that plasma AChE levels have a negative association with H2S levels and that a positive association exists between levels of NLR, HbA1c, and ROS with the AChE in the peripheral blood. The fasting blood sample was taken from 114 African Americans who had provided written informed consent approved by the IRB. The effect of H2S and high-glucose treatment on AChE activity levels was also investigated in THP-1 human monocytes. There was a significant negative relationship between AChE and the levels of H2S (r = -0.41, p = 0.001); a positive association between the levels of AChE with age (r = 0.26, p = 0.03), NLR (r = 0.23, p = 0.04), ROS (r = 0.23, p = 0.04) and HbA1c levels (r = 0.24, p = 0.04), in AA subjects. No correlation was seen between blood levels of AChE and acetylcholine (ACh). Blood creatinine had a negative correlation (r = -0.23, p = 0.04) with ACh levels. There was a significant effect of H2S on AChE inhibition and of high glucose in upregulating AChE activity in cultured monocytes. This study suggests hyperglycemia and lower H2S status can contribute to an increase in the AChE activity levels. Future clinical studies are needed to examine the potential benefits of supplementation with hydrogen sulfide pro-drugs/compounds in reducing the AChE and the cognitive dysfunctions associated with AD.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Marissa Lally
- Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| |
Collapse
|
43
|
Guo L, Chen Q, Gao Y, Jiang H, Zhou F, Zhang F, Xu M. CDP-choline modulates cholinergic signaling and gut microbiota to alleviate DSS-induced inflammatory bowel disease. Biochem Pharmacol 2023; 217:115845. [PMID: 37827341 DOI: 10.1016/j.bcp.2023.115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Inflammatory bowel diseases (IBD) represent chronic gastrointestinal inflammatory disorders characterized by a complex and underexplored pathogenic mechanism. Previous research has revealed that IBD patients often have a deficiency of choline and its metabolites, including acetylcholine (ACh) and phosphatidylcholine (PC), within the colon. However, a comprehensive study linking these three substances and their mechanistic implications in IBD remains lacking. This study aimed to investigate the efficacy and underlying mechanism of cytidine diphosphate (CDP)-choline (citicoline), an intermediate product of choline metabolism, in a mouse model of IBD induced by dextran sulfate sodium salt (DSS). The results demonstrated that CDP-choline effectively alleviated colonic inflammation and deficiencies in choline, ACh, and PC by increasing the raw material. Further detection showed that CDP-choline also increased the ACh content by altering the expression of high-affinity choline transporter (ChT1) and acetylcholinesterase (AChE) in DSS-induced mice colon. Moreover, CDP-choline increased the expression of alpha7 nicotinic acetylcholine receptor (α7 nAChR) and activated the cholinergic anti-inflammatory pathway (CAP), leading to reduced colon macrophage activation and proinflammatory M1 polarization in IBD mice, thus reducing the levels of TNF-α and IL-6. In addition, CDP-choline reduced intestinal ecological imbalance and increased the content of hexanoic acid in short-chain fatty acids (SCFAs) in mice. In conclusion, this study elucidates the ability of CDP-choline to mitigate DSS-induced colon inflammation by addressing choline and its metabolites deficiencies, activating the CAP, and regulating the composition of the intestinal microbiome and SCFAs content, providing a potential prophylactic and therapeutic approach for IBD.
Collapse
Affiliation(s)
- Lingnan Guo
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Qiang Chen
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yiyuan Gao
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Hao Jiang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Feini Zhou
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Fan Zhang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China.
| | - Maosheng Xu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
44
|
Kaplan A, Lakkis B, El-Samadi L, Karaayvaz EB, Booz GW, Zouein FA. Cooling Down Inflammation in the Cardiovascular System via the Nicotinic Acetylcholine Receptor. J Cardiovasc Pharmacol 2023; 82:241-265. [PMID: 37539950 DOI: 10.1097/fjc.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
ABSTRACT Inflammation is a major player in many cardiovascular diseases including hypertension, atherosclerosis, myocardial infarction, and heart failure. In many individuals, these conditions coexist and mutually exacerbate each other's progression. The pathophysiology of these diseases entails the active involvement of both innate and adaptive immune cells. Immune cells that possess the α7 subunit of the nicotinic acetylcholine receptor on their surface have the potential to be targeted through both pharmacological and electrical stimulation of the cholinergic system. The cholinergic system regulates the inflammatory response to various stressors in different organ systems by systematically suppressing spleen-derived monocytes and chemokines and locally improving immune cell function. Research on the cardiovascular system has demonstrated the potential for atheroma plaque stabilization and regression as favorable outcomes. Smaller infarct size and reduced fibrosis have been associated with improved cardiac function and a decrease in adverse cardiac remodeling. Furthermore, enhanced electrical stability of the myocardium can lead to a reduction in the incidence of ventricular tachyarrhythmia. In addition, improving mitochondrial dysfunction and decreasing oxidative stress can result in less myocardial tissue damage caused by reperfusion injury. Restoring baroreflex activity and reduction in renal damage can promote blood pressure regulation and help counteract hypertension. Thus, the present review highlights the potential of nicotinic acetylcholine receptor activation as a natural approach to alleviate the adverse consequences of inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- Department of Cardiology, Kemer Public Hospital, Kemer, Antalya, Turkey
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Bachir Lakkis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Lana El-Samadi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Ekrem Bilal Karaayvaz
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
| |
Collapse
|
45
|
Wei G, Xie Y, Pei M, Yang J, Yu Y, Cheng Y, Chen B, Guo J, Yang Z, Feng J. A comparative metabolomics study between grain-sized moxibustion and suspended moxibustion on rats with gastric ulcers. Heliyon 2023; 9:e19108. [PMID: 37664739 PMCID: PMC10469062 DOI: 10.1016/j.heliyon.2023.e19108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Grain-sized moxibustion (GS-Moxi) and suspended moxibustion (S-Moxi) represent the two typical local heat therapies in Traditional Chinese Medicine (TCM) and have been extensively used in treating gastric ulcers (GU) in China. However, the difference in biological response between the two moxibustion therapies in treating GU remains unclear. Here we investigated the therapeutic effect and potential mechanistic difference underlying the two moxibustion methods. Ethanol-induced GU model was established and was treated with GS-Moxi or S-Moxi at ST36 and ST21 for 5 days separately. And then, gastric histopathological examination, immunohistochemical staining for repair factors (EGFR, VEGF, Ki67), and 1H NMR-based metabolomics analysis of plasma and stomach of rats were conducted. We found GS-Moxi and S-Moxi effectively alleviated gastric damage and significantly increased the expression of related repair factors. However, S-Moxi corrected aberrant energy metabolism and lipids metabolism in GU rats but had little effect on neurotransmitter-related metabolism, while GS-Moxi regulated energy metabolism and neurotransmitter-related metabolism in GU rats but had no effect on lipids metabolism. We further proposed that the main target of S-Moxi may be liver and vasculature, whereas GS-Moxi specially targeted the stomach via regulating nervous system. This study strongly verified the outstanding gastroprotective effects of moxibustion and enriched our understanding of the varied biological responses triggered by different moxibustion methods.
Collapse
Affiliation(s)
- Guhang Wei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Futian, Shenzhen, 518000, Guangdong, China
| | - Yufeng Xie
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Futian, Shenzhen, 518000, Guangdong, China
| | - Mengran Pei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Futian, Shenzhen, 518000, Guangdong, China
| | - Jinlan Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, Guangdong, China
| | - Yunjin Yu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, Guangdong, China
| | - Yanbin Cheng
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Baohua Chen
- Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, 350000, Fujian, China
| | - Jingjing Guo
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zongbao Yang
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jun Feng
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Futian, Shenzhen, 518000, Guangdong, China
| |
Collapse
|
46
|
Yu X, Kong Q. Potential value of neuroimmunotherapy for COVID-19: efficacies and mechanisms of vagus nerve stimulation, electroacupuncture, and cholinergic drugs. Front Immunol 2023; 14:1197467. [PMID: 37475861 PMCID: PMC10355152 DOI: 10.3389/fimmu.2023.1197467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/23/2023] [Indexed: 07/22/2023] Open
Abstract
COVID-19 is an inflammatory disease with multiple organs involved, mainly respiratory symptoms. Although the majority of patients with COVID-19 present with a mild to moderate self-limited course of illness, about 5-10% of patients with inflammatory disorders in severe COVID-19 have life-threatening progression. With the exception of a few drugs that have shown outstanding anti-COVID-19 effects, the efficacy of most drugs remains controversial. An increasing number of animal and clinical studies have shown that neuromodulation has a significant effect on reducing inflammatory markers of COVID-19, thus exerting an effective neuroimmunotherapeutic value. Currently, the main neuroimmunomodulatory measures effective against COVID-19 include vagus nerve stimulation, electroacupuncture, and cholinergic drugs. In this review, we will summarize the research progress of potential value of this neuroimmunotherapy measures for COVID-19 and elaborate its efficacies and mechanisms, in order to provide reliable evidence for clinical intervention.
Collapse
Affiliation(s)
- Xianqiang Yu
- Women and Children's Hospital Affiliated to Qingdao University, Heart center, Qingdao, China
- University of California, Los Angeles, Department of Cardiology, Los Angeles, CA, United States
| | - Qingming Kong
- School of Laboratory Medicine and Bioengineering, Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
47
|
Liu H, Zhang X, Shi P, Yuan J, Jia Q, Pi C, Chen T, Xiong L, Chen J, Tang J, Yue R, Liu Z, Shen H, Zuo Y, Wei Y, Zhao L. α7 Nicotinic acetylcholine receptor: a key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflammation 2023; 20:84. [PMID: 36973813 PMCID: PMC10041767 DOI: 10.1186/s12974-023-02768-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
Depression is a common mental illness, which is related to monoamine neurotransmitters and the dysfunction of the cholinergic, immune, glutamatergic, and neuroendocrine systems. The hypothesis of monoamine neurotransmitters is one of the commonly recognized pathogenic mechanisms of depression; however, the drugs designed based on this hypothesis have not achieved good clinical results. A recent study demonstrated that depression and inflammation were strongly correlated, and the activation of alpha7 nicotinic acetylcholine receptor (α7 nAChR)-mediated cholinergic anti-inflammatory pathway (CAP) in the cholinergic system exhibited good therapeutic effects against depression. Therefore, anti-inflammation might be a potential direction for the treatment of depression. Moreover, it is also necessary to further reveal the key role of inflammation and α7 nAChR in the pathogenesis of depression. This review focused on the correlations between inflammation and depression as well-discussed the crucial role of α7 nAChR in the CAP.
Collapse
Affiliation(s)
- Huiyang Liu
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Xiaomei Zhang
- grid.469520.c0000 0004 1757 8917Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 People’s Republic of China
| | - Peng Shi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jiyuan Yuan
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Qiang Jia
- grid.488387.8Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Chao Pi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
| | - Tao Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Linjin Xiong
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jinglin Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jia Tang
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ruxu Yue
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646000 Sichuan China
- grid.190737.b0000 0001 0154 0904Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Hongping Shen
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ying Zuo
- grid.488387.8Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan China
| | - Yumeng Wei
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ling Zhao
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| |
Collapse
|
48
|
Papke RL, Quadri M, Gulsevin A. Silent agonists for α7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 190:106736. [PMID: 36940890 DOI: 10.1016/j.phrs.2023.106736] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
We discuss models for the activation and desensitization of α7 nicotinic acetylcholine receptors (nAChRs) and the effects of efficacious type II positive allosteric modulators (PAMs) that destabilize α7 desensitized states. Type II PAMs such as PNU-120596 can be used to distinguish inactive compounds from silent agonists, compounds that produce little or no channel activation but stabilize the non-conducting conformations associated with desensitization. We discuss the effects of α7 nAChRs in cells of the immune system and their roles in modulating inflammation and pain through what has come to be known as the cholinergic anti-inflammatory system (CAS). Cells controlling CAS do not generate ion channel currents but rather respond to α7 drugs by modulating intracellular signaling pathways analogous to the effects of metabotropic receptors. Metabotropic signaling by α7 receptors appears to be mediated by receptors in nonconducting conformations and can be accomplished by silent agonists. We discuss electrophysiological structure-activity relationships for α7 silent agonists and their use in cell-based and in vivo assays for CAS regulation. We discuss the strongly desensitizing partial agonist GTS-21 and its effectiveness in modulation of CAS. We also review the properties of the silent agonist NS6740, which is remarkably effective at maintaining α7 receptors in PAM-sensitive desensitized states. Most silent agonists bind to sites overlapping those for orthosteric agonists, but some appear to bind to allosteric sites. Finally, we discuss α9⁎ nAChRs and their potential role in CAS, and ligands that will be useful in defining and distinguishing the specific roles of α7 and α9 in CAS.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (RLP); Olon S.p.A., Strada Rivoltana, Km 6/7 - 20053 Rodano (MI) - ITALY (MQ); Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA, 37212 (AG).
| | - Marta Quadri
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (RLP); Olon S.p.A., Strada Rivoltana, Km 6/7 - 20053 Rodano (MI) - ITALY (MQ); Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA, 37212 (AG)
| | - Alican Gulsevin
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (RLP); Olon S.p.A., Strada Rivoltana, Km 6/7 - 20053 Rodano (MI) - ITALY (MQ); Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA, 37212 (AG)
| |
Collapse
|
49
|
Singh A, Ranjan A. Adrenergic receptor signaling regulates the CD40-receptor mediated anti-tumor immunity. Front Immunol 2023; 14:1141712. [PMID: 37006295 PMCID: PMC10050348 DOI: 10.3389/fimmu.2023.1141712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
InroductionAnti-CD40 agonistic antibody (αCD40), an activator of dendritic cells (DC) can enhance antigen presentation and activate cytotoxic T-cells against poorly immunogenic tumors. However, cancer immunotherapy trials also suggest that αCD40 is only moderately effective in patients, falling short of achieving clinical success. Identifying factors that decrease αCD40 immune-stimulating effects can aid the translation of this agent to clinical reality.Method/ResultsHere, we reveal that β-adrenergic signaling on DCs directly interferes with αCD40 efficacy in immunologically cold head and neck tumor model. We discovered that β-2 adrenergic receptor (β2AR) activation rewires CD40 signaling in DCs by directly inhibiting the phosphorylation of IκBα and indirectly by upregulating levels of phosphorylated-cAMP response element-binding protein (pCREB). Importantly, the addition of propranolol, a pan β-Blocker reprograms the CD40 pathways, inducing superior tumor regressions, increased infiltration of cytotoxic T-cells, and a reduced burden of regulatory T-cells in tumors compared to monotherapy.Discussion/ConclusionThus, our study highlights an important mechanistic link between stress-induced β2AR signaling and reduced αCD40 efficacy in cold tumors, providing a new combinatorial approach to improve clinical outcomes in patients.
Collapse
|
50
|
Spohr L, de Aguiar MSS, Bona NP, Luduvico KP, Alves AG, Domingues WB, Blödorn EB, Bortolatto CF, Brüning CA, Campos VF, Stefanello FM, Spanevello RM. Blueberry Extract Modulates Brain Enzymes Activities and Reduces Neuroinflammation: Promising Effect on Lipopolysaccharide-Induced Depressive-Like Behavior. Neurochem Res 2023; 48:846-861. [PMID: 36357747 DOI: 10.1007/s11064-022-03813-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022]
Abstract
Major depressive disorder (MDD) is one of the most common neuropsychiatric disorders with high rates of prevalence and mortality. MDD is pathophysiologically complex, and treatment options are limited. Blueberries are rich in polyphenols and have neuroprotective potential. The aim of this study was to investigate the effects of blueberry extract on neuroinflammatory and neuroplasticity parameters, as well as Na+/K+-ATPase, monoamine oxidase-A (MAO-A), and acetylcholinesterase (AChE) activities in the cerebral cortex and hippocampus of mice subject to lipopolysaccharide (LPS)-induced depressive-like behavior. We also analyzed the interaction between anthocyanins and indoleamine 2 3-dioxygenase (IDO). Male Swiss mice (60-day-old) received vehicle, fluoxetine (20 mg/kg), or blueberry extract (100 or 200 mg/kg) intragastrically for 7 days before intraperitoneal LPS (0.83 mg/kg) injection. Twenty-four hours after LPS administration, the mice were subjected to behavioral tests. Both fluoxetine and blueberry extract (200 mg/kg) decreased the immobility time in the forced swim test, without affecting locomotor activity. Fluoxetine attenuated the decrease of Na+/K+-ATPase in the cerebral cortex, while blueberry extract promoted this same effect in the hippocampus. Additionally, fluoxetine and blueberry extract attenuated the decrease in the activity of MAO-A in the hippocampus. Blueberry extract (200 mg/kg) also prevented LPS-induced increase in AChE activity in the hippocampus as well as LPS upregulation of relative mRNA expression of tumor necrosis factor alpha, interleukin (IL)-1β, and IL-10 in the cerebral cortex. Molecular docking analysis revealed binding sites for malvidin 3-galactoside (- 7.8 kcal/mol) and malvidin 3-glucoside (- 7.9 kcal/mol) residues with IDO. Taken together, these results indicate that blueberry extract improved depression-like behavior and attenuated the neurochemical and molecular changes in the brains of mice challenged with LPS.
Collapse
Affiliation(s)
- Luiza Spohr
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Prédio 29, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil.
| | - Mayara Sandrielly Soares de Aguiar
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Prédio 29, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil
| | - Natália Pontes Bona
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Karina Pereira Luduvico
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amália Gonçalves Alves
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Bioquímica e Neurofarmacologia Molecular, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William Borges Domingues
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo Bierhals Blödorn
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Bioquímica e Neurofarmacologia Molecular, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - César Augusto Brüning
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Bioquímica e Neurofarmacologia Molecular, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Prédio 29, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil.
| |
Collapse
|