1
|
Sánchez-Menéndez C, de la Calle-Jiménez O, Mateos E, Vigón L, Fuertes D, Murciano Antón MA, San José E, García-Gutiérrez V, Cervero M, Torres M, Coiras M. Different polarization and functionality of CD4+ T helper subsets in people with post-COVID condition. Front Immunol 2024; 15:1431411. [PMID: 39257580 PMCID: PMC11385313 DOI: 10.3389/fimmu.2024.1431411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction After mild COVID-19 that does not require hospitalization, some individuals develop persistent symptoms that may worsen over time, producing a multisystemic condition termed Post-COVID condition (PCC). Among other disorders, PCC is characterized by persistent changes in the immune system that may not be solved several months after COVID-19 diagnosis. Methods People with PCC were recruited to determine the distribution and functionality of CD4+ T helper (Th) subsets in comparison with individuals with mild, severe, and critical presentations of acute COVID-19 to evaluate their contribution as risk or protective factors for PCC. Results People with PCC showed low levels of Th1 cells, similar to individuals with severe and critical COVID-19, although these cells presented a higher capacity to express IFNγ in response to stimulation. Th2/Th1 correlation was negative in individuals with acute forms of COVID-19, but there was no significant Th2/Th1 correlation in people with PCC. Th2 cells from people with PCC presented high capacity to express IL-4 and IL-13, which are related to low ventilation and death associated with COVID-19. Levels of proinflammatory Th9 and Th17 subsets were significantly higher in people with PCC in comparison with acute COVID-19, being Th1/Th9 correlation negative in these individuals, which probably contributed to a more pro-inflammatory than antiviral scenario. Th17 cells from approximately 50% of individuals with PCC had no capacity to express IL-17A and IL-22, similar to individuals with critical COVID-19, which would prevent clearing extracellular pathogens. Th2/Th17 correlation was positive in people with PCC, which in the absence of negative Th1/Th2 correlation could also contribute to the proinflammatory state. Finally, Th22 cells from most individuals with PCC had no capacity to express IL-13 or IL-22, which could increase tendency to reinfections due to impaired epithelial regeneration. Discussion People with PCC showed skewed polarization of CD4+ Th subsets with altered functionality that was more similar to individuals with severe and critical presentations of acute COVID-19 than to people who fully recovered from mild disease. New strategies aimed at reprogramming the immune response and redirecting CD4+ Th cell polarization may be necessary to reduce the proinflammatory environment characteristic of PCC.
Collapse
Affiliation(s)
- Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Olivia de la Calle-Jiménez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Internal Medicine Service, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lorena Vigón
- AIDS Immunopathology, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Fuertes
- School of Telecommunications Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - María Aranzazu Murciano Antón
- Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
- International PhD School, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Esther San José
- Immunomodulation Unit, Department of Health Sciences, Faculty of Biomedical and Health Sciences, European University of Madrid, Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Miguel Cervero
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Martínez S, Albóniga OE, López-Huertas MR, Gradillas A, Barbas C. Reinforcing the Evidence of Mitochondrial Dysfunction in Long COVID Patients Using a Multiplatform Mass Spectrometry-Based Metabolomics Approach. J Proteome Res 2024; 23:3025-3040. [PMID: 38566450 DOI: 10.1021/acs.jproteome.3c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite the recent and increasing knowledge surrounding COVID-19 infection, the underlying mechanisms of the persistence of symptoms for a long time after the acute infection are still not completely understood. Here, a multiplatform mass spectrometry-based approach was used for metabolomic and lipidomic profiling of human plasma samples from Long COVID patients (n = 40) to reveal mitochondrial dysfunction when compared with individuals fully recovered from acute mild COVID-19 (n = 40). Untargeted metabolomic analysis using CE-ESI(+/-)-TOF-MS and GC-Q-MS was performed. Additionally, a lipidomic analysis using LC-ESI(+/-)-QTOF-MS based on an in-house library revealed 447 lipid species identified with a high confidence annotation level. The integration of complementary analytical platforms has allowed a comprehensive metabolic and lipidomic characterization of plasma alterations in Long COVID disease that found 46 relevant metabolites which allowed to discriminate between Long COVID and fully recovered patients. We report specific metabolites altered in Long COVID, mainly related to a decrease in the amino acid metabolism and ceramide plasma levels and an increase in the tricarboxylic acid (TCA) cycle, reinforcing the evidence of an impaired mitochondrial function. The most relevant alterations shown in this study will help to better understand the insights of Long COVID syndrome by providing a deeper knowledge of the metabolomic basis of the pathology.
Collapse
Affiliation(s)
- Sara Martínez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities. Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Oihane E Albóniga
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities. Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
- Asociación Centro de Investigación Cooperativa en Biociencias (CICbioGUNE), Bizkaia Science and Technology Park bld 800, 48160 Derio, Bizkaia, Spain
| | - María Rosa López-Huertas
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities. Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities. Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| |
Collapse
|
3
|
Martín-Martín C, del Riego ES, Castiñeira JRV, Zapico-Gonzalez MS, Rodríguez-Pérez M, Corte-Iglesias V, Saiz ML, Diaz-Bulnes P, Escudero D, Suárez-Alvarez B, López-Larrea C. Assessing Predictive Value of SARS-CoV-2 Epitope-Specific CD8 + T-Cell Response in Patients with Severe Symptoms. Vaccines (Basel) 2024; 12:679. [PMID: 38932408 PMCID: PMC11209605 DOI: 10.3390/vaccines12060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Specific T cell responses against SARS-CoV-2 provided an overview of acquired immunity during the pandemic. Anti-SARS-CoV-2 immunity determines the severity of acute illness, but also might be related to the possible persistence of symptoms (long COVID). We retrospectively analyzed ex vivo longitudinal CD8+ T cell responses in 26 COVID-19 patients diagnosed with severe disease, initially (1 month) and long-term (10 months), and in a cohort of 32 vaccinated healthcare workers without previous SARS-CoV-2 infection. We used peptide-human leukocyte antigen (pHLA) dextramers recognizing 26 SARS-CoV-2-derived epitopes of viral and other non-structural proteins. Most patients responded to at least one of the peptides studied, mainly derived from non-structural ORF1ab proteins. After 10 months follow-up, CD8+ T cell responses were maintained at long term and reaction against certain epitopes (A*01:01-ORF1ab1637) was still detected and functional, showing a memory-like phenotype (CD127+ PD-1+). The total number of SARS-CoV-2-specific CD8+ T cells was significantly associated with protection against long COVID in these patients. Compared with vaccination, infected patients showed a less effective immune response to spike protein-derived peptides restricted by HLA. So, the A*01:01-S865 and A*24:02-S1208 dextramers were only recognized in vaccinated individuals. We conclude that initial SARS-CoV-2-specific CD8+ T cell response could be used as a marker to understand the evolution of severe disease and post-acute sequelae after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cristina Martín-Martín
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Estefanía Salgado del Riego
- Service of Intensive Medicine, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (E.S.d.R.); (D.E.)
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain
| | - Jose R. Vidal Castiñeira
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
- Immunology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Mercedes Rodríguez-Pérez
- Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (M.S.Z.-G.); (M.R.-P.)
- Translational Microbiology, Health Research Institute of Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
- Immunology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Maria Laura Saiz
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Paula Diaz-Bulnes
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Dolores Escudero
- Service of Intensive Medicine, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (E.S.d.R.); (D.E.)
- Translational Microbiology, Health Research Institute of Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Beatriz Suárez-Alvarez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Carlos López-Larrea
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| |
Collapse
|
4
|
Kundura L, Cezar R, Ballongue E, André S, Michel M, Mettling C, Lozano C, Vincent T, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Loubet P, Sotto A, Tran TA, Estaquier J, Corbeau P. Low Percentage of Perforin-Expressing NK Cells during Severe SARS-CoV-2 Infection: Consumption Rather than Primary Deficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1105-1112. [PMID: 38345346 DOI: 10.4049/jimmunol.2300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/05/2023] [Indexed: 03/20/2024]
Abstract
Genetic defects in the ability to deliver effective perforin have been reported in patients with hemophagocytic lymphohistiocytosis. We tested the hypothesis that a primary perforin deficiency might also be causal in severe SARS-CoV-2 infection. We recruited 54 volunteers confirmed as being SARS-CoV-2-infected by RT-PCR and admitted to intensive care units or non-intensive care units and age- and sex-matched healthy controls. Compared with healthy controls, the percentage of perforin-expressing CD3-CD56+ NK cells quantified by flow cytometry was low in COVID-19 patients (69.9 ± 17.7 versus 78.6 ± 14.6%, p = 0.026). There was no correlation between the proportions of perforin-positive NK cells and T8 lymphocytes. Moreover, the frequency of NK cells producing perforin was neither linked to disease severity nor predictive of death. Although IL-6 is known to downregulate perforin production in NK cells, we did not find any link between perforin expression and IL-6 plasma level. However, we unveiled a negative correlation between the degranulation marker CD107a and perforin expression in NK cells (r = -0.488, p = 10-4). PRF1 gene expression and the frequency of NK cells harboring perforin were normal in patients 1 y after acute SARS-CoV-2 infection. A primary perforin defect does not seem to be a driver of COVID-19 because NK perforin expression is 1) linked neither to T8 perforin expression nor to disease severity, 2) inversely correlated with NK degranulation, and 3) normalized at distance from acute infection. Thus, the cause of low frequency of perforin-positive NK cells appears, rather, to be consumption.
Collapse
Affiliation(s)
- Lucy Kundura
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, Montpellier, France
| | - Renaud Cezar
- Immunology Department, Nîmes University Hospital, Nîmes, France
| | - Emma Ballongue
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, Montpellier, France
| | - Sonia André
- INSERM U1124, Université de Paris, Paris, France
| | - Moïse Michel
- Immunology Department, Nîmes University Hospital, Nîmes, France
| | - Clément Mettling
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, Montpellier, France
| | - Claire Lozano
- Immunology Department, Montpellier University Hospital, Montpellier, France
| | - Thierry Vincent
- Immunology Department, Montpellier University Hospital, Montpellier, France
| | - Laurent Muller
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Jean-Yves Lefrant
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Claire Roger
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Pierre-Géraud Claret
- Medical and Surgical Emergency Department, Nîmes University Hospital, Nîmes, France
| | - Sandra Duvnjak
- Gerontology Department, Nîmes University Hospital, Nîmes, France
| | - Paul Loubet
- *Infectious Diseases Department, Nîmes University Hospital, Nîmes, France
| | - Albert Sotto
- *Infectious Diseases Department, Nîmes University Hospital, Nîmes, France
| | - Tu-Anh Tran
- Pediatrics Department, Nîmes University Hospital, Nîmes, France
| | - Jérôme Estaquier
- INSERM U1124, Université de Paris, Paris, France
- Laval University Research Center; Quebec City, Quebec, Canada
| | - Pierre Corbeau
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University, Montpellier, France
- Immunology Department, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
5
|
Rodríguez-Mora S, Corona M, Solera Sainero M, Mateos E, Torres M, Sánchez-Menéndez C, Casado-Fernández G, García-Pérez J, Pérez-Olmeda M, Murciano-Antón MA, López-Jiménez J, Coiras M, García-Gutiérrez V. Regular Humoral and Cellular Immune Responses in Individuals with Chronic Myeloid Leukemia Who Received a Full Vaccination Schedule against COVID-19. Cancers (Basel) 2023; 15:5066. [PMID: 37894433 PMCID: PMC10604981 DOI: 10.3390/cancers15205066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/30/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Individuals with chronic myeloid leukemia (CML) constitute a unique group within individuals with oncohematological disease (OHD). They receive treatment with tyrosine kinase inhibitors (TKIs) that present immunomodulatory properties, and they may eventually be candidates for treatment discontinuation under certain conditions despite the chronic nature of the disease. In addition, these individuals present a lower risk of infection than other immunocompromised patients. For this study, we recruited a cohort of 29 individuals with CML in deep molecular response who were on treatment with TKIs (n = 23) or were on treatment-free remission (TFR) (n = 6), and compared both humoral and cellular immune responses with 20 healthy donors after receiving the complete vaccination schedule against SARS-CoV-2. All participants were followed up for 17 months to record the development of COVID-19 due to breakthrough infections. All CML individuals developed an increased humoral response, with similar seroconversion rates and neutralizing titers to healthy donors, despite the presence of high levels of immature B cells. On the whole, the cellular immune response was also comparable to that of healthy donors, although the antibody dependent cytotoxic activity (ADCC) was significantly reduced. Similar rates of mild breakthrough infections were observed between groups, although the proportion was higher in the CML individuals on TFR, most likely due to the immunomodulatory effect of these drugs. In conclusion, as with the healthy donors, the vaccination did not impede breakthrough infections completely in individuals with CML, although it prevented the development of severe or critical illness in this special population of individuals with OHD.
Collapse
Affiliation(s)
- Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Magdalena Corona
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Faculty of Sciences, Universidad de Alcalá, 28801 Madrid, Spain
| | - Miriam Solera Sainero
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Clara Sánchez-Menéndez
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Guiomar Casado-Fernández
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Faculty of Sciences, Universidad de Alcalá, 28801 Madrid, Spain
| | - Javier García-Pérez
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Mayte Pérez-Olmeda
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Serology Service, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Javier López-Jiménez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
6
|
Cuypers L, Keyaerts E, Hong SL, Gorissen S, Menezes SM, Starick M, Van Elslande J, Weemaes M, Wawina-Bokalanga T, Marti-Carreras J, Vanmechelen B, Van Holm B, Bloemen M, Dogne JM, Dufrasne F, Durkin K, Ruelle J, De Mendonca R, Wollants E, Vermeersch P, Boulouffe C, Djiena A, Broucke C, Catry B, Lagrou K, Van Ranst M, Neyts J, Baele G, Maes P, André E, Dellicour S, Van Weyenbergh J. Immunovirological and environmental screening reveals actionable risk factors for fatal COVID-19 during post-vaccination nursing home outbreaks. NATURE AGING 2023:10.1038/s43587-023-00421-1. [PMID: 37217661 DOI: 10.1038/s43587-023-00421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) vaccination has resulted in excellent protection against fatal disease, including in older adults. However, risk factors for post-vaccination fatal COVID-19 are largely unknown. We comprehensively studied three large nursing home outbreaks (20-35% fatal cases among residents) by combining severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) aerosol monitoring, whole-genome phylogenetic analysis and immunovirological profiling of nasal mucosa by digital nCounter transcriptomics. Phylogenetic investigations indicated that each outbreak stemmed from a single introduction event, although with different variants (Delta, Gamma and Mu). SARS-CoV-2 was detected in aerosol samples up to 52 d after the initial infection. Combining demographic, immune and viral parameters, the best predictive models for mortality comprised IFNB1 or age, viral ORF7a and ACE2 receptor transcripts. Comparison with published pre-vaccine fatal COVID-19 transcriptomic and genomic signatures uncovered a unique IRF3 low/IRF7 high immune signature in post-vaccine fatal COVID-19 outbreaks. A multi-layered strategy, including environmental sampling, immunomonitoring and early antiviral therapy, should be considered to prevent post-vaccination COVID-19 mortality in nursing homes.
Collapse
Affiliation(s)
- Lize Cuypers
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Els Keyaerts
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Samuel Leandro Hong
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sarah Gorissen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Soraya Maria Menezes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marick Starick
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jan Van Elslande
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Matthias Weemaes
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Tony Wawina-Bokalanga
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Joan Marti-Carreras
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bram Van Holm
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mandy Bloemen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jean-Michel Dogne
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - François Dufrasne
- Laboratory of Proteomics and Microbiology, University of Mons, Mons, Belgium
- Department of Infectious Diseases, Laboratory of Viral Diseases, National Institute for Public Health (Sciensano), Brussels, Belgium
| | - Keith Durkin
- Laboratory of Human Genetics, GIGA Research Institute, Liège, Belgium
| | - Jean Ruelle
- Medical Microbiology Unit (MBLG), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | | | - Elke Wollants
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Pieter Vermeersch
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Caroline Boulouffe
- Infectious Disease Surveillance Unit, Agence pour une vie de qualité (AVIQ), Wallonia, Belgium
| | - Achille Djiena
- Infectious Disease Surveillance Unit, Agence pour une vie de qualité (AVIQ), Wallonia, Belgium
| | - Caroline Broucke
- Outbreak Investigation Team, Agentschap zorg en gezondheid, Flanders, Belgium
| | - Boudewijn Catry
- Unit Healthcare-Associated Infections and Antimicrobial Resistance, Sciensano, Brussels, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Laboratory Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Emmanuel André
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Rodríguez-Mora S, Pérez-Lamas L, Sainero MS, Torres M, Sánchez-Menéndez C, Corona M, Mateos E, Casado-Fernández G, Alcamí J, García-Pérez J, Pérez-Olmeda M, Murciano-Antón MA, López-Jiménez J, García-Gutiérrez V, Coiras M. Persistent Immunity against SARS-CoV-2 in Individuals with Oncohematological Diseases Who Underwent Autologous or Allogeneic Stem Cell Transplantation after Vaccination. Cancers (Basel) 2023; 15:cancers15082344. [PMID: 37190272 DOI: 10.3390/cancers15082344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
The high morbimortality due to SARS-CoV-2 infection in oncohematological diseases (OHD) and hematopoietic stem cell transplant (HSCT) recipients in the pre-vaccine era has made vaccination a priority in this group. After HSCT, the immune responses against common vaccines such as tetanus, varicella, rubella, and polio may be lost. However, the loss of immunity developed by COVID-19 vaccination after HSCT has not been completely defined. In this study, both humoral and cellular immunity against SARS-CoV-2 were analyzed in 29 individuals with OHD who were vaccinated before receiving allogeneic (n = 11) or autologous (n = 18) HSCT. All participants had low but protective levels of neutralizing IgGs against SARS-CoV-2 after HSCT despite B-cell lymphopenia and immaturity. Although antibody-dependent cellular cytotoxicity was impaired, direct cellular cytotoxicity was similar to healthy donors in participants with autologous-HSCT, in contrast to individuals with allogeneic-HSCT, which severely deteriorated. No significant changes were observed in the immune response before and after HSCT. During follow-up, all reported post-HSCT SARS-CoV-2 infections were mild. This data emphasizes that COVID-19 vaccination is effective, necessary, and safe for individuals with OHD and also supports the persistence of some degree of immune protection after HSCT, at least in the short term, when patients cannot yet be revaccinated.
Collapse
Affiliation(s)
- Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lucía Pérez-Lamas
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miriam Solera Sainero
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Clara Sánchez-Menéndez
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Faculty of Sciences, Universidad de Alcalá, 28801 Madrid, Spain
| | - Magdalena Corona
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Faculty of Sciences, Universidad de Alcalá, 28801 Madrid, Spain
| | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Guiomar Casado-Fernández
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Faculty of Sciences, Universidad de Alcalá, 28801 Madrid, Spain
| | - José Alcamí
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Javier García-Pérez
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Mayte Pérez-Olmeda
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Serology Service, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Javier López-Jiménez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Mestiri S, Merhi M, Inchakalody VP, Taib N, Smatti MK, Ahmad F, Raza A, Ali FH, Hydrose S, Fernandes Q, Ansari AW, Sahir F, Al-Zaidan L, Jalis M, Ghoul M, Allahverdi N, Al Homsi MU, Uddin S, Jeremijenko AM, Nimir M, Abu-Raddad LJ, Abid FB, Zaqout A, Alfheid SR, Saqr HMH, Omrani AS, Hssain AA, Al Maslamani M, Yassine HM, Dermime S. Persistence of spike-specific immune responses in BNT162b2-vaccinated donors and generation of rapid ex-vivo T cells expansion protocol for adoptive immunotherapy: A pilot study. Front Immunol 2023; 14:1061255. [PMID: 36817441 PMCID: PMC9933868 DOI: 10.3389/fimmu.2023.1061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The BNT162b2 mRNA-based vaccine has shown high efficacy in preventing COVID-19 infection but there are limited data on the types and persistence of the humoral and T cell responses to such a vaccine. Methods Here, we dissect the vaccine-induced humoral and cellular responses in a cohort of six healthy recipients of two doses of this vaccine. Results and discussion Overall, there was heterogeneity in the spike-specific humoral and cellular responses among vaccinated individuals. Interestingly, we demonstrated that anti-spike antibody levels detected by a novel simple automated assay (Jess) were strongly correlated (r=0.863, P<0.0001) with neutralizing activity; thus, providing a potential surrogate for neutralizing cell-based assays. The spike-specific T cell response was measured with a newly modified T-spot assay in which the high-homology peptide-sequences cross-reactive with other coronaviruses were removed. This response was induced in 4/6 participants after the first dose, and all six participants after the second dose, and remained detectable in 4/6 participants five months post-vaccination. We have also shown for the first time, that BNT162b2 vaccine enhanced T cell responses also against known human common viruses. In addition, we demonstrated the efficacy of a rapid ex-vivo T cell expansion protocol for spike-specific T cell expansion to be potentially used for adoptive-cell therapy in severe COVID-19, immunocompromised individuals, and other high-risk groups. There was a 9 to 13.7-fold increase in the number of expanded T cells with a significant increase of anti-spike specific response showing higher frequencies of both activation and cytotoxic markers. Interestingly, effector memory T cells were dominant in all four participants' CD8+ expanded memory T cells; CD4+ T cells were dominated by effector memory in 2/4 participants and by central memory in the remaining two participants. Moreover, we found that high frequencies of CD4+ terminally differentiated memory T cells were associated with a greater reduction of spike-specific activated CD4+ T cells. Finally, we showed that participants who had a CD4+ central memory T cell dominance expressed a high CD69 activation marker in the CD4+ activated T cells.
Collapse
Affiliation(s)
- Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese P. Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maria K. Smatti
- Qatar University Biomedical Research Center, Qatar University, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fatma H. Ali
- Qatar University Biomedical Research Center, Qatar University, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Abdul W. Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fairooz Sahir
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Munir Jalis
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mokhtar Ghoul
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Niloofar Allahverdi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mohammed U. Al Homsi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Mai Nimir
- Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | - Laith J. Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha, Qatar
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Fatma Ben Abid
- Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Zaqout
- Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Ali S. Omrani
- College of Medicine, Qatar University, Doha, Qatar
- Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | | | - Hadi M. Yassine
- Qatar University Biomedical Research Center, Qatar University, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
9
|
Casado-Fernández G, Corona M, Torres M, Saez AJ, Ramos-Martín F, Manzanares M, Vigón L, Mateos E, Pozo F, Casas I, García-Gutierrez V, Rodríguez-Mora S, Coiras M. Sustained Cytotoxic Response of Peripheral Blood Mononuclear Cells from Unvaccinated Individuals Admitted to the ICU Due to Critical COVID-19 Is Essential to Avoid a Fatal Outcome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1947. [PMID: 36767310 PMCID: PMC9915056 DOI: 10.3390/ijerph20031947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The main objective of this study was to determine the influence of the cytotoxic activity of peripheral blood mononuclear cells (PBMCs) on the outcome of unvaccinated individuals with critical COVID-19 admitted to the ICU. Blood samples from 23 individuals were collected upon admission and then every 2 weeks for 13 weeks until death (Exitus group) (n = 13) or discharge (Survival group) (n = 10). We did not find significant differences between groups in sociodemographic, clinical, or biochemical data that may influence the fatal outcome. However, direct cellular cytotoxicity of PBMCs from individuals of the Exitus group against pseudotyped SARS-CoV-2-infected Vero E6 cells was significantly reduced upon admission (-2.69-fold; p = 0.0234) and after 4 weeks at the ICU (-5.58-fold; p = 0.0290), in comparison with individuals who survived, and it did not improve during hospitalization. In vitro treatment with IL-15 of these cells did not restore an effective cytotoxicity at any time point until the fatal outcome, and an increased expression of immune exhaustion markers was observed in NKT, CD4+, and CD8+ T cells. However, IL-15 treatment of PBMCs from individuals of the Survival group significantly increased cytotoxicity at Week 4 (6.18-fold; p = 0.0303). Consequently, immunomodulatory treatments that may overcome immune exhaustion and induce sustained, efficient cytotoxic activity could be essential for survival during hospitalization due to critical COVID-19.
Collapse
Affiliation(s)
- Guiomar Casado-Fernández
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Sciences, Universidad de Alcalá, 28805 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Magdalena Corona
- Faculty of Sciences, Universidad de Alcalá, 28805 Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Adolfo J. Saez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Fernando Ramos-Martín
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mario Manzanares
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lorena Vigón
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Francisco Pozo
- Respiratory Viruses Service, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inmaculada Casas
- Respiratory Viruses Service, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Valentín García-Gutierrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
10
|
Jasim SA, Mahdi RS, Bokov DO, Najm MAA, Sobirova GN, Bafoyeva ZO, Taifi A, Alkadir OKA, Mustafa YF, Mirzaei R, Karampoor S. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J Med Virol 2022; 94:5128-5148. [PMID: 35835586 PMCID: PMC9350195 DOI: 10.1002/jmv.28000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The precise interaction between the immune system and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in deciphering the pathogenesis of coronavirus disease 2019 (COVID-19) and is also vital for developing novel therapeutic tools, including monoclonal antibodies, antivirals drugs, and vaccines. Viral infections need innate and adaptive immune reactions since the various immune components, such as neutrophils, macrophages, CD4+ T, CD8+ T, and B lymphocytes, play different roles in various infections. Consequently, the characterization of innate and adaptive immune reactions toward SARS-CoV-2 is crucial for defining the pathogenicity of COVID-19. In this study, we explain what is currently understood concerning the conventional immune reactions to SARS-CoV-2 infection to shed light on the protective and pathogenic role of immune response in this case. Also, in particular, we investigate the in-depth roles of other immune mediators, including neutrophil elastase, serum amyloid A, and syndecan, in the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
| | - Roaa Salih Mahdi
- Department of Pathology, College of MedicineUniversity of BabylonHillaIraq
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation,Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Guzal N. Sobirova
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | - Zarnigor O. Bafoyeva
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of MosulMosulIraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Kundura L, Cezar R, André S, Campos-Mora M, Lozano C, Vincent T, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Loubet P, Sotto A, Tran TA, Estaquier J, Corbeau P. Low perforin expression in CD8+ T lymphocytes during the acute phase of severe SARS-CoV-2 infection predicts long COVID. Front Immunol 2022; 13:1029006. [PMID: 36341327 PMCID: PMC9630742 DOI: 10.3389/fimmu.2022.1029006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
T cell cytotoxicity plays a major role in antiviral immunity. Anti-SARS-CoV-2 immunity may determine acute disease severity, but also the potential persistence of symptoms (long COVID). We therefore measured the expression of perforin, a cytotoxic mediator, in T cells of patients recently hospitalized for SARS-CoV-2 infection. We recruited 54 volunteers confirmed as being SARS-CoV-2-infected by RT-PCR and admitted to Intensive Care Units (ICUs) or non-ICU, and 29 age- and sex-matched healthy controls (HCs). Amounts of intracellular perforin and granzyme-B, as well as cell surface expression of the degranulation marker CD107A were determined by flow cytometry. The levels of 15 cytokines in plasma were measured by Luminex. The frequency of perforin-positive T4 cells and T8 cells was higher in patients than in HCs (9.9 ± 10.1% versus 4.6 ± 6.4%, p = 0.006 and 46.7 ± 20.6% vs 33.3 ± 18.8%, p = 0.004, respectively). Perforin expression was neither correlated with clinical and biological markers of disease severity nor predictive of death. By contrast, the percentage of perforin-positive T8 cells in the acute phase of the disease predicted the onset of long COVID one year later. A low T8 cytotoxicity in the first days of SARS-CoV-2 infection might favor virus replication and persistence, autoimmunity, and/or reactivation of other viruses such as Epstein-Barr virus or cytomegalovirus, paving the way for long COVID. Under this hypothesis, boosting T cell cytotoxicity during the acute phase of the infection could prevent delayed sequelae.
Collapse
Affiliation(s)
- Lucy Kundura
- Institute of Human Genetics, Unité Mixte de Recherche 9002 (UMR9002), Centre National de Recherche Scientifique (CNRS) and Montpellier University, Montpellier, France
- *Correspondence: Lucy Kundura,
| | - Renaud Cezar
- Immunology Department, Nîmes University Hospital, Nîmes, France
| | - Sonia André
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1124, Université Paris Cité, Paris, France
| | - Mauricio Campos-Mora
- Institute for Regenerative Medicine & Biotherapy, Montpellier University Hospital, Montpellier, France
| | - Claire Lozano
- Immunology Department, Montpellier University Hospital, Montpellier, France
| | - Thierry Vincent
- Immunology Department, Montpellier University Hospital, Montpellier, France
| | - Laurent Muller
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Jean-Yves Lefrant
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Claire Roger
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Pierre-Géraud Claret
- Medical and Surgical Emergency Department, Nîmes University Hospital, Nîmes, France
| | - Sandra Duvnjak
- Gerontology Department, Nîmes University Hospital, Nîmes, France
| | - Paul Loubet
- Infectious diseases Department, Nîmes University Hospital, Nîmes, France
| | - Albert Sotto
- Infectious diseases Department, Nîmes University Hospital, Nîmes, France
| | - Tu-Ahn Tran
- Pediatrics Department, Nîmes University Hospital, Nîmes, France
| | - Jérôme Estaquier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1124, Université Paris Cité, Paris, France
- Québec University Hospital, CHU de Québec, Laval University Research Center, Quebec City, QC, Canada
| | - Pierre Corbeau
- Institute of Human Genetics, Unité Mixte de Recherche 9002 (UMR9002), Centre National de Recherche Scientifique (CNRS) and Montpellier University, Montpellier, France
- Immunology Department, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
12
|
Vigón L, Galán M, Torres M, Martín-Galiano AJ, Rodríguez-Mora S, Mateos E, Corona M, Malo R, Navarro C, Murciano-Antón MA, García-Gutiérrez V, Planelles V, Martínez-Laso J, López-Huertas MR, Coiras M. Association between HLA-C alleles and COVID-19 severity in a pilot study with a Spanish Mediterranean Caucasian cohort. PLoS One 2022; 17:e0272867. [PMID: 35960731 PMCID: PMC9374209 DOI: 10.1371/journal.pone.0272867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022] Open
Abstract
The clinical presentations of COVID-19 may range from an asymptomatic or mild infection to a critical or fatal disease. Several host factors such as elderly age, male gender, and previous comorbidities seem to be involved in the most severe outcomes, but also an impaired immune response that causes a hyperinflammatory state but is unable to clear the infection. In order to get further understanding about this impaired immune response, we aimed to determine the association of specific HLA alleles with different clinical presentations of COVID-19. Therefore, we analyzed HLA Class I and II, as well as KIR gene sequences, in 72 individuals with Spanish Mediterranean Caucasian ethnicity who presented mild, severe, or critical COVID-19, according to their clinical characteristics and management. This cohort was recruited in Madrid (Spain) during the first and second pandemic waves between April and October 2020. There were no significant differences in HLA-A or HLA-B alleles among groups. However, despite the small sample size, we found that HLA-C alleles from group C1 HLA-C*08:02, -C*12:03, or -C*16:01 were more frequently associated in individuals with mild COVID-19 (43.8%) than in individuals with severe (8.3%; p = 0.0030; pc = 0.033) and critical (16.1%; p = 0.0014; pc = 0.0154) disease. C1 alleles are supposed to be highly efficient to present peptides to T cells, and HLA-C*12:03 may present a high number of verified epitopes from abundant SARS-CoV-2 proteins M, N, and S, thereby being allegedly able to trigger an efficient antiviral response. On the contrary, C2 alleles are usually poorly expressed on the cell surface due to low association with β2-microglobulin (β2M) and peptides, which may impede the adequate formation of stable HLA-C/β2M/peptide heterotrimers. Consequently, this pilot study described significant differences in the presence of specific HLA-C1 alleles in individuals with different clinical presentations of COVID-19, thereby suggesting that HLA haplotyping could be valuable to get further understanding in the underlying mechanisms of the impaired immune response during critical COVID-19.
Collapse
Affiliation(s)
- Lorena Vigón
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Galán
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio J. Martín-Galiano
- Intrahospital Infections Laboratory, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Magdalena Corona
- Hematology Service, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rosa Malo
- Neumology Service, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | | | | | | | - Vicente Planelles
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jorge Martínez-Laso
- Immunogenetic Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - María Rosa López-Huertas
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | | |
Collapse
|
13
|
Cervero M, López-Wolf D, Casado G, Novella-Mena M, Ryan-Murua P, Taboada-Martínez ML, Rodríguez-Mora S, Vigón L, Coiras M, Torres M. Beneficial Effect of Short-Term Supplementation of High Dose of Vitamin D3 in Hospitalized Patients With COVID-19: A Multicenter, Single-Blinded, Prospective Randomized Pilot Clinical Trial. Front Pharmacol 2022; 13:863587. [PMID: 35860019 PMCID: PMC9289223 DOI: 10.3389/fphar.2022.863587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/06/2022] [Indexed: 01/08/2023] Open
Abstract
There is now sufficient evidence to support that vitamin D deficiency may predispose to SARS-CoV-2 infection and increase COVID-19 severity and mortality. It has been suggested that vitamin D3 supplementation may be used prophylactically as an affordable and safe strategy that could be added to the existing COVID-19 standard treatment. This multicenter, single-blinded, prospective randomized pilot clinical trial aimed to evaluate the safety, tolerability, and effectiveness of 10,000 IU/day in comparison with 2000 IU/day of cholecalciferol supplementation for 14 days to reduce the duration and severity of COVID-19 in 85 hospitalized individuals. The median age of the participants was 65 years (Interquartile range (IQR): 53–74), most of them (71%) were men and the mean baseline of 25-hydroxyvitamin D (25(OH)D) in serum was 15 ng/ml (standard deviation (SD):6). After 14 days of supplementation, serum 25(OH)D levels were significantly increased in the group who received 10,000IU/day (p < 0.0001) (n = 44) in comparison with the 2,000IU/day group (n = 41), especially in overweight and obese participants, and the higher dose was well tolerated. A fraction of the individuals in our cohort (10/85) developed acute respiratory distress syndrome (ARDS). The median length of hospital stay in these patients with ARDS was significantly different in the participants assigned to the 10,000IU/day group (n = 4; 7 days; IQR: 4–13) and the 2,000IU/day group (n = 6; 27 days; IQR: 12–45) (p = 0.04). Moreover, the inspired oxygen fraction was reduced 7.6-fold in the high dose group (p = 0.049). In terms of blood parameters, we did not identify overall significant improvements, although the platelet count showed a modest but significant difference in those patients who were supplemented with the higher dose (p = 0.0492). In conclusion, the administration of 10,000IU/day of vitamin D3 for 14 days in association with the standard clinical care during hospitalization for COVID-19 was safe, tolerable, and beneficial, thereby helping to improve the prognosis during the recovery process.
Collapse
Affiliation(s)
- Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Spain
- *Correspondence: Miguel Cervero, ; Mayte Coiras, ; Montserrat Torres,
| | - Daniel López-Wolf
- Internal Medicine Service, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Guiomar Casado
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Novella-Mena
- Internal Medicine Service, Hospital Universitario Príncipe de Asturias, Madrid, Spain
| | - Pablo Ryan-Murua
- Internal Medicine Service, Hospital Universitario Infanta Leonor, Madrid, Spain
| | | | - Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Lorena Vigón
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Miguel Cervero, ; Mayte Coiras, ; Montserrat Torres,
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Miguel Cervero, ; Mayte Coiras, ; Montserrat Torres,
| |
Collapse
|
14
|
Garcinuño S, Gil-Etayo FJ, Mancebo E, López-Nevado M, Lalueza A, Díaz-Simón R, Pleguezuelo DE, Serrano M, Cabrera-Marante O, Allende LM, Paz-Artal E, Serrano A. Effective Natural Killer Cell Degranulation Is an Essential Key in COVID-19 Evolution. Int J Mol Sci 2022; 23:ijms23126577. [PMID: 35743021 PMCID: PMC9224310 DOI: 10.3390/ijms23126577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
NK degranulation plays an important role in the cytotoxic activity of innate immunity in the clearance of intracellular infections and is an important factor in the outcome of the disease. This work has studied NK degranulation and innate immunological profiles and functionalities in COVID-19 patients and its association with the severity of the disease. A prospective observational study with 99 COVID-19 patients was conducted. Patients were grouped according to hospital requirements and severity. Innate immune cell subpopulations and functionalities were analyzed. The profile and functionality of innate immune cells differ between healthy controls and severe patients; CD56dim NK cells increased and MAIT cells and NK degranulation rates decreased in the COVID-19 subjects. Higher degranulation rates were observed in the non-severe patients and in the healthy controls compared to the severe patients. Benign forms of the disease had a higher granzymeA/granzymeB ratio than complex forms. In a multivariate analysis, the degranulation capacity resulted in a protective factor against severe forms of the disease (OR: 0.86), whereas the permanent expression of NKG2D in NKT cells was an independent risk factor (OR: 3.81; AUC: 0.84). In conclusion, a prompt and efficient degranulation functionality in the early stages of infection could be used as a tool to identify patients who will have a better evolution.
Collapse
Affiliation(s)
- Sara Garcinuño
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
| | - Francisco Javier Gil-Etayo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Esther Mancebo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Marta López-Nevado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
| | - Antonio Lalueza
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Raquel Díaz-Simón
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Daniel Enrique Pleguezuelo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Manuel Serrano
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Oscar Cabrera-Marante
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Luis M. Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Antonio Serrano
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-652-085-293
| |
Collapse
|
15
|
Lee KA, Flores RR, Jang IH, Saathoff A, Robbins PD. Immune Senescence, Immunosenescence and Aging. FRONTIERS IN AGING 2022; 3:900028. [PMID: 35821850 PMCID: PMC9261375 DOI: 10.3389/fragi.2022.900028] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/06/2022] [Indexed: 01/15/2023]
Abstract
With aging, there is increased dysfunction of both innate and adaptive immune responses, which contributes to impaired immune responses to pathogens and greater mortality and morbidity. This age-related immune dysfunction is defined in general as immunosenescence and includes an increase in the number of memory T cells, loss of ability to respond to antigen and a lingering level of low-grade inflammation. However, certain features of immunosenescence are similar to cellular senescence, which is defined as the irreversible loss of proliferation in response to damage and stress. Importantly, senescence cells can develop an inflammatory senescence-associated secretory phenotype (SASP), that also drives non-autonomous cellular senescence and immune dysfunction. Interestingly, viral infection can increase the extent of immune senescence both directly and indirectly, leading to increased immune dysfunction and inflammation, especially in the elderly. This review focuses on age-related immune dysfunction, cellular senescence and the impaired immune response to pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
Early Cellular and Humoral Responses Developed in Oncohematological Patients after Vaccination with One Dose against COVID-19. J Clin Med 2022; 11:jcm11102803. [PMID: 35628927 PMCID: PMC9147947 DOI: 10.3390/jcm11102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
Individuals with oncohematological diseases (OHD) may develop an impaired immune response against vaccines due to the characteristics of the disease or to its treatment. Humoral response against SARS-CoV-2 has been described to be suboptimal in these patients, but the quality and efficiency of the cellular immune response has not been yet completely characterized. In this study, we analyzed the early humoral and cellular immune responses in individuals with different OHD after receiving one dose of an authorized vaccine against SARS-CoV-2. Humoral response, determined by antibodies titers and neutralizing capacity, was overall impaired in individuals with OHD, except for the cohort of chronic myeloid leukemia (CML), which showed higher levels of specific IgGs than healthy donors. Conversely, the specific direct cytotoxic cellular immunity response (DCC) against SARS-CoV-2, appeared to be enhanced, especially in individuals with CML and chronic lymphocytic leukemia (CLL). This increased cellular immune response, developed earlier than in healthy donors, showed a modest cytotoxic activity that was compensated by significantly increased numbers, likely due to the disease or its treatment. The analysis of the immune response through subsequent vaccine doses will help establish the real efficacy of COVID-19 vaccines in individuals with OHD.
Collapse
|
17
|
Bonifacius A, Tischer-Zimmermann S, Santamorena MM, Mausberg P, Schenk J, Koch S, Barnstorf-Brandes J, Gödecke N, Martens J, Goudeva L, Verboom M, Wittig J, Maecker-Kolhoff B, Baurmann H, Clark C, Brauns O, Simon M, Lang P, Cornely OA, Hallek M, Blasczyk R, Seiferling D, Köhler P, Eiz-Vesper B. Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy. Front Bioeng Biotechnol 2022; 10:867042. [PMID: 35480981 PMCID: PMC9036989 DOI: 10.3389/fbioe.2022.867042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives: Evaluation of the feasibility of SARS-CoV-2-specific T cell manufacturing for adoptive T cell transfer in COVID-19 patients at risk to develop severe disease. Methods: Antiviral SARS-CoV-2-specific T cells were detected in blood of convalescent COVID-19 patients following stimulation with PepTivator SARS-CoV-2 Select using Interferon-gamma Enzyme-Linked Immunospot (IFN-γ ELISpot), SARS-CoV-2 T Cell Analysis Kit (Whole Blood) and Cytokine Secretion Assay (CSA) and were characterized with respect to memory phenotype, activation state and cytotoxic potential by multicolor flow cytometry, quantitative real-time PCR and multiplex analyses. Clinical-grade SARS-CoV-2-specific T cell products were generated by stimulation with MACS GMP PepTivator SARS-CoV-2 Select using CliniMACS Prodigy and CliniMACS Cytokine Capture System (IFN-gamma) (CCS). Functionality of enriched T cells was investigated in cytotoxicity assays and by multiplex analysis of secreted cytotoxic molecules upon target recognition. Results: Donor screening via IFN-γ ELISpot allows for pre-selection of potential donors for generation of SARS-CoV-2-specific T cells. Antiviral T cells reactive against PepTivator SARS-CoV-2 Select could be magnetically enriched from peripheral blood of convalescent COVID-19 patients by small-scale CSA resembling the clinical-grade CCS manufacturing process and showed an activated and cytotoxic T cell phenotype. Four clinical-grade SARS-CoV-2-specific T cell products were successfully generated with sufficient cell numbers and purities comparable to those observed in donor pretesting via CSA. The T cells in the generated products were shown to be capable to replicate, specifically recognize and kill target cells in vitro and secrete cytotoxic molecules upon target recognition. Cell viability, total CD3+ cell number, proliferative capacity and cytotoxic potential remained stable throughout storage of up to 72 h after end of leukapheresis. Conclusion: Clinical-grade SARS-CoV-2-specific T cells are functional, have proliferative capacity and target-specific cytotoxic potential. Their function and phenotype remain stable for several days after enrichment. The adoptive transfer of partially matched, viable human SARS-CoV-2-specific T lymphocytes collected from convalescent individuals may provide the opportunity to support the immune system of COVID-19 patients at risk for severe disease.
Collapse
Affiliation(s)
- Agnes Bonifacius
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Maria Michela Santamorena
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Philip Mausberg
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Josephine Schenk
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Stephanie Koch
- Deutsche Gesellschaft für Gewebetransplantation, Hannover, Germany
| | - Johanna Barnstorf-Brandes
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Nina Gödecke
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Jörg Martens
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Lilia Goudeva
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Murielle Verboom
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | - Jana Wittig
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Caren Clark
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Olaf Brauns
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Martina Simon
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Peter Lang
- Department of Pediatric Hematology and Oncology, University Children's Hospital, University of Tuebingen, Tuebingen, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Rainer Blasczyk
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | | | - Philipp Köhler
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Britta Eiz-Vesper
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| |
Collapse
|
18
|
Strong Cellular Immune Response, but Not Humoral, against SARS-CoV-2 in Oncohematological Patients with Autologous Stem Cell Transplantation after Natural Infection. J Clin Med 2022; 11:jcm11082137. [PMID: 35456230 PMCID: PMC9032116 DOI: 10.3390/jcm11082137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Oncohematological patients show a low immune response against SARS-CoV-2, both to natural infection and after vaccination. Most studies are focused on the analysis of the humoral response; therefore, the information available about the cellular immune response is limited. In this study, we analyzed the humoral and cellular immune responses in nine individuals who received chemotherapy for their oncohematological diseases, as well as consolidation with autologous stem cell transplantation (ASCT), after being naturally infected with SARS-CoV-2. All individuals had asymptomatic or mild COVID-19 and were not vaccinated against SARS-CoV-2. These results were compared with matched healthy individuals who also had mild COVID-19. The humoral response against SARS-CoV-2 was not detected in 6 of 9 oncohematological individuals prior to ASCT. The levels of antibodies and their neutralization capacity decreased after ASCT. Conversely, an enhanced cytotoxic activity against SARS-CoV-2-infected cells was observed after chemotherapy plus ASCT, mostly based on high levels of NK, NKT, and CD8+TCRγδ+ cell populations that were able to produce IFNγ and TNFα. These results highlight the importance of performing analyses not only to evaluate the levels of IgGs against SARS-CoV-2, but also to determine the quality of the cellular immune response developed during the immune reconstitution after ASCT.
Collapse
|
19
|
Maggi E, Azzarone BG, Canonica GW, Moretta L. What we know and still ignore on COVID-19 immune pathogenesis and a proposal based on the experience of allergic disorders. Allergy 2022; 77:1114-1128. [PMID: 34582050 PMCID: PMC8652765 DOI: 10.1111/all.15112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic started in March 2020 and caused over 5 million confirmed deaths worldwide as far August 2021. We have been recently overwhelmed by a wide literature on how the immune system recognizes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and contributes to COVID-19 pathogenesis. Although originally considered a respiratory viral disease, COVID-19 is now recognized as a far more complex, multi-organ-, immuno-mediated-, and mostly heterogeneous disorder. Though efficient innate and adaptive immunity may control infection, when the patient fails to mount an adequate immune response at the start, or in advanced disease, a high innate-induced inflammation can lead to different clinical outcomes through heterogeneous compensatory mechanisms. The variability of viral load and persistence, the genetic alterations of virus-driven receptors/signaling pathways and the plasticity of innate and adaptive responses may all account for the extreme heterogeneity of pathogenesis and clinical patterns. As recently applied to some inflammatory disorders as asthma, rhinosinusitis with polyposis, and atopic dermatitis, herein we suggest defining different endo-types and the related phenotypes along COVID-19. Patients should be stratified for evolving symptoms and tightly monitored for surrogate biomarkers of innate and adaptive immunity. This would allow to preventively identify each endo-type (and its related phenotype) and to treat patients precisely with agents targeting pathogenic mechanisms.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of ImmunologyBambino Gesù Children’s HospitalIRCCSRomeItaly
| | | | | | - Lorenzo Moretta
- Department of ImmunologyBambino Gesù Children’s HospitalIRCCSRomeItaly
| |
Collapse
|
20
|
Galán M, Vigón L, Fuertes D, Murciano-Antón MA, Casado-Fernández G, Domínguez-Mateos S, Mateos E, Ramos-Martín F, Planelles V, Torres M, Rodríguez-Mora S, López-Huertas MR, Coiras M. Persistent Overactive Cytotoxic Immune Response in a Spanish Cohort of Individuals With Long-COVID: Identification of Diagnostic Biomarkers. Front Immunol 2022; 13:848886. [PMID: 35401523 PMCID: PMC8990790 DOI: 10.3389/fimmu.2022.848886] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Long-COVID is a new emerging syndrome worldwide that is characterized by the persistence of unresolved signs and symptoms of COVID-19 more than 4 weeks after the infection and even after more than 12 weeks. The underlying mechanisms for Long-COVID are still undefined, but a sustained inflammatory response caused by the persistence of SARS-CoV-2 in organ and tissue sanctuaries or resemblance with an autoimmune disease are within the most considered hypotheses. In this study, we analyzed the usefulness of several demographic, clinical, and immunological parameters as diagnostic biomarkers of Long-COVID in one cohort of Spanish individuals who presented signs and symptoms of this syndrome after 49 weeks post-infection, in comparison with individuals who recovered completely in the first 12 weeks after the infection. We determined that individuals with Long-COVID showed significantly increased levels of functional memory cells with high antiviral cytotoxic activity such as CD8+ TEMRA cells, CD8±TCRγδ+ cells, and NK cells with CD56+CD57+NKG2C+ phenotype. The persistence of these long-lasting cytotoxic populations was supported by enhanced levels of CD4+ Tregs and the expression of the exhaustion marker PD-1 on the surface of CD3+ T lymphocytes. With the use of these immune parameters and significant clinical features such as lethargy, pleuritic chest pain, and dermatological injuries, as well as demographic factors such as female gender and O+ blood type, a Random Forest algorithm predicted the assignment of the participants in the Long-COVID group with 100% accuracy. The definition of the most accurate diagnostic biomarkers could be helpful to detect the development of Long-COVID and to improve the clinical management of these patients.
Collapse
Affiliation(s)
- Miguel Galán
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Lorena Vigón
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Fuertes
- School of Telecommunications Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Guiomar Casado-Fernández
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Fernando Ramos-Martín
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Planelles
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - María Rosa López-Huertas
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| |
Collapse
|
21
|
Comprehensive Analysis of the ILCs and Unconventional T Cells in Virus Infection: Profiling and Dynamics Associated with COVID-19 Disease for a Future Monitoring System and Therapeutic Opportunities. Cells 2022; 11:cells11030542. [PMID: 35159352 PMCID: PMC8834012 DOI: 10.3390/cells11030542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
This review is a comprehensive analysis of the effects of SARS-CoV-2 infection on Unconventional T cells and innate lymphoid cells (ILCs). COVID-19 affected patients show dysregulation of their adaptive immune systems, but many questions remain unsolved on the behavior of Unconventional cells and ILCs during infection, considering their role in maintaining homeostasis in tissue. Therefore, we highlight the differences that exist among the studies in cohorts of patients who in general were categorized considering symptoms and hospitalization. Moreover, we make a critical analysis of the presence of particular clusters of cells that express activation and exhausted markers for each group in order to bring out potential diagnostic factors unconsidered before now. We also focus our attention on studies that take into consideration recovered patients. Indeed, it could be useful to determine Unconventional T cells’ and ILCs’ frequencies and functions in longitudinal studies because it could represent a way to monitor the immune status of SARS-CoV-2-infected subjects. Possible changes in cell frequencies or activation profiles could be potentially useful as prognostic biomarkers and for future therapy. Currently, there are no efficacious therapies for SARS-CoV-2 infection, but deep studies on involvement of Unconventional T cells and ILCs in the pathogenesis of COVID-19 could be promising for targeted therapies.
Collapse
|
22
|
Guest PC, Rahmoune H. Liquid Chromatography-Mass Spectrometry Analysis of Peripheral Blood Mononuclear Cells from SARS-CoV-2 Infected Patients. Methods Mol Biol 2022; 2511:201-211. [PMID: 35838962 DOI: 10.1007/978-1-0716-2395-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
COVID-19 disease is caused by infection with the SARS-CoV-2 virus and is associated with a cytokine storm effect in some patients. This can lead to decreased ability of the host to cope with the infection and result in severe disease outcomes. Here, we present a protocol for isolation of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients followed by liquid chromatography-mass spectrometry (LC-MS) profiling to identify the affected molecules and molecular pathways. It is hoped that this will lead to the identification of potential biomarkers for monitoring the disease as well as treatment responses. This approach could also be used in the study of other respiratory viruses.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| | - Hassan Rahmoune
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Iwata K, Xie MJ, Guest PC, Hirai T, Matsuzazki H. Measurement of Mitochondrial Respiration in Cryopreserved Human Peripheral Blood Mononuclear Cells (PBMCs). Methods Mol Biol 2022; 2511:321-332. [PMID: 35838971 DOI: 10.1007/978-1-0716-2395-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inflammatory diseases caused by infectious agents such as the SARS-CoV-2 virus can lead to impaired reductive-oxidative (REDOX) balance and disrupted mitochondrial function. Peripheral blood mononuclear cells (PBMCs) provide a useful model for studying the effects of inflammatory diseases on mitochondrial function but can be limited by the need to store these cells by cryopreservation prior to assay. Here, we describe a method for improving and determining PBMC viability with normalization of values to number of living cells. The approach can be applied not only to PBMC samples derived from patients with diseases marked by an altered inflammatory response such as viral infections.
Collapse
Affiliation(s)
- Keiko Iwata
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan.
- United Graduate School of Child Development, Osaka University, Osaka, Japan.
- Life Science Innovation Center, University of Fukui, Fukui, Japan.
| | - Min-Jue Xie
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Takaharu Hirai
- Department of Psychiatric and Mental Health Nursing, School of Nursing, University of Fukui, Fukui, Japan
| | - Hideo Matsuzazki
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|
24
|
Vigón L, García-Pérez J, Rodríguez-Mora S, Torres M, Mateos E, Castillo de la Osa M, Cervero M, Malo De Molina R, Navarro C, Murciano-Antón MA, García-Gutiérrez V, Planelles V, Alcamí J, Pérez-Olmeda M, Coiras M, López-Huertas MR. Impaired Antibody-Dependent Cellular Cytotoxicity in a Spanish Cohort of Patients With COVID-19 Admitted to the ICU. Front Immunol 2021; 12:742631. [PMID: 34616404 PMCID: PMC8488389 DOI: 10.3389/fimmu.2021.742631] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 infection causes COVID-19, ranging from mild to critical disease in symptomatic subjects. It is essential to better understand the immunologic responses occurring in patients with the most severe outcomes. In this study, parameters related to the humoral immune response elicited against SARS-CoV-2 were analysed in 61 patients with different presentations of COVID-19 who were recruited in Hospitals and Primary Healthcare Centres in Madrid, Spain, during the first pandemic peak between April and June 2020. Subjects were allocated as mild patients without hospitalization, severe patients hospitalized or critical patients requiring ICU assistance. Critical patients showed significantly enhanced levels of B cells with memory and plasmablast phenotypes, as well as higher levels of antibodies against SARS-CoV-2 with neutralization ability, which were particularly increased in male gender. Despite all this, antibody-dependent cell-mediated cytotoxicity was defective in these individuals. Besides, patients with critical COVID-19 also showed increased IgG levels against herpesvirus such as CMV, EBV, HSV-1 and VZV, as well as detectable CMV and EBV viremia in plasma. Altogether, these results suggest an enhanced but ineffectual immune response in patients with critical COVID-19 that allowed latent herpesvirus reactivation. These findings should be considered during the clinical management of these patients due to the potential contribution to the most severe disease during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lorena Vigón
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Javier García-Pérez
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - María Castillo de la Osa
- Serology Laboratory, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Spain
| | - Rosa Malo De Molina
- Neumology Service, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | | | | | | | - Vicente Planelles
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Mayte Pérez-Olmeda
- Serology Laboratory, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - María Rosa López-Huertas
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|