1
|
Chen Z, Zhang Y, Kwak-Kim J, Wang W. Memory regulatory T cells in pregnancy. Front Immunol 2023; 14:1209706. [PMID: 37954599 PMCID: PMC10637476 DOI: 10.3389/fimmu.2023.1209706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Pregnancy requires the process of maternal immune tolerance to semi-allogeneic embryos. In contrast, an overreactive maternal immune system to embryo-specific antigens is likely to result in the rejection of embryos while damaging the invading placenta, such that the likelihood of adverse pregnancy outcomes can be increased. Regulatory T cells (Tregs) are capable of suppressing excessive immune responses and regulating immune homeostasis. When stimulating Tregs, specific antigens will differentiate into memory Tregs with long-term survival and rapid and powerful immune regulatory ability. Immunomodulatory effects mediated by memory Tregs at the maternal-fetal interface take on critical significance in a successful pregnancy. The impaired function of memory Tregs shows a correlation with various pregnancy complications (e.g., preeclampsia, gestational diabetes mellitus, and recurrent pregnancy losses). However, the differentiation process and characteristics of memory Tregs, especially their role in pregnancy, remain unclear. In this study, a review is presented in terms of memory Tregs differentiation and activation, the characteristics of memory Tregs and their role in pregnancy, and the correlation between memory Tregs and pregnancy complications. Furthermore, several potential therapeutic methods are investigated to restore the function of memory Tregs in accordance with immunopathologies arising from memory Tregs abnormalities and provide novel targets for diagnosing and treating pregnancy-associated diseases.
Collapse
Affiliation(s)
- Zeyang Chen
- School of Medicine, Qingdao University, Qingdao, China
- Reproduction Medical Center, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanan Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Shao TY, Kinder JM, Harper G, Pham G, Peng Y, Liu J, Gregory EJ, Sherman BE, Wu Y, Iten AE, Hu YC, Russi AE, Erickson JJ, Miller-Handley H, Way SS. Reproductive outcomes after pregnancy-induced displacement of preexisting microchimeric cells. Science 2023; 381:1324-1330. [PMID: 37733857 PMCID: PMC10877202 DOI: 10.1126/science.adf9325] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/07/2023] [Indexed: 09/23/2023]
Abstract
Pregnancy confers partner-specific protection against complications in future pregnancy that parallel persistence of fetal microchimeric cells (FMcs) in mothers after parturition. We show that preexisting FMcs become displaced by new FMcs during pregnancy and that FMc tonic stimulation is essential for expansion of protective fetal-specific forkhead box P3 (FOXP3)-positive regulatory T cells (Treg cells). Maternal microchimeric cells and accumulation of Treg cells with noninherited maternal antigen (NIMA) specificity are similarly overturned in daughters after pregnancy, highlighting a fixed microchimeric cell niche. Whereas NIMA-specific tolerance is functionally erased by pregnancy, partner-specific resiliency against pregnancy complications persists in mothers despite paternity changes in intervening pregnancy. Persistent fetal tolerance reflects FOXP3 expression plasticity, which allows mothers to more durably remember their babies, whereas daughters forget their mothers with new pregnancy-imprinted immunological memories.
Collapse
Affiliation(s)
- Tzu-Yu Shao
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jeremy M. Kinder
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Gavin Harper
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Giang Pham
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yanyan Peng
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James Liu
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Emily J. Gregory
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Bryan E. Sherman
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yuehong Wu
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Alexandra E. Iten
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Abigail E. Russi
- Division of Gastroenterology, Hepatology and Advanced Nutrition, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - John J. Erickson
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Hilary Miller-Handley
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
3
|
Romero R, Theis KR, Gomez-Lopez N, Winters AD, Panzer JJ, Lin H, Galaz J, Greenberg JM, Shaffer Z, Kracht DJ, Chaiworapongsa T, Jung E, Gotsch F, Ravel J, Peddada SD, Tarca AL. The Vaginal Microbiota of Pregnant Women Varies with Gestational Age, Maternal Age, and Parity. Microbiol Spectr 2023; 11:e0342922. [PMID: 37486223 PMCID: PMC10434204 DOI: 10.1128/spectrum.03429-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/25/2023] [Indexed: 07/25/2023] Open
Abstract
The composition of the vaginal microbiota is heavily influenced by pregnancy and may factor into pregnancy complications, including spontaneous preterm birth. However, results among studies have been inconsistent due, in part, to variation in sample sizes and ethnicity. Thus, an association between the vaginal microbiota and preterm labor continues to be debated. Yet, before assessing associations between the composition of the vaginal microbiota and preterm labor, a robust and in-depth characterization of the vaginal microbiota throughout pregnancy in the specific study population under investigation is required. Here, we report a large longitudinal study (n = 474 women, 1,862 vaginal samples) of a predominantly African-American cohort-a population that experiences a relatively high rate of pregnancy complications-evaluating associations between individual identity, gestational age, and other maternal characteristics with the composition of the vaginal microbiota throughout gestation resulting in term delivery. The principal factors influencing the composition of the vaginal microbiota in pregnancy are individual identity and gestational age at sampling. Other factors are maternal age, parity, obesity, and self-reported Cannabis use. The general pattern across gestation is for the vaginal microbiota to remain or transition to a state of Lactobacillus dominance. This pattern can be modified by maternal parity and obesity. Regardless, network analyses reveal dynamic associations among specific bacterial taxa within the vaginal ecosystem, which shift throughout the course of pregnancy. This study provides a robust foundational understanding of the vaginal microbiota in pregnancy and sets the stage for further investigation of this microbiota in obstetrical disease. IMPORTANCE There is debate regarding links between the vaginal microbiota and pregnancy complications, especially spontaneous preterm birth. Inconsistencies in results among studies are likely due to differences in sample sizes and cohort ethnicity. Ethnicity is a complicating factor because, although all bacterial taxa commonly inhabiting the vagina are present among all ethnicities, the frequencies of these taxa vary among ethnicities. Therefore, an in-depth characterization of the vaginal microbiota throughout pregnancy in the specific study population under investigation is required prior to evaluating associations between the vaginal microbiota and obstetrical disease. This initial investigation is a large longitudinal study of the vaginal microbiota throughout gestation resulting in a term delivery in a predominantly African-American cohort, a population that experiences disproportionally negative maternal-fetal health outcomes. It establishes the magnitude of associations between maternal characteristics, such as age, parity, body mass index, and self-reported Cannabis use, on the vaginal microbiota in pregnancy.
Collapse
Affiliation(s)
- Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Kevin R. Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Andrew D. Winters
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jonathan J. Panzer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Huang Lin
- Biostatistics and Bioinformatics Branch, National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jonathan M. Greenberg
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zachary Shaffer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - David J. Kracht
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shyamal D. Peddada
- Biostatistics and Bioinformatics Branch, National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Adi L. Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
4
|
Espinosa CA, Khan W, Khanam R, Das S, Khalid J, Pervin J, Kasaro MP, Contrepois K, Chang AL, Phongpreecha T, Michael B, Ellenberger M, Mehmood U, Hotwani A, Nizar A, Kabir F, Wong RJ, Becker M, Berson E, Culos A, De Francesco D, Mataraso S, Ravindra N, Thuraiappah M, Xenochristou M, Stelzer IA, Marić I, Dutta A, Raqib R, Ahmed S, Rahman S, Hasan ASMT, Ali SM, Juma MH, Rahman M, Aktar S, Deb S, Price JT, Wise PH, Winn VD, Druzin ML, Gibbs RS, Darmstadt GL, Murray JC, Stringer JSA, Gaudilliere B, Snyder MP, Angst MS, Rahman A, Baqui AH, Jehan F, Nisar MI, Vwalika B, Sazawal S, Shaw GM, Stevenson DK, Aghaeepour N. Multiomic signals associated with maternal epidemiological factors contributing to preterm birth in low- and middle-income countries. SCIENCE ADVANCES 2023; 9:eade7692. [PMID: 37224249 PMCID: PMC10208584 DOI: 10.1126/sciadv.ade7692] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
Preterm birth (PTB) is the leading cause of death in children under five, yet comprehensive studies are hindered by its multiple complex etiologies. Epidemiological associations between PTB and maternal characteristics have been previously described. This work used multiomic profiling and multivariate modeling to investigate the biological signatures of these characteristics. Maternal covariates were collected during pregnancy from 13,841 pregnant women across five sites. Plasma samples from 231 participants were analyzed to generate proteomic, metabolomic, and lipidomic datasets. Machine learning models showed robust performance for the prediction of PTB (AUROC = 0.70), time-to-delivery (r = 0.65), maternal age (r = 0.59), gravidity (r = 0.56), and BMI (r = 0.81). Time-to-delivery biological correlates included fetal-associated proteins (e.g., ALPP, AFP, and PGF) and immune proteins (e.g., PD-L1, CCL28, and LIFR). Maternal age negatively correlated with collagen COL9A1, gravidity with endothelial NOS and inflammatory chemokine CXCL13, and BMI with leptin and structural protein FABP4. These results provide an integrated view of epidemiological factors associated with PTB and identify biological signatures of clinical covariates affecting this disease.
Collapse
Affiliation(s)
- Camilo A. Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Waqasuddin Khan
- Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Rasheda Khanam
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sayan Das
- Centre for Public Health Kinetics, New Delhi, Delhi, India
| | - Javairia Khalid
- Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Jesmin Pervin
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Margaret P. Kasaro
- University of North Carolina Global Projects Zambia, Lusaka, Zambia
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan L. Chang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Thanaphong Phongpreecha
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Basil Michael
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mathew Ellenberger
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Usma Mehmood
- Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Aneeta Hotwani
- Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Ambreen Nizar
- Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Furqan Kabir
- Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Ronald J. Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Eloise Berson
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony Culos
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Davide De Francesco
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Samson Mataraso
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Neal Ravindra
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Melan Thuraiappah
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria Xenochristou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Ina A. Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivana Marić
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Arup Dutta
- Centre for Public Health Kinetics, New Delhi, Delhi, India
| | - Rubhana Raqib
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | | | | | - Said M. Ali
- Public Health Laboratory—Ivo de Carneri, Pemba, Zanzibar, Tanzania
| | - Mohamed H. Juma
- Public Health Laboratory—Ivo de Carneri, Pemba, Zanzibar, Tanzania
| | - Monjur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Shaki Aktar
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Saikat Deb
- Centre for Public Health Kinetics, New Delhi, Delhi, India
- Public Health Laboratory—Ivo de Carneri, Pemba, Zanzibar, Tanzania
| | - Joan T. Price
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Obstetrics and Gynaecology, University of Zambia School of Medicine, Lusaka, Zambia
| | - Paul H. Wise
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Virginia D. Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maurice L. Druzin
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald S. Gibbs
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary L. Darmstadt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jeffrey S. A. Stringer
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin S. Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Abdullah H. Baqui
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Fyezah Jehan
- Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Muhammad Imran Nisar
- Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Bellington Vwalika
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Obstetrics and Gynaecology, University of Zambia School of Medicine, Lusaka, Zambia
| | - Sunil Sazawal
- Centre for Public Health Kinetics, New Delhi, Delhi, India
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K. Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Giles ML, Sing Way S, Marchant A, Aghaepour N, James T, Schaltz-Buchholzer F, Zazara D, Arck P, Kollmann TR. Maternal vaccination to prevent adverse pregnancy outcomes: An underutilized molecular immunological intervention? J Mol Biol 2023; 435:168097. [PMID: 37080422 DOI: 10.1016/j.jmb.2023.168097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
Adverse pregnancy outcomes including maternal mortality, stillbirth, preterm birth, intrauterine growth restriction cause millions of deaths each year. More effective interventions are urgently needed. Maternal immunization could be one such intervention protecting the mother and newborn from infection through its pathogen-specific effects. However, many adverse pregnancy outcomes are not directly linked to the infectious pathogens targeted by existing maternal vaccines but rather are linked to pathological inflammation unfolding during pregnancy. The underlying pathogenesis driving such unfavourable outcomes have only partially been elucidated but appear to relate to altered immune regulation by innate as well as adaptive immune responses, ultimately leading to aberrant maternal immune activation. Maternal immunization, like all immunization, impacts the immune system beyond pathogen-specific immunity. This raises the possibility that maternal vaccination could potentially be utilised as a pathogen-agnostic immune modulatory intervention to redirect abnormal immune trajectories towards a more favourable phenotype providing pregnancy protection. In this review we describe the epidemiological evidence surrounding this hypothesis, along with the mechanistic plausibility and present a possible path forward to accelerate addressing the urgent need of adverse pregnancy outcomes.
Collapse
Affiliation(s)
| | - Sing Sing Way
- Center for Inflammation and Tolerance; Cincinnati Children's Hospital, Cincinnati USA
| | | | - Nima Aghaepour
- Stanford University School of Medicine, Stanford, CA, USA
| | - Tomin James
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Dimitra Zazara
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Petra Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | | |
Collapse
|
6
|
Ticconi C, Inversetti A, Logruosso E, Ghio M, Casadei L, Selmi C, Di Simone N. Antinuclear antibodies positivity in women in reproductive age: From infertility to adverse obstetrical outcomes - A meta-analysis. J Reprod Immunol 2023; 155:103794. [PMID: 36621091 DOI: 10.1016/j.jri.2022.103794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
This systematic review and meta-analysis were designed to identify possible correlations between isolated serum antinuclear antibody (ANA) and (i) infertility in the context of in-vitro fertilization (IVF), (ii) idiopathic recurrent pregnancy losses (RPL), and (iii) second/ third trimester pregnancy complications. We performed a systematic review and meta-analysis of the literature in PubMed Library database from inception to March 2022 following PRISMA guidelines. Our pooled results showed a lower pregnancy rate among ANA-positive women undergoing IVF/ICSI compared to ANA-negative women undergoing the same procedures (279/908 versus 1136/2347, random effect, odds ratio -OR- 0.50, 95% confidence interval -CI- 0.38-0.67, p 0.00001, I2 = 58%). We also reported a higher miscarriage rate among ANA-positive compared to ANA-negative women (48/223 versus 109/999, random effect, OR: 3.25 95% CI: 1.57-6.76, p = 0.002, I2 = 61%) and a lower implantation rate (320/1489 versus 1437/4205, random effect, OR: 0.51, 95% CI: 0.36-0.72, p = 0.0001, I2 = 78%). Regarding RPL, pooled results demonstrated a higher prevalence of ANA-positivity in RPL women compared to controls (698/2947 versus 240/3145, random effect, OR: 3.22, 95% CI: 2.12-4.88, p 0.00001, I2 77%), either using > 2 or > 3 pregnancy losses threshold for defining RPL. Heterogeneity of reporting outcome did not allow a quantitative analysis and led to no clear demonstration of an effect of serum ANA on the incidence of stillbirth, preeclampsia and hypertensive disorders. In conclusion, the unfavorable effect of serum ANA was observed in women following IVF. Similarly, ANA were associated with the risk of RPL, while data were unconclusive in terms of late pregnancy complications.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, 00168 Rome, Italy
| | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy; Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, via Manzoni 56, 20089 Milan, Rozzano, Italy
| | - Eleonora Logruosso
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy
| | - Matilda Ghio
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy
| | - Luisa Casadei
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, 00168 Rome, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy; Division of Rheumatology and Clinical Immunology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, via Manzoni 56, 20089 Milan, Rozzano, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Milan, Pieve Emanuele, Italy; Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, via Manzoni 56, 20089 Milan, Rozzano, Italy.
| |
Collapse
|
7
|
The Regulatory-T-Cell Memory Phenotype: What We Know. Cells 2022; 11:cells11101687. [PMID: 35626725 PMCID: PMC9139615 DOI: 10.3390/cells11101687] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
In immunology, the discovery of regulatory T (Treg) cells was a major breakthrough. Treg cells play a key role in pregnancy maintenance, in the prevention of autoimmune responses, and in the control of all immune responses, including responses to self cells, cancer, infection, and a transplant. It is currently unclear whether Treg cells are capable of long-term memory of an encounter with an antigen. Although the term “immunological memory” usually means an enhanced ability to protect the body from reinfection, the memory of the suppressive activity of Treg cells helps to avoid the state of generalized immunosuppression that may result from the second activation of the immune system. In this review, we would like to discuss the concept of regulatory memory and in which tissues memory Treg cells can perform their functions.
Collapse
|
8
|
刘 艳, 梁 琨. Effect of hypertensive disorders of pregnancy on peripheral venous blood cell count in preterm infants with a gestational age of 28-34 weeks. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:60-64. [PMID: 35177177 PMCID: PMC8802392 DOI: 10.7499/j.issn.1008-8830.2109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To study the effect of hypertensive disorders of pregnancy on peripheral venous blood cell count in preterm infants with a gestational age of 28-34 weeks. METHODS A total of 227 preterm infants with a gestational age of 28-34 weeks who were admitted to the Department of Pediatrics, the First Hospital Affiliated to Kunming Medical University, from January to December 2020, and whose mothers had hypertensive disorders of pregnancy were enrolled as the study group. A total of 227 preterm infants with a gestational age of 28-34 weeks who were admitted during the same period and whose mothers did not have hypertensive disorders of pregnancy were enrolled as the control group. According to maternal blood pressure during pregnancy, the study group was divided into three subgroups: gestational hypertension (n=75), mild preeclampsia (n=81), and severe preeclampsia (n=71). According to the birth weight of the preterm infants, the study group was divided into two subgroups: small for gestational age (SGA) (n=113) and appropriate for gestational age (AGA) (n=114). Peripheral blood cell count on day 1 after birth was compared between the study and control groups, as well as between the subgroups of the study group. RESULTS Compared with the control group, the study group had significantly lower white blood cell count, absolute neutrophil count, and blood platelet count (P<0.05) and significantly higher incidence rates of leucopenia and neutropenia (P<0.05). The subgroup analysis showed that the mild preeclampsia and severe preeclampsia subgroups had significantly lower white blood cell count, absolute neutrophil count, and blood platelet count than the gestational hypertension subgroup (P<0.05), and that the SGA subgroup had significantly lower white blood cell count, absolute neutrophil count, and blood platelet count than the AGA subgroup (P<0.05). CONCLUSIONS Hypertensive disorders of pregnancy can affect the peripheral venous blood cell count of preterm infants, which is more significant in infants with maternal preeclampsia and SGA infants.
Collapse
|