1
|
Euliano EM, Agrawal A, Yu MH, Graf TP, Henrich EM, Kunkel AA, Hsu C, Baryakova T, McHugh KJ. Intra-lymph node crosslinking of antigen-bearing polymers enhances humoral immunity and dendritic cell activation. Bioeng Transl Med 2024; 9:e10705. [PMID: 39545089 PMCID: PMC11558197 DOI: 10.1002/btm2.10705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 11/17/2024] Open
Abstract
Lymph node (LN)-resident dendritic cells (DCs) are a promising target for vaccination given their professional antigen-presenting capabilities and proximity to a high concentration of immune cells. Direct intra-LN injection has been shown to greatly enhance the immune response to vaccine antigens compared to traditional intramuscular injection, but it is infeasible to implement clinically in a vaccination campaign context. Employing the passive lymphatic flow of antigens to target LNs has been shown to increase total antigen uptake by DCs more than inflammatory adjuvants, which recruit peripheral DCs. Herein, we describe a novel vaccination platform in which two complementary multi-arm poly(ethylene glycol) (PEG) polymers-one covalently bound to the model antigen ovalbumin (OVA)-are injected subcutaneously into two distinct sites. These materials then drain to the same LN through different lymphatic vessels and, upon meeting in the LN, rapidly crosslink. This system improves OVA delivery to, and residence time within, the draining LN compared to all control groups. The crosslinking of the two PEG components also improves humoral immunity without the need for any pathogen-mimicking adjuvants. Further, we observed a significant increase in non-B/T lymphocytes in LNs cross-presenting the OVA peptide SIINFEKL on MHC I over a dose-matched control containing alum, the most common clinical adjuvant, as well as an increase in DC activation in the LN. These data suggest that this platform can be used to deliver antigens to LN-resident immune cells to produce a stronger humoral and cellular immune response over materials-matched controls without the use of traditional adjuvants.
Collapse
Affiliation(s)
| | | | - Marina H. Yu
- Department of BioengineeringRice UniversityHoustonTexasUSA
| | - Tyler P. Graf
- Department of BioengineeringRice UniversityHoustonTexasUSA
| | | | | | | | | | - Kevin J. McHugh
- Department of BioengineeringRice UniversityHoustonTexasUSA
- Department of ChemistryRice UniversityHoustonTexasUSA
| |
Collapse
|
2
|
Cao S, Budina E, Wang R, Sabados M, Mukherjee A, Solanki A, Nguyen M, Hultgren K, Dhar A, Hubbell JA. Injectable butyrate-prodrug micelles induce long-acting immune modulation and prevent autoimmune arthritis in mice. J Control Release 2024; 372:281-294. [PMID: 38876359 DOI: 10.1016/j.jconrel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Short chain fatty acid (SCFAs), such as butyrate, have shown promising therapeutic potential due to their immunomodulatory effects, particularly in maintaining immune homeostasis. However, the clinical application of SCFAs is limited by the need for frequent and high oral dosages. Rheumatoid arthritis (RA) is characterized by aberrant activation of peripheral T cells and myeloid cells. In this study, we aimed to deliver butyrate directly to the lymphatics using a polymeric micelle-based butyrate prodrug to induce long-lasting immunomodulatory effects. Notably, negatively charged micelles (Neg-ButM) demonstrated superior efficacy in targeting the lymphatics following subcutaneous (s.c.) administration and were retained in the draining lymph nodes, spleen, and liver for over one month. In the collagen antibody-induced arthritis (CAIA) mouse model of RA, only two s.c. injections of Neg-ButM successfully prevented disease onset and promoted tolerogenic phenotypes in T cells and myeloid cells, both locally and systemically. These results underscore the potential of this strategy in managing inflammatory autoimmune diseases by directly modulating immune responses via lymphatic delivery.
Collapse
Affiliation(s)
- Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| | - Erica Budina
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Ruyi Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States; Department of Chemistry, University of Chicago, Chicago, IL 60637, United States
| | - Matthew Sabados
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, United States
| | - Anish Mukherjee
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Ani Solanki
- Animal Resource Center, University of Chicago, Chicago, IL 60637, United States
| | - Mindy Nguyen
- Animal Resource Center, University of Chicago, Chicago, IL 60637, United States
| | - Kevin Hultgren
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Arjun Dhar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States; Committee on Immunology, University of Chicago, Chicago, IL 60637, United States; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
3
|
Slezak A, Chang K, Hossainy S, Mansurov A, Rowan SJ, Hubbell JA, Guler MO. Therapeutic synthetic and natural materials for immunoengineering. Chem Soc Rev 2024; 53:1789-1822. [PMID: 38170619 PMCID: PMC11557218 DOI: 10.1039/d3cs00805c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Immunoengineering is a rapidly evolving field that has been driving innovations in manipulating immune system for new treatment tools and methods. The need for materials for immunoengineering applications has gained significant attention in recent years due to the growing demand for effective therapies that can target and regulate the immune system. Biologics and biomaterials are emerging as promising tools for controlling immune responses, and a wide variety of materials, including proteins, polymers, nanoparticles, and hydrogels, are being developed for this purpose. In this review article, we explore the different types of materials used in immunoengineering applications, their properties and design principles, and highlight the latest therapeutic materials advancements. Recent works in adjuvants, vaccines, immune tolerance, immunotherapy, and tissue models for immunoengineering studies are discussed.
Collapse
Affiliation(s)
- Anna Slezak
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Kevin Chang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Samir Hossainy
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Aslan Mansurov
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Stuart J Rowan
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey A Hubbell
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Cao S, Maulloo CD, Raczy MM, Sabados M, Slezak AJ, Nguyen M, Solanki A, Wallace RP, Shim HN, Wilson DS, Hubbell JA. Glycosylation-modified antigens as a tolerance-inducing vaccine platform prevent anaphylaxis in a pre-clinical model of food allergy. Cell Rep Med 2024; 5:101346. [PMID: 38128531 PMCID: PMC10829738 DOI: 10.1016/j.xcrm.2023.101346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The only FDA-approved oral immunotherapy for a food allergy provides protection against accidental exposure to peanuts. However, this therapy often causes discomfort or side effects and requires long-term commitment. Better preventive and therapeutic solutions are urgently needed. We develop a tolerance-inducing vaccine technology that utilizes glycosylation-modified antigens to induce antigen-specific non-responsiveness. The glycosylation-modified antigens are administered intravenously (i.v.) or subcutaneously (s.c.) and traffic to the liver or lymph nodes, respectively, leading to preferential internalization by antigen-presenting cells, educating the immune system to respond in an innocuous way. In a mouse model of cow's milk allergy, treatment with glycosylation-modified β-lactoglobulin (BLG) is effective in preventing the onset of allergy. In addition, s.c. administration of glycosylation-modified BLG shows superior safety and potential in treating existing allergies in combination with anti-CD20 co-therapy. This platform provides an antigen-specific immunomodulatory strategy to prevent and treat food allergies.
Collapse
Affiliation(s)
- Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| | - Chitavi D Maulloo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Michal M Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Sabados
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Anna J Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Animal Resource Center, University of Chicago, Chicago, IL 60637, USA
| | - Ani Solanki
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Animal Resource Center, University of Chicago, Chicago, IL 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ha-Na Shim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - D Scott Wilson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Tremain AC, Wallace RP, Lorentz KM, Thornley TB, Antane JT, Raczy MR, Reda JW, Alpar AT, Slezak AJ, Watkins EA, Maulloo CD, Budina E, Solanki A, Nguyen M, Bischoff DJ, Harrington JL, Mishra R, Conley GP, Marlin R, Dereuddre-Bosquet N, Gallouët AS, LeGrand R, Wilson DS, Kontos S, Hubbell JA. Synthetically glycosylated antigens for the antigen-specific suppression of established immune responses. Nat Biomed Eng 2023; 7:1142-1155. [PMID: 37679570 DOI: 10.1038/s41551-023-01086-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Inducing antigen-specific tolerance during an established immune response typically requires non-specific immunosuppressive signalling molecules. Hence, standard treatments for autoimmunity trigger global immunosuppression. Here we show that established antigen-specific responses in effector T cells and memory T cells can be suppressed by a polymer glycosylated with N-acetylgalactosamine (pGal) and conjugated to the antigen via a self-immolative linker that allows for the dissociation of the antigen on endocytosis and its presentation in the immunoregulatory environment. We show that pGal-antigen therapy induces antigen-specific tolerance in a mouse model of experimental autoimmune encephalomyelitis (with programmed cell-death-1 and the co-inhibitory ligand CD276 driving the tolerogenic responses), as well as the suppression of antigen-specific responses to vaccination against a DNA-based simian immunodeficiency virus in non-human primates. Our findings show that pGal-antigen therapy invokes mechanisms of immune tolerance to resolve antigen-specific inflammatory T-cell responses and suggest that the therapy may be applicable across autoimmune diseases.
Collapse
Affiliation(s)
- Andrew C Tremain
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Rachel P Wallace
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | | | - Jennifer T Antane
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Michal R Raczy
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Joseph W Reda
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Aaron T Alpar
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Anna J Slezak
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Elyse A Watkins
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Chitavi D Maulloo
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Erica Budina
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL, USA
| | - Mindy Nguyen
- Animal Resources Center, University of Chicago, Chicago, IL, USA
| | | | | | | | | | - Romain Marlin
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouët
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Roger LeGrand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - D Scott Wilson
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA.
| | | | - Jeffrey A Hubbell
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Carey ST, Bridgeman C, Jewell CM. Biomaterial Strategies for Selective Immune Tolerance: Advances and Gaps. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205105. [PMID: 36638260 PMCID: PMC10015875 DOI: 10.1002/advs.202205105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Indexed: 05/03/2023]
Abstract
Autoimmunity and allergies affect a large number of people across the globe. Current approaches to these diseases target cell types and pathways that drive disease, but these approaches are not cures and cannot differentiate between healthy cells and disease-causing cells. New immunotherapies that induce potent and selective antigen-specific tolerance is a transformative goal of emerging treatments for autoimmunity and serious allergies. These approaches offer the potential of halting-or even reversing-disease, without immunosuppressive side effects. However, translating successful induction of tolerance to patients is unsuccessful. Biomaterials offer strategies to direct and maximize immunological mechanisms of tolerance through unique capabilities such as codelivery of small molecules or signaling molecules, controlling signal density in key immune tissues, and targeting. While a growing body of work in this area demonstrates success in preclinical animal models, these therapies are only recently being evaluated in human trials. This review will highlight the most recent advances in the use of materials to achieve antigen-specific tolerance and provide commentary on the current state of the clinical development of these technologies.
Collapse
Affiliation(s)
- Sean T. Carey
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher Bridgeman
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher M. Jewell
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- US Department of Veterans AffairsVA Maryland Health Care SystemBaltimoreMD21201USA
- Robert E. Fischell Institute for Biomedical DevicesCollege ParkMD20742USA
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMD21201USA
| |
Collapse
|
7
|
Rui Y, Eppler HB, Yanes AA, Jewell CM. Tissue-Targeted Drug Delivery Strategies to Promote Antigen-Specific Immune Tolerance. Adv Healthc Mater 2023; 12:e2202238. [PMID: 36417578 PMCID: PMC9992113 DOI: 10.1002/adhm.202202238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Indexed: 11/27/2022]
Abstract
During autoimmunity or organ transplant rejection, the immune system attacks host or transplanted tissue, causing debilitating inflammation for millions of patients. There is no cure for most of these diseases. Further, available therapies modulate inflammation through nonspecific pathways, reducing symptoms but also compromising patients' ability to mount healthy immune responses. Recent preclinical advances to regulate immune dysfunction with vaccine-like antigen specificity reveal exciting opportunities to address the root cause of autoimmune diseases and transplant rejection. Several of these therapies are currently undergoing clinical trials, underscoring the promise of antigen-specific tolerance. Achieving antigen-specific tolerance requires precision and often combinatorial delivery of antigen, cytokines, small molecule drugs, and other immunomodulators. This can be facilitated by biomaterial technologies, which can be engineered to orient and display immunological cues, protect against degradation, and selectively deliver signals to specific tissues or cell populations. In this review, some key immune cell populations involved in autoimmunity and healthy immune tolerance are described. Opportunities for drug delivery to immunological organs are discussed, where specialized tissue-resident immune cells can be programmed to respond in unique ways toward antigens. Finally, cell- and biomaterial-based therapies to induce antigen-specific immune tolerance that are currently undergoing clinical trials are highlighted.
Collapse
Affiliation(s)
- Yuan Rui
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Haleigh B. Eppler
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Biological Sciences Training ProgramUniversity of MarylandCollege ParkMD20742USA
| | - Alexis A. Yanes
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher M. Jewell
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Biological Sciences Training ProgramUniversity of MarylandCollege ParkMD20742USA
- US Department of Veterans AffairsVA Maryland Health Care SystemBaltimoreMD21201USA
- Robert E. Fischell Institute for Biomedical DevicesCollege ParkMD20742USA
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMD21201USA
| |
Collapse
|
8
|
Neef T, Ifergan I, Beddow S, Penaloza-MacMaster P, Haskins K, Shea LD, Podojil JR, Miller SD. Tolerance Induced by Antigen-Loaded PLG Nanoparticles Affects the Phenotype and Trafficking of Transgenic CD4 + and CD8 + T Cells. Cells 2021; 10:3445. [PMID: 34943952 PMCID: PMC8699785 DOI: 10.3390/cells10123445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
We have shown that PLG nanoparticles loaded with peptide antigen can reduce disease in animal models of autoimmunity and in a phase 1/2a clinical trial in celiac patients. Clarifying the mechanisms by which antigen-loaded nanoparticles establish tolerance is key to further adapting them to clinical use. The mechanisms underlying tolerance induction include the expansion of antigen-specific CD4+ regulatory T cells and sequestration of autoreactive cells in the spleen. In this study, we employed nanoparticles loaded with two model peptides, GP33-41 (a CD8 T cell epitope derived from lymphocytic choriomeningitis virus) and OVA323-339 (a CD4 T cell epitope derived from ovalbumin), to modulate the CD8+ and CD4+ T cells from two transgenic mouse strains, P14 and DO11.10, respectively. Firstly, it was found that the injection of P14 mice with particles bearing the MHC I-restricted GP33-41 peptide resulted in the expansion of CD8+ T cells with a regulatory cell phenotype. This correlated with reduced CD4+ T cell viability in ex vivo co-cultures. Secondly, both nanoparticle types were able to sequester transgenic T cells in secondary lymphoid tissue. Flow cytometric analyses showed a reduction in the surface expression of chemokine receptors. Such an effect was more prominently observed in the CD4+ cells rather than the CD8+ cells.
Collapse
Affiliation(s)
- Tobias Neef
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Igal Ifergan
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Sara Beddow
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Kathryn Haskins
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO 80045, USA;
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Joseph R. Podojil
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL 60062, USA
| | - Stephen D. Miller
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| |
Collapse
|