1
|
Wang F, Zhang M, Yin L, Zhou Z, Peng Z, Li W, Chen H, Yu G, Tang J. The tryptophan metabolite kynurenic acid ameliorates septic colonic injury through activation of the PPARγ signaling pathway. Int Immunopharmacol 2025; 147:113651. [PMID: 39742725 DOI: 10.1016/j.intimp.2024.113651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Sepsis is the leading cause of death among critically ill patients in clinical practice, making it urgent to reduce its incidence and mortality rates. In sepsis, macrophage dysfunction often worsens and complicates the condition. M1 and M2 macrophages, two distinct types, contribute to pro-inflammatory and anti-inflammatory effects, respectively. An imbalance between them is a major cause of sepsis. The aim of this study was to explore the potential of a differential metabolite between M1 and M2 macrophages in mitigating septic colonic injury via multiomics in combination with clinical data and animal experiments. Using nontargeted metabolomics analysis, we found that Kynurenic acid (KYNA), a metabolite of tryptophan metabolism, was significantly upregulated in the supernatant of M2 macrophages. Furthermore, we discovered that the level of KYNA was significantly decreased in sepsis in both human and mouse serum and was negatively correlated with inflammatory factor levels. In vivo experiments demonstrated that KYNA can effectively alleviate septic colon injury and reduce inflammatory factor levels in mice, indicating that KYNA plays a very important protective role in sepsis. Mechanistically, KYNA promotes the transition of M1 macrophages to M2 macrophages by inhibiting the NF-κB signaling pathway and alleviates septic colonic injury through the PPARγ/NF-κB axis. This article reveals that KYNA, a differentially abundant metabolite between M1 and M2 macrophages, can become a new strategy for alleviating septic colon injury.
Collapse
Affiliation(s)
- Fei Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Meng Zhang
- Department of Pneumology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Liping Yin
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Ziyang Zhou
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Ziyao Peng
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Wenweiran Li
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China.
| | - Guohong Yu
- Department of Emergency Medicine, Baoshan Second People's Hospital, Baoshan College of Traditional Chinese Medicine, 13 Zhengyang South Road, Baoshan, Yunnan 678000, China.
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Bratseth V, Watne LO, Neerland BE, Halaas NB, Pollmann CT, Karabeg A, Odegaard OT, Sydnes K, Zetterberg H, Seljeflot I, Helseth R. Increased cell-free DNA in CSF and serum of hip fracture patients with delirium. Brain Commun 2024; 7:fcae452. [PMID: 39737468 PMCID: PMC11683831 DOI: 10.1093/braincomms/fcae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Delirium is a neuropsychiatric syndrome commonly presenting during acute illness. The pathophysiology of delirium is unknown, but neuroinflammation is suggested to play a role. In this cross-sectional study, we aimed to investigate whether cell-free DNA and markers of neutrophil extracellular traps in serum and CSF were associated with delirium and neuronal damage, assessed by neurofilament light chain. Hip fracture patients (n = 491) with a median (25, 75 percentiles) age of 83 (74, 88) years and 69% females were enrolled at Oslo University Hospital, Diakonhjemmet Hospital, Akershus University Hospital and Bærum Hospital. Delirium was assessed daily, pre- and postoperatively. Cognitively healthy adults (n = 32) with a median (25, 75 percentiles) age of 75 (70, 77) years and 53% females were included as controls. Cell-free DNA was measured by using the fluorescent nucleic acid stain Quant-iT PicoGreen® in serum and CSF. Myeloperoxidase-DNA and citrullinated histone H3 were analysed by enzyme-linked immunosorbent assay in serum. Hip fracture patients have significantly higher levels of cell-free DNA and neutrophil extracellular traps in blood than cognitively healthy controls. In hip fracture patients without dementia, cell-free DNA in CSF and serum was significantly higher in patients with (n = 68) versus without (n = 221) delirium after adjusting for age and sex (70 (59, 84) versus 62 (53, 77) ng/ml, P = 0.037) and 601 (504, 684) versus 508 (458, 572) ng/ml, P = 0.007, respectively). In the total hip fracture cohort, CSF levels of cell-free DNA and neurofilament light chain were significantly correlated after adjusting for age and sex (r = 0.441, P < 0.001). The correlation was stronger in those with delirium (r = 0.468, P < 0.001) and strongest in delirious patients without dementia (r = 0.765, P = 0.045). In delirious patients without dementia, significantly higher levels of cell-free DNA in CSF and serum were shown. The association between cell-free DNA and neurofilament light chain suggest simultaneous release of cell-free DNA and neuronal damage during delirium.
Collapse
Affiliation(s)
- Vibeke Bratseth
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo 0424, Norway
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo 0424, Norway
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog 1478, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo 0318, Norway
| | - Bjørn Erik Neerland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo 0424, Norway
| | - Nathalie Bodd Halaas
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo 0424, Norway
| | | | - Adi Karabeg
- Department of Orthopedic Surgery, Akershus University Hospital, Kongsvinger 2381, Norway
| | - Olav Tobias Odegaard
- Department of Anesthesiology, Akershus University Hospital, Kongsvinger 2381, Norway
| | - Kristian Sydnes
- Department of Orthopedic Surgery, Diakonhjemmet Hospital, Oslo 0319, Norway
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal 40530, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 40530, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1H9BT, UK
- UK Dementia Research Institute at UCL, London WC1H9BT, UK
- Hong Center for Neurodegenerative Diseases, Hong Kong HKG, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53707, USA
| | - Ingebjørg Seljeflot
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo 0424, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo 0318, Norway
| | - Ragnhild Helseth
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo 0424, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo 0318, Norway
| |
Collapse
|
3
|
Tanaka M, Vécsei L. Revolutionizing our understanding of Parkinson's disease: Dr. Heinz Reichmann's pioneering research and future research direction. J Neural Transm (Vienna) 2024; 131:1367-1387. [PMID: 39110245 PMCID: PMC11608389 DOI: 10.1007/s00702-024-02812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 11/17/2024]
Abstract
Millions of individuals around the world are afflicted with Parkinson's disease (PD), a prevalent and incapacitating neurodegenerative disorder. Dr. Reichmann, a distinguished professor and neurologist, has made substantial advancements in the domain of PD research, encompassing both fundamental scientific investigations and practical applications. His research has illuminated the etiology and treatment of PD, as well as the function of energy metabolism and premotor symptoms. As a precursor to a number of neurotransmitters and neuromodulators that are implicated in the pathophysiology of PD, he has also investigated the application of tryptophan (Trp) derivatives in the disease. His principal findings and insights are summarized and synthesized in this narrative review article, which also emphasizes the challenges and implications for future PD research. This narrative review aims to identify and analyze the key contributions of Reichmann to the field of PD research, with the ultimate goal of informing future research directions in the domain. By examining Reichmann's work, the study seeks to provide a comprehensive understanding of his major contributions and how they can be applied to advance the diagnosis and treatment of PD. This paper also explores the potential intersection of Reichmann's findings with emerging avenues, such as the investigation of Trp and its metabolites, particularly kynurenines, which could lead to new insights and potential therapeutic strategies for managing neurodegenerative disorders like PD.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary.
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
4
|
Jiang M, Li L, Jin Y, Lu L, Lu Z, Lv W, Wang X, Di L, Liu Z. Derivative spectrophotometry-assisted determination of tryptophan metabolites emerges host and intestinal flora dysregulations during sepsis. Anal Biochem 2024; 694:115605. [PMID: 38992485 DOI: 10.1016/j.ab.2024.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Sepsis is a life-threatening condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Dysregulated tryptophan (TRP) metabolites serve as significant indicators for endogenous immune turnovers and abnormal metabolism in the intestinal microbiota during sepsis. Therefore, a high coverage determination of TRP and its metabolites in sepsis is beneficial for the diagnosis and prognosis of sepsis, as well as for understanding the underlying mechanism of sepsis development. However, similar structures in TRP metabolites make it challenging for separation and metabolite identification. Here, high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) was developed to determine TRP metabolites in rat serum. The first-order derivative spectrophotometry of targeted metabolites in the serum was investigated and proved to be promising for chromatographic peak annotation across different columns and systems. The established method separating the targeted metabolites was optimized and validated to be sensitive and accurate. Application of the method revealed dysregulated TRP metabolites, associated with immune disorders and NAD + metabolism in both the host and gut flora in septic rats. Our findings indicate that the derivative spectrophotometry-assisted method enhances metabolite identifications for the chromatographic systems based on DAD detectors and holds promise for precision medicine in sepsis.
Collapse
Affiliation(s)
- Mengyu Jiang
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Li Li
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Yuan Jin
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Liuliu Lu
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Zhenchen Lu
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Wangjie Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Di
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
| | - Zhicheng Liu
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
5
|
Tang J, Lu H, Xie Z, Jia X, Su T, Lin B. Identification of potential biomarkers for sepsis based on neutrophil extracellular trap-related genes. Diagn Microbiol Infect Dis 2024; 110:116380. [PMID: 38852219 DOI: 10.1016/j.diagmicrobio.2024.116380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Sepsis is a highly lethal disease that poses a serious threat to human health. Increasing evidence indicates that neutrophil extracellular traps (NETs) are key factors in the pathological progression of sepsis. This study aims to screen potential biomarkers for sepsis and delve into their regulatory function in the pathogenesis. We downloaded 6 microarray datasets from the Gene Expression Omnibus (GEO) database, with 4 as the training sets and 2 as the validation sets. NETs-related genes (NRGs) were obtained from relevant literature. Differential expression analysis was performed on four training sets separately. We intersected differentially expressed genes (DEGs) from the four training sets and NRGs, finally resulting in 19 NETs-related sepsis genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) unearthed that NETs-related sepsis genes were majorly abundant in functions and pathways such as defense response to bacterium and Neutrophil extracellular trap formation. Using the PPI network, the MCC algorithm, and the MCODE algorithm in the CytoHubba plugin, 7 sepsis hub genes (ELANE, TLR4, MPO, PADI4, CTSG, MMP9, S100A12) were identified. ROC curve for each Hub gene in the training and validation sets were plotted, which revealed that the Area Under Curve (AUC) values are all greater than 0.6, indicating good classification ability. A total of 349 miRNAs targeting Hub genes were predicted in the mirDIP database, and 620 lncRNAs targeting miRNAs were predicted in the ENCORI database. The ceRNA regulatory network was constructed using Cytoscape software. Finally, we employed the cMAP database to predict small molecular complexes as potentially effective drugs for the treatment of sepsis, such as chloroquine, harpagoside, and PD-123319. In conclusion, this project successfully identified 7 core genes, which may serve as promising candidates for novel sepsis biomarkers. Meanwhile, we constructed a related ceRNA network and predicted potential targeted drugs, providing potential therapeutic targets and treatment strategies for sepsis patients.
Collapse
Affiliation(s)
- Jiping Tang
- Department of ICU, The Second Nanning People's Hospital, Nanning City 530021, China
| | - Haijuan Lu
- Department of Clinical Nutrition, Guangxi Medical University Cancer Hospital, Nanning City 530000, China
| | - Zuohua Xie
- Department of ICU, The Second Nanning People's Hospital, Nanning City 530021, China
| | - Xinju Jia
- Department of ICU, The Second Nanning People's Hospital, Nanning City 530021, China
| | - Ting Su
- Department of ICU, The Second Nanning People's Hospital, Nanning City 530021, China
| | - Bing Lin
- Department of ICU, The Second Nanning People's Hospital, Nanning City 530021, China.
| |
Collapse
|
6
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
7
|
Fujikawa M, Ueda M, Maruyama K. Role of Kynurenine and Its Derivatives in the Neuroimmune System. Int J Mol Sci 2024; 25:7144. [PMID: 39000249 PMCID: PMC11241229 DOI: 10.3390/ijms25137144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
In recent years, there has been a growing realization of intricate interactions between the nervous and immune systems, characterized by shared humoral factors and receptors. This interplay forms the basis of the neuroimmune system, the understanding of which will provide insights into the pathogenesis of neurological diseases, in which the involvement of the immune system has been overlooked. Kynurenine and its derivatives derived from tryptophan have long been implicated in the pathogenesis of various neurological diseases. Recent studies have revealed their close association not only with neurological disorders but also with sepsis-related deaths. This review provides an overview of the biochemistry of kynurenine and its derivatives, followed by a discussion of their role via the modulation of the neuroimmune system in various diseases.
Collapse
Affiliation(s)
- Makoto Fujikawa
- Department of Pharmacology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Masashi Ueda
- Department of Pharmacology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| |
Collapse
|
8
|
Zhang X, Ge R, Wu J, Cai X, Deng G, Lv J, Ma M, Yu N, Yao L, Peng D. Structural characterization and improves cognitive disorder in ageing mice of a glucomannan from Dendrobium huoshanense. Int J Biol Macromol 2024; 269:131995. [PMID: 38692529 DOI: 10.1016/j.ijbiomac.2024.131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
In the present work, a neutral polysaccharide (DHP-2W) with attenuating cognitive disorder was identified from Dendrobium huoshanense and its structure was clarified. The polysaccharide was successfully purified from D. huoshanense by column chromatography and its activity was evaluated. With a molecular weight of 508.934kDa, this polysaccharide is composed of mannose and glucose at a molar ratio of 75.81: 24.19. Structural characterization revealed that DHP-2W has a backbone consisting of 4)-β-D-Manp-(1 and 4)-β-D-Glcp-(1. In vivo experiments revealed that DHP-2W improved cognitive disorder in D-galactose treated mice and relieved oxidative stress and inflammation. DHP-2W attenuates D-galactose-induced cognitive disorder by inhibiting the BCL2/BAX/CASP3 pathway and activating the AMPK/SIRT pathway, thereby inhibiting apoptosis. Furthermore, DHP-2W had a significant effect on regulating the serum levels of Flavin adenine dinucleotide, Shikimic acid, and Kynurenic acid in aged mice. These, in turn, had a positive impact on AMPK/SIRT1 and BCL2/BAX/CASP3, resulting in protective effects against cognitive disorder.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China.
| | - Ruipeng Ge
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiao Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Guanghui Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Jiahui Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Mengzhen Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Anhui Province Key Laboratory for Research and Development of Research & Development of Chinese Medicine, Hefei, China.
| | - Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Anhui Province Key Laboratory for Research and Development of Research & Development of Chinese Medicine, Hefei, China.
| |
Collapse
|
9
|
Gao Y, Hao Z, Zhang H, Liu J, Zhou G, Wen H, Su Q, Tong C, Huang S, Wang X. Forsythiaside A attenuates lipopolysaccharide-induced mouse mastitis by activating autophagy and regulating gut microbiota and metabolism. Chem Biol Interact 2024; 396:111044. [PMID: 38729284 DOI: 10.1016/j.cbi.2024.111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Mastitis is an inflammatory disease of the mammary gland with a high incidence in lactating animals, significantly impacting their health and breastfeeding. Moreover, mastitis adversely affects milk quality and yield, resulting in substantial economic losses for the dairy farming industry. Forsythiaside A (FTA), a phenylethanol glycoside analog extracted from Forsythia, exhibits notable anti-inflammatory and antioxidant properties. However, its protective effects and specific mechanisms against mastitis remain unclear. In this study, a lipopolysaccharide (LPS)-induced mouse mastitis model was used to investigate the protective effect of FTA on LPS-induced mastitis and its potential mechanism using histological assays, Western blot, qRT-PCR, FITC-albumin permeability test, 16s rRNA gene sequencing analysis and non-targeted metabolomics assays to investigate the protective effect of FTA on LPS-induced mastitis model and its potential mechanism. The results demonstrated that FTA significantly mitigated LPS-induced mouse mastitis by reducing inflammation and apoptosis levels, modulating the PI3K/AKT/mTOR signaling pathways, inducing autophagy, and enhancing antioxidant capacity and the expression of tight junction proteins. Furthermore, FTA increased the abundance of beneficial microbiota while decreasing the levels of harmful microbiota in mice, thus counteracting the gut microbiota disruption induced by LPS stimulation. Intestinal metabolomics analysis revealed that FTA primarily regulated LPS-induced metabolite alterations through key metabolic pathways, such as tryptophan metabolism. This study confirms the anti-inflammatory and antioxidant effects of FTA on mouse mastitis, which are associated with key metabolic pathways, including the restoration of gut microbiota balance and the regulation of tryptophan metabolism. These findings provide a novel foundation for the treatment and prevention of mammalian mastitis using FTA.
Collapse
Affiliation(s)
- Yingkui Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Zhonghua Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Huaqiang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Jingjing Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Guangwei Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Haojie Wen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Qing Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou, 450046, PR China.
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou, 450046, PR China.
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou, 450046, PR China.
| |
Collapse
|
10
|
Martos D, Lőrinczi B, Szatmári I, Vécsei L, Tanaka M. The Impact of C-3 Side Chain Modifications on Kynurenic Acid: A Behavioral Analysis of Its Analogs in the Motor Domain. Int J Mol Sci 2024; 25:3394. [PMID: 38542368 PMCID: PMC10970565 DOI: 10.3390/ijms25063394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
The central nervous system (CNS) is the final frontier in drug delivery because of the blood-brain barrier (BBB), which poses significant barriers to the access of most drugs to their targets. Kynurenic acid (KYNA), a tryptophan (Trp) metabolite, plays an important role in behavioral functions, and abnormal KYNA levels have been observed in neuropsychiatric conditions. The current challenge lies in delivering KYNA to the CNS owing to its polar side chain. Recently, C-3 side chain-modified KYNA analogs have been shown to cross the BBB; however, it is unclear whether they retain the biological functions of the parent molecule. This study examined the impact of KYNA analogs, specifically, SZR-72, SZR-104, and the newly developed SZRG-21, on behavior. The analogs were administered intracerebroventricularly (i.c.v.), and their effects on the motor domain were compared with those of KYNA. Specifically, open-field (OF) and rotarod (RR) tests were employed to assess motor activity and skills. SZR-104 increased horizontal exploratory activity in the OF test at a dose of 0.04 μmol/4 μL, while SZR-72 decreased vertical activity at doses of 0.04 and 0.1 μmol/4 μL. In the RR test, however, neither KYNA nor its analogs showed any significant differences in motor skills at either dose. Side chain modification affects affective motor performance and exploratory behavior, as the results show for the first time. In this study, we showed that KYNA analogs alter emotional components such as motor-associated curiosity and emotions. Consequently, drug design necessitates the development of precise strategies to traverse the BBB while paying close attention to modifications in their effects on behavior.
Collapse
Affiliation(s)
- Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| |
Collapse
|
11
|
Karmakar V, Gorain B. Potential molecular pathways of angiotensin receptor blockers in the brain toward cognitive improvement in dementia. Drug Discov Today 2024; 29:103850. [PMID: 38052318 DOI: 10.1016/j.drudis.2023.103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
The alarming rise of cognitive impairment and memory decline and limited effective solutions present a worldwide concern for dementia patients. The multivariant role of the renin-angiotensin system (RAS) in the brain offers strong evidence of a role for angiotensin receptor blockers (ARBs) in the management of memory impairment by modifying glutamate excitotoxicity, downregulating inflammatory cytokines such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)α, inhibiting kynurenine aminotransferase (KAT)-II, nucleotide-binding domain, leucine-rich-containing family and pyrin-domain-containing-3 (NLRP3) inflammasomes, boosting cholinergic activity, activating peroxisome proliferator-activated receptor (PPAR)-γ, countering cyclooxygenase (COX) and mitigating the hypoxic condition. The present work focuses on the intricate molecular mechanisms involved in brain-RAS, highlighting the role of ARBs, connecting links between evidence-based unexplored pathways and investigating probable biomarkers involved in dementia through supported preclinical and clinical literature.
Collapse
Affiliation(s)
- Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| |
Collapse
|
12
|
Zhang W, Dong XY, Huang R. Gut Microbiota in Ischemic Stroke: Role of Gut Bacteria-Derived Metabolites. Transl Stroke Res 2023; 14:811-828. [PMID: 36279071 DOI: 10.1007/s12975-022-01096-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
Ischemic stroke (IS) remains a leading cause of death and long-term disability globally. Several mechanisms including glutamate excitotoxicity, calcium overload, neuroinflammation, oxidative stress, mitochondrial damage, and apoptosis are known to be involved in the pathogenesis of IS, but the underlying pathophysiology mechanisms of IS are not fully clarified. During the past decade, gut microbiota were recognized as a key regulator to affect the health of the host either directly or via their metabolites. Recent studies indicate that gut bacterial dysbiosis is closely related to hypertension, diabetes, obesity, dyslipidemia, and metabolic syndrome, which are the main risk factors for cardiovascular diseases. Increasing evidence indicates that IS can lead to perturbation in gut microbiota and increased permeability of the gut mucosa, known as "leaky gut," resulting in endotoxemia and bacterial translocation. In turn, gut dysbiosis and impaired intestinal permeability can alter gut bacterial metabolite signaling profile from the gut to the brain. Microbiota-derived products and metabolites, such as short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), and phenylacetylglutamine (PAGln) can exert beneficial or detrimental effects on various extraintestinal organs, including the brain, liver, and heart. These metabolites have been increasingly acknowledged as biomarkers and mediators of IS. However, the specific role of the gut bacterial metabolites in the context of stroke remains incompletely understood. In-depth studies on these products and metabolites may provide new insight for the development of novel therapeutics for IS.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Yu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Domoki F, Tóth-Szűki V, Kovács V, Remzső G, Körmöczi T, Vécsei L, Berkecz R. Differential Effects of Hypothermia and SZR72 on Cerebral Kynurenine and Kynurenic Acid in a Piglet Model of Hypoxic-Ischemic Encephalopathy. Int J Mol Sci 2023; 24:14522. [PMID: 37833970 PMCID: PMC10572886 DOI: 10.3390/ijms241914522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Kynurenic acid (KYNA), an endogenous neuroprotectant with antiexcitotoxic, antioxidant, and anti-inflammatory effects, is synthesized through the tryptophan-kynurenine (KYN) pathway. We investigated whether brain KYN or KYNA levels were affected by asphyxia in a translational piglet model of hypoxic-ischemic encephalopathy (HIE). We also studied brain levels of the putative blood-brain barrier (BBB) permeable neuroprotective KYNA analogue SZR72, and whether SZR72 or therapeutic hypothermia (TH) modified KYN or KYNA levels. KYN, KYNA, and SZR72 levels were determined using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry in five brain regions 24 h after 20 min of asphyxia in vehicle-, SZR72- and TH-treated newborn piglets (n = 6-6-6) and naive controls (n = 4). Endogenous brain KYN levels (median range 311.2-965.6 pmol/g) exceeded KYNA concentrations (4.5-6.0 pmol/g) ~100-fold. Asphyxia significantly increased cerebral KYN and KYNA levels in all regions (1512.0-3273.9 and 16.9-21.2 pmol/g, respectively), increasing the KYN/Tryptophan-, but retaining the KYNA/KYN ratio. SZR72 treatment resulted in very high cerebral SZR72 levels (13.2-33.2 nmol/g); however, KYN and KYNA levels remained similar to those of the vehicle-treated animals. However, TH virtually ameliorated asphyxia-induced elevations in brain KYN and KYNA levels. The present study reports for the first time that the KYN pathway is altered during HIE development in the piglet. SZR72 readily crosses the BBB in piglets but fails to affect cerebral KYNA levels. Beneficial effects of TH may include restoration of the tryptophan metabolism to pre-asphyxia levels.
Collapse
Affiliation(s)
- Ferenc Domoki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (V.T.-S.); (V.K.); (G.R.)
| | - Valéria Tóth-Szűki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (V.T.-S.); (V.K.); (G.R.)
| | - Viktória Kovács
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (V.T.-S.); (V.K.); (G.R.)
| | - Gábor Remzső
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (V.T.-S.); (V.K.); (G.R.)
| | - Tímea Körmöczi
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary; (T.K.); (R.B.)
| | - László Vécsei
- ELKH-SZTE-Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged, 6720 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Center, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary; (T.K.); (R.B.)
| |
Collapse
|
14
|
Tang W, Xia Y, Deng J, Xu H, Tang Y, Xiao X, Wu L, Song G, Qin J, Wang Y. Anti-inflammatory Effect of Low-Intensity Ultrasound in Septic Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1602-1610. [PMID: 37105771 DOI: 10.1016/j.ultrasmedbio.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Sepsis is a severe systemic inflammatory response caused by infection. Here, the spleen region of Sprague-Dawley (SD) rats with sepsis was irradiated with low-intensity ultrasound (LIUS) to explore the regulation of inflammation and its mechanism by LIUS. METHODS In this study, 30 rats used for survival analysis were randomly divided into the sham-operated group (Sham, n = 10), the group in which sepsis was induced by cecal ligation and puncture (CLP, n = 10) and the group treated with LIUS immediately after CLP (LIUS, n = 10). The other 120 rats were randomly divided into the aforementioned three groups for detection at each time point. The parameters used in the LIUS group were 200 mW/cm2, 0.37 MHz, 20% duty cycle and 20 min, and no ultrasonic energy was produced in the Sham and CLP groups. Seven-day survival rate, histopathology and expression of inflammatory factors and proteins were evaluated in the three groups. RESULTS LIUS was able to improve the survival rate of septic SD rats (p < 0.05), significantly inhibit the expression of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6) and nuclear factor-κB p65 (NF-κB p65) (p < 0.05) and restore the ultrastructure of the spleen. CONCLUSION Our study determined that LIUS can relieve spleen damage and alleviate severe cytokine storm to improve survival outcomes in septic SD rats, and its mechanism may be related to the inhibition of the NF-κB signaling pathway by downregulation of IL-1β.
Collapse
Affiliation(s)
- Wentao Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yi Xia
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Juan Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Haopeng Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yilin Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xinfang Xiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Liu Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Guolin Song
- Department of Emergency, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou, China.
| | - Juan Qin
- Department of Obstetrics and Gynecology, Guiyang Maternal and Child Health Care Hospital, Guizhou Medical University, Guizhou, China.
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Effinger D, Hirschberger S, Yoncheva P, Schmid A, Heine T, Newels P, Schütz B, Meng C, Gigl M, Kleigrewe K, Holdt LM, Teupser D, Kreth S. A ketogenic diet substantially reshapes the human metabolome. Clin Nutr 2023; 42:1202-1212. [PMID: 37270344 DOI: 10.1016/j.clnu.2023.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Western dietary habits (WD) have been shown to promote chronic inflammation, which favors the development of many of today's non-communicable diseases. Recently, ketogenic diets (KD) have emerged as an immune-regulating countermeasure for WD-induced metaflammation. To date, beneficial effects of KD have been solely attributed to the production and metabolism of ketone bodies. Given the drastic change in nutrient composition during KD, it is reasonable to assume that there are widespread changes in the human metabolome also contributing to the impact of KD on human immunity. The current study was conducted to gain insight into the changes of the human metabolic fingerprint associated with KD. This could allow to identify metabolites that may contribute to the overall positive effects on human immunity, but also help to recognize potential health risks of KD. METHODS We conducted a prospective nutritional intervention study enrolling 40 healthy volunteers to perform a three-week ad-libitum KD. Prior to the start and at the end of the nutritional intervention serum metabolites were quantified, untargeted mass spectrometric metabolome analyses and urine analyses of the tryptophan pathway were performed. RESULTS KD led to a marked reduction of insulin (-21.45% ± 6.44%, p = 0.0038) and c-peptide levels (-19.29% ± 5.45%, p = 0.0002) without compromising fasting blood glucose. Serum triglyceride concentration decreased accordingly (-13.67% ± 5.77%, p = 0.0247), whereas cholesterol parameters remained unchanged. LC-MS/MS-based untargeted metabolomic analyses revealed a profound shift of the human metabolism towards mitochondrial fatty acid oxidation, comprising highly elevated levels of free fatty acids and acylcarnitines. The serum amino acid (AA) composition was rearranged with lower abundance of glucogenic AA and an increase of BCAA. Furthermore, an increase of anti-inflammatory fatty acids eicosatetraenoic acid (p < 0.0001) and docosahexaenoic acid (p = 0.0002) was detected. Urine analyses confirmed higher utilization of carnitines, indicated by lower carnitine excretion (-62.61% ± 18.11%, p = 0.0047) and revealed changes to the tryptophan pathway depicting reduced quinolinic acid (-13.46% ± 6.12%, p = 0.0478) and elevated kynurenic acid concentrations (+10.70% ± 4.25%, p = 0.0269). CONCLUSIONS A KD fundamentally changes the human metabolome even after a short period of only three weeks. Besides a rapid metabolic switch to ketone body production and utilization, improved insulin and triglyceride levels and an increase in metabolites that mediate anti-inflammation and mitochondrial protection occurred. Importantly, no metabolic risk factors were identified. Thus, a ketogenic diet could be considered as a safe preventive and therapeutic immunometabolic tool in modern medicine. TRIAL REGISTRATION German Clinical Trials Register; DRKS-ID: DRKS00027992 (www.drks.de).
Collapse
Affiliation(s)
- David Effinger
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), Munich, Germany; Department of Anaesthesiology, Research Unit Molecular Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Simon Hirschberger
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), Munich, Germany; Department of Anaesthesiology, Research Unit Molecular Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Polina Yoncheva
- Department of Anaesthesiology, Research Unit Molecular Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Annika Schmid
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), Munich, Germany; Department of Anaesthesiology, Research Unit Molecular Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Till Heine
- Biovis Diagnostik MVZ GmbH, Limburg, Germany.
| | | | | | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Michael Gigl
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Lesca-Miriam Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Simone Kreth
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), Munich, Germany; Department of Anaesthesiology, Research Unit Molecular Medicine, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
16
|
Phing AH, Makpol S, Nasaruddin ML, Wan Zaidi WA, Ahmad NS, Embong H. Altered Tryptophan-Kynurenine Pathway in Delirium: A Review of the Current Literature. Int J Mol Sci 2023; 24:5580. [PMID: 36982655 PMCID: PMC10056900 DOI: 10.3390/ijms24065580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Delirium, a common form of acute brain dysfunction, is associated with increased morbidity and mortality, especially in older patients. The underlying pathophysiology of delirium is not clearly understood, but acute systemic inflammation is known to drive delirium in cases of acute illnesses, such as sepsis, trauma, and surgery. Based on psychomotor presentations, delirium has three main subtypes, such as hypoactive, hyperactive, and mixed subtype. There are similarities in the initial presentation of delirium with depression and dementia, especially in the hypoactive subtype. Hence, patients with hypoactive delirium are frequently misdiagnosed. The altered kynurenine pathway (KP) is a promising molecular pathway implicated in the pathogenesis of delirium. The KP is highly regulated in the immune system and influences neurological functions. The activation of indoleamine 2,3-dioxygenase, and specific KP neuroactive metabolites, such as quinolinic acid and kynurenic acid, could play a role in the event of delirium. Here, we collectively describe the roles of the KP and speculate on its relevance in delirium.
Collapse
Affiliation(s)
- Ang Hui Phing
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.M.)
| | - Muhammad Luqman Nasaruddin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.M.)
| | - Wan Asyraf Wan Zaidi
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nurul Saadah Ahmad
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
17
|
Yin XY, Tang XH, Wang SX, Zhao YC, Jia M, Yang JJ, Ji MH, Shen JC. HMGB1 mediates synaptic loss and cognitive impairment in an animal model of sepsis-associated encephalopathy. J Neuroinflammation 2023; 20:69. [PMID: 36906561 PMCID: PMC10007818 DOI: 10.1186/s12974-023-02756-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Microglial activation-mediated neuroinflammation is one of the essential pathogenic mechanisms of sepsis-associated encephalopathy (SAE). Mounting evidence suggests that high mobility group box-1 protein (HMGB1) plays a pivotal role in neuroinflammation and SAE, yet the mechanism by which HMGB1 induces cognitive impairment in SAE remains unclear. Therefore, this study aimed to investigate the mechanism of HMGB1 underlying cognitive impairment in SAE. METHODS An SAE model was established by cecal ligation and puncture (CLP); animals in the sham group underwent cecum exposure alone without ligation and perforation. Mice in the inflachromene (ICM) group were continuously injected with ICM intraperitoneally at a daily dose of 10 mg/kg for 9 days starting 1 h before the CLP operation. The open field, novel object recognition, and Y maze tests were performed on days 14-18 after surgery to assess locomotor activity and cognitive function. HMGB1 secretion, the state of microglia, and neuronal activity were measured by immunofluorescence. Golgi staining was performed to detect changes in neuronal morphology and dendritic spine density. In vitro electrophysiology was performed to detect changes in long-term potentiation (LTP) in the CA1 of the hippocampus. In vivo electrophysiology was performed to detect the changes in neural oscillation of the hippocampus. RESULTS CLP-induced cognitive impairment was accompanied by increased HMGB1 secretion and microglial activation. The phagocytic capacity of microglia was enhanced, resulting in aberrant pruning of excitatory synapses in the hippocampus. The loss of excitatory synapses reduced neuronal activity, impaired LTP, and decreased theta oscillation in the hippocampus. Inhibiting HMGB1 secretion by ICM treatment reversed these changes. CONCLUSIONS HMGB1 induces microglial activation, aberrant synaptic pruning, and neuron dysfunction in an animal model of SAE, leading to cognitive impairment. These results suggest that HMGB1 might be a target for SAE treatment.
Collapse
Affiliation(s)
- Xiao-Yu Yin
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiao-Hui Tang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shi-Xu Wang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yong-Chang Zhao
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Min Jia
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China.
| | - Jin-Chun Shen
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
18
|
Remick D, Szabó A, Juffermans N, Osuchowski MF. BASIC RESEARCH IN SHOCK AND SEPSIS. Shock 2023; 59:2-5. [PMID: 36867755 DOI: 10.1097/shk.0000000000001953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Daniel Remick
- Department of Pathology and Laboratory Medicine, Boston University, Boston, Massachusetts
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Nicole Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, AmsterdamUMC, Amsterdam, the Netherlands
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| |
Collapse
|
19
|
Dumbuya JS, Li S, Liang L, Zeng Q. Paediatric sepsis-associated encephalopathy (SAE): a comprehensive review. Mol Med 2023; 29:27. [PMID: 36823611 PMCID: PMC9951490 DOI: 10.1186/s10020-023-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is one of the most common types of organ dysfunction without overt central nervous system (CNS) infection. It is associated with higher mortality, low quality of life, and long-term neurological sequelae, its mortality in patients diagnosed with sepsis, progressing to SAE, is 9% to 76%. The pathophysiology of SAE is still unknown, but its mechanisms are well elaborated, including oxidative stress, increased cytokines and proinflammatory factors levels, disturbances in the cerebral circulation, changes in blood-brain barrier permeability, injury to the brain's vascular endothelium, altered levels of neurotransmitters, changes in amino acid levels, dysfunction of cerebral microvascular cells, mitochondria dysfunction, activation of microglia and astrocytes, and neuronal death. The diagnosis of SAE involves excluding direct CNS infection or other types of encephalopathies, which might hinder its early detection and appropriate implementation of management protocols, especially in paediatric patients where only a few cases have been reported in the literature. The most commonly applied diagnostic tools include electroencephalography, neurological imaging, and biomarker detection. SAE treatment mainly focuses on managing underlying conditions and using antibiotics and supportive therapy. In contrast, sedative medication is used judiciously to treat those showing features such as agitation. The most widely used medication is dexmedetomidine which is neuroprotective by inhibiting neuronal apoptosis and reducing a sepsis-associated inflammatory response, resulting in improved short-term mortality and shorter time on a ventilator. Other agents, such as dexamethasone, melatonin, and magnesium, are also being explored in vivo and ex vivo with encouraging results. Managing modifiable factors associated with SAE is crucial in improving generalised neurological outcomes. From those mentioned above, there are still only a few experimentation models of paediatric SAE and its treatment strategies. Extrapolation of adult SAE models is challenging because of the evolving brain and technical complexity of the model being investigated. Here, we reviewed the current understanding of paediatric SAE, its pathophysiological mechanisms, diagnostic methods, therapeutic interventions, and potential emerging neuroprotective agents.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Siqi Li
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lili Liang
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Qiyi Zeng
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
20
|
Vanhorebeek I, Gunst J, Casaer MP, Derese I, Derde S, Pauwels L, Segers J, Hermans G, Gosselink R, Van den Berghe G. Skeletal Muscle Myokine Expression in Critical Illness, Association With Outcome and Impact of Therapeutic Interventions. J Endocr Soc 2023; 7:bvad001. [PMID: 36726836 PMCID: PMC9879715 DOI: 10.1210/jendso/bvad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 01/09/2023] Open
Abstract
Context Muscle expresses and secretes several myokines that bring about benefits in distant organs. Objective We investigated the impact of critical illness on muscular expression of irisin, kynurenine aminotransferases, and amylase; association with clinical outcome; and impact of interventions that attenuate muscle wasting/weakness. Methods We studied critically ill patients who participated in 2 randomized controlled trials (EPaNIC/NESCI) and documented time profiles in critically ill mice. Included in the study were 174 intensive care unit (ICU) patients (day 8 ± 1) vs 19 matched controls, and 60 mice subjected to surgery/sepsis vs 60 pair-fed healthy mice. Interventions studied included 7-day neuromuscular electrical stimulation (NMES), and withholding parenteral nutrition (PN) in the first ICU week (late PN) vs early PN. The main outcome measures were FNDC5 (irisin- precursor), KYAT1, KYAT3, and amylase mRNA expression in skeletal muscle. Results Critically ill patients showed 34% to 80% lower mRNA expression of FNDC5, KYAT1, and amylases than controls (P < .0001). Critically ill mice showed time-dependent reductions in all mRNAs compared with healthy mice (P ≤ .04). The lower FNDC5 expression in patients was independently associated with a higher ICU mortality (P = .015) and ICU-acquired weakness (P = .012), whereas the lower amylase expression in ICU survivors was independently associated with a longer ICU stay (P = .0060). Lower amylase expression was independently associated with a lower risk of death (P = .048), and lower KYAT1 expression with a lower risk of weakness (P = .022). NMES increased FNDC5 expression compared with unstimulated muscle (P = .016), and late PN patients had a higher KYAT1 expression than early PN patients (P = .022). Conclusion Expression of the studied myokines was affected by critical illness and associated with clinical outcomes, with limited effects of interventions that attenuate muscle wasting or weakness.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Correspondence: Prof. Ilse Vanhorebeek, MEng, PhD, Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;. ; or Prof. Greet Van den Berghe, MD, PhD, Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Jan Gunst
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Clinical Division of Intensive Care Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Michaël P Casaer
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Clinical Division of Intensive Care Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Inge Derese
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sarah Derde
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Lies Pauwels
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Johan Segers
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Rik Gosselink
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Greet Van den Berghe
- Correspondence: Prof. Ilse Vanhorebeek, MEng, PhD, Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;. ; or Prof. Greet Van den Berghe, MD, PhD, Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
21
|
Turska M, Paluszkiewicz P, Turski WA, Parada-Turska J. A Review of the Health Benefits of Food Enriched with Kynurenic Acid. Nutrients 2022; 14:4182. [PMID: 36235834 PMCID: PMC9570704 DOI: 10.3390/nu14194182] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Kynurenic acid (KYNA), a metabolite of tryptophan, is an endogenous substance produced intracellularly by various human cells. In addition, KYNA can be synthesized by the gut microbiome and delivered in food. However, its content in food is very low and the total alimentary supply with food accounts for only 1-3% of daily KYNA excretion. The only known exception is chestnut honey, which has a higher KYNA content than other foods by at least two orders of magnitude. KYNA is readily absorbed from the gastrointestinal tract; it is not metabolized and is excreted mainly in urine. It possesses well-defined molecular targets, which allows the study and elucidation of KYNA's role in various pathological conditions. Following a period of fascination with KYNA's importance for the central nervous system, research into its role in the peripheral system has been expanding rapidly in recent years, bringing some exciting discoveries. KYNA does not penetrate from the peripheral circulation into the brain; hence, the following review summarizes knowledge on the peripheral consequences of KYNA administration, presents data on KYNA content in food products, in the context of its daily supply in diets, and systematizes the available pharmacokinetic data. Finally, it provides an analysis of the rationale behind enriching foods with KYNA for health-promoting effects.
Collapse
Affiliation(s)
- Monika Turska
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Piotr Paluszkiewicz
- Department of General, Oncological and Metabolic Surgery, Institute of Hematology and Transfusion Medicine, 02-778 Warsaw, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
22
|
Liu YX, Yu Y, Liu JP, Liu WJ, Cao Y, Yan RM, Yao YM. Neuroimmune Regulation in Sepsis-Associated Encephalopathy: The Interaction Between the Brain and Peripheral Immunity. Front Neurol 2022; 13:892480. [PMID: 35832175 PMCID: PMC9271799 DOI: 10.3389/fneur.2022.892480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE), the most popular cause of coma in the intensive care unit (ICU), is the diffuse cerebral damage caused by the septic challenge. SAE is closely related to high mortality and extended cognitive impairment in patients in septic shock. At present, many studies have demonstrated that SAE might be mainly associated with blood–brain barrier damage, abnormal neurotransmitter secretion, oxidative stress, and neuroimmune dysfunction. Nevertheless, the precise mechanism which initiates SAE and contributes to the long-term cognitive impairment remains largely unknown. Recently, a growing body of evidence has indicated that there is close crosstalk between SAE and peripheral immunity. The excessive migration of peripheral immune cells to the brain, the activation of glia, and resulting dysfunction of the central immune system are the main causes of septic nerve damage. This study reviews the update on the pathogenesis of septic encephalopathy, focusing on the over-activation of immune cells in the central nervous system (CNS) and the “neurocentral–endocrine–immune” networks in the development of SAE, aiming to further understand the potential mechanism of SAE and provide new targets for diagnosis and management of septic complications.
Collapse
Affiliation(s)
- Yu-xiao Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Jing-peng Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Wen-jia Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yang Cao
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
| | - Run-min Yan
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yong-ming Yao
| | - Yong-ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Run-min Yan
| |
Collapse
|
23
|
Kynurenic Acid and Its Analog SZR104 Exhibit Strong Antiinflammatory Effects and Alter the Intracellular Distribution and Methylation Patterns of H3 Histones in Immunochallenged Microglia-Enriched Cultures of Newborn Rat Brains. Int J Mol Sci 2022; 23:ijms23031079. [PMID: 35163002 PMCID: PMC8835130 DOI: 10.3390/ijms23031079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Kynurenic acid (KYNA) is implicated in antiinflammatory processes in the brain through several cellular and molecular targets, among which microglia-related mechanisms are of paramount importance. In this study, we describe the effects of KYNA and one of its analogs, the brain-penetrable SZR104 (N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide), on the intracellular distribution and methylation patterns of histone H3 in immunochallenged microglia cultures. Microglia-enriched secondary cultures made from newborn rat forebrains were immunochallenged with lipopolysaccharide (LPS). The protein levels of selected inflammatory markers C–X–C motif chemokine ligand 10 (CXCL10) and C–C motif chemokine receptor 1 (CCR1), histone H3, and posttranslational modifications of histone H3 lys methylation sites (H3K9me3 and H3K36me2, marks typically associated with opposite effects on gene expression) were analyzed using quantitative fluorescent immunocytochemistry and western blots in control or LPS-treated cultures with or without KYNA or SZR104. KYNA and SZR104 reduced levels of the inflammatory marker proteins CXCL10 and CCR1 after LPS-treatment. Moreover, KYNA and SZR104 favorably affected histone methylation patterns as H3K9me3 and H3K36me2 immunoreactivities, and histone H3 protein levels returned toward control values after LPS treatment. The cytoplasmic translocation of H3K9me3 from the nucleus indicated inflammatory distress, a process that could be inhibited by KYNA and SZR104. Thus, KYNA signaling and metabolism, and especially brain-penetrable KYNA analogs such as SZR104, could be key targets in the pathway that connects chromatin structure and epigenetic mechanisms with functional consequences that affect neuroinflammation and perhaps neurodegeneration.
Collapse
|