1
|
Liao Y, Zheng Y, Zhang R, Chen X, Huang J, Liu J, Zhao Y, Zheng Y, Zhang X, Gao Z, Gao X, Bu J, Peng T, Li X, Shen E. Regulatory roles of transcription factors T-bet and Eomes in group 1 ILCs. Int Immunopharmacol 2024; 143:113229. [PMID: 39357208 DOI: 10.1016/j.intimp.2024.113229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
T-bet and Eomes, both T-box transcription factors, have been extensively studied for their critical roles in the differentiation and functional maintenance of various immune cells. In this review, we provide a focused overview of their contributions to the transcriptional activation and differentiation, development, and terminal maturation of natural killer cells and innate lymphoid cell 1 cells. Furthermore, the interplay between T-bet and Eomes in regulating NK cell function, and its subsequent implications for immune responses against infections and tumors, is thoroughly examined. The review explores the ramifications of dysregulated transcription factor expression, examining its impact on homeostatic balance and its role in a spectrum of disease models. Expression variances among distinct NK cell subsets resident in different tissues are highlighted to underscore the complexity of their biological roles. Collectively, this work aims to expand the current understanding of NK cell biology, thereby paving the way for innovative approaches in the realm of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Yue Liao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yanling Zheng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruizhi Zhang
- Department of Emergency Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jijun Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xueyan Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhiyan Gao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Gao
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jin Bu
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Tieli Peng
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, China.
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Kennedy PR, Arvindam US, Phung SK, Ettestad B, Feng X, Li Y, Kile QM, Hinderlie P, Khaw M, Huang RS, Kaufman M, Puchalska P, Russell A, Butler J, Abbott L, McClure P, Luo X, Lu QT, Blazar BR, Crawford PA, Lim J, Miller JS, Felices M. Metabolic programs drive function of therapeutic NK cells in hypoxic tumor environments. SCIENCE ADVANCES 2024; 10:eadn1849. [PMID: 39475618 PMCID: PMC11524192 DOI: 10.1126/sciadv.adn1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Limited oxygen (hypoxia) in solid tumors poses a challenge to successful immunotherapy with natural killer (NK) cells. NK cells have impaired cytotoxicity when cultured in hypoxia (1% oxygen) but not physiologic (>5%) or atmospheric oxygen (20%). We found that changes to cytotoxicity were regulated at the transcriptional level and accompanied by metabolic dysregulation. Dosing with interleukin-15 (IL-15) enhanced NK cell cytotoxicity in hypoxia, but preactivation with feeder cells bearing IL-21 and 4-1BBL was even better. Preactivation resulted in less perturbed metabolism in hypoxia; greater resistance to oxidative stress; and no hypoxia-induced loss of transcription factors (T-bet and Eomes), activating receptors, adhesion molecules (CD2), and cytotoxic proteins (TRAIL and FasL). There remained a deficit in CD122/IL-2Rβ when exposed to hypoxia, which affected IL-15 signaling. However, tri-specific killer engager molecules that deliver IL-15 in the context of anti-CD16/FcγRIII were able to bypass this deficit, enhancing cytotoxicity of both fresh and preactivated NK cells in hypoxia.
Collapse
Affiliation(s)
- Philippa R. Kennedy
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Upasana Sunil Arvindam
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Shee Kwan Phung
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Brianna Ettestad
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Yunmin Li
- Xcell Biosciences, San Francisco, CA, USA
| | - Quinlan M. Kile
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter Hinderlie
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Melissa Khaw
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rih-Sheng Huang
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marissa Kaufman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Russell
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jonah Butler
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lucas Abbott
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Paul McClure
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Xianghua Luo
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Bruce R. Blazar
- Division of Pediatric Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James Lim
- Xcell Biosciences, San Francisco, CA, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Cooksey LC, Friesen DC, Mangan ED, Mathew PA. Prospective Molecular Targets for Natural Killer Cell Immunotherapy against Glioblastoma Multiforme. Cells 2024; 13:1567. [PMID: 39329751 PMCID: PMC11429815 DOI: 10.3390/cells13181567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary malignant brain tumor and has a dismal overall survival rate. To date, no GBM therapy has yielded successful results in survival for patients beyond baseline surgical resection, radiation, and chemotherapy. Immunotherapy has taken the oncology world by storm in recent years and there has been movement from researchers to implement the immunotherapy revolution into GBM treatment. Natural killer (NK) cell-based immunotherapies are a rising candidate to treat GBM from multiple therapeutic vantage points: monoclonal antibody therapy targeting tumor-associated antigens (TAAs), immune checkpoint inhibitors, CAR-NK cell therapy, Bi-specific killer cell engagers (BiKEs), and more. NK therapies often focus on tumor antigens for targeting. Here, we reviewed some common targets analyzed in the fight for GBM immunotherapy relevant to NK cells: EGFR, HER2, CD155, and IL-13Rα2. We further propose investigating the Lectin-like Transcript 1 (LLT1) and cell surface proliferating cell nuclear antigen (csPCNA) as targets for NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Luke C. Cooksey
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Derek C. Friesen
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
| | - Enrique D. Mangan
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
| | - Porunelloor A. Mathew
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
5
|
Li S, Luo X, Sun M, Wang Y, Zhang Z, Jiang J, Hu D, Zhang J, Wu Z, Wang Y, Huang W, Xia L. Context-dependent T-BOX transcription factor family: from biology to targeted therapy. Cell Commun Signal 2024; 22:350. [PMID: 38965548 PMCID: PMC11225425 DOI: 10.1186/s12964-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Sabag B, Puthenveetil A, Levy M, Joseph N, Doniger T, Yaron O, Karako-Lampert S, Lazar I, Awwad F, Ashkenazi S, Barda-Saad M. Dysfunctional natural killer cells can be reprogrammed to regain anti-tumor activity. EMBO J 2024; 43:2552-2581. [PMID: 38637625 PMCID: PMC11217363 DOI: 10.1038/s44318-024-00094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Natural killer (NK) cells are critical to the innate immune system, as they recognize antigens without prior sensitization, and contribute to the control and clearance of viral infections and cancer. However, a significant proportion of NK cells in mice and humans do not express classical inhibitory receptors during their education process and are rendered naturally "anergic", i.e., exhibiting reduced effector functions. The molecular events leading to NK cell anergy as well as their relation to those underlying NK cell exhaustion that arises from overstimulation in chronic conditions, remain unknown. Here, we characterize the "anergic" phenotype and demonstrate functional, transcriptional, and phenotypic similarities to the "exhausted" state in tumor-infiltrating NK cells. Furthermore, we identify zinc finger transcription factor Egr2 and diacylglycerol kinase DGKα as common negative regulators controlling NK cell dysfunction. Finally, experiments in a 3D organotypic spheroid culture model and an in vivo tumor model suggest that a nanoparticle-based delivery platform can reprogram these dysfunctional natural killer cell populations in their native microenvironment. This approach may become clinically relevant for the development of novel anti-tumor immunotherapeutic strategies.
Collapse
Affiliation(s)
- Batel Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Abhishek Puthenveetil
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Moria Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Tirtza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orly Yaron
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Sarit Karako-Lampert
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Itay Lazar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Fatima Awwad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shahar Ashkenazi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
7
|
Mugo RM, Oser L, Midha A, Adjah J, Kundik A, Laubschat A, Höfler P, Musimbi ZD, Hayani R, Schlosser-Brandenburg J, Hartmann S, Rausch S. Acute Ascaris infection impairs the effector functions of natural killer cells in single and Salmonella co-infected pigs. Sci Rep 2024; 14:14586. [PMID: 38918457 PMCID: PMC11199589 DOI: 10.1038/s41598-024-64497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Natural killer (NK) cells play a key role in defense against Salmonella infections during the early phase of infection. Our previous work showed that the excretory/secretory products of Ascaris suum repressed NK activity in vitro. Here, we asked if NK cell functionality was influenced in domestic pigs during coinfection with Ascaris and Salmonella enterica serotype Typhimurium. Ascaris coinfection completely abolished the IL-12 and IL-18 driven elevation of IFN-γ production seen in CD16 + CD8α + perforin + NK cells of Salmonella single-infected pigs. Furthermore, Ascaris coinfection prohibited the Salmonella-driven rise in NK perforin levels and CD107a surface expression. In line with impaired effector functions, NK cells from Ascaris-single and coinfected pigs displayed elevated expression of the inhibitory KLRA1 and NKG2A receptors genes, contrasting with the higher expression of the activating NKp46 and NKp30 receptors in NK cells during Salmonella single infection. These differences were accompanied by the highly significant upregulation of T-bet protein expression in NK cells from Ascaris-single and Ascaris/Salmonella coinfected pigs. Together, our data strongly indicate a profound repression of NK functionality by an Ascaris infection which may hinder infected individuals from adequately responding to a concurrent bacterial infection.
Collapse
Affiliation(s)
- Robert M Mugo
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Larissa Oser
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ankur Midha
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Joshua Adjah
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Arkadi Kundik
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Alexandra Laubschat
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Philipp Höfler
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Zaneta D Musimbi
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Rima Hayani
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Rausch
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Egli L, Kaulfuss M, Mietz J, Picozzi A, Verhoeyen E, Münz C, Chijioke O. CAR T cells outperform CAR NK cells in CAR-mediated effector functions in head-to-head comparison. Exp Hematol Oncol 2024; 13:51. [PMID: 38745250 PMCID: PMC11092129 DOI: 10.1186/s40164-024-00522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND CAR NK cells as vehicles for engineered "off-the-shelf" cellular cancer immunotherapy have attracted significant interest. Nonetheless, a comprehensive comparative assessment of the anticancer activity of CAR T cells and CAR NK cells carrying approved benchmark anti-CD19 CAR constructs is missing. Here, we report a direct head-to-head comparison of CD19-directed human T and NK cells. METHODS We generated CAR T and CAR NK cells derived from healthy donor PBMC by retroviral transduction with the same benchmark second-generation anti-CD19 CAR construct, FMC63.28z. We investigated IFN-γ secretion and direct cytotoxicity in vitro against various CD19+ cancer cell lines as well as in autologous versus allogeneic settings. Furthermore, we have assessed anticancer activity of CAR T and CAR NK cells in vivo using a xenograft lymphoma model in an autologous versus allogeneic setting and a leukemia model. RESULTS Our main findings are a drastically reduced capacity for CAR-mediated IFN-γ production and lower CAR-mediated cytotoxicity of CAR NK cells relative to CAR T cells in vitro. Consistent with these in vitro findings, we report superior anticancer activity of autologous CAR T cells compared with allogeneic CAR NK cells in vivo. CONCLUSIONS CAR T cells had significantly higher CAR-mediated effector functions than CAR NK cells in vitro against several cancer cell lines and autologous CAR T cells outperformed allogeneic CAR NK cells both in vitro and in vivo. CAR NK cells will likely benefit from further engineering to enhance anticancer activity to ultimately fulfill the promise of an effective off-the-shelf product.
Collapse
Affiliation(s)
- Lukas Egli
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Meike Kaulfuss
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Arianna Picozzi
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Els Verhoeyen
- International Center for Infectiology, research team Enveloped Viruses, Vectors and Innate Responses, Institut national de la Santé et de la recherche médicale, unité 1111, Unité mixte de recherche 5308, Centre national de la recherche scientifique, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
- Université Côte d'Azur, Institut National de La Santé Et de La Recherche Médicale, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Hermans L, O’Sullivan TE. No time to die: Epigenetic regulation of natural killer cell survival. Immunol Rev 2024; 323:61-79. [PMID: 38426615 PMCID: PMC11102341 DOI: 10.1111/imr.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Wang YH, Hagiwara S, Kazama H, Iizuka Y, Tanaka N, Tanaka J. Elotuzumab Enhances CD16-Independent NK Cell-Mediated Cytotoxicity against Myeloma Cells by Upregulating Several NK Cell-Enhancing Genes. J Immunol Res 2024; 2024:1429879. [PMID: 38444839 PMCID: PMC10914431 DOI: 10.1155/2024/1429879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Multiple myeloma (MM) is an intractable hematological malignancy caused by abnormalities in plasma cells. Combination therapy using antibodies and natural killer (NK) effectors, which are innate immune cells with safe and potent antitumor activity, is a promising approach for cancer immunotherapy and can enhance antitumor effects. Elotuzumab (Elo) is an immune-stimulatory antibody that targets the signaling lymphocytic activation molecule family 7 (SLAMF7) expressed on the surface of MM and NK cells. We confirmed that Elo strongly promoted NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) against SLAMF7-positive MM cells in a CD16-dependent NK cell line, and also activated expanded NK cells derived from peripheral blood mononuclear cells of healthy donors and patients with MM in the present study. However, the antitumor effects and genes involved in the direct promotion of NK cell-mediated activation using Elo in CD16-independent NK cells are not clearly known. In this study, we demonstrated that Elo pretreatment significantly enhanced CD16-independent NK cell-mediated cytotoxicity in both SLAMF7-positive MM.1S and SLAMF7-negative K562, U266, and RPMI 8226 tumor cells. Upon direct simulation of CD16-independent NK cells with Elo, increased levels of CD107a degranulation and IFN-γ secretion were observed along with the upregulation of granzyme B, TNF-α, and IL-1α gene expression. The enhanced NK cell function could also be attributed to the increased expression of the transcription factors T-BET and EOMES. Furthermore, the augmentation of the antitumor effects of CD16-independent NK cells upon pretreatment with Elo enhanced the expression of CRTAM, TNFRSF9, EAT-2, and FOXP3 genes and reduced the expression of HSPA6. Our results suggest that Elo directly promotes the cytotoxic function of CD16-independent NK cells against target cells, which is associated with the upregulation of the expression of several NK cell-enhancing genes.
Collapse
Affiliation(s)
- Yan-Hua Wang
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Shotaro Hagiwara
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Hiroshi Kazama
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
- Department of Medicine, Tokyo Women's Medical University, Adachi Medical Center, 4-33-1, Kohoku, Adachi-Ku, Tokyo 123-8558, Japan
| | - Yuki Iizuka
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Norina Tanaka
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| |
Collapse
|
11
|
Luo J, Huang R, Xiao P, Xu A, Dong Z, Zhang L, Wu R, Qiu Y, Zhu L, Zhang R, Tang L. Construction of hub transcription factor-microRNAs-messenger RNA regulatory network in recurrent implantation failure. J Assist Reprod Genet 2024; 41:3-13. [PMID: 37878219 PMCID: PMC10789703 DOI: 10.1007/s10815-023-02947-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
PURPOSE Recurrent implantation failure (RIF) affects up to 10% of in vitro fertilization (IVF) patients worldwide. However, the pathogenesis of RIF remains unclear. This study was aimed at identifying hub transcription factors (TFs) of RIF in bioinformatics approaches. METHODS The GSE111974 (mRNA), GSE71332 (miRNA), and GSE103465 (mRNA) datasets were downloaded from the Gene Expression Omnibus database from human endometrial tissue using R version 4.2.1 and used to identify differentially expressed TFs (DETFs), differentially expressed miRNAs, and differentially expressed genes for RIF, respectively. DETFs were subjected to functional enrichment analysis and the protein-protein interaction network analysis using the Search Tool for the Retrieval of Interacting Genes (version 11.5) database. Hub TFs were identified using the cytoHubb plug-in, after which a hub TF-miRNA-mRNA network was constructed using Cytoscape v3.8.2. RESULTS Fifty-seven DETFs were identified, in which Gene Ontology analysis revealed to be mainly involved in the regulation of transcription. Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that DETFs were enriched in transcriptional misregulation in cancer, aldosterone synthesis and secretion, AMPK signaling pathway, and cGMP-PKG signaling pathway. EOMES, NKX2-1, and POU5F1 were identified as hub TFs, and a hub TF-miRNA-mRNA regulatory network was constructed using these three hub TFs, four miRNAs, and four genes. CONCLUSION Collectively, we identified three promising molecular biomarkers for the diagnosis of RIF, which may further be potential therapeutic targets. This study provides novel insights into the molecular mechanisms underlying RIF. However, further experiments are required to verify these results.
Collapse
Affiliation(s)
- Jiahuan Luo
- Department of Reproductive Genetics, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
- Innovation Team in Reproductive Medicine, Dali University, No. 32, Carlsberg Avenue, Dali, Yunnan, China
- First Clinical Medical College, Kunming Medical University, Kunming, China
| | - Rongxia Huang
- Department of Gynecology, Kunming Maternal and Child Health Hospital, Kunming, China
| | - Pengying Xiao
- Reproductive Medicine Center, Dongguan Songshan Lake Central Hospital, Dongguan, 523429, China
| | - Anli Xu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
- Innovation Team in Reproductive Medicine, Dali University, No. 32, Carlsberg Avenue, Dali, Yunnan, China
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China
| | - Zhaomei Dong
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
- Innovation Team in Reproductive Medicine, Dali University, No. 32, Carlsberg Avenue, Dali, Yunnan, China
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China
| | - Lirong Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
- Innovation Team in Reproductive Medicine, Dali University, No. 32, Carlsberg Avenue, Dali, Yunnan, China
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China
| | - Rui Wu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China
| | - Yunlin Qiu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China
| | - Li Zhu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.
- Innovation Team in Reproductive Medicine, Dali University, No. 32, Carlsberg Avenue, Dali, Yunnan, China.
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China.
| | - Ruopeng Zhang
- Reproductive Medicine Center, Dongguan Songshan Lake Central Hospital, Dongguan, 523429, China.
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China.
| | - Li Tang
- Department of Reproductive Genetics, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China.
- First Clinical Medical College, Kunming Medical University, Kunming, China.
| |
Collapse
|
12
|
Schmit MM, Baxley RM, Wang L, Hinderlie P, Kaufman M, Simon E, Raju A, Miller JS, Bielinsky AK. A critical threshold of MCM10 is required to maintain genome stability during differentiation of induced pluripotent stem cells into natural killer cells. Open Biol 2024; 14:230407. [PMID: 38262603 PMCID: PMC10805602 DOI: 10.1098/rsob.230407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 01/25/2024] Open
Abstract
Natural killer (NK) cell deficiency (NKD) is a rare disease in which NK cell function is reduced, leaving affected individuals susceptible to repeated viral infections and cancer. Recently, a patient with NKD was identified carrying compound heterozygous variants of MCM10 (minichromosome maintenance protein 10), an essential gene required for DNA replication, that caused a significant decrease in the amount of functional MCM10. NKD in this patient presented as loss of functionally mature late-stage NK cells. To understand how MCM10 deficiency affects NK cell development, we generated MCM10 heterozygous (MCM10+/-) induced pluripotent stem cell (iPSC) lines. Analyses of these cell lines demonstrated that MCM10 was haploinsufficient, similar to results in other human cell lines. Reduced levels of MCM10 in mutant iPSCs was associated with impaired clonogenic survival and increased genomic instability, including micronuclei formation and telomere erosion. The severity of these phenotypes correlated with the extent of MCM10 depletion. Significantly, MCM10+/- iPSCs displayed defects in NK cell differentiation, exhibiting reduced yields of hematopoietic stem cells (HSCs). Although MCM10+/- HSCs were able to give rise to lymphoid progenitors, these did not generate mature NK cells. The lack of mature NK cells coincided with telomere erosion, suggesting that NKD caused by these MCM10 variants arose from the accumulation of genomic instability including degradation of chromosome ends.
Collapse
Affiliation(s)
- Megan M. Schmit
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan M. Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Peter Hinderlie
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Marissa Kaufman
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Emily Simon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anjali Raju
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Müller-Dott S, Tsirvouli E, Vazquez M, Ramirez Flores R, Badia-i-Mompel P, Fallegger R, Türei D, Lægreid A, Saez-Rodriguez J. Expanding the coverage of regulons from high-confidence prior knowledge for accurate estimation of transcription factor activities. Nucleic Acids Res 2023; 51:10934-10949. [PMID: 37843125 PMCID: PMC10639077 DOI: 10.1093/nar/gkad841] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Gene regulation plays a critical role in the cellular processes that underlie human health and disease. The regulatory relationship between transcription factors (TFs), key regulators of gene expression, and their target genes, the so called TF regulons, can be coupled with computational algorithms to estimate the activity of TFs. However, to interpret these findings accurately, regulons of high reliability and coverage are needed. In this study, we present and evaluate a collection of regulons created using the CollecTRI meta-resource containing signed TF-gene interactions for 1186 TFs. In this context, we introduce a workflow to integrate information from multiple resources and assign the sign of regulation to TF-gene interactions that could be applied to other comprehensive knowledge bases. We find that the signed CollecTRI-derived regulons outperform other public collections of regulatory interactions in accurately inferring changes in TF activities in perturbation experiments. Furthermore, we showcase the value of the regulons by examining TF activity profiles in three different cancer types and exploring TF activities at the level of single-cells. Overall, the CollecTRI-derived TF regulons enable the accurate and comprehensive estimation of TF activities and thereby help to interpret transcriptomics data.
Collapse
Affiliation(s)
- Sophia Müller-Dott
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Eirini Tsirvouli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ricardo O Ramirez Flores
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Pau Badia-i-Mompel
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Robin Fallegger
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Dénes Türei
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Astrid Lægreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| |
Collapse
|
14
|
Bailly E, Macedo C, Ossart J, Louis K, Gu X, Ramaswami B, Bentlejewski C, Zeevi A, Randhawa P, Lefaucheur C, Metes D. Interleukin-21 promotes Type-1 activation and cytotoxicity of CD56 dimCD16 bright natural killer cells during kidney allograft antibody-mediated rejection showing a new link between adaptive and innate humoral allo-immunity. Kidney Int 2023; 104:707-723. [PMID: 37220805 PMCID: PMC10524858 DOI: 10.1016/j.kint.2023.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
The role of Natural killer (NK) cells during kidney allograft antibody-mediated rejection (ABMR) is increasingly recognized, but an in-depth characterization of mechanisms that contribute to such immune response is still under investigation. Here, we characterized phenotypic, functional, and transcriptomic profiles of peripheral blood circulating and allograft infiltrating CD56dimCD16bright NK cells during anti-HLA donor-specific antibody (DSA)+ ABMR. Cross-sectional analyses performed in 71 kidney transplant recipients identified a unique phenotypic circulating CD56dimCD16bright NK cell cluster expanded in DSA+ ABMR. This cluster co-expressed high levels of the interleukin-21 Receptor (IL-21R); Type-1 transcription factors T-bet and EOMES, CD160 and natural killer group 2D cytotoxic and activating co-stimulatory receptors. CD160+ IL-21R+ NK cells correlated with elevated plasma IL-21, Ki-67+ ICOS+ (CD278) IL-21-producing circulating T follicular helper cells, enhanced Type-1 pro-inflammatory cytokines, NK cell cytotoxicity, worse microvascular inflammation and graft loss. Single-cell transcriptomic analysis of circulating NK cells delineated an expanded cluster in DSA+ ABMR characterized by elevated pro-inflammatory/cytotoxic pathways, IL-21/STAT3 signaling, and leukocyte trans-endothelial migration pathways. Infiltration of CD160+ IL-21R+ NK cells with similar transcriptomic profile was detected in DSA+ ABMR allograft biopsies, potentially contributing to allograft injury. Thus, the IL-21/IL-21R axis, linking adaptive and innate humoral allo-immunity, or NK cells may represent appealing immunotherapy targets in DSA+ ABMR.
Collapse
Affiliation(s)
- Elodie Bailly
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Human Immunology, Pathophysiology, Immunotherapy, INSERM UMR-S976, Université Paris Cité, Paris, France.
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Ossart
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Louis
- Human Immunology, Pathophysiology, Immunotherapy, INSERM UMR-S976, Université Paris Cité, Paris, France
| | - Xinyan Gu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bala Ramaswami
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carol Bentlejewski
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adriana Zeevi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Parmjeet Randhawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carmen Lefaucheur
- Human Immunology, Pathophysiology, Immunotherapy, INSERM UMR-S976, Université Paris Cité, Paris, France
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Wong P, Foltz JA, Chang L, Neal CC, Yao T, Cubitt CC, Tran J, Kersting-Schadek S, Palakurty S, Jaeger N, Russler-Germain DA, Marin ND, Gang M, Wagner JA, Zhou AY, Jacobs MT, Foster M, Schappe T, Marsala L, McClain E, Pence P, Becker-Hapak M, Fisk B, Petti AA, Griffith OL, Griffith M, Berrien-Elliott MM, Fehniger TA. T-BET and EOMES sustain mature human NK cell identity and antitumor function. J Clin Invest 2023; 133:e162530. [PMID: 37279078 PMCID: PMC10313375 DOI: 10.1172/jci162530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Since the T-box transcription factors (TFs) T-BET and EOMES are necessary for initiation of NK cell development, their ongoing requirement for mature NK cell homeostasis, function, and molecular programming remains unclear. To address this, T-BET and EOMES were deleted in unexpanded primary human NK cells using CRISPR/Cas9. Deleting these TFs compromised in vivo antitumor response of human NK cells. Mechanistically, T-BET and EOMES were required for normal NK cell proliferation and persistence in vivo. NK cells lacking T-BET and EOMES also exhibited defective responses to cytokine stimulation. Single-cell RNA-Seq revealed a specific T-box transcriptional program in human NK cells, which was rapidly lost following T-BET and EOMES deletion. Further, T-BET- and EOMES-deleted CD56bright NK cells acquired an innate lymphoid cell precursor-like (ILCP-like) profile with increased expression of the ILC-3-associated TFs RORC and AHR, revealing a role for T-box TFs in maintaining mature NK cell phenotypes and an unexpected role of suppressing alternative ILC lineages. Our study reveals the critical importance of sustained EOMES and T-BET expression to orchestrate mature NK cell function and identity.
Collapse
Affiliation(s)
- Pamela Wong
- Department of Medicine, Division of Oncology
| | | | - Lily Chang
- Department of Medicine, Division of Oncology
| | | | - Tony Yao
- Department of Medicine, Division of Oncology
| | | | | | | | | | | | | | | | | | | | | | | | - Mark Foster
- Department of Medicine, Division of Oncology
| | | | | | | | | | | | - Bryan Fisk
- Department of Medicine, Division of Oncology
| | | | | | | | | | - Todd A. Fehniger
- Department of Medicine, Division of Oncology
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Balcı AT, Ebeid MM, Benos PV, Kostka D, Chikina M. An intrinsically interpretable neural network architecture for sequence-to-function learning. Bioinformatics 2023; 39:i413-i422. [PMID: 37387140 PMCID: PMC10311317 DOI: 10.1093/bioinformatics/btad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Sequence-based deep learning approaches have been shown to predict a multitude of functional genomic readouts, including regions of open chromatin and RNA expression of genes. However, a major limitation of current methods is that model interpretation relies on computationally demanding post hoc analyses, and even then, one can often not explain the internal mechanics of highly parameterized models. Here, we introduce a deep learning architecture called totally interpretable sequence-to-function model (tiSFM). tiSFM improves upon the performance of standard multilayer convolutional models while using fewer parameters. Additionally, while tiSFM is itself technically a multilayer neural network, internal model parameters are intrinsically interpretable in terms of relevant sequence motifs. RESULTS We analyze published open chromatin measurements across hematopoietic lineage cell-types and demonstrate that tiSFM outperforms a state-of-the-art convolutional neural network model custom-tailored to this dataset. We also show that it correctly identifies context-specific activities of transcription factors with known roles in hematopoietic differentiation, including Pax5 and Ebf1 for B-cells, and Rorc for innate lymphoid cells. tiSFM's model parameters have biologically meaningful interpretations, and we show the utility of our approach on a complex task of predicting the change in epigenetic state as a function of developmental transition. AVAILABILITY AND IMPLEMENTATION The source code, including scripts for the analysis of key findings, can be found at https://github.com/boooooogey/ATAConv, implemented in Python.
Collapse
Affiliation(s)
- Ali Tuğrul Balcı
- Joint Carnegie Mellon University-University of Pittsburgh Program in Computational Biology, Pittsburgh, PA 15213, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Mark Maher Ebeid
- Joint Carnegie Mellon University-University of Pittsburgh Program in Computational Biology, Pittsburgh, PA 15213, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Panayiotis V Benos
- Department of Epidemiology, University of Florida, Gainesville, FL 32610, United States
| | - Dennis Kostka
- Joint Carnegie Mellon University-University of Pittsburgh Program in Computational Biology, Pittsburgh, PA 15213, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Maria Chikina
- Joint Carnegie Mellon University-University of Pittsburgh Program in Computational Biology, Pittsburgh, PA 15213, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
17
|
Foo YY, Tiah A, Aung SW. Harnessing the power of memory-like NK cells to fight cancer. Clin Exp Immunol 2023; 212:212-223. [PMID: 36866467 PMCID: PMC10243875 DOI: 10.1093/cei/uxad030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 03/01/2023] [Indexed: 03/04/2023] Open
Abstract
Natural killer (NK) cells possess the innate ability to eliminate cancerous cells effectively. Their crucial role in immunosurveillance has been widely recognized and exploited for therapeutic intervention. Despite the fast-acting nature of NK cells, NK adoptive cell transfer lacks favorable response in some patients. Patient NK cells often display diminished phenotype in preventing cancer progression resulting in poor prognosis. Tumor microenvironment plays a significant role in causing the downfall of NK cells in patients. The release of inhibitory factors by tumor microenvironment hinders normal function of NK cells against tumor. To overcome this challenge, therapeutic strategies such as cytokine stimulation and genetic manipulation are being investigated to improve NK tumor-killing capacity. One of the promising approaches includes generation of more competent NK cells via ex vivo cytokines activation and proliferation. Cytokine-induced ML-NK demonstrated phenotypic alterations such as enhanced expression of activating receptors which help elevate their antitumor response. Previous preclinical studies showed enhanced cytotoxicity and IFNγ production in ML-NK cells compared to normal NK cells against malignant cells. Similar effects are shown in clinical studies in which MK-NK demonstrated encouraging results in treating hematological cancer. However, there is still a lack of in-depth studies using ML-NK in treating different types of tumors and cancers. With convincing preliminary response, this cell-based approach could be used to complement other therapeutic modalities to achieve better clinical outcomes.
Collapse
Affiliation(s)
- Yun Yan Foo
- Department of Research and Development, CELLAAX Sdn Bhd, Block D & E, No. 3, Jalan Tasik, Mines Wellness City, Seri Kembangan, 43300 Selangor, Malaysia
| | - Angelina Tiah
- Department of Research and Development, CELLAAX Sdn Bhd, Block D & E, No. 3, Jalan Tasik, Mines Wellness City, Seri Kembangan, 43300 Selangor, Malaysia
- Beike 23 Century Laboratory, 23 Century International Life Science Centre, Block D & E, No. 3, Jalan Tasik, Mines Wellness City, Seri Kembangan, 43300 Selangor, Malaysia
| | - Shuh Wen Aung
- Beike 23 Century Laboratory, 23 Century International Life Science Centre, Block D & E, No. 3, Jalan Tasik, Mines Wellness City, Seri Kembangan, 43300 Selangor, Malaysia
| |
Collapse
|
18
|
Santa Cruz A, Mendes-Frias A, Azarias-da-Silva M, André S, Oliveira AI, Pires O, Mendes M, Oliveira B, Braga M, Lopes JR, Domingues R, Costa R, Silva LN, Matos AR, Ângela C, Costa P, Carvalho A, Capela C, Pedrosa J, Castro AG, Estaquier J, Silvestre R. Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8 +β7 integrin + T cells and anti-SARS-CoV-2 IgA response. Nat Commun 2023; 14:1772. [PMID: 36997530 PMCID: PMC10061413 DOI: 10.1038/s41467-023-37368-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Several millions of individuals are estimated to develop post-acute sequelae SARS-CoV-2 condition (PASC) that persists for months after infection. Here we evaluate the immune response in convalescent individuals with PASC compared to convalescent asymptomatic and uninfected participants, six months following their COVID-19 diagnosis. Both convalescent asymptomatic and PASC cases are characterised by higher CD8+ T cell percentages, however, the proportion of blood CD8+ T cells expressing the mucosal homing receptor β7 is low in PASC patients. CD8 T cells show increased expression of PD-1, perforin and granzyme B in PASC, and the plasma levels of type I and type III (mucosal) interferons are elevated. The humoral response is characterized by higher levels of IgA against the N and S viral proteins, particularly in those individuals who had severe acute disease. Our results also show that consistently elevated levels of IL-6, IL-8/CXCL8 and IP-10/CXCL10 during acute disease increase the risk to develop PASC. In summary, our study indicates that PASC is defined by persisting immunological dysfunction as late as six months following SARS-CoV-2 infection, including alterations in mucosal immune parameters, redistribution of mucosal CD8+β7Integrin+ T cells and IgA, indicative of potential viral persistence and mucosal involvement in the etiopathology of PASC.
Collapse
Affiliation(s)
- André Santa Cruz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal.
- Clinical Academic Center-Braga, Braga, Portugal.
| | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Sónia André
- INSERM-U1124, Université Paris Cité, Paris, France
| | | | - Olga Pires
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Marta Mendes
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Bárbara Oliveira
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Marta Braga
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Joana Rita Lopes
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Rui Domingues
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Ricardo Costa
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Luís Neves Silva
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Ana Rita Matos
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Cristina Ângela
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandre Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Carlos Capela
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jérôme Estaquier
- INSERM-U1124, Université Paris Cité, Paris, France.
- CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada.
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
19
|
Balcı AT, Ebeid MM, Benos PV, Kostka D, Chikina M. An intrinsically interpretable neural network architecture for sequence to function learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525572. [PMID: 36747873 PMCID: PMC9900791 DOI: 10.1101/2023.01.25.525572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MOTIVATION Sequence-based deep learning approaches have been shown to predict a multitude of functional genomic readouts, including regions of open chromatin and RNA expression of genes. However, a major limitation of current methods is that model interpretation relies on computationally demanding post hoc analyses, and even then, one can often not explain the internal mechanics of highly parameterized models. Here, we introduce a deep learning architecture called tiSFM (totally interpretable sequence to function model). tiSFM improves upon the performance of standard multi-layer convolutional models while using fewer parameters. Additionally, while tiSFM is itself technically a multi-layer neural network, internal model parameters are intrinsically interpretable in terms of relevant sequence motifs. RESULTS We analyze published open chromatin measurements across hematopoietic lineage cell-types and demonstrate that tiSFM outperforms a state-of-the-art convolutional neural network model custom-tailored to this dataset. We also show that it correctly identifies context specific activities of transcription factors with known roles in hematopoietic differentiation, including Pax5 and Ebf1 for B-cells, and Rorc for innate lymphoid cells. tiSFM's model parameters have biologically meaningful interpretations, and we show the utility of our approach on a complex task of predicting the change in epigenetic state as a function of developmental transition. AVAILABILITY AND IMPLEMENTATION The source code, including scripts for the analysis of key findings, can be found at https://github.com/boooooogey/ATAConv, implemented in Python.
Collapse
Affiliation(s)
- Ali Tuğrul Balcı
- Joint Carnegie Mellon University-University of Pittsburgh Program in Computational Biology, Institution, Pittsburgh, 15213, United States and
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, 15213, Unites States and
| | - Mark Maher Ebeid
- Joint Carnegie Mellon University-University of Pittsburgh Program in Computational Biology, Institution, Pittsburgh, 15213, United States and
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, 15213, Unites States and
| | - Panayiotis V Benos
- Department of Epidemiology, University of Florida, Gainesville, 32610, Unites States
| | - Dennis Kostka
- Joint Carnegie Mellon University-University of Pittsburgh Program in Computational Biology, Institution, Pittsburgh, 15213, United States and
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, 15213, Unites States and
| | - Maria Chikina
- Joint Carnegie Mellon University-University of Pittsburgh Program in Computational Biology, Institution, Pittsburgh, 15213, United States and
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, 15213, Unites States and
| |
Collapse
|
20
|
Korchagina AA, Shein SA, Koroleva E, Tumanov AV. Transcriptional control of ILC identity. Front Immunol 2023; 14:1146077. [PMID: 36969171 PMCID: PMC10033543 DOI: 10.3389/fimmu.2023.1146077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Innate lymphoid cells (ILCs) are heterogeneous innate immune cells which participate in host defense, mucosal repair and immunopathology by producing effector cytokines similarly to their adaptive immune cell counterparts. The development of ILC1, 2, and 3 subsets is controlled by core transcription factors: T-bet, GATA3, and RORγt, respectively. ILCs can undergo plasticity and transdifferentiate to other ILC subsets in response to invading pathogens and changes in local tissue environment. Accumulating evidence suggests that the plasticity and the maintenance of ILC identity is controlled by a balance between these and additional transcription factors such as STATs, Batf, Ikaros, Runx3, c-Maf, Bcl11b, and Zbtb46, activated in response to lineage-guiding cytokines. However, how interplay between these transcription factors leads to ILC plasticity and the maintenance of ILC identity remains hypothetical. In this review, we discuss recent advances in understanding transcriptional regulation of ILCs in homeostatic and inflammatory conditions.
Collapse
|
21
|
Zhang Z, Sun H, Mariappan R, Chen X, Chen X, Jain MS, Efremova M, Teichmann SA, Rajan V, Zhang X. scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection. Nat Commun 2023; 14:384. [PMID: 36693837 PMCID: PMC9873790 DOI: 10.1038/s41467-023-36066-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Single cell data integration methods aim to integrate cells across data batches and modalities, and data integration tasks can be categorized into horizontal, vertical, diagonal, and mosaic integration, where mosaic integration is the most general and challenging case with few methods developed. We propose scMoMaT, a method that is able to integrate single cell multi-omics data under the mosaic integration scenario using matrix tri-factorization. During integration, scMoMaT is also able to uncover the cluster specific bio-markers across modalities. These multi-modal bio-markers are used to interpret and annotate the clusters to cell types. Moreover, scMoMaT can integrate cell batches with unequal cell type compositions. Applying scMoMaT to multiple real and simulated datasets demonstrated these features of scMoMaT and showed that scMoMaT has superior performance compared to existing methods. Specifically, we show that integrated cell embedding combined with learned bio-markers lead to cell type annotations of higher quality or resolution compared to their original annotations.
Collapse
Affiliation(s)
- Ziqi Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haoran Sun
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ragunathan Mariappan
- Department of Information Systems and Analytics, National University of Singapore, Singapore, Singapore
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xinyu Chen
- Bioengineering Program, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | - Vaibhav Rajan
- Department of Information Systems and Analytics, National University of Singapore, Singapore, Singapore
| | - Xiuwei Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
22
|
Harris R, Mammadli M, Hiner S, Suo L, Yang Q, Sen JM, Karimi M. TCF-1 regulates NKG2D expression on CD8 T cells during anti-tumor responses. Cancer Immunol Immunother 2022; 72:1581-1601. [PMID: 36562825 DOI: 10.1007/s00262-022-03323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy relies on improving T cell effector functions against malignancies, but despite the identification of several key transcription factors (TFs), the biological functions of these TFs are not entirely understood. We developed and utilized a novel, clinically relevant murine model to dissect the functional properties of crucial T cell transcription factors during anti-tumor responses. Our data showed that the loss of TCF-1 in CD8 T cells also leads to loss of key stimulatory molecules such as CD28. Our data showed that TCF-1 suppresses surface NKG2D expression on naïve and activated CD8 T cells via key transcriptional factors Eomes and T-bet. Using both in vitro and in vivo models, we uncovered how TCF-1 regulates critical molecules responsible for peripheral CD8 T cell effector functions. Finally, our unique genetic and molecular approaches suggested that TCF-1 also differentially regulates essential kinases. These kinases, including LCK, LAT, ITK, PLC-γ1, P65, ERKI/II, and JAK/STATs, are required for peripheral CD8 T cell persistent function during alloimmunity. Overall, our molecular and bioinformatics data demonstrate the mechanism by which TCF-1 modulated several critical aspects of T cell function during CD8 T cell response to cancer. Summary Figure: TCF-1 is required for persistent function of CD8 T cells but dispensable for anti-tumor response. Here, we have utilized a novel mouse model that lacks TCF-1 specifically on CD8 T cells for an allogeneic transplant model. We uncovered a molecular mechanism of how TCF-1 regulates key signaling pathways at both transcriptomic and protein levels. These key molecules included LCK, LAT, ITK, PLC-γ1, p65, ERK I/II, and JAK/STAT signaling. Next, we showed that the lack of TCF-1 impacted phenotype, proinflammatory cytokine production, chemokine expression, and T cell activation. We provided clinical evidence for how these changes impact GVHD target organs (skin, small intestine, and liver). Finally, we provided evidence that TCF-1 regulates NKG2D expression on mouse naïve and activated CD8 T cells. We have shown that CD8 T cells from TCF-1 cKO mice mediate cytolytic functions via NKG2D.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA
| | - Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA
| | - Shannon Hiner
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA
| | - Liye Suo
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Qi Yang
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School Rutgers Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jyoti Misra Sen
- National Institute On Aging-National Institutes of Health, BRC Building, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA.,Center On Aging and Immune Remodeling and Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21224, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA.
| |
Collapse
|
23
|
Kiekens L, Wahlen S, Persyn E, De Vos Z, Taghon T, Vandekerckhove B, Leclercq G. T-BET drives the conversion of human type 3 innate lymphoid cells into functional NK cells. Front Immunol 2022; 13:975778. [PMID: 36330517 PMCID: PMC9623292 DOI: 10.3389/fimmu.2022.975778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Type 3 innate lymphoid cells (ILC3s) are characterized by RORγt expression and they produce IL-22 upon activation. ILC3s play a role in maintenance of barrier integrity in the intestine. Under inflammatory conditions, the ILC composition of the mucosal tissues is altered due to a high degree of plasticity. It has been extensively demonstrated that both murine and human ILC3s convert into ILC1s to mediate appropriate immune responses. However, plasticity between human ILC3s and NK cells is less well documented. As T-BET and EOMES are key transcription factors in NK cell differentiation, we investigated whether ectopic T-BET or EOMES expression converts human ILC3s into NK cells. ILC3s with ectopic T-BET and EOMES expression downregulate RORγt expression, while T-BET-overexpressing ILC3s additionally upregulate EOMES expression. High E ctopic T-BET expression in ILC3s results in transdifferentiation towards CD94+ NK cells, whereas ectopic EOMES overexpression results in dedifferentiation of ILC3s into CD94-CD117-/low cells but is ineffective in NK cell generation. Dedifferentiating ILC3s from both T-BET and EOMES overexpression cultures upregulate NK cell receptors, perforin and granzyme B. Finally, IL-22 secretion is completely blocked in transdifferentiating ILC3s with both T-BET and EOMES ectopic expression, whereas only T-BET overexpression increases IFN-γ secretion and cytotoxicity. Altogether, these findings demonstrate that human ILC3s can convert into functional NK cells, wherein T-BET, and not EOMES, is the main driver.
Collapse
Affiliation(s)
- Laura Kiekens
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sigrid Wahlen
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Eva Persyn
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Zenzi De Vos
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tom Taghon
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bart Vandekerckhove
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- *Correspondence: Georges Leclercq,
| |
Collapse
|
24
|
Liu C, Li X, Xiong F, Wang L, Chen K, Wu P, Hua L, Zhang Z. Down-regulation of MLLT1 super elongation complex subunit impairs the anti-tumor activity of natural killer cells in esophageal cancer. Immunobiology 2022; 227:152238. [PMID: 35763909 DOI: 10.1016/j.imbio.2022.152238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 11/05/2022]
Abstract
Natural killer (NK) cells actively participate in anti-tumor immunity and are thus regarded as a promising tool in immunotherapy against esophageal cancer (EC). However, the mechanisms regulating NK cell activation and exhaustion have not been completely elucidated. In this study, we characterized the expression and function of MLLT1 super elongation complex subunit (MLLT1) in esophageal NK cells in a mouse EC model. MLLT1 was down-regulated in esophageal NK cells, especially NK cells expressing both T cell immunoglobulin and mucin-domain containing-3 (TIM-3) and lymphocyte activation gene3(LAG-3). In vitro knockdown of MLLT1 in NK cells resulted in significant decreases in the expression of IFN-γ and perforin, as well as impaired NK cell cytotoxicity on tumor cells. Adoptive transfer of MLLT-deficient NK cells into EC-bearing mice showed consistent impairment of NK cell anti-tumor activity, as evidenced by decreases in IFN-γ and perforin but not granzyme B. Furthermore, EC tissue cells, which were enriched from the esophagus of EC-bearing mice, induced down-regulation of MLLT1 in splenic NK cells. This down-regulation was partially restored by a TIM-3 blocking antibody. Therefore, this study indicated that TIM-3 signaling down-regulated MLLT1 in esophageal NK cells, and MLLT1 down-regulation undermined the tumoricidal function of NK cells in EC. Our study unveils a novel mechanism underlying NK cell exhaustion/dysfunction in the EC microenvironment. MLLT1 could be a potential target in future NK cell-mediated immunotherapy against EC.
Collapse
Affiliation(s)
- Chong Liu
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Xueman Li
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Fei Xiong
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Lingying Wang
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Kang Chen
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Pingshang Wu
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Li Hua
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Zhuo Zhang
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
25
|
Schroeder JH, Howard JK, Lord GM. Transcription factor-driven regulation of ILC1 and ILC3. Trends Immunol 2022; 43:564-579. [PMID: 35618586 PMCID: PMC10166716 DOI: 10.1016/j.it.2022.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Mammalian innate lymphoid cells (ILCs) have functional relevance under both homeostatic and disease settings, such as inflammatory bowel disease (IBD), particularly in the context of maintaining the integrity of mucosal surfaces. Early reports highlighted group 1 and 3 ILC regulatory transcription factors (TFs), T-box expressed in T cells (T-bet; Tbx21) and RAR-related orphan nuclear receptor γt (RORγt; Rorc), as key regulators of ILC biology. Since then, other canonical TFs have been shown to have a role in the development and function of ILC subsets. In this review, we focus on recent insights into the balance between mature ILC1 and ILC3 based on these TFs and how they interact with other key cell-intrinsic molecular pathways. We outline how this TF interplay might be explored to identify novel candidate therapeutic avenues for human diseases.
Collapse
|
26
|
Zhang J, Rousseaux N, Walzer T. Eomes and T‐bet, a dynamic duo regulating NK cell differentiation. Bioessays 2022; 44:e2100281. [DOI: 10.1002/bies.202100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jiang Zhang
- Department of Dermatology Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Noémi Rousseaux
- CIRI Centre International de Recherche en Infectiologie CNRS, UMR5308, ENS de Lyon Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1 Lyon France
| | - Thierry Walzer
- CIRI Centre International de Recherche en Infectiologie CNRS, UMR5308, ENS de Lyon Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1 Lyon France
| |
Collapse
|