1
|
Ding L, Xiong W, Cui W, Zhao L, Cai S. Covalent conjugation with dietary flavonoids Rutin and Isoschaftoside ameliorates intestinal barrier dysfunction and inflammation induced by Peanut allergy protein Arah 3 and enhances their antioxidant properties. Food Chem 2025; 477:143633. [PMID: 40037041 DOI: 10.1016/j.foodchem.2025.143633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Food allergies, particularly those caused by peanut allergens e.g. Arah 3, are a significant health concern. This study aimed to screen flavonoids with high affinity to Arah 3 by molecular docking, and to evaluate the effects of the Arah 3-flavonoid conjugates on intestinal barrier permeability and inflammation using cell models, and on their antioxidant activities by chemical assays. Computer simulation showed that rutin and isoschaftoside had better affinity and stability with Arah 3. Characterization results exhibited that conjugates were formed by covalent bonding and protein folding reduced significantly. Arah 3-induced intestinal barrier dysfunction was significantly improved after binding with rutin and isoschaftoside. The levels of IL-6, IL-8 and MCP-1 decreased by about 15.61 %, 17.94 % (11.23 %) and 16.17 %, respectively, after conjugation with isoschaftoside (rutin). The antioxidant capacities of two conjugates were significantly enhanced. This study may provide new insights into the effects of flavonoids on the adverse effects of Arah 3.
Collapse
Affiliation(s)
- Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Wenyun Xiong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Wendie Cui
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
2
|
Camus‐Ela M, Wang Y, Rennie GH, Raghavan V, Wang J. Update on hazelnut allergy: Allergen characterization, epidemiology, food processing technique and detecting strategy. Compr Rev Food Sci Food Saf 2025; 24:e70098. [PMID: 39898897 PMCID: PMC11789833 DOI: 10.1111/1541-4337.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025]
Abstract
Hazelnuts are popular among people due to their dense nutrient component. However, eating them may be quite dangerous for those who are allergic. To improve food safety, this research examines current developments in the characterization, processing, and detection of hazelnut allergens. The identification and molecular knowledge of certain proteins that cause allergic responses are necessary for the characterization of hazelnut allergens. Proteomics and genomics are two techniques that have helped to advance our knowledge of hazelnut allergens and facilitate the creation of more precise diagnostic instruments. One important factor to reduce but not to eliminate the exposure to hazelnut allergens is food processing. The extractability of hazelnut proteins with regard to food processing plays a crucial role in determining allergenicity. Innovative technologies have been created to lessen allergenicity in foods containing hazelnuts while preserving their flavor and quality. These technologies include thermal and nonthermal processing techniques. To further safeguard consumers with hazelnut allergies, innovations in ingredient labeling and cross-contamination avoidance techniques have been put into place. For the purpose of management, if foods contain hazelnut, they must label it. Technological developments in analytical methods, including mass spectrometry, polymerase chain reaction, and enzyme-linked immunosorbent assays, have made it possible to identify hazelnut allergens with high specificity and sensitivity in a range of dietary matrices. Moreover, the advancement of point-of-care testing instruments presents the possibility of prompt on site identification, hence enhancing food safety for people with hazelnut allergies. The multidisciplinary efforts of researchers, food technologists, and allergists to enhance the safety of products containing hazelnuts are highlighted in this study.
Collapse
Affiliation(s)
- Mukeshimana Camus‐Ela
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Yue Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Gardiner Henric Rennie
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental SciencesMcGill UniversitySainte‐Anne‐de‐BellevueQuebecCanada
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| |
Collapse
|
3
|
Werner R, Carnazza M, Li XM, Yang N. Effect of Small-Molecule Natural Compounds on Pathologic Mast Cell/Basophil Activation in Allergic Diseases. Cells 2024; 13:1994. [PMID: 39682741 PMCID: PMC11639848 DOI: 10.3390/cells13231994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024] Open
Abstract
Pathologic mast cells and basophils, key effector cells in allergic reactions, play pivotal roles in initiating and perpetuating IgE-mediated allergic responses. Conventional therapies for allergies have limitations, prompting exploration into alternative approaches such as small-molecule natural compounds derived from botanical sources. This review synthesizes the existing literature on the effects of these compounds on pathologic mast cells and basophils, highlighting their potential in allergy management, and utilizes the PubMed database for literature acquisition, employing keyword-based searches to identify relevant peer-reviewed sources. Additionally, mechanistic insights were evaluated to contextualize how small-molecule natural compounds can inhibit mast cell/basophil activation, degranulation, and signaling pathways crucial for IgE-mediated allergic reactions. Small-molecule natural compounds exhibit promising anti-allergic effects, yet despite these findings, challenges persist in the development and translation of natural compound-based therapies, including bioavailability and standardization issues. Future research directions include optimizing dosing regimens, exploring synergistic effects with existing therapies, and employing systems pharmacology approaches for a holistic understanding of their mechanisms of action. By harnessing the therapeutic potential of small-molecule natural compounds, effective treatments for allergic diseases may be realized, offering hope for individuals with allergies.
Collapse
Affiliation(s)
- Robert Werner
- Division of R&D, General Nutraceutical Technology LLC, Elmsford, NY 10523, USA; (R.W.); (M.C.)
| | - Michelle Carnazza
- Division of R&D, General Nutraceutical Technology LLC, Elmsford, NY 10523, USA; (R.W.); (M.C.)
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA;
- Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, NY 10595, USA
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA
| | - Nan Yang
- Division of R&D, General Nutraceutical Technology LLC, Elmsford, NY 10523, USA; (R.W.); (M.C.)
| |
Collapse
|
4
|
Lisiecka MZ. Characteristic features of food allergy to legumes: From epidemiology to prevention. Hum Immunol 2024; 85:111179. [PMID: 39566437 DOI: 10.1016/j.humimm.2024.111179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
INTRODUCTION The study aims to investigate the main characteristics of food allergies to legumes (peanuts, chickpeas, soybeans, lentils, beans, and peas). MATERIALS AND METHODS A search was conducted for relevant information in the ResearchGate, PubMed, Scopus, Google Scholar, and Web of Science databases, presented for 2011-2024. RESULTS The study determined that about 30 % of the world's population has allergic diseases. Of them, 10 % were diagnosed with food allergies. In Poland, the prevalence of this pathology is about 5 %. The epidemiology of food allergies to peanuts is 2-5 %. The prevalence of sensitisation to lentils is 5-7 %; to beans - 7.5 %; to soybeans - 9-10.4 %; to peas - 9.5 % and to chickpeas - 8.5 %. At the same time, no food allergies to soy have been detected in adults in Poland. Peanuts are the most allergenic food among those described in this study, as they have a high risk of sensitisation to nuts and legumes (soybeans, lupins, peas, chickpeas, lentils). The clinical picture of a legume allergy is characterised by hives, itching, sneezing, redness, lacrimation, nausea, vomiting, wheezing, angioedema, and anaphylactic shock. For the diagnosis of food allergy to legumes, an oral test, prick test, determination of the level of allergen-specific immunoglobulin E (IgE), and basophil activation test are used. Emergency care is provided using an epinephrine solution at a dosage of 1 mg/ml intramuscularly. Immunotherapy with allergens is used to treat delayed-type hypersensitivity reactions. To prevent legume allergy, physical, chemical, and biological methods of treatment and individual nutrition are used. CONCLUSIONS The study concluded that food allergy to legumes is a common pathology that contributes to the development of severe complications and requires detailed study.
Collapse
Affiliation(s)
- Maria Zofia Lisiecka
- Department of Allergology, National Medical Institute of the Ministry of the Interior and Administration, Warsaw, Poland.
| |
Collapse
|
5
|
Wang N, Liu Q, Shi Q, Wang F, Xu C, Ren H, Yu Q. Effects of the covalent conjugation between caffeic acid and peanut allergen protein Ara h1 on the antigenicity and structure of Ara h1. J Food Sci 2024; 89:5559-5575. [PMID: 39150685 DOI: 10.1111/1750-3841.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024]
Abstract
Ara h1 was the highest content of peanut allergen protein, identified as a biomarker of peanut allergen. In this study, Ara h1 was covalently complexed with caffeic acid (CA) to research the effects of covalent conjugation on the antigenicity and protein structural properties of Ara h1. After the covalent complexing of Ara h1 and CA, the IgG-binding capacity of Ara h1 was reduced compared with that of control Ara h1. Moreover, the structure of Ara h1 changed from ordered to disordered, the number of intermolecular hydrogen bonds decreased, and some hydrophobic groups were exposed or hydrophobic peptides were released. The carboxyl group in CA reacted with the amino group in Ara h1. The digestibility of Ara h1-CA was increased. The antigenicity of Ara h1-CA was undetectable after 30 min of digestion in vitro. These findings can serve as a reference for further research on hypoallergenic peanut products.
Collapse
Affiliation(s)
- Na Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for Animal ImmunologyHenan Agricultural University, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qingqing Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for Animal ImmunologyHenan Agricultural University, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qilei Shi
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fan Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chao Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongtao Ren
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiuying Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for Animal ImmunologyHenan Agricultural University, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Nutrition and Healthy Food, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
De Agrela-Mendes I, Pedrosa M, Gómez-Traseira C, Phillips-Anglés E, Rodríguez-Álvarez M, Quirce S. Tolerance of peanuts and tree nuts in Spanish children with exclusive sensitization to lipid transfer proteins. Pediatr Allergy Immunol 2024; 35:e14204. [PMID: 39016336 DOI: 10.1111/pai.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Allergy to peanuts and tree nuts is a common cause of food allergy in Spain, with lipid transfer proteins (LTP) being the most frequently recognized panallergen. LTP sensitization often leads to multiple food group sensitivities, resulting in overly restrictive diets that hinder patient's quality of life. This study aimed to assess the tolerance of peanuts and tree nuts (hazelnuts and walnuts) in children sensitized to LTP, potentially mitigating the need for such diets. METHODS This prospective study enrolled individuals diagnosed with allergy to peanuts, hazelnuts, or walnuts. Data were collected from medical records, including demographics and clinical history. Allergological assessment comprised skin prick tests using commercial extracts and the nuts in question, alongside measurements of total and specific IgE to nuts and their primary molecular components. Participants showing positive LTP sensitization without sensitization to seed storage proteins underwent open oral nut challenges. RESULTS A total of 75 individuals labeled as allergic to peanuts, 44 to hazelnuts, and 51 to walnuts were included. All of them underwent an open oral provocation test with the incriminated nut, showing a high tolerance rate. Peanut was tolerated by 98.6% of patients, 97.72% tolerated hazelnut, and 84.3% tolerated walnut. CONCLUSION The findings suggest that the majority of patients allergic to peanuts, hazelnuts, or walnuts, due to LTP sensitization and lacking IgE reactivity to seed storage proteins, can tolerate these nuts. This supports the need for personalized nut tolerance assessments to avoid unnecessary dietary restrictions.
Collapse
Affiliation(s)
| | - María Pedrosa
- Department of Allergy, La Paz University Hospital, Madrid, Spain
| | - Carmen Gómez-Traseira
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Elsa Phillips-Anglés
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Mónica Rodríguez-Álvarez
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| |
Collapse
|
7
|
Kiyama T, Kitazawa K. Macadamia Nut-Induced Anaphylactic Shock Requiring Repeated Intramuscular Adrenaline Administration in a Three-Year-Old Girl. Cureus 2024; 16:e60858. [PMID: 38910662 PMCID: PMC11192167 DOI: 10.7759/cureus.60858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Cases of macadamia nut-induced anaphylactic shock have been rarely reported. We report the case of a three-year-old girl with anaphylactic shock who presented with generalized erythema two hours after ingesting macadamia nuts. She required two doses of intramuscular adrenaline for the treatment of anaphylactic shock. The diagnosis of macadamia nut allergy was confirmed by a prick-by-prick skin test using roasted and raw macadamia nut paste extracts and elevated serum macadamia nut-specific immunoglobulin E (IgE) levels. Appropriately using a prick-by-prick test may contribute to accurately diagnosing macadamia nut allergy, thus preventing the unnecessary avoidance of other nuts. Considering the potential for severe shock induced by macadamia nut allergy, vigilant monitoring of blood pressure changes is imperative in children presenting with immediate-type allergic reactions, such as vomiting and skin symptoms, following macadamia nut ingestion.
Collapse
Affiliation(s)
- Takashi Kiyama
- Department of Pediatrics, Asahi General Hospital, Asahi, JPN
| | | |
Collapse
|
8
|
İlgün Gürel D, Parlak Z, Şahiner ÜM, Soyer Ö, Şekerel BE. Recognition of nuts and seeds in children with/without food allergies and their mothers: A reflection of culinary culture. Nutr Health 2024:2601060231209371. [PMID: 38504662 DOI: 10.1177/02601060231209371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
BACKGROUND Nuts and seeds are among the leading causes of food allergy. Effective food allergy management hinges on the ability to identify and avoid relevant foods. AIM To evaluate the nut/seed recognition ability in both children and mothers. METHODS Primary caregivers (mothers) and their children (6-18 years old) with/without food allergies were shown photographs of nuts/seeds, and their products with visible/hidden allergens to assess their ability to recognize accurately. RESULTS A total of 196 children and 184 mothers participated. The median ages of the children and mothers were 7.6 (6.8-10) and 37.8 (33.1-41.5) years, respectively. Over 75% of the children/adolescents and over 90% of the mothers accurately identified the kernel forms of nuts/seeds, except pine nuts. Walnuts, hazelnuts, almonds, and cashews were the most accurately recognized kernel forms by both populations. Generally, the kernel forms were recognized 5-20% more accurately than their in-shell forms, followed by products with visible and hidden forms, respectively. Some Turkish culinary-specific products with visible/hidden allergens were recognized as frequently as the kernel/in-shell forms by both study groups. Although there was a similar recognition pattern between study groups and subgroups (nut/seed allergy, other food allergy, controls), higher rates of recognition were found in mothers than in their children and adolescents than in schoolchildren. CONCLUSION In Eastern Mediterranean region, nuts and sesame seeds are highly recognized by both mothers and their children. Accurate identification of these foods is likely a culinary feature, but not the result of increased awareness. More information is needed on whether this ability reduces the risk of exposure.
Collapse
Affiliation(s)
- Deniz İlgün Gürel
- Department of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
| | - Zeynep Parlak
- Department of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
- Nutrition and Dietetics Unit, Hacettepe İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Ümit Murat Şahiner
- Department of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
| | - Özge Soyer
- Department of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
| | - Bülent Enis Şekerel
- Department of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
9
|
Giovannini M, Skypala IJ, Caubet JC, Du Toit G, Nowak-Wegrzyn A. Diagnosis and Management of Pollen Food Allergy Syndrome to Nuts. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:599-604. [PMID: 38280450 DOI: 10.1016/j.jaip.2024.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/29/2024]
Abstract
Oral allergy syndrome or pollen food allergy syndrome (PFAS) represents a common clinical conundrum when the reported trigger food is a tree nut (usually almond or hazelnut) or peanut. The PFAS may give rise to uncertainty about the potential severity of the future reactions, indications for prescribing epinephrine, and the extent of the necessary dietary avoidance. As a food allergy, secondary to cross-reactivity with airborne pollen, PFAS usually manifests toward the end of the first decade of life as contact urticaria of the oropharyngeal mucous membranes. Molecular allergology facilitates diagnosis and risk stratification by establishing the profile of sensitization. Exclusive sensitization to pathogenesis-related proteins family 10 (PR10) and profilins indicates that signs and symptoms are due to PFAS, whereas sensitization to seed storage proteins with or without sensitization to PR10 and profilins may indicate a more severe primary nut allergy phenotype. Management relies on avoidance of the specific nut trigger, advice on the likelihood of more severe local or systemic symptoms, and treatment of reactions according to the severity. Future studies are needed to better delineate the risk of systemic reactions in individuals with nut PFAS and to establish the role of food or pollen allergen immunotherapy for the prevention or moderation of this condition.
Collapse
Affiliation(s)
- Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Health Sciences, University of Florence, Florence, Italy
| | - Isabel J Skypala
- Royal Brompton & Harefield Hospitals, Guys & St Thomas NHS Foundation Trust, London, United Kingdom; Department of Inflammation and Repair, Imperial College, London, United Kingdom.
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Pediatrics, Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| | - George Du Toit
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Anna Nowak-Wegrzyn
- Department of Pediatrics, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, NY; Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
10
|
Liu Z, Trifonova D, Tulaeva I, Riabova K, Karsonova A, Kozlov E, Elisyutina O, Khaitov M, Focke-Tejkl M, Chen TH, Karaulov A, Valenta R. Albumins represent highly cross-reactive animal allergens. Front Immunol 2023; 14:1241518. [PMID: 37928538 PMCID: PMC10623431 DOI: 10.3389/fimmu.2023.1241518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023] Open
Abstract
Albumins from animals are highly cross-reactive allergens for patients suffering from immunoglobulin E (IgE)-mediated allergy. Approximately 20-30% of cat and dog allergic patients show IgE reactivity and mount IgE-mediated allergic reactions to cat and dog albumin. It is astonishing that allergic patients can develop specific IgE responses against animal albumins because these proteins exhibit a more than 70% sequence identity to human serum albumin (HSA) which is the most abundant protein in the blood of the human body. The sequence identity of cat albumin (Fel d 2) and dog albumin (Can f 3) and HSA are 82% and 80%, respectively. Given the high degree of sequence identity between the latter two allergens and HSA one would expect that immunological tolerance would prohibit IgE sensitization to Fel d 2 and Can f 3. Here we discuss two possibilities for how IgE sensitization to Fel d 2 and Can f 3 may develop. One possibility is the failed development of immune tolerance in albumin-allergic patients whereas the other possibility is highly selective immune tolerance to HSA but not to Fel d 2 and Can f 3. If the first assumption is correct it should be possible to detect HSA-specific T cell responses and HSA-containing immune complexes in sensitized patients. In the latter scenario few differences in the sequences of Fel d 2 and Can f 3 as compared to HSA would be responsible for the development of selective T cell and B cell responses towards Fel d 2 as well as Can f 3. However, the immunological mechanisms of albumin sensitization have not yet been investigated in detail although this will be important for the development of allergen-specific prevention and allergen-specific immunotherapy (AIT) strategies for allergy to albumin.
Collapse
Affiliation(s)
- Zicheng Liu
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Daria Trifonova
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Inna Tulaeva
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ksenja Riabova
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Antonina Karsonova
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Evgeny Kozlov
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olga Elisyutina
- National Research Center, NRCI Institute of Immunology, Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- RUDN University, Moscow, Russia
| | - Musa Khaitov
- National Research Center, NRCI Institute of Immunology, Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Healthcare, Krems, Austria
| | | | - Alexander Karaulov
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
- National Research Center, NRCI Institute of Immunology, Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Karl Landsteiner University of Healthcare, Krems, Austria
| |
Collapse
|
11
|
Thames AH, Rische CH, Cao Y, Krier-Burris RA, Kuang FL, Hamilton RG, Bronzert C, Bochner BS, Jewett MC. A Cell-Free Protein Synthesis Platform to Produce a Clinically Relevant Allergen Panel. ACS Synth Biol 2023; 12:2252-2261. [PMID: 37553068 PMCID: PMC10768853 DOI: 10.1021/acssynbio.3c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Allergens are used in the clinical diagnosis (e.g., skin tests) and treatment (e.g., immunotherapy) of allergic diseases. With growing interest in molecular allergy diagnostics and precision therapies, new tools are needed for producing allergen-based reagents. As a step to address this need, we demonstrate a cell-free protein synthesis approach for allergen production of a clinically relevant allergen panel composed of common allergens spanning a wide range of phylogenetic kingdoms. We show that allergens produced with this approach can be recognized by allergen-specific immunoglobulin E (IgE), either monoclonals or in patient sera. We also show that a cell-free expressed allergen can activate human cells such as peripheral blood basophils and CD34+ progenitor-derived mast cells in an IgE-dependent manner. We anticipate that this cell-free platform for allergen production will enable diagnostic and therapeutic technologies, providing useful tools and treatments for both the allergist and allergic patient.
Collapse
Affiliation(s)
- Ariel Helms Thames
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Clayton H Rische
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Yun Cao
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Rebecca A Krier-Burris
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Fei Li Kuang
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Robert G Hamilton
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, United States
| | - Charles Bronzert
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, United States
| | - Bruce S Bochner
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Michael C Jewett
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
13
|
Peanut Allergenicity: An Insight into Its Mitigation Using Thermomechanical Processing. Foods 2023; 12:foods12061253. [PMID: 36981179 PMCID: PMC10048206 DOI: 10.3390/foods12061253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Peanuts are the seeds of a legume crop grown for nuts and oil production. Peanut allergy has gained significant attention as a public health issue due to its increasing prevalence, high rate of sensitization, severity of the corresponding allergic symptoms, cross-reactivity with other food allergens, and lifelong persistence. Given the importance of peanuts in several sectors, and taking into consideration the criticality of their high allergic potential, strategies aiming at mitigating their allergenicity are urgently needed. In this regard, most of the processing methods used to treat peanuts are categorized as either thermal or thermomechanical techniques. The purpose of this review is to provide the reader with an updated outlook of the peanut’s allergens, their mechanisms of action, the processing methods as applied to whole peanuts, as well as a critical insight on their impact on the allergenicity. The methods discussed include boiling, roasting/baking, microwaving, ultrasonication, frying, and high-pressure steaming/autoclaving. Their effectiveness in alleviating the allergenicity, and their capacity in preserving the structural integrity of the treated peanuts, were thoroughly explored. Research data on this matter may open further perspectives for future relevant investigation ultimately aiming at producing hypoallergenic peanuts.
Collapse
|
14
|
Huang YY, Liang YT, Wu JM, Wu WT, Liu XT, Ye TT, Chen XR, Zeng XA, Manzoor MF, Wang LH. Advances in the Study of Probiotics for Immunomodulation and Intervention in Food Allergy. Molecules 2023; 28:molecules28031242. [PMID: 36770908 PMCID: PMC9919562 DOI: 10.3390/molecules28031242] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Food allergies are a serious food safety and public health issue. Soybean, dairy, aquatic, poultry, and nut products are common allergens inducing allergic reactions and adverse symptoms such as atopic dermatitis, allergic eczema, allergic asthma, and allergic rhinitis. Probiotics are assumed as an essential ingredient in maintaining intestinal microorganisms' composition. They have unique physiological roles and therapeutic effects in maintaining the mucosal barrier, immune function, and gastrointestinal tract, inhibiting the invasion of pathogenic bacteria, and preventing diarrhea and food allergies. Multiple pieces of evidence reveal a significant disruptive effect of probiotics on food allergy pathology and progression mechanisms. Thus, this review describes the allergenic proteins as an entry point and briefly describes the application of probiotics in allergenic foods. Then, the role of probiotics in preventing and curing allergic diseases by regulating human immunity through intestinal flora and intestinal barrier, modulating host immune active cells, and improving host amino acid metabolism are described in detail. The anti-allergic role of probiotics in the function and metabolism of the gastrointestinal tract has been comprehensively explored to furnish insights for relieving food allergy symptoms and preventing food allergy.
Collapse
Affiliation(s)
- Yan-Yan Huang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Yan-Tong Liang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jia-Min Wu
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Wei-Tong Wu
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-Tong Liu
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Ting-Ting Ye
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xiao-Rong Chen
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Correspondence: (X.-A.Z.); (M.F.M.); (L.-H.W.)
| | - Muhammad Faisal Manzoor
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Correspondence: (X.-A.Z.); (M.F.M.); (L.-H.W.)
| | - Lang-Hong Wang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Correspondence: (X.-A.Z.); (M.F.M.); (L.-H.W.)
| |
Collapse
|
15
|
Cabrera CM. Feasibility of the ALEX multiplex platform in the diagnosis of nut allergy from a Mediterranean population. Clin Chim Acta 2022; 535:112-119. [PMID: 36030884 DOI: 10.1016/j.cca.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND ALEX multiplex platform has been recently commercialized but its clinical utility as quantitative technique respect to ImmunoCAP-singleplex as the reference method has not yet been confirmed on patients suffering from nut allergy and co-sensitization to different nuts. METHODS 58 serum samples from patients with nut allergy from a Mediterranean population were assayed in parallel by ALEX-multiplex and ImmunoCAP-singleplex techniques. Patients were diagnosed based on clinical symptoms and positive skin prick tests (SPTs). The following whole extracts were compared between both techniques: walnut, hazelnut, peanut, almond, pistachio and sunflower seed; besides the recombinant Pru p 3. A qualitative and quantitative study was carried out. RESULTS Both techniques had similar sensitivities respect to whole extracts from walnut, hazelnut and peanut as well as to Pru p 3 (p > 0.05). However for whole extracts from almond, pistachio and sunflower seed the sensitivity obtained by ALEX was much lower than ImmunoCAP (9.09 % vs 88.63 %; 14.81 vs 70.37 %; and 8.51 % vs 88.88 %; respectively). The concordance between both techniques showed only a substantial agreement for Pru p 3 (k = 0.791); moderate agreement for hazelnut and peanut (k = 0.550 and k = 0.544, respectively); fair agreement for walnut (k = 0.386) and poor agreement for almond, pistachio and sunflower seed (k < 0.2). Quantitative analysis showed that ImmunoCAP for walnut, peanut and sunflower seed had higher mean values than ALEX. Relationships were significant for all specific IgE levels except to for almond, pistachio and sunflower seed. CONCLUSIONS ALEX platform is a suitable technique to patients with nut allergy from the Mediterranean area except to for those suffering from allergy to almond, pistachio and sunflower seed.
Collapse
Affiliation(s)
- Carmen Maria Cabrera
- Allergy and Immunology Section, Ciudad Real University General Hospital, Ciudad Real, Spain; Associate Professor of Immunology, University of Castilla-La Mancha, Faculty of Medicine of Ciudad Real, Spain.
| |
Collapse
|
16
|
Kamei A, Izawa K, Ando T, Kaitani A, Yamamoto R, Maehara A, Ide T, Yamada H, Kojima M, Wang H, Tokushige K, Nakano N, Shimizu T, Ogawa H, Okumura K, Kitaura J. Development of mouse model for oral allergy syndrome to identify IgE cross-reactive pollen and food allergens: ragweed pollen cross-reacts with fennel and black pepper. Front Immunol 2022; 13:945222. [PMID: 35958602 PMCID: PMC9358994 DOI: 10.3389/fimmu.2022.945222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
Oral allergy syndrome (OAS) is an IgE-mediated immediate food allergy that is localized to the oral mucosa. Pollen food allergy syndrome (PFAS), a pollinosis-associated OAS, is caused by cross-reactivity between food and pollen allergens. However, we need to more precisely understand the underlying pathogenesis of OAS/PFAS. In the present study, we developed a method to comprehensively identify cross-reactive allergens by using murine model of OAS and protein microarray technology. We focused on lip angioedema, which is one of the most common symptoms of OAS, and confirmed that mast cells reside in the tissues inside the lower lip of the mice. Interestingly, when the food allergen ovalbumin (OVA) was injected inside the lower lip of mice with high levels of OVA-specific IgE followed by an intravenous injection of the Evans blue dye, we found immediate dye extravasation in the skin of the neck in a mast cell-dependent manner. In addition, the degree of mast cell degranulation in the oral cavity, reflecting the severity of oral allergic responses, can be estimated by measuring the amount of extravasated dye in the skin. Therefore, we used this model of OAS to examine IgE cross-reactive allergens in vivo. Protein microarray analysis showed that serum IgE from mice intraperitoneally sensitized with ragweed pollen, one of the major pollens causing pollinosis, bound highly to protein extracts from several edible plants including black peppercorn and fennel. We confirmed that the levels of black pepper-specific IgE and fennel-specific IgE were significantly higher in the serum from ragweed pollen-sensitized mice than in the serum from non-sensitized control mice. Importantly, analysis of murine model of OAS showed that the injection of black pepper or fennel extract induced apparent oral allergic responses in ragweed pollen-sensitized mice. These results indicate IgE cross-reactivity of ragweed pollen with black pepper and fennel. In conclusion, we developed mouse model of OAS to identify IgE cross-reactive pollen and food allergens, which will help understand the pathogenesis of OAS/PFAS.
Collapse
Affiliation(s)
- Anna Kamei
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Kumi Izawa, ; Jiro Kitaura,
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Kaitani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Yamamoto
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akie Maehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuma Ide
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiromichi Yamada
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mayuki Kojima
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hexing Wang
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Tokushige
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Kumi Izawa, ; Jiro Kitaura,
| |
Collapse
|
17
|
Quantitative In Silico Evaluation of Allergenic Proteins from Anacardium occidentale, Carya illinoinensis, Juglans regia and Pistacia vera and Their Epitopes as Precursors of Bioactive Peptides. Curr Issues Mol Biol 2022; 44:3100-3117. [PMID: 35877438 PMCID: PMC9317212 DOI: 10.3390/cimb44070214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the study presented here was to determine if there is a correlation between the presence of specific protein domains within tree nut allergens or tree nut allergen epitopes and the frequency of bioactive fragments and the predicted susceptibility to enzymatic digestion in allergenic proteins from tree nuts of cashew (Anacardium occidentale), pecan (Carya illinoinensis), English walnut (Juglans regia) and pistachio (Pistacia vera) plants. These bioactive peptides are distributed along the length of the protein and are not enriched in IgE epitope sequences. Classification of proteins as bioactive peptide precursors based on the presence of specific protein domains may be a promising approach. Proteins possessing a vicilin, N-terminal family domain, or napin domain contain a relatively low occurrence of bioactive fragments. In contrast, proteins possessing the cupin 1 domain without the vicilin N-terminal family domain contain a relatively high total frequency of bioactive fragments and predicted release of bioactive fragments by the joint action of pepsin, trypsin, and chymotrypsin. This approach could be utilized in food science to simplify the selection of protein domains enriched for bioactive peptides.
Collapse
|
18
|
Luengo O, Galvan-Blasco P, Cardona V. Molecular diagnosis contribution for personalized medicine. Curr Opin Allergy Clin Immunol 2022; 22:175-180. [PMID: 35174793 DOI: 10.1097/aci.0000000000000822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of the current review is to highlight the most recent findings in molecular allergy and its applicability in precision medicine for allergic patients. RECENT FINDINGS Molecular allergy provides useful information in areas of respiratory allergy (house dust mites, pet dander and pollen allergy), food allergy (tree nuts, peanuts, fruits and vegetables), hymenoptera venom allergy and others, in order to improve management of patients. Regional differences in sensitization profiles, assay characteristics and interpretation of molecular sensitization in relation to whole extracts and total immunoglobulin E need to be taken into account. Studies of the impact of such strategies are needed. SUMMARY Molecular allergy diagnosis represents a major contribution for personalized medicine. It aids in the assesment of risk prediction, disease severity, genuine/cross-reactive sensitization, and finally to apply precise management strategies.
Collapse
Affiliation(s)
- Olga Luengo
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron
- Vall d'Hebron Institut de Recerca (VHIR), Immunomediated Diseases and Innovative Therapies, Barcelona
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid
- Universitat Autonomade Barcelona (UAB), Medicine Department, Barcelona, Spain
| | - Paula Galvan-Blasco
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron
- Vall d'Hebron Institut de Recerca (VHIR), Immunomediated Diseases and Innovative Therapies, Barcelona
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid
- Universitat Autonomade Barcelona (UAB), Medicine Department, Barcelona, Spain
| | - Victoria Cardona
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron
- Vall d'Hebron Institut de Recerca (VHIR), Immunomediated Diseases and Innovative Therapies, Barcelona
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid
- Universitat Autonomade Barcelona (UAB), Medicine Department, Barcelona, Spain
| |
Collapse
|
19
|
Akarsu A, Brindisi G, Fiocchi A, Zicari AM, Arasi S. Oral Immunotherapy in Food Allergy: A Critical Pediatric Perspective. Front Pediatr 2022; 10:842196. [PMID: 35273931 PMCID: PMC8901728 DOI: 10.3389/fped.2022.842196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
There is evidence that in children with persistent IgE-mediated food allergy (FA) to cow's milk, hen's egg, and peanut, oral allergen-specific immunotherapy (OIT) may increase the reaction threshold to the culprit food allergen(s). OIT may protect patients from the occurrence of severe reactions in case of accidental ingestion of the culprit food during treatment. Notwithstanding, many gaps are still unsolved, including safety issues, identification of predictive biomarkers, and post-desensitization efficacy. In this perspective, the use of omalizumab (Anti-IgE monoclonal antibody) has been proposed as an adjunctive treatment to OIT in order to reduce the risk of allergic reactions related to OIT. This review aims to summarize the current evidence and unmet needs on OIT in children with FA to enhance the development of longitudinal, prospective, and well-designed studies able to fill the current gaps soon.
Collapse
Affiliation(s)
- Aysegul Akarsu
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Giulia Brindisi
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandro Fiocchi
- Translational Research in Pediatric Specialities Area, Division of Allergy, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Stefania Arasi
- Translational Research in Pediatric Specialities Area, Division of Allergy, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| |
Collapse
|