1
|
Milenkovic D, Nuthikattu S, Norman JE, Villablanca AC. Single Nuclei Transcriptomics Reveals Obesity-Induced Endothelial and Neurovascular Dysfunction: Implications for Cognitive Decline. Int J Mol Sci 2024; 25:11169. [PMID: 39456952 PMCID: PMC11508525 DOI: 10.3390/ijms252011169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity confers risk for cardiovascular disease and vascular dementia. However, genomic alterations modulated by obesity in endothelial cells in the brain and their relationship to other neurovascular unit (NVU) cells are unknown. We performed single nuclei RNA sequencing (snRNAseq) of the NVU (endothelial cells, astrocytes, microglia, and neurons) from the hippocampus of obese (ob/ob) and wild-type (WT) male mice to characterize obesity-induced transcriptomic changes in a key brain memory center and assessed blood-brain barrier permeability (BBB) by gadolinium-enhanced magnetic resonance imaging (MRI). Ob/ob mice displayed obesity, hyperinsulinemia, and impaired glucose tolerance. snRNAseq profiled 14 distinct cell types and 32 clusters within the hippocampus of ob/ob and WT mice and uncovered differentially expressed genes (DEGs) in all NVU cell types, namely, 4462 in neurons, 1386 in astrocytes, 125 in endothelial cells, and 154 in microglia. Gene ontology analysis identified important biological processes such as angiogenesis in endothelial cells and synaptic trafficking in neurons. Cellular pathway analysis included focal adhesion and insulin signaling, which were common to all NVU cell types. Correlation analysis revealed significant positive correlations between endothelial cells and other NVU cell types. Differentially expressed long non-coding RNAs (lncRNAs) were observed in cells of the NVU-affecting pathways such as TNF and mTOR. BBB permeability showed a trend toward increased signal intensity in ob/ob mice. Taken together, our study provides in-depth insight into the molecular mechanisms underlying cognitive dysfunction in obesity and may have implications for therapeutic gene targeting.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Saivageethi Nuthikattu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (J.E.N.); (A.C.V.)
| | - Jennifer E. Norman
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (J.E.N.); (A.C.V.)
| | - Amparo C. Villablanca
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (J.E.N.); (A.C.V.)
| |
Collapse
|
2
|
Nga HT, Nguyen TL, Yi HS. T-Cell Senescence in Human Metabolic Diseases. Diabetes Metab J 2024; 48:864-881. [PMID: 39192822 PMCID: PMC11449820 DOI: 10.4093/dmj.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 08/29/2024] Open
Abstract
Immunosenescence denotes a state of dysregulated immune cell function characterized by a confluence of factors, including arrested cell cycle, telomere shortening, markers of cellular stress, mitochondrial dysfunction, loss of proteostasis, epigenetic reprogramming, and secretion of proinflammatory mediators. This state primarily manifests during the aging process but can also be induced in various pathological conditions, encompassing chronic viral infections, autoimmune diseases, and metabolic disorders. Age-associated immune system alterations extend to innate and adaptive immune cells, with T-cells exhibiting heightened susceptibility to immunosenescence. In particular, senescent T-cells have been identified in the context of metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Recent investigations suggest a direct link between T-cell senescence, inflammation, and insulin resistance. The perturbation of biological homeostasis by senescent T-cells appears intricately linked to the initiation and progression of metabolic diseases, particularly through inflammation-mediated insulin resistance. Consequently, senescent T-cells are emerging as a noteworthy therapeutic target. This review aims to elucidate the intricate relationship between metabolic diseases and T-cell senescence, providing insights into the potential roles of senescent T-cells in the pathogenesis of metabolic disorders. Through a comprehensive examination of current research findings, this review seeks to contribute to a deeper understanding of the complex interplay between immunosenescence and metabolic health.
Collapse
Affiliation(s)
- Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
3
|
Brunelli DT, Bonfante ILP, Boldrini VO, Scolfaro PG, Duft RG, Mateus K, Fatori RF, Chacon-Mikahil MPT, Farias AS, Teixeira AM, Cavaglieri CR. Combined Training Improves Gene Expression Related to Immunosenescence in Obese Type 2 Diabetic Individuals. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:730-739. [PMID: 38319611 DOI: 10.1080/02701367.2023.2299716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/21/2023] [Indexed: 02/07/2024]
Abstract
Purpose: The aim of this study was to investigate the effects of moderate combined training (CT) on both the gene expression of pro- and anti-inflammatory markers and senescence in the immune system in peripheral blood mononuclear cells (PBMCs) and subcutaneous adipose tissue (SAT) of obese middle-aged individuals with type 2 diabetes (T2D). Methods: Thirty obese individuals (50.2 ± 9.4 years; body mass index: 31.8 ± 2.3 kg/m²) with T2D underwent 16 weeks of a CT group [CT; aerobic (50-60% of VO2max) plus resistance (50-75% of 1RM) training; 3 times/week, 70 min/session; n = 16)] or a control group (CG, n = 14). Nutritional patterns, muscle strength (1RM), cardiorespiratory fitness (VO2max), waist circumference (WC), body composition (Air Displacement Plethysmograph) and blood collections for biochemical (serum leptin, IL-2, IL-4, IL-6, IL-10, TNF-α and anti-CMV) and molecular (gene expression of leptin, IL-2, IL-4, IL-6, IL-10, TNF-α, PD-1, P16ink4a, CCR7, CD28 and CD27 in PBMCs and SAT) analyses were assessed before (Pre) and after (Post) the 16 weeks of the experimental period. Results: Significant decreases were observed in WC and IL4, TNF-α, PD-1 and CD27 expression in PBMCs for CT. Furthermore, significant increases were observed in 1RM and VO2max for CT after the experimental period. Conclusion: Moderate CT contributed to a reduction in the gene expression of markers associated to chronic inflammation and immunosenescence in PBMCs of obese middle-aged individuals with T2D.
Collapse
|
4
|
Munshi S, Alarbi AM, Zheng H, Kuplicki R, Burrows K, Figueroa-Hall LK, Victor TA, Aupperle RL, Khalsa SS, Paulus MP, Teague TK, Savitz J. Increased expression of ER stress, inflammasome activation, and mitochondrial biogenesis-related genes in peripheral blood mononuclear cells in major depressive disorder. Mol Psychiatry 2024:10.1038/s41380-024-02695-2. [PMID: 39174649 DOI: 10.1038/s41380-024-02695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
A subset of major depressive disorder (MDD) is characterized by immune system dysfunction, but the intracellular origin of these immune changes remains unclear. Here we tested the hypothesis that abnormalities in endoplasmic reticulum (ER) stress, inflammasome activity and mitochondrial biogenesis contribute to the development of systemic inflammation in MDD. RT-qPCR was used to measure mRNA expression of key organellar genes from peripheral blood mononuclear cells (PBMCs) isolated from 186 MDD and 67 healthy control (HC) subjects. The comparative CT (2-ΔΔCT) method was applied to quantify mRNA expression using GAPDH as the reference gene. After controlling for age, sex, BMI, and medication status using linear regression models, expression of the inflammasome (NLRC4 and NLRP3) and the ER stress (XBP1u, XBP1s, and ATF4) genes was found to be significantly increased in the MDD versus the HC group. Sensitivity analyses excluding covariates yielded similar results. After excluding outliers, expression of the inflammasome genes was no longer statistically significant but expression of the ER stress genes (XBP1u, XBP1s, and ATF4) remained significant and the mitochondrial biogenesis gene, MFN2, was significantly increased in the MDD group. NLRC4 and MFN2 were positively correlated with serum C-reactive protein concentrations, while ASC trended significant. The altered expression of inflammasome activation, ER stress, and mitochondrial biogenesis pathway components suggest that dysfunction of these organelles may play a role in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Ahlam M Alarbi
- Integrative Immunology Center, Department of Surgery and Department of Psychiatry, University of Oklahoma - School of Community Medicine, 4502 E. 41st St., Tulsa, OK, 74135, USA
| | - Haixia Zheng
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Kaiping Burrows
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Leandra K Figueroa-Hall
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Teresa A Victor
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, 300 UCLA Medical Plaza, Los Angeles, CA, 90095, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - T Kent Teague
- Integrative Immunology Center, Department of Surgery and Department of Psychiatry, University of Oklahoma - School of Community Medicine, 4502 E. 41st St., Tulsa, OK, 74135, USA
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, 1111 W. 17th St., Tulsa, OK, 74107, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| |
Collapse
|
5
|
Ribeiro DA, da Silva GN, Malacarne IT, Pisani LP, Salvadori DMF. Oxidative Stress Responses in Obese Individuals Undergoing Bariatric Surgery: Impact on Carcinogenesis. PATHOPHYSIOLOGY 2024; 31:352-366. [PMID: 39051223 PMCID: PMC11270384 DOI: 10.3390/pathophysiology31030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Obesity is a big public health problem that claims several thousand lives every year. Bariatric surgery has arisen as a suitable procedure for treating obesity, particularly morbid obesity. Oxidative stress, genotoxicity, apoptosis, and inflammatory responses are recognized as the most important occurrences in carcinogenesis, as they actively contribute to the multistep process. This study aimed to briefly review the connection between oxidative stress, genotoxicity, apoptosis, and inflammation in obese patients undergoing bariatric surgery, focusing on its impact on carcinogenesis. Regarding oxidative stress, bariatric surgery may inhibit the synthesis of reactive oxygen species. Moreover, a significant reduction in the inflammatory status after weight loss surgery was not observed. Bariatric surgery prevents apoptosis in several tissues, but the maintenance of low body weight for long periods is mandatory for mitigating DNA damage. In conclusion, the association between bariatric surgery and cancer risk is still premature. However, further studies are yet needed to elucidate the real association between bariatric surgery and a reduced risk of cancer.
Collapse
Affiliation(s)
- Daniel Araki Ribeiro
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Glenda Nicioli da Silva
- Department of Clinical Analysis, Federal University of Ouro Preto—UFOP, Ouro Preto 35402-163, MG, Brazil;
| | - Ingra Tais Malacarne
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Daisy Maria Favero Salvadori
- Department of Pathology, Botucatu Medical School, Sao Paulo State University—UNESP, Botucatu 18618-687, SP, Brazil
| |
Collapse
|
6
|
Gómez-Hernández A, de las Heras N, Gálvez BG, Fernández-Marcelo T, Fernández-Millán E, Escribano Ó. New Mediators in the Crosstalk between Different Adipose Tissues. Int J Mol Sci 2024; 25:4659. [PMID: 38731880 PMCID: PMC11083914 DOI: 10.3390/ijms25094659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Adipose tissue is a multifunctional organ that regulates many physiological processes such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and immune response. In this review, we highlight the relevance of the different mediators that control adipose tissue activity through a systematic review of the main players present in white and brown adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs, are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or microbiota, are being characterized and are promising tools to treat obesity in the future.
Collapse
Affiliation(s)
- Almudena Gómez-Hernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain;
| | - Beatriz G. Gálvez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Tamara Fernández-Marcelo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Elisa Fernández-Millán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Óscar Escribano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
7
|
Gajate-Arenas M, Fricke-Galindo I, García-Pérez O, Domínguez-de-Barros A, Pérez-Rubio G, Dorta-Guerra R, Buendía-Roldán I, Chávez-Galán L, Lorenzo-Morales J, Falfán-Valencia R, Córdoba-Lanús E. The Immune Response of OAS1, IRF9, and IFI6 Genes in the Pathogenesis of COVID-19. Int J Mol Sci 2024; 25:4632. [PMID: 38731851 PMCID: PMC11083791 DOI: 10.3390/ijms25094632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
COVID-19 is characterized by a wide range of clinical manifestations, where aging, underlying diseases, and genetic background are related to worse outcomes. In the present study, the differential expression of seven genes related to immunity, IRF9, CCL5, IFI6, TGFB1, IL1B, OAS1, and TFRC, was analyzed in individuals with COVID-19 diagnoses of different disease severities. Two-step RT-qPCR was performed to determine the relative gene expression in whole-blood samples from 160 individuals. The expression of OAS1 (p < 0.05) and IFI6 (p < 0.05) was higher in moderate hospitalized cases than in severe ones. Increased gene expression of OAS1 (OR = 0.64, CI = 0.52-0.79; p = 0.001), IRF9 (OR = 0.581, CI = 0.43-0.79; p = 0.001), and IFI6 (OR = 0.544, CI = 0.39-0.69; p < 0.001) was associated with a lower risk of requiring IMV. Moreover, TGFB1 (OR = 0.646, CI = 0.50-0.83; p = 0.001), CCL5 (OR = 0.57, CI = 0.39-0.83; p = 0.003), IRF9 (OR = 0.80, CI = 0.653-0.979; p = 0.03), and IFI6 (OR = 0.827, CI = 0.69-0.991; p = 0.039) expression was associated with patient survival. In conclusion, the relevance of OAS1, IRF9, and IFI6 in controlling the viral infection was confirmed.
Collapse
Affiliation(s)
- Malena Gajate-Arenas
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain; (M.G.-A.); (O.G.-P.); (A.D.-d.-B.); (R.D.-G.)
| | - Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (R.F.-V.)
| | - Omar García-Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain; (M.G.-A.); (O.G.-P.); (A.D.-d.-B.); (R.D.-G.)
| | - Angélica Domínguez-de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain; (M.G.-A.); (O.G.-P.); (A.D.-d.-B.); (R.D.-G.)
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (R.F.-V.)
| | - Roberto Dorta-Guerra
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain; (M.G.-A.); (O.G.-P.); (A.D.-d.-B.); (R.D.-G.)
- Department of Mathematics, Statistics and Operations Research, Faculty of Sciences, Mathematics Section, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain; (M.G.-A.); (O.G.-P.); (A.D.-d.-B.); (R.D.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, Faculty of Health Sciences, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (R.F.-V.)
| | - Elizabeth Córdoba-Lanús
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain; (M.G.-A.); (O.G.-P.); (A.D.-d.-B.); (R.D.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Le Couteur DG, Raubenheimer D, Solon-Biet S, de Cabo R, Simpson SJ. Does diet influence aging? Evidence from animal studies. J Intern Med 2024; 295:400-415. [PMID: 35701180 DOI: 10.1111/joim.13530] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutrition profoundly influences the risk for many age-related diseases. Whether nutrition influences human aging biology directly is less clear. Studies in different animal species indicate that reducing food intake ("caloric restriction" [CR]) can increase lifespan and delay the onset of diseases and the biological hallmarks of aging. Obesity has been described as "accelerated aging" and therefore the lifespan and health benefits generated by CR in both aging and obesity may occur via similar mechanisms. Beyond calorie intake, studies based on nutritional geometry have shown that protein intake and the interaction between dietary protein and carbohydrates influence age-related health and lifespan. Studies where animals are calorically restricted by providing free access to diluted diets have had less impact on lifespan than those studies where animals are given a reduced aliquot of food each day and are fasting between meals. This has drawn attention to the role of fasting in health and aging, and exploration of the health effects of various fasting regimes. Although definitive human clinical trials of nutrition and aging would need to be unfeasibly long and unrealistically controlled, there is good evidence from animal experiments that some nutritional interventions based on CR, manipulating dietary macronutrients, and fasting can influence aging biology and lifespan.
Collapse
Affiliation(s)
- David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- ANZAC Research Institute, The Concord Hospital, Concord, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Samantha Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Aronoff JE, McDade TW, Adair LS, Lee NR, Carba DB, MacIsaac JL, Dever K, Atashzay P, Kobor MS, Kuzawa CW. Socioeconomic status is negatively associated with immunosenescence but positively associated with inflammation among middle-aged women in Cebu, Philippines. Brain Behav Immun 2024; 115:101-108. [PMID: 37820972 PMCID: PMC10841485 DOI: 10.1016/j.bbi.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Socioeconomic status (SES) gradients in health are well-documented, and while biological pathways are incompletely understood, chronic inflammation and accelerated immune aging (immunosenescence) among lower SES individuals have been implicated. However, previous findings have come from samples in higher income countries, and it is unclear how generalizable they are to lower- and middle-income countries (LMIC) with different infectious exposures and where adiposity-an important contributor to chronic inflammation-might show different SES patterning. To address this gap, we explored associations between SES and inflammation and immunosenescence in a sample of women in Cebu, Philippines. METHODS Data came from the mothers of the Cebu Longitudinal Health and Nutrition Survey birth cohort (mean age: 47.7, range: 35-69 years). SES was measured as a combination of annual household income, education level, and assets. Chronic inflammation was measured using C-reactive protein (CRP) in plasma samples from 1,834 women. Immunosenescence was measured by the abundance of exhausted CD8T (CD8 + CD28-CD45RA-) and naïve CD8T and CD4T cells, estimated from DNA methylation in whole blood in a random subsample of 1,028. Possible mediators included waist circumference and a collection of proxy measures of pathogen exposure. RESULTS SES was negatively associated with the measures of immunosenescence, with slight evidence for mediation by a proxy measure for pathogen exposure from the household's drinking water source. In contrast, SES was positively associated with CRP, which was explained by the positive association with waist circumference. CONCLUSIONS Similar to higher income populations, in Cebu there is an SES-gradient in pathogen exposures and immunosenescence. However, lifestyle changes occurring more rapidly among higher SES individuals is contributing to a positive association between SES and adiposity and inflammation. Our results suggest more studies are needed to clarify the relationship between SES and inflammation and immunosenescence across LMIC.
Collapse
Affiliation(s)
- Jacob E Aronoff
- Department of Anthropology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA.
| | - Thomas W McDade
- Department of Anthropology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, Carolina Population Center, CB #8120, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nanette R Lee
- Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines
| | - Delia B Carba
- Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Kristy Dever
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Parmida Atashzay
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
10
|
Widjaja SS, Rusdiana R, Helvi TM, Simanullang RH, Jayalie VF, Amelia R, Arisa J. Finding a Link between Obesity and Senescence: A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:12-22. [PMID: 38694856 PMCID: PMC11058390 DOI: 10.18502/ijph.v53i1.14679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/15/2023] [Indexed: 05/04/2024]
Abstract
Background Cell aging is associated with changes in telomeres due to DNA damage arising from chronic inflammation in obese patients. The aim of the systematic review and meta-analysis was to find the relationship between obesity and aging or senescence. Methods The systematic review was conducted through PRISMA guideline, beginning with literature search within 2012-2022 in several databases (PubMed, EBSCOHost, Science Direct, Scopus, and Cochrane) followed by screening process using predetermined PICO criteria. Original studies on the topic of obesity and senescence (aging), from preclinical studies to clinical research (cohort or cross-sectional studies) that were published within the last ten years. All studies were appraised using SYRCLE risk of bias tool for preclinical studies and Newcastle-Ottawa Scale (NOS) for cross-sectional and cohort studies. The data extraction on the studies' characteristic and outcome on aging or senescence were followed by quantitative analysis using MetaXL process on prevalence ratio and hazard ratio of obesity to comorbidities and mortality. Results Fifteen studies were enrolled. Obesity and white adipose tissue cause increased levels of pro-inflammatory and pro-senescence cytokine and macrophage whilst the aging process lowers metabolism with increased insulin resistance and linked to increased risk of obesity. Obesity occurs in 22% (95% CI 18%-26%) of elderly population with higher prevalence rate in the women population. Obesity is associated with significant increased risk of multimorbidity by 56% (OR = 1.58 [95% CI 1.48-1.96]). Conclusion The obesity and aging or senescence has reciprocal relationship between each other.
Collapse
Affiliation(s)
- Sry Suryani Widjaja
- Department of Biochemistry, Medical Faculty, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Rusdiana Rusdiana
- Department of Biochemistry, Medical Faculty, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Tengku Mardani Helvi
- Department of Biochemistry, Medical Faculty, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | | | - Vito Filbert Jayalie
- Department of Radiation Oncology, Murni Teguh Memorial Hospital, Medan, Sumatera Utara, Indonesia
| | - Rina Amelia
- Department of Community Health, Medical Faculty, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Jessie Arisa
- Department of Wellness, Murni Teguh Memorial Hospital, Medan, Sumatera Utara, Indonesia
| |
Collapse
|
11
|
Quach HQ, Chen J, Monroe JM, Ratishvili T, Warner ND, Grill DE, Haralambieva IH, Ovsyannikova IG, Poland GA, Kennedy RB. The Influence of Sex, Body Mass Index, and Age on Cellular and Humoral Immune Responses Against Measles After a Third Dose of Measles-Mumps-Rubella Vaccine. J Infect Dis 2022; 227:141-150. [PMID: 35994504 DOI: 10.1093/infdis/jiac351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND A third dose of measles-mumps-rubella vaccine (MMR3) is recommended in mumps outbreak scenarios, but the immune response and the need for widespread use of MMR3 remain uncertain. Herein, we characterized measles-specific immune responses to MMR3 in a cohort of 232 healthy subjects. METHODS Serum and peripheral blood mononuclear cells (PBMCs) were sampled at day 0 and day 28 after MMR3. Measles-specific binding and neutralizing antibodies were quantified in sera by enzyme-linked immunosorbent assay and a microneutralization assay, respectively. PBMCs were stimulated with inactivated measles virus, and the release of cytokines/chemokines was assessed by a multiplex assay. Demographic variables of subjects were examined for potential correlations with immune outcomes. RESULTS Of the study participants, 95.69% and 100% were seropositive at day 0 and day 28, respectively. Antibody avidity significantly increased from 38.08% at day 0 to 42.8% at day 28 (P = .00026). Neutralizing antibodies were significantly enhanced, from 928.7 at day 0 to 1289.64 mIU/mL at day 28 (P = .0001). Meanwhile, cytokine/chemokine responses remained largely unchanged. Body mass index was significantly correlated with the levels of inflammatory cytokines/chemokines. CONCLUSIONS Measles-specific humoral immune responses, but not cellular responses, were enhanced after MMR3 receipt, extending current understanding of immune responses to MMR3 and supporting MMR3 administration to seronegative or high-risk individuals.
Collapse
Affiliation(s)
- Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jun Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathon M Monroe
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamar Ratishvili
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathaniel D Warner
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Diane E Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Lobato TB, Gennari-Felipe M, Pauferro JRB, Correa IS, Santos BF, Dias BB, de Oliveira Borges JC, dos Santos CS, de Sousa Santos ES, de Araújo MJL, Ferreira LA, Pereira SA, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges L, Cury-Boaventura MF, Vinolo MAR, Pithon-Curi TC, Masi LN, Curi R, Hirabara SM, Gorjão R. Leukocyte metabolism in obese type 2 diabetic individuals associated with COVID-19 severity. Front Microbiol 2022; 13:1037469. [PMID: 36406408 PMCID: PMC9670542 DOI: 10.3389/fmicb.2022.1037469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 03/27/2024] Open
Abstract
Recent studies show that the metabolic characteristics of different leukocytes, such as, lymphocytes, neutrophils, and macrophages, undergo changes both in the face of infection with SARS-CoV-2 and in obesity and type 2 diabetes mellitus (DM2) condition. Thus, the objective of this review is to establish a correlation between the metabolic changes caused in leukocytes in DM2 and obesity that may favor a worse prognosis during SARS-Cov-2 infection. Chronic inflammation and hyperglycemia, specific and usual characteristics of obesity and DM2, contributes for the SARS-CoV-2 replication and metabolic disturbances in different leukocytes, favoring the proinflammatory response of these cells. Thus, obesity and DM2 are important risk factors for pro-inflammatory response and metabolic dysregulation that can favor the occurrence of the cytokine storm, implicated in the severity and high mortality risk of the COVID-19 in these patients.
Collapse
Affiliation(s)
- Tiago Bertola Lobato
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Matheus Gennari-Felipe
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Ilana Souza Correa
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Ferreira Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Belmiro Dias
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - João Carlos de Oliveira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Camila Soares dos Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Maria Janaína Leite de Araújo
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Liliane Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Sara Araujo Pereira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Leandro Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Renata Gorjão
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| |
Collapse
|
13
|
Sharma P, Yadav RK, Khadgawat R, Dada R. Transcriptional modulation of inflammation, and aging in Indian obese adults following a 12-week yoga-based lifestyle intervention: A randomized controlled trial. Front Med (Lausanne) 2022; 9:898293. [PMID: 36004368 PMCID: PMC9393383 DOI: 10.3389/fmed.2022.898293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Obesity is one of the major global problems in today's world, both in children, and the adult age group. Current evidence suggests obesity alters the expression of various genes related to oxidative stress, inflammation, and aging. In recent times complementary therapy like yoga-based lifestyle intervention (YBLI) is used as an adjunct therapy to modern medicine. This study examines the efficacy of 12 weeks of yoga-based lifestyle intervention with standard care (SC) on the expression of genes related to oxidative stress, inflammation, and aging in obese adults. Methods This was a two-arm parallel randomized control trial implemented at Integral Health Clinic (IHC), an outpatient facility that regularly conducted YBLI programs for the prevention of lifestyle diseases like obesity and diabetes in the Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi. Blood samples at baseline and weeks 2,4, and 12 were collected from 72 adults (male n = 21; female n = 51) of age 20-45 years with a body-mass index (BMI) of 25-35 kg/m2 who were randomized to receive either a 12-week SC (n = 36) or YBLI (n = 36). SC included recommendations for the management of obesity as per Indian guidelines including a low-calorie individualized diet and physical activity. Asana (physical postures), pranayama (breathing exercises), and meditation were all part of the YBLI. Primary outcomes were relative fold change in the expression of genes associated with oxidative stress [Nuclear factor-kappa B (NF-Kappa B)], inflammation [Tumor necrosis factor-α (TNFα), interleukin-6 (IL-6)], and aging [human telomerase reverse transcriptase (TERT)] in peripheral blood mononuclear cells between the two groups at week-12. Results There were no significant changes in fold change of TERT, IL-6, and NF-kappa B between the groups at week 12. The relative fold change of TERT was significantly greater in the YBLI group (p = <0.0001) vs the SC group at 2 weeks. The relative fold change of TNF α was significantly lower at week 12 in YBLI though the change was not continuous and reliable. Within both groups, TERT expression was significantly increased at week 2 though the change was greater in the YBLI group (p < 0.0001). TNF α gene expression was significantly lower at weeks 2 and 4, compared to baseline level, in the SC group but it increased at week 12. Conclusion The results while did not confirm our hypothesis, are important to share with the scientific society, to be able to improve prospective study designs and find optimal time/intervention/biological marker settings for this highly important scientific field. The results are suggestive of a positive impact of YBLI and SC on the fold change of aging-related TERT gene in obesity, though the benefit was not evident till week 12. However, the results should be evaluated with caution and in light of other published studies. To better understand the positive effects of YBLI on oxidative stress, inflammation, and aging-related gene expression in obesity, larger studies are recommended.
Collapse
Affiliation(s)
- Piyush Sharma
- Integral Health and Wellness Clinic, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Raj Kumar Yadav
- Integral Health and Wellness Clinic, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
- Department of Endocrinology, Metabolism and Diabetes, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Khadgawat
- Department of Endocrinology, Metabolism and Diabetes, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Vasconcelos ABS, Aragão-Santos JC, de Resende-Neto AG, Rodrigues LS, Corrêa CB, Schimieguel DM, Camargo EA, de Paula Ramos S, Da Silva-Grigoletto ME. Effects of functional and combined training on subsets of memory T cells and functional fitness of postmenopausal women: A randomized controlled trial. Exp Gerontol 2022; 167:111898. [PMID: 35863693 DOI: 10.1016/j.exger.2022.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
This study investigated the effects of functional (FT) and combined (CT) training on memory T cells and functional fitness of postmenopausal women. 108 participants were randomly allocated to the control (CG), FT and CT groups. Functional fitness was assessed through physical tests similar to daily activities, such as dressing on and taking off a t-shirt (DTTS), 10-meter walking and countermovement jump. The CCR7 and CD45RA surface markers were used to characterize the memory T cells. Regarding the frequency of memory T cells, both training protocols reduced the percentage of CD4+ Terminally Differentiated Effector Memory T Cells Re-Expressing CD45RA (TEMRA) (FT: -38.73 %, p = 0.0455; CT: -30.43 %, p = 0.0036) and CD8+ TEMRA cells (FT: -22.24 %, p < 0.0013; CT: -13.13 %, p = 0.0051). Also, both FT and CT increased the percentage of central memory (TCM) CD4+ (FT: +55.22 %, p = 0.0104; CT: +68.03 %, p = 0.0167) and CD8+ (FT: +142.00 %, p < 0.0001; CT: +83.76 %, p = 0.0001) T cells. Furthermore, FT and CT increased the percentages of CD8+ effector memory T cells (TEM) (FT: +63.58 %, p < 0.0001; CT: +14.12 %, p = 0.0041). Regarding functional fitness, both training protocols reduced the time required to perform the DTTS (FT: -19.71 %, p < 0.0001; CT: -14.69 %, p < 0.0001) and 10-m walk tests (FT: -13.05 %, p < 0.0001; CT: -12.83 %, p < 0.0001), in addition to improving jumping ability (FT: +29.97 %, p < 0.0001; CT: +20.00 %, p < 0.0001), both compared to the pre-test or to the CG. Therefore, both FT and CT seem to be equally effective alternatives for promoting the reduction of CD4+ and CD8+ TEMRA cells, increasing the frequency of TCM and TEM cells, and improving functional fitness of postmenopausal women.
Collapse
Affiliation(s)
- Alan Bruno Silva Vasconcelos
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Functional Training Group (FTG), Department of Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| | - José Carlos Aragão-Santos
- Functional Training Group (FTG), Department of Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Antônio Gomes de Resende-Neto
- Functional Training Group (FTG), Department of Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - Cristiane Bani Corrêa
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - Enilton Aparecido Camargo
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - Marzo Edir Da Silva-Grigoletto
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Functional Training Group (FTG), Department of Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
15
|
Carter SJ, Baranauskas MN. Why obesity and psychological stress matter in recovery of post-acute sequelae of SARS-CoV-2. Obesity (Silver Spring) 2022; 30:1136-1138. [PMID: 35352508 PMCID: PMC9088379 DOI: 10.1002/oby.23442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 11/18/2022]
Abstract
Numerous elements of the COVID-19 pandemic have proven challenging to overcome. We now recognize a perplexing characteristic of SARS-CoV-2 features mixed, unresolving symptoms that can last 4 weeks or longer after initial diagnosis, termed post-acute sequelae of SARS-CoV-2 (PASC). Full recovery can thus become a protracted ordeal as conservative estimates indicate 20% of SARS-CoV-2 cases will develop PASC, with women at increased risk. Emerging evidence suggests latent virus reactivation including cytomegalovirus, Epstein-Barr virus, and/or varicella zoster virus may perpetuate the burden of PASC. This is problematic because immune dysfunction is linked to obesity and psychological stress, both of which disproportionately affect socioeconomically disadvantaged people and racial/ethnic minorities. Applying a patient-centered approach in which the principal factors guiding decision-making are based on the needs and abilities of the individual is essential. Still, the independent and combined influence of obesity and psychological stress on immune function necessitates due consideration in the context of PASC recovery.
Collapse
Affiliation(s)
- Stephen J. Carter
- Department of KinesiologySchool of Public Health –BloomingtonIndiana UniversityBloomingtonIndianaUSA
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisIndianaUSA
| | - Marissa N. Baranauskas
- Department of Human Physiology & NutritionUniversity of Colorado Colorado SpringsColorado SpringColoradoUSA
| |
Collapse
|