1
|
Aquino A, Zaikova E, Kalinina O, Karonova TL, Rubinstein A, Mikhaylova AA, Kudryavtsev I, Golovkin AS. T Regulatory Cell Subsets Do Not Restore for One Year After Acute COVID-19. Int J Mol Sci 2024; 25:11759. [PMID: 39519310 PMCID: PMC11545974 DOI: 10.3390/ijms252111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, triggers a complex immune response, with T regulatory cells (Tregs) playing a crucial role in maintaining immune homeostasis and preventing excessive inflammation. The current study investigates the function of T regulatory cells during COVID-19 infection and the subsequent recovery period, emphasizing their impact on immune regulation and inflammation control. We conducted a comprehensive analysis of Treg subpopulations in peripheral blood samples from COVID-19 patients at different stages: acute infection, early convalescence, and long-term recovery. Flow cytometry was employed to quantify Tregs including "naïve", central memory (CM), effector memory (EM), and terminally differentiated CD45RA+ effector cells (TEMRA). Additionally, the functional state of the Tregs was assessed by the expression of purinergic signaling molecules (CD39, CD73). Cytokine profiles were assessed through multiplex analysis. Our findings indicate a significant decrease in the number of Tregs during the acute phase of COVID-19, which correlates with heightened inflammatory markers and increased disease severity. Specifically, we found a decrease in the relative numbers of "naïve" and an increase in EM Tregs, as well as a decrease in the absolute numbers of "naïve" and CM Tregs. During the early convalescent period, the absolute counts of all Treg populations tended to increase, accompanied by a reduction in pro-inflammatory cytokines. Despite this, one year after recovery, the decreased subpopulations of regulatory T cells had not yet reached the levels observed in healthy donors. Finally, we observed the re-establishment of CD39 expression in all Treg subsets; however, there was no change in CD73 expression among Tregs. Understanding these immunological changes across different T regulatory subsets and adenosine signaling pathways offers important insights into the disease's pathogenesis and provides a broader view of immune system dynamics during recovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexey S. Golovkin
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.A.); (A.R.); (I.K.)
| |
Collapse
|
2
|
Kratzer B, Gattinger P, Trapin D, Ettel P, Körmöczi U, Rottal A, Stieger RB, Sehgal ANA, Feichter M, Borochova K, Tulaeva I, Grabmeier-Pfistershammer K, Tauber PA, Perkmann T, Fae I, Wenda S, Kundi M, Fischer GF, Valenta R, Pickl WF. Differential decline of SARS-CoV-2-specific antibody levels, innate and adaptive immune cells, and shift of Th1/inflammatory to Th2 serum cytokine levels long after first COVID-19. Allergy 2024; 79:2482-2501. [PMID: 39003594 DOI: 10.1111/all.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND SARS-CoV-2 has triggered a pandemic and contributes to long-lasting morbidity. Several studies have investigated immediate cellular and humoral immune responses during acute infection. However, little is known about long-term effects of COVID-19 on the immune system. METHODS We performed a longitudinal investigation of cellular and humoral immune parameters in 106 non-vaccinated subjects ten weeks (10 w) and ten months (10 m) after their first SARS-CoV-2 infection. Peripheral blood immune cells were analyzed by multiparametric flow cytometry, serum cytokines were examined by multiplex technology. Antibodies specific for the Spike protein (S), the receptor-binding domain (RBD) and the nucleocapsid protein (NC) were determined. All parameters measured 10 w and 10 m after infection were compared with those of a matched, noninfected control group (n = 98). RESULTS Whole blood flow cytometric analyses revealed that 10 m after COVID-19, convalescent patients compared to controls had reduced absolute granulocyte, monocyte, and lymphocyte counts, involving T, B, and NK cells, in particular CD3+CD45RA+CD62L+CD31+ recent thymic emigrant T cells and non-class-switched CD19+IgD+CD27+ memory B cells. Cellular changes were associated with a reversal from Th1- to Th2-dominated serum cytokine patterns. Strong declines of NC- and S-specific antibody levels were associated with younger age (by 10.3 years, p < .01) and fewer CD3-CD56+ NK and CD19+CD27+ B memory cells. Changes of T-cell subsets at 10 m such as normalization of effector and Treg numbers, decline of RTE, and increase of central memory T cell numbers were independent of antibody decline pattern. CONCLUSIONS COVID-19 causes long-term reduction of innate and adaptive immune cells which is associated with a Th2 serum cytokine profile. This may provide an immunological mechanism for long-term sequelae after COVID-19.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Doris Trapin
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Paul Ettel
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Körmöczi
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Arno Rottal
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Robert B Stieger
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Al Nasar Ahmed Sehgal
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Melanie Feichter
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Kristina Borochova
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Inna Tulaeva
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Peter A Tauber
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Sabine Wenda
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Department for Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Gottfried F Fischer
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Winfried F Pickl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
3
|
Sánchez-Menéndez C, de la Calle-Jiménez O, Mateos E, Vigón L, Fuertes D, Murciano Antón MA, San José E, García-Gutiérrez V, Cervero M, Torres M, Coiras M. Different polarization and functionality of CD4+ T helper subsets in people with post-COVID condition. Front Immunol 2024; 15:1431411. [PMID: 39257580 PMCID: PMC11385313 DOI: 10.3389/fimmu.2024.1431411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction After mild COVID-19 that does not require hospitalization, some individuals develop persistent symptoms that may worsen over time, producing a multisystemic condition termed Post-COVID condition (PCC). Among other disorders, PCC is characterized by persistent changes in the immune system that may not be solved several months after COVID-19 diagnosis. Methods People with PCC were recruited to determine the distribution and functionality of CD4+ T helper (Th) subsets in comparison with individuals with mild, severe, and critical presentations of acute COVID-19 to evaluate their contribution as risk or protective factors for PCC. Results People with PCC showed low levels of Th1 cells, similar to individuals with severe and critical COVID-19, although these cells presented a higher capacity to express IFNγ in response to stimulation. Th2/Th1 correlation was negative in individuals with acute forms of COVID-19, but there was no significant Th2/Th1 correlation in people with PCC. Th2 cells from people with PCC presented high capacity to express IL-4 and IL-13, which are related to low ventilation and death associated with COVID-19. Levels of proinflammatory Th9 and Th17 subsets were significantly higher in people with PCC in comparison with acute COVID-19, being Th1/Th9 correlation negative in these individuals, which probably contributed to a more pro-inflammatory than antiviral scenario. Th17 cells from approximately 50% of individuals with PCC had no capacity to express IL-17A and IL-22, similar to individuals with critical COVID-19, which would prevent clearing extracellular pathogens. Th2/Th17 correlation was positive in people with PCC, which in the absence of negative Th1/Th2 correlation could also contribute to the proinflammatory state. Finally, Th22 cells from most individuals with PCC had no capacity to express IL-13 or IL-22, which could increase tendency to reinfections due to impaired epithelial regeneration. Discussion People with PCC showed skewed polarization of CD4+ Th subsets with altered functionality that was more similar to individuals with severe and critical presentations of acute COVID-19 than to people who fully recovered from mild disease. New strategies aimed at reprogramming the immune response and redirecting CD4+ Th cell polarization may be necessary to reduce the proinflammatory environment characteristic of PCC.
Collapse
Affiliation(s)
- Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Olivia de la Calle-Jiménez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Internal Medicine Service, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lorena Vigón
- AIDS Immunopathology, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Fuertes
- School of Telecommunications Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - María Aranzazu Murciano Antón
- Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
- International PhD School, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Esther San José
- Immunomodulation Unit, Department of Health Sciences, Faculty of Biomedical and Health Sciences, European University of Madrid, Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Miguel Cervero
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Gusev E, Sarapultsev A. Exploring the Pathophysiology of Long COVID: The Central Role of Low-Grade Inflammation and Multisystem Involvement. Int J Mol Sci 2024; 25:6389. [PMID: 38928096 PMCID: PMC11204317 DOI: 10.3390/ijms25126389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Long COVID (LC), also referred to as Post COVID-19 Condition, Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), and other terms, represents a complex multisystem disease persisting after the acute phase of COVID-19. Characterized by a myriad of symptoms across different organ systems, LC presents significant diagnostic and management challenges. Central to the disorder is the role of low-grade inflammation, a non-classical inflammatory response that contributes to the chronicity and diversity of symptoms observed. This review explores the pathophysiological underpinnings of LC, emphasizing the importance of low-grade inflammation as a core component. By delineating the pathogenetic relationships and clinical manifestations of LC, this article highlights the necessity for an integrated approach that employs both personalized medicine and standardized protocols aimed at mitigating long-term consequences. The insights gained not only enhance our understanding of LC but also inform the development of therapeutic strategies that could be applicable to other chronic conditions with similar pathophysiological features.
Collapse
Affiliation(s)
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia;
| |
Collapse
|
5
|
Lippi G, Mattiuzzi C, Sanchis-Gomar F. Physical Activity, Long-COVID, and Inactivity: A Detrimental Endless Loop. J Phys Act Health 2024; 21:420-422. [PMID: 38467123 DOI: 10.1123/jpah.2024-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
The risk of developing medium- and long-term sequelae after recovery from COVID-19 is validated. Long-COVID burden represents a major health care issue, thus paving the way to effective prevention and/or treatment measures. Physical activity prevents many human pathologies, including COVID-19. Being physically active before and immediately after a severe acute respiratory syndrome coronavirus 2 infection substantially lowers the risk of developing long-COVID. In addition, long-COVID is an important cause of physical inactivity. Physically inactive individuals are at increased risk of developing long-COVID, while patients with long-COVID are more likely to reduce their physical activity levels after recovering from the acute infection, with the risk of generating a continuous loop. This harmful interaction needs to be recognized by public health institutions, and the adoption of physical activity as a routine clinical practice in all individuals after a severe acute respiratory syndrome coronavirus 2 infection needs to be proactively promoted.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Camilla Mattiuzzi
- Medical Direction, Rovereto Hospital, Service of Clinical Governance and Medical Direction, Provincial Agency for Social and Sanitary Services (APSS), Trento, Italy
| | - Fabian Sanchis-Gomar
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Oh J, Lee M, Kim M, Kim HJ, Lee SW, Rhee SY, Koyanagi A, Smith L, Kim MS, Lee H, Lee J, Yon DK. Incident allergic diseases in post-COVID-19 condition: multinational cohort studies from South Korea, Japan and the UK. Nat Commun 2024; 15:2830. [PMID: 38565542 PMCID: PMC10987608 DOI: 10.1038/s41467-024-47176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
As mounting evidence suggests a higher incidence of adverse consequences, such as disruption of the immune system, among patients with a history of COVID-19, we aimed to investigate post-COVID-19 conditions on a comprehensive set of allergic diseases including asthma, allergic rhinitis, atopic dermatitis, and food allergy. We used nationwide claims-based cohorts in South Korea (K-CoV-N; n = 836,164; main cohort) and Japan (JMDC; n = 2,541,021; replication cohort A) and the UK Biobank cohort (UKB; n = 325,843; replication cohort B) after 1:5 propensity score matching. Among the 836,164 individuals in the main cohort (mean age, 50.25 years [SD, 13.86]; 372,914 [44.6%] women), 147,824 were infected with SARS-CoV-2 during the follow-up period (2020-2021). The risk of developing allergic diseases, beyond the first 30 days of diagnosis of COVID-19, significantly increased (HR, 1.20; 95% CI, 1.13-1.27), notably in asthma (HR, 2.25; 95% CI, 1.80-2.83) and allergic rhinitis (HR, 1.23; 95% CI, 1.15-1.32). This risk gradually decreased over time, but it persisted throughout the follow-up period (≥6 months). In addition, the risk increased with increasing severity of COVID-19. Notably, COVID-19 vaccination of at least two doses had a protective effect against subsequent allergic diseases (HR, 0.81; 95% CI, 0.68-0.96). Similar findings were reported in the replication cohorts A and B. Although the potential for misclassification of pre-existing allergic conditions as incident diseases remains a limitation, ethnic diversity for evidence of incident allergic diseases in post-COVID-19 condition has been validated by utilizing multinational and independent population-based cohorts.
Collapse
Affiliation(s)
- Jiyeon Oh
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Myeongcheol Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Minji Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Hyeon Jin Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Seung Won Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Sang Youl Rhee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Min Seo Kim
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hayeon Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea.
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea.
| | - Jinseok Lee
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea.
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin, South Korea.
| | - Dong Keon Yon
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea.
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea.
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea.
- Department of Pediatrics, Kyung Hee University College of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Dababseh MMO, Sabaka P, Duraníková O, Horváthová S, Valkovič P, Straka I, Nagyová A, Boža V, Kravec M, Jurenka J, Koščálová A, Mihalov P, Marešová E, Bendžala M, Kušnírová A, Stankovič I. Delayed Antibody Response in the Acute Phase of Infection Is Associated with a Lower Mental Component of Quality of Life in Survivors of Severe and Critical COVID-19. J Clin Med 2024; 13:1938. [PMID: 38610703 PMCID: PMC11012816 DOI: 10.3390/jcm13071938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Background: The long-term sequelae of coronavirus disease 2019 (COVID-19) significantly affects quality of life (QoL) in disease survivors. Delayed development of the adaptive immune response is associated with more severe disease and a worse prognosis in COVID-19. The effects of delayed immune response on COVID-19 sequelae and QoL are unknown. Methods: We conducted a prospective study to assess the relationship between the delayed antibody response in the acute phase of infection in naïve unvaccinated patients suffering from severe or critical COVID-19 and their QoL 12 months after hospital discharge. The 12-item Short Form Survey (SF-12) questionnaire was used for assessment of QoL. The SF-12 evaluates both mental and physical components of QoL, incorporating a mental component score (MCS-12) and a physical component score (PCS-12). A delayed antibody response was defined as testing negative for anti-spike SARS-CoV-2 antibodies at the time of hospital admission. Results: The study included 274 patients (154 men and 120 women). Of the enrolled patients, 144 had a delayed immune response. These patients had a significantly lower MCS-12 (p = 0.002), but PCS-12 (p = 0.397) was not significantly different at the 12-month follow-up compared to patients with positive anti-spike SARS-CoV-2 antibodies. The MCS-12 at the time of follow-up was negatively associated with delayed antibody response irrespective of possible confounders (p = 0.006; B = 3.609; ηp2 = 0.035; 95% CI = 1.069-6.150). An MSC-12 below 50 points at the time of follow-up was positively associated with delayed antibody response (p = 0.001; B = 1.092; OR = 2.979; 95% CI = 1.554-5.711). Conclusions: This study confirmed that, in patients with severe and critical COVID-19, a negative result for anti-spike SARS-CoV-2 antibodies at the time of hospital admission is associated with a lower mental component of QoL in unvaccinated patients naïve to COVID-19 one year after hospital discharge.
Collapse
Affiliation(s)
- Mohammad Mahmud Otman Dababseh
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (M.M.O.D.); (A.N.); (J.J.); (P.M.); (E.M.); (M.B.)
| | - Peter Sabaka
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (M.M.O.D.); (A.N.); (J.J.); (P.M.); (E.M.); (M.B.)
| | - Oľga Duraníková
- 2nd Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (O.D.); (S.H.); (P.V.); (I.S.)
| | - Simona Horváthová
- 2nd Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (O.D.); (S.H.); (P.V.); (I.S.)
| | - Peter Valkovič
- 2nd Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (O.D.); (S.H.); (P.V.); (I.S.)
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 814 38 Bratislava, Slovakia
| | - Igor Straka
- 2nd Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (O.D.); (S.H.); (P.V.); (I.S.)
| | - Anna Nagyová
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (M.M.O.D.); (A.N.); (J.J.); (P.M.); (E.M.); (M.B.)
| | - Vladimír Boža
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia (M.K.)
| | - Marián Kravec
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia (M.K.)
| | - Ján Jurenka
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (M.M.O.D.); (A.N.); (J.J.); (P.M.); (E.M.); (M.B.)
| | - Alena Koščálová
- Department of Infectology, Slovak Medical University, 833 05 Bratislava, Slovakia;
| | - Peter Mihalov
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (M.M.O.D.); (A.N.); (J.J.); (P.M.); (E.M.); (M.B.)
| | - Eliška Marešová
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (M.M.O.D.); (A.N.); (J.J.); (P.M.); (E.M.); (M.B.)
| | - Matej Bendžala
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (M.M.O.D.); (A.N.); (J.J.); (P.M.); (E.M.); (M.B.)
| | - Alice Kušnírová
- 2nd Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (O.D.); (S.H.); (P.V.); (I.S.)
| | - Igor Stankovič
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia; (M.M.O.D.); (A.N.); (J.J.); (P.M.); (E.M.); (M.B.)
| |
Collapse
|
8
|
Gheorghita R, Soldanescu I, Lobiuc A, Caliman Sturdza OA, Filip R, Constantinescu – Bercu A, Dimian M, Mangul S, Covasa M. The knowns and unknowns of long COVID-19: from mechanisms to therapeutical approaches. Front Immunol 2024; 15:1344086. [PMID: 38500880 PMCID: PMC10944866 DOI: 10.3389/fimmu.2024.1344086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has been defined as the greatest global health and socioeconomic crisis of modern times. While most people recover after being infected with the virus, a significant proportion of them continue to experience health issues weeks, months and even years after acute infection with SARS-CoV-2. This persistence of clinical symptoms in infected individuals for at least three months after the onset of the disease or the emergence of new symptoms lasting more than two months, without any other explanation and alternative diagnosis have been named long COVID, long-haul COVID, post-COVID-19 conditions, chronic COVID, or post-acute sequelae of SARS-CoV-2 (PASC). Long COVID has been characterized as a constellation of symptoms and disorders that vary widely in their manifestations. Further, the mechanisms underlying long COVID are not fully understood, which hamper efficient treatment options. This review describes predictors and the most common symptoms related to long COVID's effects on the central and peripheral nervous system and other organs and tissues. Furthermore, the transcriptional markers, molecular signaling pathways and risk factors for long COVID, such as sex, age, pre-existing condition, hospitalization during acute phase of COVID-19, vaccination, and lifestyle are presented. Finally, recommendations for patient rehabilitation and disease management, as well as alternative therapeutical approaches to long COVID sequelae are discussed. Understanding the complexity of this disease, its symptoms across multiple organ systems and overlapping pathologies and its possible mechanisms are paramount in developing diagnostic tools and treatments.
Collapse
Affiliation(s)
- Roxana Gheorghita
- Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Iuliana Soldanescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), University of Suceava, Suceava, Romania
| | - Andrei Lobiuc
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Olga Adriana Caliman Sturdza
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Suceava Emergency Clinical County Hospital, Suceava, Romania
| | - Roxana Filip
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Suceava Emergency Clinical County Hospital, Suceava, Romania
| | - Adela Constantinescu – Bercu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Institute of Cardiovascular Science, Hemostasis Research Unit, University College London (UCL), London, United Kingdom
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), University of Suceava, Suceava, Romania
- Department of Computer, Electronics and Automation, University of Suceava, Suceava, Romania
| | - Serghei Mangul
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Quantitative and Computational Biology, USC Dornsife College of Letters, Arts and Sciences, University of Southern California (USC), Los Angeles, CA, United States
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA, United States
| |
Collapse
|
9
|
Len JS, Koh CWT, Chan KR. The Functional Roles of MDSCs in Severe COVID-19 Pathogenesis. Viruses 2023; 16:27. [PMID: 38257728 PMCID: PMC10821470 DOI: 10.3390/v16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Severe COVID-19 is a major cause of morbidity and mortality worldwide, especially among those with co-morbidities, the elderly, and the immunocompromised. However, the molecular determinants critical for severe COVID-19 progression remain to be fully elucidated. Meta-analyses of transcriptomic RNAseq and single-cell sequencing datasets comparing severe and mild COVID-19 patients have demonstrated that the early expansion of myeloid-derived suppressor cells (MDSCs) could be a key feature of severe COVID-19 progression. Besides serving as potential early prognostic biomarkers for severe COVID-19 progression, several studies have also indicated the functional roles of MDSCs in severe COVID-19 pathogenesis and possibly even long COVID. Given the potential links between MDSCs and severe COVID-19, we examine the existing literature summarizing the characteristics of MDSCs, provide evidence of MDSCs in facilitating severe COVID-19 pathogenesis, and discuss the potential therapeutic avenues that can be explored to reduce the risk and burden of severe COVID-19. We also provide a web app where users can visualize the temporal changes in specific genes or MDSC-related gene sets during severe COVID-19 progression and disease resolution, based on our previous study.
Collapse
Affiliation(s)
- Jia Soon Len
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Clara W. T. Koh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| |
Collapse
|
10
|
Wang L, Davis PB, Berger N, Kaelber DC, Volkow N, Xu R. Association of COVID-19 with respiratory syncytial virus (RSV) infections in children aged 0-5 years in the USA in 2022: a multicentre retrospective cohort study. Fam Med Community Health 2023; 11:e002456. [PMID: 37832975 PMCID: PMC10582888 DOI: 10.1136/fmch-2023-002456] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE To investigate whether COVID-19 infection was associated with increased risk for incident respiratory syncytial virus (RSV) infections and associated diseases among young children that might have contributed to the 2022 surge of severe paediatric RSV cases in the USA. DESIGN This is a retrospective population-based cohort study. Five outcomes were examined, including overall RSV infection, positive lab test-confirmed RSV infection, clinically diagnosed RSV diseases, RSV-associated bronchiolitis and unspecified bronchiolitis. Risk ratio (RR) and 95% CI of the outcomes that occurred during the 2022 and 2021 RSV seasons were calculated by comparing propensity-score matched cohorts. SETTING Nationwide multicentre database of electronic health records (EHRs) of 61.4 million patients in the USA including 1.7 million children 0-5 years of age, which was accessed through TriNetX Analytics that provides web-based and secure access to patient EHR data from hospitals, primary care and specialty treatment providers. PARTICIPANTS The study population consisted of 228 940 children of 0-5 years with no prior RSV infection who had medical encounters in October 2022. Findings were replicated in a separate study population of 370 919 children of 0-5 years with no prior RSV infection who had medical encounters in July 2021-August 2021 during a non-overlapping time period. RESULTS For the 2022 study population (average age 2.4 years, 46.8% girls, 61% white, 16% black), the risk for incident RSV infection during October 2022-December 2022 was 6.40% for children with prior COVID-19 infection, higher than 4.30% for the matched children without COVID-19 (RR 1.40, 95% CI 1.27 to 1.55); and among children aged 0-1 year, the overall risk was 7.90% for those with prior COVID-19 infection, higher than 5.64% for matched children without (RR 1.40, 95% CI 1.21 to 1.62). For the 2021 study population (average age 2.2 years, 46% girls, 57% white, 20% black), the risk for incident RSV infection during July 2021-December 2021 was 4.85% for children with prior COVID-19 infection, higher than 3.68% for the matched children without COVID-19 (RR 1.32, 95% CI 1.12 to 1.56); and 7.30% for children aged 0-1 year with prior COVID-19 infection, higher than 4.98% for matched children without (RR 1.47, 95% CI 1.18 to 1.82). CONCLUSION COVID-19 was associated with a significantly increased risk for RSV infections among children aged 0-5 years in 2022. Similar findings were replicated for a study population of children aged 0-5 years in 2021. Our findings suggest that COVID-19 contributed to the 2022 surge of RSV cases in young children through the large buildup of COVID-19-infected children and the potential long-term adverse effects of COVID-19 on the immune and respiratory system.
Collapse
Affiliation(s)
- Lindsey Wang
- Center for Science, Health, and Society, Case Western Reserve University, Cleveland, Ohio, USA
| | - Pamela B Davis
- Center for Community Health Integration, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Nathan Berger
- Center for Science, Health, and Society, Case Western Reserve University, Cleveland, Ohio, USA
| | - David C Kaelber
- The Center for Clinical Informatics Research and Education and the Departments ofInternal Medicine, Pediatrics, and Population and Quantitative Health Sciences, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Nora Volkow
- National Institute on Drug Abuse, National Institute of Health, Bethesda, Maryland, USA
| | - Rong Xu
- Center for AI in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Wang L, Berger N, Davis PB, Kaelber DC, Volkow N, Xu R. Time trend and seasonality in medically attended respiratory syncytial virus (RSV) infections in US children aged 0-5 years, January 2010-January 2023. Fam Med Community Health 2023; 11:e002453. [PMID: 37844966 PMCID: PMC10582996 DOI: 10.1136/fmch-2023-002453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE The long-term time trend and seasonality variations of first-time medically attended respiratory syncytial virus (RSV) infections among young children are unknown. We aim to examine the time trend of medically attended first-time RSV infections among young children in the USA from January 2010 through January 2023. DESIGN This is a population-based cohort study using electronic health records (EHRs). Monthly incidence rate of medically attended first-time RSV infection (cases per 10 000 000 person-days). A time-series regression model was used to model and predict time trends and seasonality. SETTING Multicenter and nationwide TriNetX Network in the USA. PARTICIPANTS The study population comprised children aged 0-5 years who had medical visits during the period of January 2010 to January 2023. RESULTS The data included 29 013 937 medical visits for children aged 0-5 years (46.5% girls and 53.5% boys) from January 2010 through January 2023. From 2010 through 2019, the monthly incidence rate of first-time medically attended RSV infection in children aged 0-5 years followed a consistent seasonal pattern. Seasonal patterns of medically attended RSV infections were significantly disrupted during the COVID-19 pandemic. In 2020, the seasonal variation disappeared with a peak incidence rate of 20 cases per 1 000 000 person-days, a decrease of 97.4% from the expected peak rate (rate ratio or RR: 0.026, 95% CI 0.017 to 0.040). In 2021, the seasonality returned but started 4 months earlier, lasted for 9 months, and peaked in August at a rate of 753 cases per 1 000 000 person-days, a decrease of 9.6% from the expected peak rate (RR: 0.90, 95% CI 0.82 to 0.99). In 2022, the seasonal pattern is similar to prepandemic years but reached a historically high rate of 2182 cases per 10 000 000 person-days in November, an increase of 143% from the expected peak rate (RR: 2.43, 95% CI 2.25 to 2.63). The time trend and seasonality of the EHR-based medically attended RSV infections are consistent with those of RSV-associated hospitalisations from the Centers for Disease Control and Prevention (CDC) survey-based surveillance system. CONCLUSION The findings show the disrupted seasonality during the COVID-19 pandemic and a historically high surge of paediatric RSV cases that required medical attention in 2022. Our study demonstrates the potential of EHRs as a cost-effective alternative for real-time pathogen and syndromic surveillance of unexpected disease patterns including RSV infection.
Collapse
Affiliation(s)
- Lindsey Wang
- Center for Science, Health, and Society, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nathan Berger
- Center for Science, Health, and Society, Case Western Reserve University, Cleveland, Ohio, USA
| | - Pamela B Davis
- Center for Community Health Integration, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - David C Kaelber
- The Center for Clinical Informatics Research and Education and the Departments ofInternal Medicine, Pediatrics, and Population and Quantitative Health Sciences, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Nora Volkow
- National Institute on Drug Abuse, National Institute of Health, Bethesda, Maryland, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Xue T, Kong X, Ma L. Trends in the Epidemiology of Pneumocystis Pneumonia in Immunocompromised Patients without HIV Infection. J Fungi (Basel) 2023; 9:812. [PMID: 37623583 PMCID: PMC10455156 DOI: 10.3390/jof9080812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
The increasing morbidity and mortality of life-threatening Pneumocystis pneumonia (PCP) in immunocompromised people poses a global concern, prompting the World Health Organization to list it as one of the 19 priority invasive fungal diseases, calling for increased research and public health action. In response to this initiative, we provide this review on the epidemiology of PCP in non-HIV patients with various immunodeficient conditions, including the use of immunosuppressive agents, cancer therapies, solid organ and stem cell transplantation, autoimmune and inflammatory diseases, inherited or primary immunodeficiencies, and COVID-19. Special attention is given to the molecular epidemiology of PCP outbreaks in solid organ transplant recipients; the risk of PCP associated with the increasing use of immunodepleting monoclonal antibodies and a wide range of genetic defects causing primary immunodeficiency; the trend of concurrent infection of PCP in COVID-19; the prevalence of colonization; and the rising evidence supporting de novo infection rather than reactivation of latent infection in the pathogenesis of PCP. Additionally, we provide a concise discussion of the varying effects of different immunodeficient conditions on distinct components of the immune system. The objective of this review is to increase awareness and knowledge of PCP in non-HIV patients, thereby improving the early identification and treatment of patients susceptible to PCP.
Collapse
Affiliation(s)
- Ting Xue
- NHC Key Laboratory of Pneumoconiosis, Key Laboratory of Prophylaxis and Treatment and Basic Research of Respiratory Diseases of Shanxi Province, Shanxi Province Key Laboratory of Respiratory, Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Key Laboratory of Prophylaxis and Treatment and Basic Research of Respiratory Diseases of Shanxi Province, Shanxi Province Key Laboratory of Respiratory, Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Tsilingiris D, Vallianou NG, Karampela I, Christodoulatos GS, Papavasileiou G, Petropoulou D, Magkos F, Dalamaga M. Laboratory Findings and Biomarkers in Long COVID: What Do We Know So Far? Insights into Epidemiology, Pathogenesis, Therapeutic Perspectives and Challenges. Int J Mol Sci 2023; 24:10458. [PMID: 37445634 PMCID: PMC10341908 DOI: 10.3390/ijms241310458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Long COVID (LC) encompasses a constellation of long-term symptoms experienced by at least 10% of people after the initial SARS-CoV-2 infection, and so far it has affected about 65 million people. The etiology of LC remains unclear; however, many pathophysiological pathways may be involved, including viral persistence; a chronic, low-grade inflammatory response; immune dysregulation and a defective immune response; the reactivation of latent viruses; autoimmunity; persistent endothelial dysfunction and coagulopathy; gut dysbiosis; hormonal and metabolic dysregulation; mitochondrial dysfunction; and autonomic nervous system dysfunction. There are no specific tests for the diagnosis of LC, and clinical features including laboratory findings and biomarkers may not specifically relate to LC. Therefore, it is of paramount importance to develop and validate biomarkers that can be employed for the prediction, diagnosis and prognosis of LC and its therapeutic response, although this effort may be hampered by challenges pertaining to the non-specific nature of the majority of clinical manifestations in the LC spectrum, small sample sizes of relevant studies and other methodological issues. Promising candidate biomarkers that are found in some patients are markers of systemic inflammation, including acute phase proteins, cytokines and chemokines; biomarkers reflecting SARS-CoV-2 persistence, the reactivation of herpesviruses and immune dysregulation; biomarkers of endotheliopathy, coagulation and fibrinolysis; microbiota alterations; diverse proteins and metabolites; hormonal and metabolic biomarkers; and cerebrospinal fluid biomarkers. At present, there are only two reviews summarizing relevant biomarkers; however, they do not cover the entire umbrella of current biomarkers, their link to etiopathogenetic mechanisms or the diagnostic work-up in a comprehensive manner. Herein, we aim to appraise and synopsize the available evidence on the typical laboratory manifestations and candidate biomarkers of LC, their classification based on pathogenetic mechanisms and the main LC symptomatology in the frame of the epidemiological and clinical aspects of the syndrome and furthermore assess limitations and challenges as well as potential implications in candidate therapeutic interventions.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece;
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece;
| | | | - Georgios Papavasileiou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Dimitra Petropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2200 Frederiksberg, Denmark;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| |
Collapse
|
14
|
Wang L, Davis PB, Berger NA, Kaelber DC, Volkow ND, Xu R. Disrupted seasonality and association of COVID-19 with medically attended respiratory syncytial virus infections among young children in the US: January 2010-January 2023. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.12.23289898. [PMID: 37292931 PMCID: PMC10246033 DOI: 10.1101/2023.05.12.23289898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Respiratory syncytial virus (RSV) infections and hospitalizations surged sharply in 2022 among young children. To assess whether COVID-19 contributed to this surge, we leveraged a real-time nation-wide US database of electronic health records (EHRs) using time series analysis from January 1, 2010 through January 31, 2023, and propensity-score matched cohort comparisons for children aged 0-5 years with or without prior COVID-19 infection. Seasonal patterns of medically attended RSV infections were significantly disrupted during the COVID-19 pandemic. The monthly incidence rate for first-time medically attended cases, most of which were severe RSV-associated diseases, reached a historical high rate of 2,182 cases per 1,0000,000 person-days in November 2022, corresponding to a related increase of 143% compared to expected peak rate (rate ratio: 2.43, 95% CI: 2.25-2.63). Among 228,940 children aged 0-5 years, the risk for first-time medically attended RSV during 10/2022-12/2022 was 6.40% for children with prior COVID-19 infection, higher than 4.30% for the matched children without COVID-19 (risk ratio or RR: 1.40, 95% CI: 1.27-1.55); and among 99,105 children aged 0-1 year, the overall risk was 7.90% for those with prior COVID-19 infection, higher than 5.64% for matched children without (RR: 1.40, 95% CI: 1.21-1.62). These data provide evidence that COVID-19 contributed to the 2022 surge of severe pediatric RSV cases.
Collapse
Affiliation(s)
- Lindsey Wang
- Center for Science, Health, and Society, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pamela B. Davis
- The Center for Community Health Integration, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nathan A. Berger
- Center for Science, Health, and Society, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David C. Kaelber
- Departments of Internal Medicine, Pediatrics, and Population and Quantitative Health Sciences and the Center for Clinical Informatics Research and Education, The MetroHealth System, Cleveland, OH, USA
| | - Nora D. Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
15
|
Puccini M, Jakobs K, Reinshagen L, Friebel J, Schencke PA, Ghanbari E, Landmesser U, Haghikia A, Kränkel N, Rauch U. Galectin-3 as a Marker for Increased Thrombogenicity in COVID-19. Int J Mol Sci 2023; 24:ijms24097683. [PMID: 37175392 PMCID: PMC10178107 DOI: 10.3390/ijms24097683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Galectin-3 is a beta-galactoside-binding lectin involved in inflammation and lung fibrosis and postulated to enhance thrombosis. In COVID-19, it is considered to be a prognostic marker of severity. The aim of this study was to evaluate whether galectin-3 is associated with thrombogenicity in COVID-19. Patients with moderate-to-severe COVID-19 (COVpos; n = 55) and patients with acute respiratory diseases, but without COVID-19 (COVneg; n = 35), were included in the study. We measured the amount of galectin-3, as well as other platelet and coagulation markers, and correlated galectin-3 levels with these markers of thrombogenicity and with the SOFA Score values. We found that galectin-3 levels, as well as von Willebrand Factor (vWF), antithrombin and tissue plasminogen activator levels, were higher in the COVpos than they were in the COVneg cohort. Galectin-3 correlated positively with vWF, antithrombin and D-dimer in the COVpos cohort, but not in the COVneg cohort. Moreover, galactin-3 correlated also with clinical disease severity, as measured by the SOFA Score. In patients with acute respiratory diseases, galectin-3 can be considered as a marker not only for disease severity, but also for increased hypercoagulability. Whether galectin-3 might be a useful therapeutic target in COVID-19 needs to be assessed in future studies.
Collapse
Affiliation(s)
- Marianna Puccini
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Kai Jakobs
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Leander Reinshagen
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Julian Friebel
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Philipp-Alexander Schencke
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
| | - Emily Ghanbari
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Arash Haghikia
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Nicolle Kränkel
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Ursula Rauch
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| |
Collapse
|
16
|
Dhawan M, Rabaan AA, Alwarthan S, Alhajri M, Halwani MA, Alshengeti A, Najim MA, Alwashmi ASS, Alshehri AA, Alshamrani SA, AlShehail BM, Garout M, Al-Abdulhadi S, Al-Ahmed SH, Thakur N, Verma G. Regulatory T Cells (Tregs) and COVID-19: Unveiling the Mechanisms, and Therapeutic Potentialities with a Special Focus on Long COVID. Vaccines (Basel) 2023; 11:vaccines11030699. [PMID: 36992283 DOI: 10.3390/vaccines11030699] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
The COVID-19 pandemic has caused havoc all around the world. The causative agent of COVID-19 is the novel form of the coronavirus (CoV) named SARS-CoV-2, which results in immune system disruption, increased inflammation, and acute respiratory distress syndrome (ARDS). T cells have been important components of the immune system, which decide the fate of the COVID-19 disease. Recent studies have reported an important subset of T cells known as regulatory T cells (Tregs), which possess immunosuppressive and immunoregulatory properties and play a crucial role in the prognosis of COVID-19 disease. Recent studies have shown that COVID-19 patients have considerably fewer Tregs than the general population. Such a decrement may have an impact on COVID-19 patients in a number of ways, including diminishing the effect of inflammatory inhibition, creating an inequality in the Treg/Th17 percentage, and raising the chance of respiratory failure. Having fewer Tregs may enhance the likelihood of long COVID development in addition to contributing to the disease's poor prognosis. Additionally, tissue-resident Tregs provide tissue repair in addition to immunosuppressive and immunoregulatory activities, which may aid in the recovery of COVID-19 patients. The severity of the illness is also linked to abnormalities in the Tregs' phenotype, such as reduced expression of FoxP3 and other immunosuppressive cytokines, including IL-10 and TGF-beta. Hence, in this review, we summarize the immunosuppressive mechanisms and their possible roles in the prognosis of COVID-19 disease. Furthermore, the perturbations in Tregs have been associated with disease severity. The roles of Tregs are also explained in the long COVID. This review also discusses the potential therapeutic roles of Tregs in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Al-Madinah 41411, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Riyadh 11942, Saudi Arabia
- Dr. Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam Bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Geetika Verma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
17
|
Quickert S, Stallmach A, Reuken P. Folgen nach SARS-CoV-2-Infektion einschließlich Post-COVID-Syndrom. DIE GASTROENTEROLOGIE 2023. [PMCID: PMC9972310 DOI: 10.1007/s11377-023-00677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Eine Infektion mit dem „severe acute respiratory syndrome coronavirus type 2“ (SARS-CoV-2) kann vielfältige gastroenterologische Symptome hervorrufen. Ein relevanter Anteil an Patient:innen klagt über Symptome einer Gastroenteritis; die Zahl der Betroffenen hat mit der Verbreitung der Omikron-Varianten zugenommen. Ebenso finden sich bei Infizierten Zeichen einer Leberbeteiligung, die sich durch erhöhte Leberfermente bis hin zu einer akuten Dekompensation ausdrückt. Bei Patient:innen mit vorbestehenden Lebererkrankungen kann sich diese in der akuten Phase der Infektion verschlechtern und z. B. in ein akut-auf-chronisches Leberversagen übergehen. Hiervon abzugrenzen sind langfristige Folgen der SARS-CoV-2-Infektion. Diese können sich entweder als direkte infektions- oder therapieassoziierte Folgen, wie der Entwicklung einer sekundär-sklerosierenden Cholangitis nach Intensivtherapie, äußern oder als Symptome im Rahmen eines Post-coronavirus-disease(COVID)-Syndroms. Dessen Pathophysiologie ist weiterhin ungeklärt; hier wird ein Einfluss des intestinalen Mikrobioms diskutiert. In dieser Übersichtsarbeit werden die akuten Symptome und chronischen Folgen einer SARS-CoV-2-Infektion, mit denen man im Alltag zunehmend konfrontiert wird, dargestellt.
Collapse
Affiliation(s)
- Stefanie Quickert
- grid.275559.90000 0000 8517 6224Klinik für Innere Medizin IV – Gastroenterologie, Hepatologie, Infektiologie, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Deutschland
| | - Andreas Stallmach
- grid.275559.90000 0000 8517 6224Klinik für Innere Medizin IV – Gastroenterologie, Hepatologie, Infektiologie, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Deutschland
| | - Philipp Reuken
- grid.275559.90000 0000 8517 6224Klinik für Innere Medizin IV – Gastroenterologie, Hepatologie, Infektiologie, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Deutschland
| |
Collapse
|