1
|
Peng B, Chen MW, Peng CR, Liu YY, Liu D. Association between serum 25-hydroxyvitamin D and asthma: Evidence from the National Health and Nutrition Examination Survey (NHANES) 2011-2018. J Asthma 2025; 62:303-311. [PMID: 39225308 DOI: 10.1080/02770903.2024.2400604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/15/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Asthma is a heterogeneous respiratory disease characterized by airway hyper-responsiveness and reversible airflow blockage. There is ongoing debate about the impact of vitamin D on asthma. This research is focused on investigating the correlation between serum levels of 25-hydroxyvitamin D and asthma. METHODS This cross-sectional study comprised 22,708 eligible participants. Data on asthma and serum 25-hydroxyvitamin D levels from the National Health and Nutrition Examination Survey (NHANES) 2011-2018 were analyzed. Serum 25-hydroxyvitamin D levels were the main factor, with the presence of asthma as the outcome variable. Weighted logistic regression was utilized to investigate the relationship between serum levels of 25-hydroxyvitamin D and asthma, while accounting for factors such as age, gender, race, length of time in US, annual family income, education level, high-density lipoprotein, low-density lipoprotein, triglycerides, and cholesterol. RESULTS Upon adjusting all variables in model III, epi-25-hydroxyvitamin D3 displayed a negative correlation with current asthma at the lower quartile Q1 (0.784, [0.697 to 0.922]), Q2 (0.841, [0.729 to 0.946]), Q3 (0.396, [0.240 to 0.653]) when compared to the highest quartile Q4 level. However, no significant difference was observed between asthma and 25-hydroxyvitamin D2, as well as 25-hydroxyvitamin D3. CONCLUSIONS In the U.S. population, elevated levels of epi-25-hydroxyvitamin D3 are correlated with an increased risk of developing existing asthma. However, it is important to interpret this finding carefully given the constraints of cross-sectional studies.
Collapse
Affiliation(s)
- Biao Peng
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Min-Wei Chen
- Department of Critical Care Medicine, Anhua People's Hospital, Yiyang, Hunan, China
| | - Cheng-Rong Peng
- Department of Tuberculosis Intensive Care Unit, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Yu-Yan Liu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Da Liu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| |
Collapse
|
2
|
Steinbauer S, Wallner M, Karl LM, Gramatte T, Essl K, Iken M, Weghuber J, Blank-Landeshammer B, Röhrl C. Differential Enhancement of Fat-Soluble Vitamin Absorption and Bioefficacy via Micellization in Combination with Selected Plant Extracts In Vitro. Nutrients 2025; 17:359. [PMID: 39861489 PMCID: PMC11769215 DOI: 10.3390/nu17020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Individuals with special metabolic demands are at risk of deficiencies in fat-soluble vitamins, which can be counteracted via supplementation. Here, we tested the ability of micellization alone or in combination with selected natural plant extracts to increase the intestinal absorption and bioefficacy of fat-soluble vitamins. Methods: Micellated and nonmicellated vitamins D3 (cholecalciferol), D2 (ergocalciferol), E (alpha tocopheryl acetate), and K2 (menaquionone-7) were tested in intestinal Caco-2 or buccal TR146 cells in combination with curcuma (Curcuma longa), black pepper (Piper nigrum), or ginger (Zingiber officinale Roscoe) plant extracts. The vitamin uptake was quantified via HPLC-MS, and bioefficacy was assessed via gene expression analyses or the Griess assay for nitric oxide generation. Results: Micellization increased the uptake of vitamin D into buccal and intestinal cells, with vitamin D3 being more efficient than vitamin D2 in increasing the expression of genes involved in calcium transport. The micellization of vitamin E acetate increased its uptake and conversion into biologically active free vitamin E in intestinal cells only. The vitamin K2 uptake into buccal and intestinal cells was increased via micellization. Plant extracts increased the uptake of select micellated vitamins, with no plant extract being effective in combination with all vitamins. The curcuma extract increased the uptake of vitamins D2/D3 but not their bioefficacy. Black pepper and ginger extracts increased the uptake of vitamin E acetate into intestinal cells but failed to increase its conversion into free vitamin E. The ginger extract augmented the uptake of vitamin K2 and increased NO generation additively. Conclusions: Our data substantiate the positive effects of micellization on fat-soluble vitamin absorption and bioefficacy in vitro. While the application of plant extracts in addition to micellization to further increase bioefficacy is an interesting approach, further studies are warranted to understand vitamin-specific interactions and translation into increased bioefficacy.
Collapse
Affiliation(s)
- Stefanie Steinbauer
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria; (S.S.); (M.W.); (T.G.); (J.W.); (B.B.-L.)
| | - Melanie Wallner
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria; (S.S.); (M.W.); (T.G.); (J.W.); (B.B.-L.)
| | - Lisa-Marie Karl
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (L.-M.K.); (K.E.)
| | - Theresa Gramatte
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria; (S.S.); (M.W.); (T.G.); (J.W.); (B.B.-L.)
| | - Katja Essl
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (L.-M.K.); (K.E.)
| | - Marcus Iken
- PM International AG, 15 Waistrooss, 5445 Schengen, Luxembourg;
| | - Julian Weghuber
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria; (S.S.); (M.W.); (T.G.); (J.W.); (B.B.-L.)
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (L.-M.K.); (K.E.)
| | - Bernhard Blank-Landeshammer
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria; (S.S.); (M.W.); (T.G.); (J.W.); (B.B.-L.)
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (L.-M.K.); (K.E.)
| | - Clemens Röhrl
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (L.-M.K.); (K.E.)
| |
Collapse
|
3
|
Alnafisah RY, Alragea AS, Alzamil MK, Alqahtani AS. The Impact and Efficacy of Vitamin D Fortification. Nutrients 2024; 16:4322. [PMID: 39770943 PMCID: PMC11677708 DOI: 10.3390/nu16244322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Vitamin D deficiency is a global health issue linked to various chronic diseases and overall mortality. It primarily arises from insufficient sunlight exposure, compounded by dietary limitations. Vitamin D fortification of commonly consumed foods has emerged as a viable public health intervention to address this deficiency. This review evaluates the impact of vitamin D food fortification on serum levels, intake, and health outcomes and explores the stability, bio-accessibility, bioavailability, and cost-effectiveness of such interventions. A comprehensive literature search was conducted in PubMed and Google Scholar, focusing on studies from 2015 to 2024. The criteria included primary research on healthy adults that addressed the effects of vitamin D fortification on health, intake, and serum levels, as well as the fortification's stability, bio-accessibility, bioavailability, and cost-effectiveness. Studies were extracted and analyzed according to PRISMA guidelines. The review included 31 studies from diverse geographic locations, revealing that fortifying dairy products, cereals, fats, oils, and other food items effectively increased serum 25-hydroxyvitamin D levels. The fortification methods varied, with vitamin D3 showing superior efficacy over vitamin D2. Encapsulation techniques improved stability and bioavailability. Fortifying staple foods like milk and eggs proved cost-effective compared with pharmaceutical interventions. Vitamin D food fortification significantly enhances serum levels and intake, with dairy and cereals being the most frequently fortified. Standardized fortification guidelines are essential to ensure safety and efficacy. Ongoing evaluation and region-specific policies are crucial for effectively optimizing fortification strategies and addressing vitamin D deficiency.
Collapse
Affiliation(s)
- Ruyuf Y. Alnafisah
- Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia; (A.S.A.); (M.K.A.); (A.S.A.)
| | | | | | | |
Collapse
|
4
|
Starck C, Cassettari T, Wright J, Petocz P, Beckett E, Fayet-Moore F. Mushrooms: a food-based solution to vitamin D deficiency to include in dietary guidelines. Front Nutr 2024; 11:1384273. [PMID: 38660061 PMCID: PMC11039838 DOI: 10.3389/fnut.2024.1384273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Vitamin D deficiency and insufficiency is a public health issue, with low dietary vitamin D intakes a contributing factor. Rates of vitamin D deficiency are 31% in Australia, and up to 72% in some regions globally. While supplementation is often prescribed as an alternative to additional sun exposure, complementary approaches including food-based solutions are needed. Yet, food-centric dietary guidelines are not always adequate for meeting vitamin D needs. Edible mushrooms such as Agaricus bisporus can produce over 100% of vitamin D recommendations (10 μg/day, Institute of Medicine) per 75 g serve (18 μg) on exposure to UV-light, with the vitamin D2 produced showing good stability during cooking and processing. However, mushrooms are overlooked as a vitamin D source in dietary guidelines. Our dietary modelling shows that four serves/week of UV-exposed button mushrooms can support most Australian adults in meeting vitamin D recommendations, and UV-exposed mushrooms have been found to increase vitamin D status in deficient individuals. While recent evidence suggests some differences between vitamin D2 and vitamin D3 in physiological activities, vitamin D2 from mushrooms can be part of a larger solution to increasing dietary vitamin D intakes, as well as an important focus for public health policy. Mushrooms exposed to UV represent an important tool in the strategic toolkit for addressing vitamin D deficiency in Australia and globally. Health authorities lead the recognition and promotion of mushrooms as a natural, vegan, safe, and sustainable vitamin D food source.
Collapse
Affiliation(s)
| | | | | | | | - Emma Beckett
- FOODiQ Global, Sydney, NSW, Australia
- School of Health Sciences, The University of New South Wales, Kensington, NSW, Australia
| | - Flavia Fayet-Moore
- FOODiQ Global, Sydney, NSW, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
5
|
Nardin M, Verdoia M, Nardin S, Cao D, Chiarito M, Kedhi E, Galasso G, Condorelli G, De Luca G. Vitamin D and Cardiovascular Diseases: From Physiology to Pathophysiology and Outcomes. Biomedicines 2024; 12:768. [PMID: 38672124 PMCID: PMC11048686 DOI: 10.3390/biomedicines12040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Vitamin D is rightly recognized as an essential key factor in the regulation of calcium and phosphate homeostasis, affecting primary adequate bone mineralization. In the last decades, a more complex and wider role of vitamin D has been postulated and demonstrated. Cardiovascular diseases have been found to be strongly related to vitamin D levels, especially to its deficiency. Pre-clinical studies have suggested a direct role of vitamin D in the regulation of several pathophysiological pathways, such as endothelial dysfunction and platelet aggregation; moreover, observational data have confirmed the relationship with different conditions, including coronary artery disease, heart failure, and hypertension. Despite the significant evidence available so far, most clinical trials have failed to prove any positive impact of vitamin D supplements on cardiovascular outcomes. This discrepancy indicates the need for further information and knowledge about vitamin D metabolism and its effect on the cardiovascular system, in order to identify those patients who would benefit from vitamin D supplementation.
Collapse
Affiliation(s)
- Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Internal Medicine, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Monica Verdoia
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, 13875 Biella, Italy
- Department of Translational Medicine, Eastern Piedmont University, 28100 Novara, Italy
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiology, Humanitas Gavazzeni Hospital, 24125 Bergamo, Italy
| | - Mauro Chiarito
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiovascular Medicine, IRCCS-Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Elvin Kedhi
- McGill University Health Center, Montreal, QC H3G 1A4, Canada
- Department of Cardiology and Structural Heart Disease, University of Silesia, 40-032 Katowice, Poland
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiovascular Medicine, IRCCS-Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU “Policlinico G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
- Division of Cardiology, IRCCS Hospital Galeazzi-Sant’Ambrogio, 20157 Milan, Italy
| |
Collapse
|
6
|
Qu F, Zhang M, Weinstock-Guttman B, Zivadinov R, Qu J, Zhu X, Ramanathan M. An ultra-sensitive and high-throughput trapping-micro-LC-MS method for quantification of circulating vitamin D metabolites and application in multiple sclerosis patients. Sci Rep 2024; 14:5545. [PMID: 38448553 PMCID: PMC10918069 DOI: 10.1038/s41598-024-55939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Quantitative analysis of the biologically-active metabolites of vitamin D (VitD), which are crucial in regulating various physiological and pathological processes, is important for clinical investigations. Liquid chromatography-tandem mass spectrometry (LC-MS) has been widely used for this purpose but existing LC-MS methods face challenges in achieving highly sensitive and accurate quantification of low-abundance VitD metabolites while maintaining high throughput and robustness. Here we developed a novel pipeline that combines a trapping-micro-LC-(T-µLC) with narrow-window-isolation selected-reaction monitoring MS(NWI-SRM) for ultra-sensitive, robust and high-throughput quantification of VitD metabolites in serum samples after derivatization. The selective-trapping and delivery approach efficiently removes matrix components, enabling high-capacity sample loading and enhancing sensitivity, throughput, and robustness. The NWI-SRM further improves the sensitivity by providing high selectivity. The lower limits of quantification (LOQs) achieved were markedly lower than any existing LC-MS methods: 1.0 pg/mL for 1,25(OH)2D3, 5.0 pg/mL for 24,25(OH)2D3, 30 pg/mL for both 25(OH)D2 and 25(OH)D3, all within a 9-min cycle. The method is applied to quantify VitD metabolites from 218 patients with multiple sclerosis. This study revealed negative correlations(r=- 0.44 to - 0.51) between the levels of 25(OH)D2 and all the three D3 metabolites in multiple sclerosis patients.
Collapse
Affiliation(s)
- Flora Qu
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ming Zhang
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Jacobs Comprehensive MS Treatment and Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, USA
| | - Xiaoyu Zhu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
7
|
Vo HVT, Nguyen YT, Kim N, Lee HJ. Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 Regulators That Affect Expression and Enzymatic Activity. Int J Mol Sci 2023; 24:17038. [PMID: 38069361 PMCID: PMC10707015 DOI: 10.3390/ijms242317038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Fat-soluble vitamins (vitamin A, D, E, and K) assume a pivotal role in maintaining human homeostasis by virtue of their enzymatic functions. The daily inclusion of these vitamins is imperative to the upkeep of various physiological processes including vision, bone health, immunity, and protection against oxidative stress. Current research highlights fat-soluble vitamins as potential therapeutics for human diseases, especially cancer. Fat-soluble vitamins exert their therapeutic effects through multiple pathways, including regulation of matrix metalloproteinases' (MMPs) expression and enzymatic activity. As MMPs have been reported to be involved in the pathology of various diseases, such as cancers, cardiovascular diseases, and neurological disorders, regulating the expression and/or activity of MMPs could be considered as a potent therapeutic strategy. Here, we summarize the properties of fat-soluble vitamins and their potential as promising candidates capable of effectively modulating MMPs through multiple pathways to treat human diseases.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
| | - Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
- Kongju National University Institute of Science Education, Kongju National University, Gongju 32588, Republic of Korea
- Kongju National University’s Physical Fitness for Health Research Lab (KNUPFHR), Kongju National University, Gongju 32588, Republic of Korea
| |
Collapse
|
8
|
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Lanham‐New S, Passeri G, Craciun I, Fabiani L, De Sousa RF, Martino L, Martínez SV, Naska A. Scientific opinion on the tolerable upper intake level for vitamin D, including the derivation of a conversion factor for calcidiol monohydrate. EFSA J 2023; 21:e08145. [PMID: 37560437 PMCID: PMC10407748 DOI: 10.2903/j.efsa.2023.8145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Following two requests from the European Commission (EC), the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the revision of the tolerable upper intake level (UL) for vitamin D and to propose a conversion factor (CF) for calcidiol monohydrate into vitamin D3 for labelling purposes. Vitamin D refers to ergocalciferol (vitamin D2), cholecalciferol (vitamin D3), and calcidiol monohydrate. Systematic reviews of the literature were conducted to assess the relative bioavailability of calcidiol monohydrate versus vitamin D3 on serum 25(OH)D concentrations, and for priority adverse health effects of excess vitamin D intake, namely persistent hypercalcaemia/hypercalciuria and endpoints related to musculoskeletal health (i.e. falls, bone fractures, bone mass/density and indices thereof). Based on the available evidence, the Panel proposes a CF for calcidiol monohydrates of 2.5 for labelling purposes. Persistent hypercalciuria, which may be an earlier sign of excess vitamin D than persistent hypercalcaemia, is selected as the critical endpoint on which to base the UL for vitamin D. A lowest-observed-adverse-effect-level (LOAEL) of 250 μg/day is identified from two randomised controlled trials in humans, to which an uncertainty factor of 2.5 is applied to account for the absence of a no-observed-adverse-effect-level (NOAEL). A UL of 100 μg vitamin D equivalents (VDE)/day is established for adults (including pregnant and lactating women) and for adolescents aged 11-17 years, as there is no reason to believe that adolescents in the phase of rapid bone formation and growth have a lower tolerance for vitamin D compared to adults. For children aged 1-10 years, a UL of 50 μg VDE/day is established by considering their smaller body size. Based on available intake data, European populations are unlikely to exceed the UL, except for regular users of food supplements containing high doses of vitamin D.
Collapse
|
9
|
Reid C, Flores-Villalva S, Remot A, Kennedy E, O'Farrelly C, Meade KG. Long-term in vivo vitamin D 3 supplementation modulates bovine IL-1 and chemokine responses. Sci Rep 2023; 13:10846. [PMID: 37407588 DOI: 10.1038/s41598-023-37427-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Vitamin D deficiency at birth, followed by prolonged insufficiency in early life may predispose bovine calves to infection and disease. However, the effects of vitamin D levels on innate immunity are unclear due to the lack of long-term supplementation trials in vivo and reliable approaches for reproducibly assessing immune function. Here, a standardized whole blood immunophenotyping assay was used to compare innate immune responses to infection relevant ligands (LPS, Pam3CSK4 and R848) between Holstein-Friesian calves supplemented with vitamin D (n = 12) from birth until 7 months of age and control calves (n = 10) raised on an industry standard diet. Transcriptomic analysis in unstimulated whole blood cells revealed increased expression of type I interferons and chemokines in vitamin D supplemented calves, while IL-1 and inflammasome gene expression was decreased. In response to stimulation with the bacterial ligand LPS, supplemented calves had significantly increased expression of CASP1, CX3CR1, CAT, whereas STAT1 was decreased. Stimulation with the bacterial ligand Pam3CSK4 revealed increased expression of IL1A, IL1B and CAT genes; and decreased C5AR1 expression. In response to the viral ligand R848, STAT1 and S100A8 expression was significantly decreased. An increased IL-1 and inflammasome gene expression signature in vitamin D supplemented calves in response to LPS and Pam3CSK4 was also found, with ELISA confirming increased IL-1β protein production. In contrast, a decreased chemokine gene expression signature was found in response to R848 in supplemented animals, with decreased IL-8 protein expression exhibited in response to all PAMPs also found. These results demonstrated expression of several cytokine, chemokine and inflammasome genes were impacted by vitamin D supplementation in the first 7 months of life, with IL-8 expression particularly responsive to vitamin D. Overall, vitamin D supplementation induced differential innate immune responses of blood immune cells that could have important implications for disease susceptibility in cattle.
Collapse
Affiliation(s)
- Cian Reid
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co Meath, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Susana Flores-Villalva
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- CENID Salud Animal e Inocuidad, INIFAP, Mexico, Mexico
| | - Aude Remot
- INRAE, Université de Tours, ISP, Nouzilly, France
| | - Emer Kennedy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
10
|
Meyer MB, Bernal-Mizrachi C, Bikle DD, Biyani M, Campbell MJ, Chaudhari SN, Christakos S, Ingles SA, Knuth MM, Lee SM, Lisse TS, Liu ES, Piec I, Plum LA, Rao SD, Reynolds CJ, Thacher TD, White JH, Cantorna MT. Highlights from the 24th workshop on vitamin D in Austin, September 2022. J Steroid Biochem Mol Biol 2023; 228:106247. [PMID: 36639037 PMCID: PMC10006320 DOI: 10.1016/j.jsbmb.2023.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
The 24th Workshop on Vitamin D was held September 7-9, 2022 in Austin, Texas and covered a wide diversity of research in the vitamin D field from across the globe. Here, we summarize the meeting, individual sessions, awards and presentations given.
Collapse
Affiliation(s)
- Mark B Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Carlos Bernal-Mizrachi
- Department of Medicine VA Medical Center and Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel D Bikle
- Departments of Medicine and Endocrinology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Madhu Biyani
- Nano Life Science Institute (WPI-NanoLSI) and Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Sue A Ingles
- Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Megan M Knuth
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Seong Min Lee
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas S Lisse
- Department of Biology and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| | - Eva S Liu
- Harvard Medical School and Division of Endocrinology, Diabetes, Hypertension, Brigham and Women's Hospital, Boston, MA, USA
| | - Isabelle Piec
- Medical School, University of East Anglia, Norwich, UK
| | - Lori A Plum
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sudhaker D Rao
- Director, Bone & Mineral Research Laboratory, Henry Ford Health, Detroit, MI, USA
| | - Carmen J Reynolds
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tom D Thacher
- Department of Family Medicine, Mayo Clinic, Rochester, MN, USA
| | - John H White
- Departments of Physiology and Medicine, McGill University, Montreal, QC, Canada
| | - Margherita T Cantorna
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
11
|
Bayat M, Tabrizi R, Saied Salehi M, Karimi N, Rahimi M, Hooshmandi E, Razavi Moosavi N, Fadakar N, Borhani-Haghighi A. Association of Long Non-Coding RNA Malat1 with Serum Levels of Interleukin-1 Beta and Vitamin D in Patients with Ischemic Stroke. Galen Med J 2023; 12:1-10. [PMID: 38974129 PMCID: PMC11227647 DOI: 10.31661/gmj.v12i0.2457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 02/10/2022] [Accepted: 05/15/2022] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated the strong association of inflammatory cytokines and vitamin D (VitD) deficiency and ischemic stroke (IS) pathogenesis. Due to the negative correlation between long non-coding RNA (lncRNA) Malat1 and pro-inflammatory factors we decided to investigate the associations between Malat1 expression with serum interleukin-1β (IL-1β), and VitD levels in IS patients. MATERIALS AND METHODS In this cross-sectional study, 63 IS patients were included. We used enzyme-linked immunosorbent assays to evaluate the serum levels of VitD and IL-1β. Malat1 expression was evaluated by the real-time polymerase chain reaction test. The associations between Malat1expression with VitD and IL-1β were analysed with linear regression (Stepwise model) and Pearson's correlation analysis. RESULTS The Malat1 expression was inversely correlated with stroke severity (r=-0.25, P=0.043). Stepwise regression analysis showed a significant positive relationship between VitD level and Malat1 expression (Beta=0.28, P=0.02), and also showed a non-significant negative relationship between IL-1β and stroke severity. VitD level showed a positive Pearson correlation with Malat1 (r=0.28, P=0.023) and a negative correlation with IL-1β (r=-0.29, P=0.018) while it could not detect a significantly negative correlation with stroke severity. CONCLUSION For the first time the associations between Malat1 expression with IL-1β and VitD in IS patients was analyzed. We found a significant positive relationship between VitD and Malat1. This correlation needs to be investigated with a larger sample size to achieve a strong and reliable association between VitD and Malat1.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz,
Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Science, Fasa,
Iran
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz,
Iran
| | - Najmeh Karimi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz,
Iran
- Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moosa Rahimi
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University
of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz,
Iran
| | | | - Nima Fadakar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz,
Iran
- Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
12
|
Borborema MEDA, de Lucena TMC, Silva JDA. Vitamin D and estrogen steroid hormones and their immunogenetic roles in Infectious respiratory (TB and COVID-19) diseases. Genet Mol Biol 2023; 46:e20220158. [PMID: 36745756 PMCID: PMC9901533 DOI: 10.1590/1415-4757-gmb-2022-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/07/2022] [Indexed: 02/08/2023] Open
Abstract
The role of steroid hormones against infectious diseases has been extensively studied. From immunomodulatory action to direct inhibition of microorganism growth, hormones D3 (VD3) and 17β-estradiol (E2), and the genetic pathways modulated by them, are key targets for a better understanding pathogenesis of infectious respiratory diseases (IRD) such as tuberculosis (TB) and the coronavirus disease-19 (COVID-19). Currently, the world faces two major public health problems, the outbreak of COVID-19, accounting for more than 6 million so far, and TB, more than 1 million deaths per year. Both, although resulting from different pathogens, the Mtb and the SARS-CoV-2, respectively, are considered serious and epidemic. TB and COVID-19 present similar infection rates between men and women, however the number of complications and deaths resulting from the two infections is higher in men when compared to women in childbearing age, which may indicate a role of the sex hormone E2 in the context of these diseases. E2 and VD3 act upon key gene pathways as important immunomodulatory players and supporting molecules in IRDs. This review summarizes the main roles of these hormones (VD3 and E2) in modulating immune and inflammatory responses and their relationship with TB and COVID-19.
Collapse
Affiliation(s)
- Maria Eduarda de Albuquerque Borborema
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório de Genética e Biologia Molecular Humana (LGBMH), Recife, PE, Brazil
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| | - Thays Maria Costa de Lucena
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório de Genética e Biologia Molecular Humana (LGBMH), Recife, PE, Brazil
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| | - Jaqueline de Azevêdo Silva
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório de Genética e Biologia Molecular Humana (LGBMH), Recife, PE, Brazil
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| |
Collapse
|
13
|
Matusiak AE, Stępniak J, Lewiński A, Karbownik-Lewińska M. Decreased mannan-binding lectin level in adults with hypopituitarism; dependence on appropriate hormone replacement therapies. Front Immunol 2023; 14:1107334. [PMID: 37122698 PMCID: PMC10130578 DOI: 10.3389/fimmu.2023.1107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Background Mannan-binding lectin (MBL) is a main component of the lectin pathway of the complement system. Although there are some studies showing links between endocrine and immune systems, the ones concerning hypopituitarism are limited. The aim of this study was to check whether there is any association between blood MBL level and pituitary hormone deficiencies and whether this relationship is affected by appropriate hormone replacement therapies. Methods One hundred and twenty (120) inpatients, aged 18-92, were divided into two main groups, i.e. control individuals (21/120) and patients with pituitary diseases (99/120). The latter were diagnosed either with hypopituitarism (n=42) or with other pituitary diseases (not causing hypopituitarism) (n=57). Additionally, hypopituitary patients on appropriate replacement therapies (compensated hypopituitarism) were compared to patients on inappropriate replacement therapies (non-compensated hypopituitarism). Several parameters in blood serum were measured, including MBL level, pituitary and peripheral hormones and different biochemical parameters. Results Serum MBL level was significantly lower in patients with hypopituitarism comparing to controls (1358.97 ± 244.68 vs. 3199.30 ± 508.46, p<0.001) and comparing to other pituitary diseases (1358.97 ± 244.68 vs. 2388.12 ± 294.99, p=0.015) and this association was confirmed by univariate regression analysis. We evaluated the distribution of patients with relation to MBL level; there was a clear difference in this distribution between control individuals (among whom no subjects had MBL level <500 ng/mL) and patients with hypopituitarism (among whom 43% of patients had MBL level <500 ng/mL). Moreover, patients with non-compensated hypopituitarism had lower mean and median MBL levels comparing to patients with compensated hypopituitarism (1055.38 ± 245.73 vs. 2300.09 ± 579.93, p=0.027; 488.51 vs. 1951.89, p=0.009, respectively) and this association was confirmed in univariate regression analysis. However, mean and median MBL levels in patients with compensated hypopituitarism vs. controls did not differ significantly (2300.09 ± 579.93 vs. 3199.30 ± 508.46, p=0.294; 1951.90 vs. 2329.16; p=0.301, respectively). Conclusion Hypopituitarism in adults is associated with a decreased blood concentration of mannan-binding lectin, a phenomenon which does not exist in hypopituitary patients on the appropriate hormone replacement therapies. Therefore measurement of mannan-binding lectin level in patients with hypopituitarism may be considered as a parameter contributing to adjust optimal doses of hormone replacement therapies.
Collapse
Affiliation(s)
- Aleksandra E. Matusiak
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
| | - Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Lodz, Poland
| | - Małgorzata Karbownik-Lewińska
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland
- *Correspondence: Małgorzata Karbownik-Lewińska,
| |
Collapse
|
14
|
Steg A, Oczkowicz M, Smołucha G. Omics as a Tool to Help Determine the Effectiveness of Supplements. Nutrients 2022; 14:nu14245305. [PMID: 36558464 PMCID: PMC9784029 DOI: 10.3390/nu14245305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
There has been considerable interest in dietary supplements in the last two decades. Companies are releasing new specifics at an alarming pace, while dietary supplements are one of the less-studied substances released for public consumption. However, access to state-of-the-art and high-throughput techniques, such as the ones used in omics, make it possible to check the impact of a substance on human transcriptome or proteome and provide answers to whether its use is reasonable and beneficial. In this review, the main domains of omics are briefly introduced. The review focuses on the three most widely used omics techniques: NGS, LC-MS, NMR, and their usefulness in studying dietary supplements. Examples of studies are described for some of the most commonly supplemented substances, such as vitamins: D, E, A, and plant extracts: resveratrol, green tea, ginseng, and curcumin extract. Techniques used in omics have proven to be useful in studying dietary supplements. NGS techniques are helpful in identifying pathways that change upon supplementation and determining polymorphisms or conditions that qualify for the necessity of a given supplementation. LC-MS techniques are used to establish the serum content of supplemented a compound and its effects on metabolites. Both LC-MS and NMR help establish the actual composition of a compound, its primary and secondary metabolites, and its potential toxicity. Moreover, NMR techniques determine what conditions affect the effectiveness of supplementation.
Collapse
|
15
|
Vitamin D supplementation and immune-related markers: an update from nutrigenetic and nutrigenomic studies. Br J Nutr 2022; 128. [PMCID: PMC9557210 DOI: 10.1017/s0007114522002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vitamin D is both a nutrient and a neurologic hormone that plays a critical role in modulating immune responses. While low levels of vitamin D are associated with increased susceptibility to infections and immune-related disorders, vitamin D supplementation has demonstrated immunomodulatory effects that can be protective against various diseases and infections. Vitamin D receptor is expressed in immune cells that have the ability to synthesise the active vitamin D metabolite. Thus, vitamin D acts in an autocrine manner in a local immunologic milieu in fighting against infections. Nutrigenetics and nutrigenomics are the new disciplines of nutritional science that explore the interaction between nutrients and genes using distinct approaches to decipher the mechanisms by which nutrients can influence disease development. Though molecular and observational studies have proved the immunomodulatory effects of vitamin D, only very few studies have documented the molecular insights of vitamin D supplementation. Until recently, researchers have investigated only a few selected genes involved in the vitamin D metabolic pathway that may influence the response to vitamin D supplementation and possibly disease risk. This review summarises the impact of vitamin D supplementation on immune markers from nutrigenetics and nutrigenomics perspective based on evidence collected through a structured search using PubMed, EMBASE, Science Direct and Web of Science. The research gaps and shortcomings from the existing data and future research direction of vitamin D supplementation on various immune-related disorders are discussed.
Collapse
|
16
|
Buttriss JL, Lanham‐New SA. Vitamin D: One hundred years on. NUTR BULL 2022; 47:282-287. [DOI: 10.1111/nbu.12575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 12/28/2022]
Affiliation(s)
| | - Susan A. Lanham‐New
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences University of Surrey Guildford UK
| |
Collapse
|
17
|
Lanham‐New SA, Buttriss JL, Gibson‐Moore H, Staines KA, Webb AR, Cashman KD, Hewison M, Martineau AR, Smith CP, Butler‐Laporte G, Bouillon R. UK
Nutrition Research Partnership ‘Hot Topic’ workshop: Vitamin D—A multi‐disciplinary approach to (1) elucidate its role in human health and (2) develop strategies to improve vitamin D status in the
UK
population. NUTR BULL 2022; 47:246-260. [DOI: 10.1111/nbu.12557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 01/15/2023]
Affiliation(s)
- Susan A. Lanham‐New
- Department of Nutritional Sciences School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | | | | | | | - Ann R. Webb
- Earth and Environmental Sciences University of Manchester Manchester UK
| | - Kevin D. Cashman
- School of Food and Nutritional Sciences University College Cork Cork Ireland
| | - Martin Hewison
- Institute of Metabolism and Systems Research University of Birmingham Birmingham UK
| | - Adrian R. Martineau
- Barts and The London School of Medicine and Dentistry Queen Mary University of London London UK
| | - Colin P. Smith
- Department of Nutritional Sciences School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
- School of Pharmacy and Biomolecular Sciences University of Brighton Brighton UK
| | - Guillaume Butler‐Laporte
- Department of Epidemiology, Biostatistics and Occupational Health McGill University Montreal Quebec Canada
| | - Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium
| |
Collapse
|
18
|
Menéndez SG, Martín Giménez VM, Holick MF, Barrantes FJ, Manucha W. COVID-19 and neurological sequelae: Vitamin D as a possible neuroprotective and/or neuroreparative agent. Life Sci 2022; 297:120464. [PMID: 35271880 PMCID: PMC8898786 DOI: 10.1016/j.lfs.2022.120464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/16/2022]
Abstract
SARS-CoV-2, the etiological agent of the current COVID-19 pandemic, belongs to a broad family of coronaviruses that also affect humans. SARS-CoV-2 infection usually leads to bilateral atypical pneumonia with significant impairment of respiratory function. However, the infectious capacity of SARS-CoV-2 is not limited to the respiratory system, but may also affect other vital organs such as the brain. The central nervous system is vulnerable to cell damage via direct invasion or indirect virus-related effects leading to a neuroinflammatory response, processes possibly associated with a decrease in the activity of angiotensin II converting enzyme (ACE2), the canonical cell-surface receptor for SARS-CoV-2. This enzyme regulates neuroprotective and neuroimmunomodulatory functions and can neutralize both inflammation and oxidative stress generated at the cellular level. Furthermore, there is evidence of an association between vitamin D deficiency and predisposition to the development of severe forms of COVID-19, with its possible neurological and neuropsychiatric sequelae: vitamin D has the ability to down-modulate the effects of neuroinflammatory cytokines, among other anti-inflammatory/immunomodulatory effects, thus attenuating harmful consequences of COVID-19. This review critically analyzes current evidence supporting the notion that vitamin D may act as a neuroprotective and neuroreparative agent against the neurological sequelae of COVID-19.
Collapse
Affiliation(s)
- Sebastián García Menéndez
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina
| | - Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Michael F. Holick
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Medical Campus, 715 Albany St #437, Boston, MA 02118, USA
| | - Francisco J. Barrantes
- Laboratorio de Neurobiología Molecular, Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina,Corresponding author at: Pharmacology Area, Pathology Department, Medical Sciences College, National University of Cuyo, Mendoza CP5500, Argentina
| |
Collapse
|