1
|
Sobolewska B, Poeschel S, Kalbacher H, Bieber K, Paczulla Stanger AM, Stellos K, Ziemssen F. Brolucizumab and Platelet Activation and Reactivity. Curr Eye Res 2025:1-10. [PMID: 39760267 DOI: 10.1080/02713683.2024.2441245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE This study explores the potential interaction of brolucizumab with platelets and its effects on platelet activation and reactivity, crucial in retinal vasculitis and retinal vascular occlusion. Safety concerns remain of interest, although brolucizumab showed superior retinal efficacy and reduced injection frequency compared to other licensed anti-VEGF agents. METHODS Resting and activated platelets of healthy volunteers were pretreated with brolucizumab at the following concentrations 0.6 µg/mL, 3 µg/mL, 6 µg/mL, 300 µg/mL, and 3000 µ/mL or its solvent or PBS. The surface expression of platelet activation markers GPIIb/IIIa and P-selectin was determined by multispectral imaging flow cytometry, which combines flow cytometry and fluorescence microscopy. Two different methods were used to examine the interaction of brolucizumab with platelets: 1) A cross-pretreatment experiment was performed with FITC-labeled brolucizumab and bevacizumab; 2) Resting and activated platelets were pretreated with brolucizumab or its solvent or PBS, followed by anti-brolucizumab antibody generated by rabbit immunization. RESULTS Brolucizumab did not significantly affect platelet activation compared to solvent or PBS, across a range of concentrations. No significant upregulation of CD62P and no activation of the fibrinogen receptor (GPIIb/IIa) were observed in resting and TRAP-activated platelets. After pretreatment with PBS, the level of brolucizumab-FITC was significantly lower in comparison to bevacizumab-FITC (normalized MFI = 3.32, CI = 3.16-3.48 vs. normalized MFI = 7.19, CI = 7.04-7.35; p < 0.001). Both brolucizumab- and bevacizumab-FITC were downregulated after pretreatment with brolucizumab or bevacizumab compared to pretreatment with PBS. Antibodies against brolucizumab did not show any significant difference between pretreatment with brolucizumab and its solvent in resting and TRAP-activated platelets. CONCLUSION Brolucizumab does not appear to directly affect platelet activation or reactivity to thrombin receptor agonists. No platelet interaction was observed after increasing brolucizumab concentrations or anti-brolucizumab antibodies in resting and activated platelets. However, brolucizumab might be taken up in platelets.
Collapse
Affiliation(s)
- B Sobolewska
- Centre for Ophthalmology, Eberhard-Karls University, Tübingen, Germany
| | - S Poeschel
- Department of Internal Medicine II, Core Facility Flow Cytometry of the Medical Faculty Tübingen, University of Tübingen, Tübingen, Germany
| | - H Kalbacher
- Interfaculty Institute of Biochemistry, Eberhard-Karls University of Tuebingen, Tübingen, Germany
| | - K Bieber
- Department of Internal Medicine II, Core Facility Flow Cytometry of the Medical Faculty Tübingen, University of Tübingen, Tübingen, Germany
| | - A M Paczulla Stanger
- Department of Internal Medicine II, Core Facility Flow Cytometry of the Medical Faculty Tübingen, University of Tübingen, Tübingen, Germany
| | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Cardiology, Preventive Cardiology Clinic, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Medicine, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - F Ziemssen
- Centre for Ophthalmology, Eberhard-Karls University, Tübingen, Germany
| |
Collapse
|
2
|
Zeng F, Shao Y, Wu J, Luo J, Yue Y, Shen Y, Wang Y, Shi Y, Wu D, Cata JP, Yang S, Zhang H, Miao C. Tumor metastasis and recurrence: The role of perioperative NETosis. Cancer Lett 2024; 611:217413. [PMID: 39725150 DOI: 10.1016/j.canlet.2024.217413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Although surgical resection of tumor mass remains the mainstay of curative therapeutic management for solid tumors, accumulating studies suggest that these procedures promote tumor recurrence and metastasis. Regarded as the first immune cells to fight against infectious or inflammatory insults from surgery, neutrophils along with their ability of neutrophil extracellular traps (NETs) production has attracted much attention. A growing body of evidence suggests that NETs promote cancer metastasis by stimulating various stages, including local invasion, colonization, and growth. Therefore, we discussed the mechanism of NETosis induced by surgical stress and tumor cells, and the contribution of NETs on tumor metastasis: aid in the tumor cell migration and proliferation, evasion of immune surveillance, circulating tumor cell adhesion and establishment of a metastatic niche. Lastly, we summarized existing NET-targeting interventions, offering recent insights into potential targets for clinical intervention.
Collapse
Affiliation(s)
- Fu Zeng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jingyi Wu
- Department of Anesthesiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Jingwen Luo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yang Shen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, USA; Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Pujian Road 160, Shanghai, 200127, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
3
|
Wang Y, Wang C, Li J. Neutrophil extracellular traps: a catalyst for atherosclerosis. Mol Cell Biochem 2024; 479:3213-3227. [PMID: 38401035 DOI: 10.1007/s11010-024-04931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/26/2024]
Abstract
Neutrophil extracellular traps (NETs) are network-like structures released by activated neutrophils. They consist mainly of double-stranded DNA, histones, and neutrophil granule proteins. Continuous release of NETs in response to external stimuli leads to activation of surrounding platelets and monocytes/macrophages, resulting in damage to endothelial cells (EC) and vascular smooth muscle cells (VSMC). Some clinical trials have demonstrated the association between NETs and the severity and prognosis of atherosclerosis. Furthermore, experimental findings have shed light on the molecular mechanisms by which NETs contribute to atherogenesis. NETs play a significant role in the formation of atherosclerotic plaques. This review focuses on recent advancements in the understanding of the relationship between NETs and atherosclerosis. It explores various aspects, including the formation of NETs in atherosclerosis, clinical trials investigating NET-induced atherosclerosis, the mechanisms by which NETs promote atherogenesis, and the translational implications of NETs. Ultimately, we aim to propose new research directions for the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yinyu Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Cuiping Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jiayan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Hua T, Zhang G, Yao Y, Jia H, Liu W. Research progress of megakaryocytes and platelets in lung injury. Ann Med 2024; 56:2362871. [PMID: 38902986 PMCID: PMC11195464 DOI: 10.1080/07853890.2024.2362871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
The lung is an important site of extramedullary platelet formation, and megakaryocytes in the lung participate in immune responses in addition to platelet production. In acute lung injury and chronic lung injury, megakaryocytes and platelets play a promoting or protective role through different mechanisms. The authors reviewed the role of megakaryocytes and platelets in common clinical lung injuries with different course of disease and different pathogenic factors in order to provide new thinking for the diagnosis and treatment of lung injuries.
Collapse
Affiliation(s)
- Tianzhen Hua
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Guangliang Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yi Yao
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Haoran Jia
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Wei Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
5
|
Polzin A, Benkhoff M, Thienel M, Barcik M, Mourikis P, Shchurovska K, Helten C, Ehreiser V, Zhe Z, von Wulffen F, Theiss A, Peri S, Cremer S, Ahlbrecht S, Zako S, Wildeis L, Al-Kassis G, Metzen D, Utz A, Hu H, Vornholz L, Pavic G, Lüsebrink E, Strecker J, Tiedt S, Cramer M, Gliem M, Ruck T, Meuth SG, Zeus T, Mayr C, Schiller HB, Simon L, Massberg S, Kelm M, Petzold T. Long-term FXa inhibition attenuates thromboinflammation after acute myocardial infarction and stroke by platelet proteome alteration. J Thromb Haemost 2024:S1538-7836(24)00641-X. [PMID: 39551435 DOI: 10.1016/j.jtha.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Immediate activated factor (F)X (FXa) inhibition exerts direct antiplatelet effects in the context of arterial thrombosis but little is known about the impact of long-term therapy on platelet function in ischemic cardiovascular diseases. OBJECTIVES Therefore, we analyzed platelet-derived effects of long-term FXa inhibition in the setting of acute myocardial infarction (AMI) and stroke. METHODS We evaluated the effect of acute versus chronic FXa inhibition on thromboinflammation following AMI and stroke in mice in vivo. Mechanistically, we identified changes in platelet gene expression and proteome under chronic FXa nonvitamin K antagonist oral anticoagulant treatment and characterized its functional consequence on platelet physiology. In a prospectively recruited cohort of patients with AMI, we determined cardiovascular magnetic resonance based cardiac endpoints under FXa nonvitamin K antagonist oral anticoagulant effects on clinical endpoints in a cohort of patients with AMI. RESULTS Chronic but not acute FXa inhibition reduced cerebral and myocardial infarct size and improved cardiac function 24 hours after AMI in mice. Mechanistically, we identified an attenuated thromboinflammatory response with reduced neutrophil extracellular trap formation in mice and patient samples. Proteome and RNA expression analysis of FXa inhibitor treated patients revealed a reduction of key regulators within the membrane trafficking and secretion machinery hampering platelet α and dense granule release. Subsequent, thromboinflammatory neutrophil extracellular trap density in thrombi isolated from stroke and myocardial infarction patients was reduced. Patients with AMI treated with FXa inhibitors showed decreased infarct size after myocardial infarction compared to patients without anticoagulation treatment. CONCLUSION Long-term FXa inhibition induces antithromboinflammatory proteome signatures in platelets, improving infarct size after myocardial infarction and stroke.
Collapse
Affiliation(s)
- Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Düsseldorf, Germany; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Manuela Thienel
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Maike Barcik
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Mourikis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Khrystyna Shchurovska
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Carolin Helten
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vincent Ehreiser
- Deutsches Herzzentrum der Charité University Hospital Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany; Friede Springer, Centre of Cardiovascular Prevention at Charité, Charité University Medicine Berlin, Berlin, Germany
| | - Zhang Zhe
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Franziska von Wulffen
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Alexander Theiss
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Sameera Peri
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Sophie Cremer
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Samantha Ahlbrecht
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Saif Zako
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Laura Wildeis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gabrielle Al-Kassis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Metzen
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Amelie Utz
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hao Hu
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lilian Vornholz
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Goran Pavic
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Enzo Lüsebrink
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Jan Strecker
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Mareike Cramer
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Gliem
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christoph Mayr
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Experimental Pneumology, Ludwig-Maximilians University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Herbert B Schiller
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Experimental Pneumology, Ludwig-Maximilians University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Lukas Simon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA; Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA
| | - Steffen Massberg
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Düsseldorf, Germany
| | - Tobias Petzold
- Deutsches Herzzentrum der Charité University Hospital Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany; Friede Springer, Centre of Cardiovascular Prevention at Charité, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Benkhoff M, Alde K, Ehreiser V, Dahlmanns J, Metzen D, Haurand JM, Duse DA, Jung C, Kelm M, Petzold T, Polzin A. Thromboinflammation is associated with clinical outcome after ST-elevation myocardial infarction. Blood Adv 2024; 8:5581-5589. [PMID: 39226457 PMCID: PMC11541696 DOI: 10.1182/bloodadvances.2024014273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
ABSTRACT Platelets are crucial in thrombus formation during ST-elevation myocardial infarction (STEMI). In addition, they also play an important role in postischemic thromboinflammation, which is determined by the interplay between activated platelets and neutrophils. The latter form neutrophil extracellular traps, which are detectable in plasma as citrullinated histone H3-deoxyribonucleic acid-DNA complexes. Prediction of the risk of recurrent events is important in precision medicine. Therefore, we investigated whether circulating thromboinflammatory markers predict clinical outcome after STEMI. We performed a prospective, multicentric, observational, all-comer study of patients with STEMI (n = 361). Thromboinflammation, measured as H3Cit-DNA complexes, was assessed on day 1 after presentation with STEMI as well as 5 days and 6 months after STEMI by enzyme-linked immunosorbent assay. Twelve months of clinical follow-up was conducted. Multivariate analysis was performed investigating which variables were independently associated with major adverse cardiac events (MACEs). Patients were aged 64 ± 12 years; 80% were male; and 40% had diabetes mellitus. Thromboinflammation was enhanced during index hospitalization compared with 6-months follow-up (137.4 ± 100.0 μg/L vs 53.7 ± 54.7 μg/L; P < .001). Additionally, patients within the highest tertile of thromboinflammation at day 1 after STEMI showed worse outcome during follow-up (hazard ratio, 2.57; 95% confidence interval, 1.72-3.85; P < .001). Receiver operating characteristic analysis revealed a cutoff value of 219.3 μg/L. In multivariate logistic regression analysis, thromboinflammation was independently associated with outcome after STEMI. To sum it up, thromboinflammation is enhanced in STEMI. It identifies patients at high risk of MACE. Therefore, thromboinflammation might be a promising target and marker in precision medicine. The trial was registered at www.clinicaltrials.gov as #NCT03539133.
Collapse
Affiliation(s)
- Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Karin Alde
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vincent Ehreiser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Friede Springer-Centre of Cardiovascular Prevention at Charité, Charité-University Medicine Berlin, Berlin, Germany
| | - Jana Dahlmanns
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Metzen
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jean M. Haurand
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dragos Andrei Duse
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany
| | - Tobias Petzold
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Friede Springer-Centre of Cardiovascular Prevention at Charité, Charité-University Medicine Berlin, Berlin, Germany
| | - Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Zhou L, Jiang W, Hou P, Cai M, Li Z, Wang S. Diagnostic Value of Inflammatory Biomarkers in Intracranial Venous Thrombosis: A Multi-model Predictive Analysis. Cureus 2024; 16:e74070. [PMID: 39712701 PMCID: PMC11660192 DOI: 10.7759/cureus.74070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE Cerebral venous thrombosis (CVT) is a rare but significant condition, primarily affecting young adults, especially women. The diagnosis of CVT is challenging due to its nonspecific clinical presentation. Inflammatory biomarkers, such as the systemic immune-inflammatory index (SII), platelet-to-lymphocyte ratio (PLR), and neutrophil-to-lymphocyte ratio (NLR), may aid in early diagnosis. This study aimed to explore the role of these biomarkers and assess machine learning models for improving diagnostic accuracy. METHODS This study included 100 CVT patients and 50 controls. Data collected included demographic information, biochemical markers, and clinical symptoms. Traditional statistical methods and machine learning models, including decision trees, random forests, AdaBoost, k-nearest neighbors, support vector machines (SVM), and artificial neural networks (ANN), were used to evaluate the diagnostic value of biomarkers. RESULTS The SII and NLR levels were significantly higher in CVT patients. The ANN model based on SII and PLR achieved the best diagnostic performance, with an area under the curve (AUC) of 0.94, showing high accuracy and reliability. CONCLUSION Inflammatory biomarkers, particularly SII, have significant predictive value in CVT diagnosis. Machine learning models, especially ANN, show promise in improving diagnostic accuracy. Future studies with larger sample sizes are needed to validate these findings further.
Collapse
Affiliation(s)
- Longmin Zhou
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital), Fuzhou, CHN
| | - Wenting Jiang
- Department of Neurosurgery, School of Public Health, Shenyang Medical College, Shenyang, CHN
| | - Pengwei Hou
- Department of Neurosurgery, Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital), Jinjiang, CHN
| | - Mingfa Cai
- Department of Neurosurgery, Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital), Jinjiang, CHN
| | - Ziqi Li
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital), Fuzhou, CHN
| | - Shousen Wang
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital), Fuzhou, CHN
| |
Collapse
|
8
|
Rubey KM, Freeman A, Mukhitov AR, Paris AJ, Lin SM, Rue R, Fazelinia H, Spruce LA, Roof J, Brenner JS, Heimall J, Krymskaya VP. Neutrophil-avid nanocarrier uptake by STAT3 dominant-negative hyper-IgE syndrome patient neutrophils. Life Sci Alliance 2024; 7:e202402618. [PMID: 39134362 PMCID: PMC11321353 DOI: 10.26508/lsa.202402618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Recurrent infections are a hallmark of STAT3 dominant-negative hyper-IgE syndrome (STAT3 HIES), a rare immunodeficiency syndrome previously known as Jobs syndrome, along with elevated IgE levels and impaired neutrophil function. We have been developing nanoparticles with neutrophil trophism that home to the sites of infection via these first-responder leukocytes, named neutrophil-avid nanocarriers (NANs). Here, we demonstrate that human neutrophils can phagocytose nanogels (NGs), a type of NAN, with enhanced uptake after particle serum opsonization, comparing neutrophils from healthy individuals to those with STAT3 HIES, where both groups exhibit NG uptake; however, the patient group showed reduced phagocytosis efficiency with serum-opsonized NANs. Proteomic analysis of NG protein corona revealed complement components, particularly C3, as predominant in both groups. Difference between groups includes STAT3 HIES samples with higher neutrophil protein and lower acute-phase protein expression. The study suggests that despite neutrophil dysfunction in STAT3 HIES, NANs have potential for directed delivery of cargo therapeutics to improve neutrophil infection clearance.
Collapse
Affiliation(s)
- Kathryn M Rubey
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexandra Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Andrew J Paris
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Lin
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Rue
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hossein Fazelinia
- The Proteomics Core Facility, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, PA, USA
| | - Lynn A Spruce
- The Proteomics Core Facility, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, PA, USA
| | - Jennifer Roof
- The Proteomics Core Facility, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Heimall
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vera P Krymskaya
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Venetsanopoulou AI, Ntinopoulou M, Papagianni E, Koletsos N, Voulgari PV, Chrysanthopoulou A. Neutrophil extracellular traps as immunofibrotic mediators in RA-ILD; pilot evaluation of the nintedanib therapy. Front Immunol 2024; 15:1480594. [PMID: 39507540 PMCID: PMC11538023 DOI: 10.3389/fimmu.2024.1480594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Objective Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a significant pulmonary complication of RA. This study tried to elucidate the mechanisms enhancing inflammation and causing lung injury in RA-ILD, focusing on the role of neutrophil extracellular traps (NETs). The study also investigated the potential benefits of nintedanib in advanced disease. Methods Nine RA-ILD patients and nine healthy controls were included in the study. Inflammatory markers in patients' circulation were evaluated with immunoassays. The formation of NETs was examined using a citrullinated histone H3 (CitH3) ELISA and cell immunofluorescence. Inflammatory proteins expressed in neutrophils/NETs were studied with real-time qPCR and NET ELISA. To assess the effect of nintedanib, an intracellular tyrosine kinase inhibitor with antifibrotic properties, in RA-ILD a paired study was conducted in five patients before treatment administration and 16 weeks later. Results The soluble terminal complement complex sC5b-9 and the levels of CitH3 were significantly elevated in patients with RA-ILD, compared to healthy controls. In addition, neutrophils isolated from RA-ILD patients released NETs enriched with tissue factor and interleukin-17A. Inflammatory NETs had a dynamic role, increasing the fibrotic potential of human pulmonary fibroblasts (HPFs). On the other hand, nintedanib treatment decreased NETs and sC5b-9 levels in RA-ILD patients. Conclusion The findings propose an interplay between circulating NETs and HPFs, establishing the immunofibrotic aspects of RA-ILD. They also support the effectiveness of nintedanib in reducing key pathological processes of the disease. Further research is needed to fully understand these mechanisms and optimize treatment strategies for RA-ILD.
Collapse
Affiliation(s)
- Aliki I. Venetsanopoulou
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Maria Ntinopoulou
- Laboratory of Molecular Immunology, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Eleni Papagianni
- Laboratory of Molecular Immunology, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Koletsos
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paraskevi V. Voulgari
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Akrivi Chrysanthopoulou
- Laboratory of Molecular Immunology, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
10
|
Zeng X, Li J, Pei L, Yang Y, Chen Y, Wang X, Zhang T, Zhou T. Didang decoction attenuates cancer-associated thrombosis by inhibiting PAD4-dependent NET formation in lung cancer. Pulm Circ 2024; 14:e12454. [PMID: 39386377 PMCID: PMC11462072 DOI: 10.1002/pul2.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
This research aims to investigate the impact of Didang decoction (DD) on the formation of neutrophil extracellular traps (NETs) and cancer-associated thrombosis in lung cancer. BALB/c nude mice were used to establish xenograft models for inducing deep vein thrombosis. Tumor growth and thrombus length were assessed. The impact of DD on NET generation was analyzed using enzyme-linked immunosorbent assay, immunofluorescence staining, quantitative real-time PCR, and western blot analysis, both in vivo and in vitro. CI-amidine, a PAD4 inhibitor, was employed to evaluate the role of PAD4 in the generation of NETs. In vivo studies demonstrated that treatment with DD reduced tumor growth, inhibited thrombus formation, and decreased the levels of NET markers in the serum, tumor tissues, neutrophils, and thrombus tissues of mice. Additional data indicated that DD could suppress neutrophil counts, the release of tissue factor (TF), and the activation of thrombin-activated platelets, all of which contributed to increased formation of NETs in mouse models. In vitro, following incubation with conditioned medium (CM) derived from Lewis lung carcinoma cells, the expression of NET markers in neutrophils was significantly elevated, and an extracellular fibrous network structure was observed. Nevertheless, these NET-associated changes were partially counteracted by DD. Additionally, CI-amidine reduced the expression of NET markers in CM-treated neutrophils, consistent with the effects of DD. Collectively, DD inhibits cancer-associated thrombosis in lung cancer by decreasing PAD4-dependent NET formation through the regulation of TF-mediated thrombin-platelet activation. This presents a promising therapeutic strategy for preventing and treating venous thromboembolism in lung cancer.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Department of Clinical Chinese Pharmacy, College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Jiuxi Li
- College of Acupuncture, Massage and RehabilitationHunan University of Chinese MedicineChangshaHunanChina
| | - Liyuan Pei
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Yaping Yang
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Ya Chen
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Xuejing Wang
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Ting Zhang
- Cardiovascular DepartmentHunan Provincial Hospital of Integrated Traditional Chinese and Western MedicineChangshaHunanChina
| | - Ting Zhou
- Department of Clinical Chinese Pharmacy, College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| |
Collapse
|
11
|
Thiem DGE, Stephan D, Ziebart A, Ruemmler R, Riedel J, Vinayahalingam S, Al-Nawas B, Blatt S, Kämmerer PW. Effects of volume management on free flap perfusion and metabolism in a large animal model study. Lab Anim (NY) 2024; 53:268-275. [PMID: 39122993 PMCID: PMC11439732 DOI: 10.1038/s41684-024-01410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/27/2024] [Indexed: 08/12/2024]
Abstract
Free flap failure represents a substantial clinical burden. The role of intraoperative volume management remains controversial, with valid studies lacking. Here, using a large animal model, we investigated the influence of volume management on free flap perfusion and metabolism. Autotransfer of a musculocutaneous gracilis flap was performed on 31 German domestic pigs, with arterial anastomosis and catheterization of the pedicle vein for sequential blood sampling. Flap reperfusion was followed by induction of a hemorrhagic shock with maintenance for 30 min and subsequent circulation stabilization with crystalloid solution, crystalloid solution and catecholamine, autotransfusion or colloidal solution. Flap perfusion and oxygenation were periodically assessed using hyperspectral imaging. Flap metabolism was assessed via periodic blood gas analyses. Hyperspectral imaging revealed no difference in either superficial or deep tissue oxygen saturation, tissue hemoglobin or tissue water content between the test groups at any time point. Blood gas analyses showed that lactate levels were significantly increased in the group that received crystalloid solution and catecholamine, after circulatory stabilization and up to 2 h after. We conclude that, in hemorrhagic shock, volume management impacts acid-base balance in free flaps. Crystalloid solutions with norepinephrine increase lactate levels, yet short-term effects on flap perfusion seem minimal, suggesting that vasopressors are not detrimental.
Collapse
Affiliation(s)
- Daniel G E Thiem
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Daniel Stephan
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Ziebart
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Robert Ruemmler
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julian Riedel
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Shankeeth Vinayahalingam
- Department of Oral and Maxillofacial Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Rodriguez Moore G, Melo-Escobar I, Stegner D, Bracko O. One immune cell to bind them all: platelet contribution to neurodegenerative disease. Mol Neurodegener 2024; 19:65. [PMID: 39334369 PMCID: PMC11438031 DOI: 10.1186/s13024-024-00754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) and related dementias (ADRD) collectively affect a significant portion of the aging population worldwide. The pathological progression of AD involves not only the classical hallmarks of amyloid beta (Aβ) plaque buildup and neurofibrillary tangle development but also the effects of vasculature and chronic inflammatory processes. Recently, platelets have emerged as central players in systemic and neuroinflammation. Studies have shown that patients with altered platelet receptor expression exhibit accelerated cognitive decline independent of traditional risk factors. Additionally, platelets from AD patients exhibit heightened unstimulated activation compared to control groups. Platelet granules contain crucial AD-related proteins like tau and amyloid precursor protein (APP). Dysregulation of platelet exocytosis contributes to disease phenotypes characterized by increased bleeding, stroke, and cognitive decline risk. Recent studies have indicated that these effects are not associated with the quantity of platelets present in circulation. This underscores the hypothesis that disruptions in platelet-mediated inflammation and healing processes may play a crucial role in the development of ADRD. A thorough look at platelets, encompassing their receptors, secreted molecules, and diverse roles in inflammatory interactions with other cells in the circulatory system in AD and ADRD, holds promising prospects for disease management and intervention. This review discusses the pivotal roles of platelets in ADRD.
Collapse
Affiliation(s)
| | - Isabel Melo-Escobar
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
13
|
Yu J, Ye H, Li Y, Hua S, Liu J, Li H, Wang Y, Mao H. Higher Platelet Count Mostly in the Normal Range Is Associated with the First Episode of Peritonitis Risk in Incident Peritoneal Dialysis Patients. Kidney Blood Press Res 2024; 49:863-873. [PMID: 39312892 DOI: 10.1159/000541567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION Platelets play parts in infection and immune processes. However, the association between platelet count and the risk of peritoneal dialysis (PD)-associated peritonitis is unclear. METHODS This was a retrospective, observational, single-center cohort study. A Cox regression analysis was used to evaluate the independent association of platelet count with the occurrence of first PD-associated peritonitis. Models were adjusted for gender, age, body mass index, cardiovascular disease, diabetes mellitus, white blood cell count, neutrophil-lymphocyte ratio, hemoglobin level, albumin level, potassium level, and anti-platelet medication usage. RESULTS A total of 2,374 patients were enrolled in this study (59% men; mean age 47.40 ± 12.12). The average platelet count was 229.30 ± 82.12 × 109/L. 467 (20%) patients suffered from PD-associated peritonitis at least once. In the multivariable model, the adjusted hazard ratios (HRs) for quartiles 2, 3 and 4 versus quartile 1 were 1.428 (95% CI 1.060-1.924, p = 0.019), 1.663 (95% CI 1.240-2.229, p < 0.001) and 1.843 (95% CI 1.363-2.492, p < 0.001) with baseline data. A nonlinear relationship between platelet count and first PD-associated peritonitis was observed. Further, the association between platelet and first PD-associated peritonitis was significant in the patients with hypokalemia (P for interaction = 0.040). CONCLUSION In PD patients, elevated platelet counts were significantly associated with an increased risk of the first onset of PD-associated peritonitis.
Collapse
Affiliation(s)
- Jing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China,
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China,
| | - Hongjian Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yi Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Shun Hua
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Jiaqi Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Hongyu Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yating Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
14
|
Kindberg KM, Broch K, Andersen GØ, Anstensrud AK, Åkra S, Woxholt S, Tøllefsen IM, Ueland T, Amundsen BH, Kløw NE, Halvorsen B, Dahl TB, Huse C, Murphy SL, Damås JK, Opdahl A, Wiseth R, Gullestad L, Aukrust P, Santos-Gallego C, Seljeflot I, Stokke MK, Helseth R. Neutrophil Extracellular Traps in ST-Segment Elevation Myocardial Infarction: Reduced by Tocilizumab and Associated With Infarct Size. JACC. ADVANCES 2024; 3:101193. [PMID: 39247678 PMCID: PMC11378880 DOI: 10.1016/j.jacadv.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024]
Abstract
Background Interleukin-6-receptor inhibition with tocilizumab improves myocardial salvage in patients with ST-segment elevation myocardial infarction (STEMI). Reduced levels of neutrophil extracellular traps (NETs), which consist of nuclear material studded with proteins released upon neutrophil activation, might contribute to this effect. Objectives The purpose of this study was to evaluate the effect of tocilizumab on NETs and investigate the association between NETs and myocardial injury in patients with STEMI. Methods In the ASSAIL-MI study, 199 patients with STEMI were randomized to tocilizumab or placebo during percutaneous coronary intervention. In this substudy, we analyzed blood levels of the NET markers double-stranded deoxyribonucleic acid (dsDNA), myeloperoxidase-DNA, and citrullinated histone 3 (H3Cit) at admission and after 24 hours and 3 to 7 days. In a subgroup of patients, we assessed regulation of transcripts related to the formation of NETs. We also investigated associations between NET markers and the myocardial salvage index (MSI). Results All NET markers were lower in the tocilizumab group than in the placebo group at 3 to 7 days (all P < 0.04). Several NET-related pathways were downregulated in the tocilizumab group. The beneficial effect of tocilizumab on the MSI seemed to be partly dependent on reduction of NETs (structural equation modeling: 0.05, P = 0.001 [dsDNA] and 0.02, P = 0.055 [H3Cit]). Patients with NETs in the 3 lowest quartiles had higher MSI than patients in quartile 4 (10.9 [95% CI: 4.0-15.0] [dsDNA] and 8.9 [95% CI: 2.0-15.9] [H3Cit], both P = 0.01). Conclusions NETs were reduced by tocilizumab and associated with myocardial injury. The effect of tocilizumab on MSI might be mediated through reduced NETs. (ASSessing the Effect of Anti-IL-6 Treatment in Myocardial Infarction: The ASSAIL-MI Trial [ASSAIL-MI]; NCT03004703).
Collapse
Affiliation(s)
- Kristine Mørk Kindberg
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevaal, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K. G. Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | | | - Anne Kristine Anstensrud
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Sissel Åkra
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Sindre Woxholt
- Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K. G. Jebsen Thrombosis Research and Expertise Center (TREC), The Arctic University of Norway, Tromsø, Norway
| | - Brage Høyem Amundsen
- Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nils-Einar Kløw
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Radiology, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Bente Halvorsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Camilla Huse
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Louise Murphy
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jan Kristian Damås
- Department of Infectious Disease, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anders Opdahl
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Rune Wiseth
- Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lars Gullestad
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K. G. Jebsen Cardiac Research Centre, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Carlos Santos-Gallego
- AtheroThrombosis Research Unit, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ingebjørg Seljeflot
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevaal, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mathis Korseberg Stokke
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ragnhild Helseth
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital Ullevaal, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
| |
Collapse
|
15
|
Dumitrescu G, Antovic J, Soutari N, Gran C, Antovic A, Al-Abani K, Grip J, Rooyackers O, Taxiarchis A. The role of complement and extracellular vesicles in the development of pulmonary embolism in severe COVID-19 cases. PLoS One 2024; 19:e0309112. [PMID: 39178205 PMCID: PMC11343408 DOI: 10.1371/journal.pone.0309112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024] Open
Abstract
Complement and extracellular vesicles (EVs) association with thrombogenic tendencies is acknowledged, but limited evidence exists for their link to COVID-19 venous thromboembolism. This study aims to examine the relationship between pulmonary embolism and the expression of complement and other proteins related to thrombogenesis in severe Covid-19 patients. We included prospectively 207 severe COVID-19 patients and retrospectively screened for pulmonary embolism (PE). This analysis comprises 20 confirmed PE cases and 20 matched patients without PE. Blood samples taken at the admission in the intensive care unit were analyzed for complement using ELISA. EVs derived from neutrophils, endothelium, or platelets, as well carrying complement or tissue factor were analyzed using flow cytometry. Complement levels were markedly elevated, with a notable increase in C3a and Terminal Complement Complex. The most prevalent EV population was identified as tissue factor (TF)-carrying EVs which peaked in patients with PE during ICU days 4-9. However, for both the complement and analyzed EV populations, no statistically significant differences were found between the patients who developed pulmonary embolism and those who did not. In conclusion, complement factors and EVs expressing tissue factor, along with EVs derived from endothelial cells and platelets, are elevated in severe COVID-19 patients, regardless of the presence of pulmonary embolism. However, the involvement of complement and procoagulant EVs in peripheral plasma in the development of pulmonary embolism is still unclear and requires further investigation.
Collapse
Affiliation(s)
- Gabriel Dumitrescu
- Division of Anaesthesia and Intensive Care, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Perioperative and Intensive Care Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jovan Antovic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Nida Soutari
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Gran
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Aleksandra Antovic
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, and Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Kais Al-Abani
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan Grip
- Division of Anaesthesia and Intensive Care, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Perioperative and Intensive Care Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Rooyackers
- Division of Anaesthesia and Intensive Care, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Perioperative and Intensive Care Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Apostolos Taxiarchis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Mu S, Li Z, Lin L, Wang D, Yang F, Chen L, Xian L, Lin K, Lin Y, Ye D, Yang Y, Wei L, Xu Y, Wang S. SIRT1-Mediated HMGB1 Deacetylation Suppresses Neutrophil Extracellular Traps Related to Blood-Brain Barrier Impairment After Cerebral Venous Thrombosis. Mol Neurobiol 2024; 61:6060-6076. [PMID: 38267754 DOI: 10.1007/s12035-024-03959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Cerebral venous thrombosis (CVT) is a neurovascular disease with recently increasing incidence. Aseptic inflammatory responses play an important role in the pathology of CVT. Recent studies report that neutrophil extracellular traps (NETs) are major triggers of thrombosis and inflammation in stroke, but their effect on brain injury in CVT requires further validation. In this study, two CVT animal models were used to simulate superior sagittal sinus thrombosis and cortical vein thrombosis. The effects of brain tissue infiltration of NETs and the molecular mechanisms associated with NET formation were deeply explored in combination with proteomics, histology, and serology. The results showed that the cortical vein thrombosis model could be combined with more severe blood-brain barrier (BBB) disruption and showed more severe cerebral hemorrhage. Decreased Sirtuin 1 (SIRT1) expression promotes high mobility group box 1 (HMGB1) acetylation, causing increased cytosolic translocation and extracellular release, and HMGB1 can promote NET formation and recruitment. In addition, corticocerebral accumulation of NETs contributes to BBB damage. This establishes a vicious cycle between BBB damage and NET accumulation. SIRT1 mediated-HMGB1 deacetylation may play a critical role in attenuating BBB damage following CVT. This study employed a combined validation using models of venous sinus thrombosis and cortical vein thrombosis to investigate the deacetylation role of SIRT1, aiming to offer new insights into the pathological mechanisms of brain injury following CVT.
Collapse
Affiliation(s)
- Shuwen Mu
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Ziqi Li
- Department of Neurosurgery, School of Medicine, Dongfang Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, China
| | - Long Lin
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Di Wang
- Department of Molecular Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Li Chen
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Liang Xian
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Kunzhe Lin
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Yinghong Lin
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Dan Ye
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yang Yang
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Liangfeng Wei
- Department of Neurosurgery, 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Yongjun Xu
- Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China.
- Laboratory of Basic Medicine, 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China.
| | - Shousen Wang
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China.
- Department of Neurosurgery, 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China.
| |
Collapse
|
17
|
Takada YK, Wu X, Wei D, Hwang S, Takada Y. FGF1 Suppresses Allosteric Activation of β3 Integrins by FGF2: A Potential Mechanism of Anti-Inflammatory and Anti-Thrombotic Action of FGF1. Biomolecules 2024; 14:888. [PMID: 39199276 PMCID: PMC11351609 DOI: 10.3390/biom14080888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Several inflammatory cytokines bind to the allosteric site (site 2) and allosterically activate integrins. Site 2 is also a binding site for 25-hydroxycholesterol, an inflammatory lipid mediator, and is involved in inflammatory signaling (e.g., TNF and IL-6 secretion) in addition to integrin activation. FGF2 is pro-inflammatory and pro-thrombotic, and FGF1, homologous to FGF2, has anti-inflammatory and anti-thrombotic actions, but the mechanism of these actions is unknown. We hypothesized that FGF2 and FGF1 bind to site 2 of integrins and regulate inflammatory signaling. Here, we describe that FGF2 is bound to site 2 and allosterically activated β3 integrins, suggesting that the pro-inflammatory action of FGF2 is mediated by binding to site 2. In contrast, FGF1 bound to site 2 but did not activate these integrins and instead suppressed integrin activation induced by FGF2, indicating that FGF1 acts as an antagonist of site 2 and that the anti-inflammatory action of FGF1 is mediated by blocking site 2. A non-mitogenic FGF1 mutant (R50E), which is defective in binding to site 1 of αvβ3, suppressed β3 integrin activation by FGF2 as effectively as WT FGF1.
Collapse
Affiliation(s)
- Yoko K. Takada
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - Xuesong Wu
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - David Wei
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - Samuel Hwang
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - Yoshikazu Takada
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
- Department of Biochemistry and Molecular Medicine, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
18
|
Wang C, Fan X, Nie L, Wang Q, Li S, Zheng W, Zhang W, Dai W, Chen M. Efficacy and Safety of Rivaroxaban for Extremely Aged Patients with Venous Thromboembolism: A Retrospective, Cross-Sectional Real-World Study. Clin Interv Aging 2024; 19:1103-1116. [PMID: 38915432 PMCID: PMC11194160 DOI: 10.2147/cia.s405075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Background Rivaroxaban, a non-vitamin K antagonist oral anticoagulant, has become widely used for the management of venous thromboembolism (VTE) in adult patients. However, few trials have explored the efficacy and safety of rivaroxaban in VTE patients over 80 years of age. This necessitates further real-world studies of rivaroxaban across elderly populations. Methods We performed a retrospective single center study involving extremely aged VTE sufferers treated with rivaroxaban. The sample comprised 121 patients newly initiated on rivaroxaban diagnosed between January 2018 and January 2020. Patients were followed up for no less than 2 years. The effectiveness outcome was the disappearance of thromboembolism. The safety outcome was the incidence of major bleeding events. Comorbidities and complications were recorded throughout the entire study. Results The efficacy outcome occurred in 114 of 121 patients (94.21%) and the safety outcome occurred in 12 of 121 patients (9.91%). Increased hemorrhages were observed in patients with infection (15.15% vs 7.80%), but no significant difference was observed due to limited sample size (P=0.3053). Patients with an age-adjusted Charlson comorbidity index score higher than 6 points exhibited higher bleeding rates (14.08% vs 4.00%; P=0.0676) and lower thrombus cure rates (88.73% vs 100%; P=0.0203). Key conclusions Patients with infection should be more careful of bleeding events during rivaroxaban therapy. An age-adjusted Charlson comorbidity index score higher than 6, which predicted poor survival, indicated inferior safety and efficacy of rivaroxaban. Aim To investigate the efficacy and safety of Rivaroxaban in an aged venous thromboembolism patient population under real-world conditions.
Collapse
Affiliation(s)
- Chun Wang
- Department of Geriatric Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Xiaohong Fan
- Department of Geriatric Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Li Nie
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Qing Wang
- Department of Geriatric Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Shanshan Li
- Department of Geriatric Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Wen Zheng
- Department of Geriatric Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Wei Zhang
- Department of Geriatric Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Wangshu Dai
- Department of Geriatric Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Minmin Chen
- Department of Geriatric Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
19
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
20
|
Mahmoodi M, Mohammadi Henjeroei F, Hassanshahi G, Nosratabadi R. Do chemokine/chemokine receptor axes play paramount parts in trafficking and oriented locomotion of monocytes/macrophages toward the lungs of COVID-19 infected patients? A systematic review. Cytokine 2024; 175:156497. [PMID: 38190792 DOI: 10.1016/j.cyto.2023.156497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
The COVID-19 (coronavirus disease 2019) is a well-defined viral infection, resulting from SARS-CoV-2 (severe acute respiratory syndrome- coronavirus-2). The innate immune system serves as the first line of defense to limit viral spreading and subsequently stimulate adaptive immune responses by the prominent aids of its cellular and molecular arms. Monocytes are defined as the most prominent innate immune cells (IICs) that are reactive against invading pathogens. These cells support host protection against the virus that is mediated by several non-specific mechanisms such as phagocytosis, producing antiviral enzymes, and recruitment of immune cells toward and into the infected tissues. They have the ability to egress from blood and migrate to the SARS-CoV-2 infected regions by the aid of some defense-related functions like chemotaxis, which is mediated by chemical compounds, e.g., chemokines. Chemokines, in addition to their related ligands are categorized within the most important and deserved agents involved in oriented trafficking of monocytes/macrophages towards and within the lung parenchyma in both steady state and pathological circumstances, including COVID-19-raised infection. However, the overexpression of chemokines could have deleterious effects on various organs through the induction of cytokine storm and may be the most important leading mechanisms in the pathogenesis of COVID-19. Authors have aimed the current review article to describe present knowledge about the interplay between monocytes/macrophages and SARS-CoV-2 with a focus on the ability of IICs to migrate and home into the lung of COVID-19 patients through various chemokine-chemokine receptor axes to promote our understanding regarding this disease.
Collapse
Affiliation(s)
- Merat Mahmoodi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Mohammadi Henjeroei
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, RafsanjanUniversity of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
21
|
Li Q, Nie H. Advances in lung ischemia/reperfusion injury: unraveling the role of innate immunity. Inflamm Res 2024; 73:393-405. [PMID: 38265687 DOI: 10.1007/s00011-023-01844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Lung ischemia/reperfusion injury (LIRI) is a common occurrence in clinical practice and represents a significant complication following pulmonary transplantation and various diseases. At the core of pulmonary ischemia/reperfusion injury lies sterile inflammation, where the innate immune response plays a pivotal role. This review aims to investigate recent advancements in comprehending the role of innate immunity in LIRI. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning lung ischemia/reperfusion injury, cell death, damage-associated molecular pattern molecules (DAMPs), innate immune cells, innate immunity, inflammation. RESULTS During the process of lung ischemia/reperfusion, cellular injury even death can occur. When cells are injured or undergo cell death, endogenous ligands known as DAMPs are released. These molecules can be recognized and bound by pattern recognition receptors (PRRs), leading to the recruitment and activation of innate immune cells. Subsequently, a cascade of inflammatory responses is triggered, ultimately exacerbating pulmonary injury. These steps are complex and interrelated rather than being in a linear relationship. In recent years, significant progress has been made in understanding the immunological mechanisms of LIRI, involving novel types of cell death, the ability of receptors other than PRRs to recognize DAMPs, and a more detailed mechanism of action of innate immune cells in ischemia/reperfusion injury (IRI), laying the groundwork for the development of novel diagnostic and therapeutic approaches. CONCLUSIONS Various immune components of the innate immune system play critical roles in lung injury after ischemia/reperfusion. Preventing cell death and the release of DAMPs, interrupting DAMPs receptor interactions, disrupting intracellular inflammatory signaling pathways, and minimizing immune cell recruitment are essential for lung protection in LIRI.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
22
|
Valencia I, Lumpuy-Castillo J, Magalhaes G, Sánchez-Ferrer CF, Lorenzo Ó, Peiró C. Mechanisms of endothelial activation, hypercoagulation and thrombosis in COVID-19: a link with diabetes mellitus. Cardiovasc Diabetol 2024; 23:75. [PMID: 38378550 PMCID: PMC10880237 DOI: 10.1186/s12933-023-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Early since the onset of the COVID-19 pandemic, the medical and scientific community were aware of extra respiratory actions of SARS-CoV-2 infection. Endothelitis, hypercoagulation, and hypofibrinolysis were identified in COVID-19 patients as subsequent responses of endothelial dysfunction. Activation of the endothelial barrier may increase the severity of the disease and contribute to long-COVID syndrome and post-COVID sequelae. Besides, it may cause alterations in primary, secondary, and tertiary hemostasis. Importantly, these responses have been highly decisive in the evolution of infected patients also diagnosed with diabetes mellitus (DM), who showed previous endothelial dysfunction. In this review, we provide an overview of the potential triggers of endothelial activation related to COVID-19 and COVID-19 under diabetic milieu. Several mechanisms are induced by both the viral particle itself and by the subsequent immune-defensive response (i.e., NF-κB/NLRP3 inflammasome pathway, vasoactive peptides, cytokine storm, NETosis, activation of the complement system). Alterations in coagulation mediators such as factor VIII, fibrin, tissue factor, the von Willebrand factor: ADAMST-13 ratio, and the kallikrein-kinin or plasminogen-plasmin systems have been reported. Moreover, an imbalance of thrombotic and thrombolytic (tPA, PAI-I, fibrinogen) factors favors hypercoagulation and hypofibrinolysis. In the context of DM, these mechanisms can be exacerbated leading to higher loss of hemostasis. However, a series of therapeutic strategies targeting the activated endothelium such as specific antibodies or inhibitors against thrombin, key cytokines, factor X, complement system, the kallikrein-kinin system or NETosis, might represent new opportunities to address this hypercoagulable state present in COVID-19 and DM. Antidiabetics may also ameliorate endothelial dysfunction, inflammation, and platelet aggregation. By improving the microvascular pathology in COVID-19 and post-COVID subjects, the associated comorbidities and the risk of mortality could be reduced.
Collapse
Affiliation(s)
- Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, 28009, Madrid, Spain.
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Giselle Magalhaes
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain.
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain.
| |
Collapse
|
23
|
Montone RA, Camilli M, Calvieri C, Magnani G, Bonanni A, Bhatt DL, Rajagopalan S, Crea F, Niccoli G. Exposome in ischaemic heart disease: beyond traditional risk factors. Eur Heart J 2024; 45:419-438. [PMID: 38238478 PMCID: PMC10849374 DOI: 10.1093/eurheartj/ehae001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
Ischaemic heart disease represents the leading cause of morbidity and mortality, typically induced by the detrimental effects of risk factors on the cardiovascular system. Although preventive interventions tackling conventional risk factors have helped to reduce the incidence of ischaemic heart disease, it remains a major cause of death worldwide. Thus, attention is now shifting to non-traditional risk factors in the built, natural, and social environments that collectively contribute substantially to the disease burden and perpetuate residual risk. Of importance, these complex factors interact non-linearly and in unpredictable ways to often enhance the detrimental effects attributable to a single or collection of these factors. For this reason, a new paradigm called the 'exposome' has recently been introduced by epidemiologists in order to define the totality of exposure to these new risk factors. The purpose of this review is to outline how these emerging risk factors may interact and contribute to the occurrence of ischaemic heart disease, with a particular attention on the impact of long-term exposure to different environmental pollutants, socioeconomic and psychological factors, along with infectious diseases such as influenza and COVID-19. Moreover, potential mitigation strategies for both individuals and communities will be discussed.
Collapse
Affiliation(s)
- Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Giulia Magnani
- Department of Medicine, University of Parma, Parma, Italy
| | - Alice Bonanni
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168 Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | | |
Collapse
|
24
|
Tohidi-Esfahani I, Mittal P, Isenberg D, Cohen H, Efthymiou M. Platelets and Thrombotic Antiphospholipid Syndrome. J Clin Med 2024; 13:741. [PMID: 38337435 PMCID: PMC10856779 DOI: 10.3390/jcm13030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Antiphospholipid antibody syndrome (APS) is an autoimmune disorder characterised by thrombosis and the presence of antiphospholipid antibodies (aPL): lupus anticoagulant and/or IgG/IgM anti-β2-glycoprotein I and anticardiolipin antibodies. APS carries significant morbidity for a relatively young patient population from recurrent thrombosis in any vascular bed (arterial, venous, or microvascular), often despite current standard of care, which is anticoagulation with vitamin K antagonists (VKA). Platelets have established roles in thrombosis at any site, and platelet hyperreactivity is clearly demonstrated in the pathophysiology of APS. Together with excess thrombin generation, platelet activation and aggregation are the common end result of all the pathophysiological pathways leading to thrombosis in APS. However, antiplatelet therapies play little role in APS, reserved as a possible option of low dose aspirin in addition to VKA in arterial or refractory thrombosis. This review outlines the current evidence and mechanisms for excessive platelet activation in APS, how it plays a central role in APS-related thrombosis, what evidence for antiplatelets is available in clinical outcomes studies, and potential future avenues to define how to target platelet hyperreactivity better with minimal impact on haemostasis.
Collapse
Affiliation(s)
- Ibrahim Tohidi-Esfahani
- Haematology Department, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Prabal Mittal
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Haemostasis Research Unit, Department of Haematology, University College London, London WC1E 6DD, UK;
| | - David Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Hannah Cohen
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Haemostasis Research Unit, Department of Haematology, University College London, London WC1E 6DD, UK;
| | - Maria Efthymiou
- Haemostasis Research Unit, Department of Haematology, University College London, London WC1E 6DD, UK;
| |
Collapse
|
25
|
Xuan N, Zhao J, Kang Z, Cui W, Tian BP. Neutrophil extracellular traps and their implications in airway inflammatory diseases. Front Med (Lausanne) 2024; 10:1331000. [PMID: 38283037 PMCID: PMC10811107 DOI: 10.3389/fmed.2023.1331000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are essential for immune defense and have been increasingly recognized for their role in infection and inflammation. In the context of airway inflammatory diseases, there is growing evidence suggesting the involvement and significance of NETs. This review aims to provide an overview of the formation mechanisms and components of NETs and their impact on various airway inflammatory diseases, including acute lung injury/ARDS, asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. By understanding the role of NETs in airway inflammation, we can gain valuable insights into the underlying pathogenesis of these diseases and identify potential targets for future therapeutic strategies that either target NETs formation or modulate their harmful effects. Further research is warranted to elucidate the complex interactions between NETs and airway inflammation and to develop targeted therapies that can effectively mitigate their detrimental effects while preserving their beneficial functions in host defense.
Collapse
Affiliation(s)
- Nanxia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhiying Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Samridhi, Setia A, Mehata AK, Priya V, Pradhan A, Prasanna P, Mohan S, Muthu MS. Nanoparticles for Thrombus Diagnosis and Therapy: Emerging Trends in Thrombus-theranostics. Nanotheranostics 2024; 8:127-149. [PMID: 38328614 PMCID: PMC10845253 DOI: 10.7150/ntno.92184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/09/2023] [Indexed: 02/09/2024] Open
Abstract
Cardiovascular disease is one of the chief factors that cause ischemic stroke, myocardial infarction, and venous thromboembolism. The elements that speed up thrombosis include nutritional consumption, physical activity, and oxidative stress. Even though the precise etiology and pathophysiology remain difficult topics that primarily rely on traditional medicine. The diagnosis and management of thrombosis are being developed using discrete non-invasive and non-surgical approaches. One of the emerging promising approach is ultrasound and photoacoustic imaging. The advancement of nanomedicines offers concentrated therapy and diagnosis, imparting efficacy and fewer side effects which is more significant than conventional medicine. This study addresses the potential of nanomedicines as theranostic agents for the treatment of thrombosis. In this article, we describe the factors that lead to thrombosis and its consequences, as well as summarize the findings of studies on thrombus formation in preclinical and clinical models and also provide insights on nanoparticles for thrombus imaging and therapy.
Collapse
Affiliation(s)
- Samridhi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Aditi Pradhan
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Pragya Prasanna
- National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| |
Collapse
|
27
|
Chooklin S, Chuklin S. The role of neutrophil extracellular traps in thrombosis. EMERGENCY MEDICINE 2023; 19:448-457. [DOI: 10.22141/2224-0586.19.7.2023.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
According to the cellular model of hemostasis, the process of blood coagulation is presented in the form of three phases: initiation, amplification and propagation, each of them includes several consecutive stages. At the same time, thrombus formation is often explained by Virchow’s triad: blood stasis, damage to the blood vessel walls, and hypercoagulation. Classically, the appearance of one of the three mentioned parameters can lead to thrombus formation. Over the past decade, our knowledge of the cross-talk between coagulation, inflammation, and innate immune activation and the involvement of neutrophil extracellular traps in these processes has expanded. This brief review shows their role in thrombosis through the mechanisms of activation of platelets, complement, interaction with blood coagulation factors and damage to the vascular endothelium. We searched the literature in the MEDLINE database on the PubMed platform.
Collapse
|
28
|
Birckhead EM, Das S, Tidd N, Raidal SL, Raidal SR. Visualizing neutrophil extracellular traps in septic equine synovial and peritoneal fluid samples using immunofluorescence microscopy. J Vet Diagn Invest 2023; 35:751-760. [PMID: 37661696 PMCID: PMC10621558 DOI: 10.1177/10406387231196552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Septic synovitis and peritonitis are routinely diagnosed in horses based on clinical examination findings and laboratory assessment of synoviocentesis and abdominocentesis samples, respectively. Diagnosis is difficult in some cases because of an overlap in laboratory results for septic and non-septic inflammation. Neutrophil extracellular trap (NET) formation is part of the innate immune response against pathogens. Identifying and quantifying NETs, which have not been explored in clinical samples from horses with septic synovitis and peritonitis, to our knowledge, may be helpful in detecting infectious processes. Our main objective was to determine whether NETs could be visualized in septic equine synovial and peritoneal fluid cytology samples using immunofluorescence with antibodies against citrullinated histone H3 (Cit-H3) and myeloperoxidase (MPO). We analyzed 9 synovial and 4 peritoneal fluid samples. NET percentages were quantified using a simple counting technique, which is suitable for high-quality, well-preserved, and stained cytospin smears. NETs were evident in all septic samples and were absent in a non-septic sample; NETs were better visualized with Cit-H3 than with MPO immunolabeling. Overall, we believe that there is the potential for NETs and associated markers to be used to investigate and understand septic inflammation in horses.
Collapse
Affiliation(s)
- Emily M. Birckhead
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Naomie Tidd
- Veterinary Diagnostic Laboratory, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sharanne L. Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Shane R. Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
29
|
Badilla-Vargas L, Pereira R, Molina-Mora JA, Alape-Girón A, Flores-Díaz M. Clostridium perfringens phospholipase C, an archetypal bacterial virulence factor, induces the formation of extracellular traps by human neutrophils. Front Cell Infect Microbiol 2023; 13:1278718. [PMID: 37965263 PMCID: PMC10641792 DOI: 10.3389/fcimb.2023.1278718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are networks of DNA and various microbicidal proteins released to kill invading microorganisms and prevent their dissemination. However, a NETs excess is detrimental to the host and involved in the pathogenesis of various inflammatory and immunothrombotic diseases. Clostridium perfringens is a widely distributed pathogen associated with several animal and human diseases, that produces many exotoxins, including the phospholipase C (CpPLC), the main virulence factor in gas gangrene. During this disease, CpPLC generates the formation of neutrophil/platelet aggregates within the vasculature, favoring an anaerobic environment for C. perfringens growth. This work demonstrates that CpPLC induces NETosis in human neutrophils. Antibodies against CpPLC completely abrogate the NETosis-inducing activity of recombinant CpPLC and C. perfringens secretome. CpPLC induces suicidal NETosis through a mechanism that requires calcium release from inositol trisphosphate receptor (IP3) sensitive stores, activation of protein kinase C (PKC), and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathways, as well as the production of reactive oxygen species (ROS) by the metabolism of arachidonic acid. Proteomic analysis of the C. perfringens secretome identified 40 proteins, including a DNAse and two 5´-nucleotidases homologous to virulence factors that could be relevant in evading NETs. We suggested that in gas gangrene this pathogen benefits from having access to the metabolic resources of the tissue injured by a dysregulated intravascular NETosis and then escapes and spreads to deeper tissues. Understanding the role of NETs in gas gangrene could help develop novel therapeutic strategies to reduce mortality, improve muscle regeneration, and prevent deleterious patient outcomes.
Collapse
Affiliation(s)
- Lisa Badilla-Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Reynaldo Pereira
- Centro Nacional de alta Tecnología, Consejo Nacional de Rectores (CONARE), San José, Costa Rica
| | - José Arturo Molina-Mora
- Centro de investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
30
|
Kong D, Tan R, Gao Y, Gao S, Feng Z, Qi H, Shen B, Yang L, Shen X, Jing X, Zhao X. Arterial Baroreflex Dysfunction Promotes Neuroinflammation by Activating the Platelet CD40L/Nuclear Factor Kappa B Signaling Pathway in Microglia and Astrocytes. Neurochem Res 2023; 48:1691-1706. [PMID: 36592325 PMCID: PMC10119255 DOI: 10.1007/s11064-022-03852-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023]
Abstract
Arterial baroreflex (ABR) dysfunction has previously been associated with neuroinflammation, the most common pathological feature of neurological disorders. However, the mechanisms mediating ABR dysfunction-induced neuroinflammation are not fully understood. In the present study, we investigated the role of platelet CD40 ligand (CD40L) in neuroinflammation in an in vivo model of ABR dysfunction, and microglia and astrocyte activation in vitro. ABR dysfunction was induced in Sprague‒Dawley rats by sinoaortic denervation (SAD). We used ELSA and immunofluorescence to assess the effect of platelet CD40L on glial cell polarization and the secretion of inflammatory factors. By flow cytometry, we found that rats subjected to SAD showed a high level of platelet microaggregation and upregulation of CD40L on the platelet surface. The promotion of platelet invasion and accumulation was also observed in the brain tissues of rats subjected to SAD. In the animal model and cultured N9 microglia/C6 astrocytoma cells, platelet CD40L overexpression promoted neuroinflammation and activated M1 microglia, A1 astrocytes, and the nuclear factor kappa B (NFκB) signaling pathway. These effects were partially blocked by inhibiting platelet activity with clopidogrel or inhibiting CD40L-mediated signaling. Our results suggest that during ABR dysfunction, CD40L signaling in platelets converts microglia to the M1 phenotype and astrocytes to the A1 phenotype, activating NFκB and resulting in neuroinflammation. Thus, our study provides a novel understanding of the pathogenesis of ABR dysfunction-induced neuroinflammation and indicates that targeting platelet CD40L is beneficial for treating central nervous system (CNS) disorders associated with ABR dysfunction.
Collapse
Affiliation(s)
- Deping Kong
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, 271016, Tai'an, People's Republic of China
| | - Rui Tan
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, 271016, Tai'an, People's Republic of China
| | - Yongfeng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, 271016, Tai'an, People's Republic of China
| | - Shan Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, 271016, Tai'an, People's Republic of China
| | - Zhaoyang Feng
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, 271016, Tai'an, People's Republic of China
| | - Huibin Qi
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, 271016, Tai'an, People's Republic of China
| | - Bowen Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, 271016, Tai'an, People's Republic of China
| | - Lili Yang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, 271016, Tai'an, People's Republic of China
| | - Xuri Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, 271016, Tai'an, People's Republic of China
| | - Xiuli Jing
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, 271016, Tai'an, China
| | - Xiaomin Zhao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, 271016, Tai'an, People's Republic of China.
| |
Collapse
|
31
|
COVID-19 and the Response to Antiplatelet Therapy. J Clin Med 2023; 12:jcm12052038. [PMID: 36902825 PMCID: PMC10004309 DOI: 10.3390/jcm12052038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The coronavirus SARS-CoV2 disease (COVID-19) is connected with significant morbidity and mortality (3.4%), disorders in hemostasis, including coagulopathy, activation of platelets, vascular injury, and changes in fibrinolysis, which may be responsible for an increased risk of thromboembolism. Many studies demonstrated relatively high rates of venous and arterial thrombosis related to COVID-19. The incidence of arterial thrombosis in severe/critically ill intensive care unit-admitted COVID-19 patients appears to be around 1%. There are several ways for the activation of platelets and coagulation that may lead to the formation of thrombi, so it is challenging to make a decision about optimal antithrombotic strategy in patients with COVID-19. This article reviews the current knowledge about the role of antiplatelet therapy in patients with COVID-19.
Collapse
|
32
|
Soufli I, Hablal A, Bessaad S, Amri M, Labsi M, Boussa RS, Ameur F, Belguendouz H, Younes SA, Idris NS, Touil-Boukoffa C. Nitric Oxide, Neutrophil/Lymphocyte, and Platelet/Lymphocyte Ratios as Promising Inflammatory Biomarkers in Complicated Crohn's Disease: Outcomes of Corticosteroids and Anti-TNF-α Therapies. Inflammation 2023; 46:1091-1105. [PMID: 36869975 DOI: 10.1007/s10753-023-01796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Crohn's disease (CD) is a relapsing-remitting inflammatory bowel disease with a progressive course. The aim of our study was to evaluate the relationship between nitric oxide (NO), pro-inflammatory cytokines, and blood count-based ratios in patients with complicated Crohn's disease as well as the outcome of corticosteroid or anti-TNF-α therapy. In this context, we evaluated the NLR as the ratio of neutrophils count to lymphocytes count, PLR as the ratio of platelets count to lymphocytes count, and MLR as the ratio of monocytes count to lymphocytes count in patients and controls. Furthermore, we assessed NO production by the Griess method in plasma along with iNOS and NF-κB expression by immunofluorescence method in intestinal tissues of patients and controls. In the same way, we evaluated plasma TNF-α, IL-17A, and IL-10 levels using ELISA. Our results indicate that blood count-based ratios NLR, PLR, and MLR were significantly higher in patients compared to controls. In addition, increased systemic levels of NO, TNF-α, and IL-17A and colonic expression of iNOS and NF-κB were observed in the same patients. Interestingly, the high ratio of NLR and MLR as well as NO production were significantly decreased in treated patients. Collectively, our findings suggest that nitric oxide as well as the blood count-based ratios (NLR, PLR, MLR) could constitute useful biomarkers in complicated Crohn's disease, predicting the response to treatments.
Collapse
Affiliation(s)
- Imene Soufli
- Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology-Team "Cytokines and NO Synthases", University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria.,Research Center of Biotechnology (CRBt), Constantine, Algeria
| | - Abdelkrim Hablal
- Surgery Department, Djilali Belkhenchir Hospital, Algiers, Algeria
| | - Samia Bessaad
- Anatomic Pathology Department, University Center Hospital Nefissa Hamoud, Algiers, Algeria
| | - Manel Amri
- Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology-Team "Cytokines and NO Synthases", University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Moussa Labsi
- Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology-Team "Cytokines and NO Synthases", University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Rania Sihem Boussa
- Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology-Team "Cytokines and NO Synthases", University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Fahima Ameur
- Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology-Team "Cytokines and NO Synthases", University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Houda Belguendouz
- Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology-Team "Cytokines and NO Synthases", University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Sonia Ait Younes
- Anatomic Pathology Department, University Center Hospital Nefissa Hamoud, Algiers, Algeria
| | - Nassim Sid Idris
- Surgery Department, Djilali Belkhenchir Hospital, Algiers, Algeria.,Faculty of Medicine, Benyoucef Benkhedda University, Algiers, Algeria
| | - Chafia Touil-Boukoffa
- Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology-Team "Cytokines and NO Synthases", University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria. .,Research Center of Biotechnology (CRBt), Constantine, Algeria.
| |
Collapse
|
33
|
Akácsos-Szász OZ, Pál S, Nyulas KI, Nemes-Nagy E, Fárr AM, Dénes L, Szilveszter M, Bán EG, Tilinca MC, Simon-Szabó Z. Pathways of Coagulopathy and Inflammatory Response in SARS-CoV-2 Infection among Type 2 Diabetic Patients. Int J Mol Sci 2023; 24:4319. [PMID: 36901751 PMCID: PMC10001503 DOI: 10.3390/ijms24054319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic inflammation and endothelium dysfunction are present in diabetic patients. COVID-19 has a high mortality rate in association with diabetes, partially due to the development of thromboembolic events in the context of coronavirus infection. The purpose of this review is to present the most important underlying pathomechanisms in the development of COVID-19-related coagulopathy in diabetic patients. The methodology consisted of data collection and synthesis from the recent scientific literature by accessing different databases (Cochrane, PubMed, Embase). The main results are the comprehensive and detailed presentation of the very complex interrelations between different factors and pathways involved in the development of arteriopathy and thrombosis in COVID-19-infected diabetic patients. Several genetic and metabolic factors influence the course of COVID-19 within the background of diabetes mellitus. Extensive knowledge of the underlying pathomechanisms of SARS-CoV-2-related vasculopathy and coagulopathy in diabetic subjects contributes to a better understanding of the manifestations in this highly vulnerable group of patients; thus, they can benefit from a modern, more efficient approach regarding diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Orsolya-Zsuzsa Akácsos-Szász
- Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Sándor Pál
- Department of Transfusion Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Kinga-Ilona Nyulas
- Doctoral School, Faculty of Medicine, George Emil Palade University of Medicine Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Enikő Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Ana-Maria Fárr
- Department of Pathophysiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Lóránd Dénes
- Department of Anatomy, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Mónika Szilveszter
- Clinic of Plastic Surgery, Mureș County Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Erika-Gyöngyi Bán
- Department of Pharmacology, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Mariana Cornelia Tilinca
- Department of Internal Medicine I, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| | - Zsuzsánna Simon-Szabó
- Department of Pathophysiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu-Mureș, Romania
| |
Collapse
|
34
|
Tang X, Xu Q, Yang S, Huang X, Wang L, Huang F, Luo J, Zhou X, Wu A, Mei Q, Zhao C, Wu J. Toll-like Receptors and Thrombopoiesis. Int J Mol Sci 2023; 24:ijms24021010. [PMID: 36674552 PMCID: PMC9864288 DOI: 10.3390/ijms24021010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Platelets are the second most abundant blood component after red blood cells and can participate in a variety of physiological and pathological functions. Beyond its traditional role in hemostasis and thrombosis, it also plays an indispensable role in inflammatory diseases. However, thrombocytopenia is a common hematologic problem in the clinic, and it presents a proportional relationship with the fatality of many diseases. Therefore, the prevention and treatment of thrombocytopenia is of great importance. The expression of Toll-like receptors (TLRs) is one of the most relevant characteristics of thrombopoiesis and the platelet inflammatory function. We know that the TLR family is found on the surface or inside almost all cells, where they perform many immune functions. Of those, TLR2 and TLR4 are the main stress-inducing members and play an integral role in inflammatory diseases and platelet production and function. Therefore, the aim of this review is to present and discuss the relationship between platelets, inflammation and the TLR family and extend recent research on the influence of the TLR2 and TLR4 pathways and the regulation of platelet production and function. Reviewing the interaction between TLRs and platelets in inflammation may be a research direction or program for the treatment of thrombocytopenia-related and inflammatory-related diseases.
Collapse
Affiliation(s)
- Xiaoqin Tang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qian Xu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shuo Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xinwu Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Jiesi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Xiaogang Zhou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Chunling Zhao
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Correspondence: (C.Z.); (J.W.); Tel.: +86-186-8307-3667 (C.Z.); +86-139-8241-6641 (J.W.)
| | - Jianming Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
- Correspondence: (C.Z.); (J.W.); Tel.: +86-186-8307-3667 (C.Z.); +86-139-8241-6641 (J.W.)
| |
Collapse
|
35
|
Burmeister A, Vidal-y-Sy S, Liu X, Mess C, Wang Y, Konwar S, Tschongov T, Häffner K, Huck V, Schneider SW, Gorzelanny C. Impact of neutrophil extracellular traps on fluid properties, blood flow and complement activation. Front Immunol 2022; 13:1078891. [PMID: 36591269 PMCID: PMC9800590 DOI: 10.3389/fimmu.2022.1078891] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The intravascular formation of neutrophil extracellular traps (NETs) is a trigger for coagulation and blood vessel occlusion. NETs are released from neutrophils as a response to strong inflammatory signals in the course of different diseases such as COVID-19, cancer or antiphospholipid syndrome. NETs are composed of large, chromosomal DNA fibers decorated with a variety of proteins such as histones. Previous research suggested a close mechanistic crosstalk between NETs and the coagulation system involving the coagulation factor XII (FXII), von Willebrand factor (VWF) and tissue factor. However, the direct impact of NET-related DNA fibers on blood flow and blood aggregation independent of the coagulation cascade has remained elusive. Methods In the present study, we used different microfluidic setups in combination with fluorescence microscopy to investigate the influence of neutrophil-derived extracellular DNA fibers on blood rheology, intravascular occlusion and activation of the complement system. Results We found that extended DNA fiber networks decelerate blood flow and promote intravascular occlusion of blood vessels independent of the plasmatic coagulation. Associated with the DNA dependent occlusion of the flow channel was the strong activation of the complement system characterized by the production of complement component 5a (C5a). Vice versa, we detected that the local activation of the complement system at the vascular wall was a trigger for NET release. Discussion In conclusion, we found that DNA fibers as the principal component of NETs are sufficient to induce blood aggregation even in the absence of the coagulation system. Moreover, we discovered that complement activation at the endothelial surface promoted NET formation. Our data envisions DNA degradation and complement inhibition as potential therapeutic strategies in NET-induced coagulopathies.
Collapse
Affiliation(s)
- Antonia Burmeister
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Vidal-y-Sy
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xiaobo Liu
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Mess
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yuanyuan Wang
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Swagata Konwar
- Department of Internal Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Todor Tschongov
- Department of Internal Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karsten Häffner
- Department of Internal Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Huck
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan W. Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Christian Gorzelanny, ; Stefan W. Schneider,
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Christian Gorzelanny, ; Stefan W. Schneider,
| |
Collapse
|
36
|
Role of S100A8/A9 in Platelet-Neutrophil Complex Formation during Acute Inflammation. Cells 2022; 11:cells11233944. [PMID: 36497202 PMCID: PMC9738100 DOI: 10.3390/cells11233944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) due to pulmonary infections is associated with high morbidity and mortality. Upon inflammation, the alarmin S100A8/A9 is released and stimulates neutrophil recruitment mainly via binding to Toll-like receptor 4 (TLR4). TLR4 is also expressed on platelets, which modulate the immune response through direct interaction with leukocytes. In a murine model of Klebsiella pneumoniae-induced pulmonary inflammation, global S100A9 deficiency resulted in diminished neutrophil recruitment into the lung alveoli and neutrophil accumulation in the intravascular space, indicating an impaired neutrophil migration. A lack of TLR4 on platelets resulted in reduced neutrophil counts in the whole lung, emphasising the impact of TLR4-mediated platelet activity on neutrophil behaviour. Flow cytometry-based analysis indicated elevated numbers of platelet-neutrophil complexes in the blood of S100A9-/- mice. Intravital microscopy of the murine cremaster muscle confirmed these findings and further indicated a significant increase in neutrophil-platelet complex formation in S100A9-/- mice, which was reversed by administration of the S100A8/A9 tetramer. An in vitro bilayer assay simulated the murine alveolar capillary barrier during inflammation and validated significant differences in transmigration behaviour between wild-type and S100A9-/- neutrophils. This study demonstrates the role of S100A8/A9 during platelet-neutrophil interactions and neutrophil recruitment during pulmonary inflammation.
Collapse
|
37
|
Jing H, Wu X, Xiang M, Liu L, Novakovic VA, Shi J. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol 2022; 13:992384. [PMID: 36466841 PMCID: PMC9709252 DOI: 10.3389/fimmu.2022.992384] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 08/02/2023] Open
Abstract
COVID-19 patients have a high incidence of thrombosis, and thromboembolic complications are associated with severe COVID-19 and high mortality. COVID-19 disease is associated with a hyper-inflammatory response (cytokine storm) mediated by the immune system. However, the role of the inflammatory response in thrombosis remains incompletely understood. In this review, we investigate the crosstalk between inflammation and thrombosis in the context of COVID-19, focusing on the contributions of inflammation to the pathogenesis of thrombosis, and propose combined use of anti-inflammatory and anticoagulant therapeutics. Under inflammatory conditions, the interactions between neutrophils and platelets, platelet activation, monocyte tissue factor expression, microparticle release, and phosphatidylserine (PS) externalization as well as complement activation are collectively involved in immune-thrombosis. Inflammation results in the activation and apoptosis of blood cells, leading to microparticle release and PS externalization on blood cells and microparticles, which significantly enhances the catalytic efficiency of the tenase and prothrombinase complexes, and promotes thrombin-mediated fibrin generation and local blood clot formation. Given the risk of thrombosis in the COVID-19, the importance of antithrombotic therapies has been generally recognized, but certain deficiencies and treatment gaps in remain. Antiplatelet drugs are not in combination with anticoagulant treatments, thus fail to dampen platelet procoagulant activity. Current treatments also do not propose an optimal time for anticoagulation. The efficacy of anticoagulant treatments depends on the time of therapy initiation. The best time for antithrombotic therapy is as early as possible after diagnosis, ideally in the early stage of the disease. We also elaborate on the possible mechanisms of long COVID thromboembolic complications, including persistent inflammation, endothelial injury and dysfunction, and coagulation abnormalities. The above-mentioned contents provide therapeutic strategies for COVID-19 patients and further improve patient outcomes.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Langjiao Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Musiał K. Update on Innate Immunity in Acute Kidney Injury—Lessons Taken from COVID-19. Int J Mol Sci 2022; 23:ijms232012514. [PMID: 36293370 PMCID: PMC9604105 DOI: 10.3390/ijms232012514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
The serious clinical course of SARS-CoV-2 infection is usually accompanied by acute kidney injury (AKI), worsening prognosis and increasing mortality. AKI in COVID-19 is above all a consequence of systemic dysregulations leading to inflammation, thrombosis, vascular endothelial damage and necrosis. All these processes rely on the interactions between innate immunity elements, including circulating blood cells, resident renal cells, their cytokine products, complement systems, coagulation cascades and contact systems. Numerous simultaneous pathways of innate immunity should secure an effective host defense. Since they all form a network of cross-linked auto-amplification loops, uncontrolled activation is possible. When the actions of selected pathways amplify, cascade activation evades control and the propagation of inflammation and necrosis worsens, accompanied by complement overactivity and immunothrombosis. The systemic activation of innate immunity reaches the kidney, where the damage affecting single tubular cells spreads through tissue collateral damage and triggers AKI. This review is an attempt to synthetize the connections between innate immunity components engaged in COVID-19-related AKI and to summarize the knowledge on the pathophysiological background of processes responsible for renal damage.
Collapse
Affiliation(s)
- Kinga Musiał
- Department of Pediatric Nephrology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| |
Collapse
|