1
|
Tian W, Qiu H, He Y, Zhang M, Pan X, Wang Y, Shi X, Wen C, Chen J. Qinghao-Biejia Herb Pair attenuates SLE atherosclerosis by regulating macrophage polarization via ABCA1/G1-mediated cholesterol efflux. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118545. [PMID: 39002826 DOI: 10.1016/j.jep.2024.118545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qinghao-Biejia herb pair (QB) is the core herb pair of "Jieduquyuziyin prescription" and is one of the commonly used herb pairs for the clinical treatment of systemic lupus erythematosus (SLE). Previous studies have shown that QB reduces the expression of inflammatory cytokines like IL-6 and TNF-α in the serum and kidney of MRL/lpr mice. Additionally, it inhibits the expression of TLR4 and MyD88 in the kidney and aorta and reduces the deposition of renal complement C3 and aortic plaque after treatment. These findings suggest that QB has a preventive and therapeutic effect on lupus rats. AIM OF THE STUDY This study sought to investigate the mechanisms underlying the anti-SLE combined with atherosclerosis activity of the Qinghao-Biejia herb pair. MATERIALS AND METHODS Drug targets for QB were identified using the HERB database, while targets associated with SLE and atherosclerosis were retrieved from the GeneCards database. The intersection of these drug and disease targets was then analyzed using a protein-protein interaction (PPI) network with GO and KEGG pathway enrichment analysis. In vivo, apolipoprotein E-deficient (ApoE-/-) mice were induced to develop SLE-AS by intraperitoneal injection of pristane and continued feeding of a high-fat diet. The changes in relevant indexes were observed after 12 weeks of gavage treatment with hydroxychloroquine, QB, Q (Qinghao alone), and B (Biejia alone). Bone marrow-derived macrophages from ApoE-/- mice and Raw 264.7 macrophages were used to explore the mechanisms of QB treatment. RESULTS The levels of inflammatory cytokines in serum and pathological liver changes in mice were improved to varying degrees in the treatment groups. Additionally, there was a reduction in aortic atheromatous plaque formation and some improvement in cholesterol efflux. Furthermore, QB suppressed the expression of inflammatory cytokines in M1 macrophages, suggesting a role in regulating macrophage polarization. CONCLUSION QB demonstrates clear efficacy for treating SLE-AS, and its therapeutic mechanism may involve the regulation of macrophage phenotypes by promoting cholesterol efflux.
Collapse
Affiliation(s)
- Weiyu Tian
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, Hangzhou, China
| | - Haonan Qiu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, Hangzhou, China
| | - Yuanfang He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, Hangzhou, China
| | - Miao Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, Hangzhou, China
| | - Xinyu Pan
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, Hangzhou, China
| | - Yiqi Wang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, Hangzhou, China
| | - Xiaowei Shi
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, Hangzhou, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, Hangzhou, China.
| | - Juan Chen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, Hangzhou, China.
| |
Collapse
|
2
|
Liu C, Wang X, Cao X. IL-10: A Key Regulator and potential therapeutic target in uveitis. Cell Immunol 2024; 405-406:104885. [PMID: 39447525 DOI: 10.1016/j.cellimm.2024.104885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Uveitis is a prevalent inflammatory eye disease that primarily affects working-age individuals and can lead to blindness if untreated. Interleukin-10 (IL-10) is a multifunctional cytokine with broad immunosuppressive properties and plays a significant role in various pathological and physiological processes. However, its specific role and underlying mechanisms in uveitis remain incompletely understood. This review aims to shed light on the biological characteristics of IL-10, its involvement in the uveitis pathophysiology, and its potential as a novel therapeutic target. By examining existing literature, the review analyzes IL-10 expression levels and regulatory mechanisms in different types of uveitis, discussing its role in immune regulation. Despite IL-10 being expressed variably across various forms of autoimmune uveitis, studies consistently highlight its protective role, prompting research into ways to enhance its bioavailability in the eye. IL-10 is often upregulated in infectious uveitis, contributing to pathogen immune evasion. Furthermore, primary intraocular lymphoma (PIOL), which shares clinical similarities with uveitis, also shows upregulated IL-10 levels, whereas IL-6 is more commonly elevated in uveitis. This differential expression suggests that IL-6 and IL-10 could be diagnostic markers to distinguish between PIOL and uveitis. Future research should continue to focus on elucidating the molecular mechanisms of IL-10 in uveitis, exploring its potential therapeutic applications, and developing targeted treatments that leverage the immunomodulatory effects of IL-10 to prevent and manage this sight-threatening condition.
Collapse
Affiliation(s)
- Chengzhi Liu
- Institution: Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xinyu Wang
- Institution: Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xusheng Cao
- Institution: Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
3
|
Elshikha A, Ge Y, Choi SC, Park YP, Padilla L, Zhu Y, Clapp WL, Sobel ES, Mohamadzadeh M, Morel L. Glycolysis inhibition functionally reprograms T follicular helper cells and reverses lupus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618563. [PMID: 39464003 PMCID: PMC11507846 DOI: 10.1101/2024.10.15.618563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which the production of pathogenic autoantibodies depends on T follicular helper (T FH ) cells. This study was designed to investigate the mechanisms by which inhibition of glycolysis with 2-deoxy-d-glucose (2DG) reduces the expansion of T FH cells and the associated autoantibody production in lupus-prone mice. Integrated cellular, transcriptomic, epigenetic and metabolic analyses showed that 2DG reversed the enhanced cell expansion and effector functions, as well as mitochondrial and lysosomal defects in lupus T FH cells, which include an increased chaperone-mediated autophagy induced by TLR7 activation. Importantly, adoptive transfer of 2DG-reprogrammed T FH cells protected lupus-prone mice from disease progression. Orthologs of genes responsive to 2DG in murine lupus T FH cells were overexpressed in the T FH cells of SLE patients, suggesting a therapeutic potential of targeting glycolysis to eliminate aberrant T FH cells and curb the production of autoantibodies inducing tissue damage.
Collapse
|
4
|
Ren J, Ma K, Lu X, Peng H, Wang J, Nasser MI, Liu C. Occurrence and role of Tph cells in various renal diseases. Mol Med 2024; 30:174. [PMID: 39390361 PMCID: PMC11468416 DOI: 10.1186/s10020-024-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/31/2024] [Indexed: 10/12/2024] Open
Abstract
A new population of peripheral helper T (Tph) cells has been identified and contributed to various autoimmune diseases. Tph cells can secrete interleukin-21 (IL-21), interferon (IFN) and C-X-C motif chemokine ligand 13 (CXCL13) to moderate renal disease. Moreover, Tph cells can congregate in huge numbers and immerse within inflamed tissue. Compared to Tfh cells, Tph cells express high programmed cell death protein 1 (PD-1), major histocompatibility complex II (MHC-II), C-C chemokine receptor 2 (CCR2) and C-C chemokine receptor 5 (CCR5) but often lack expression of the chemokine receptor C-X-C chemokine receptor 5 (CXCR5). They display features distinct from other T cells, which are uniquely poised to promote responses and antibody production of B cells within pathologically inflamed non-lymphoid tissues and a key feature of Tph cells. In this review, we summarize recent findings on the role of Tph cells in chronic kidney disease, acute kidney injury, kidney transplantation and various renal diseases.
Collapse
Affiliation(s)
- Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiangheng Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Wang
- General Practice Center, Sichuan Provincial People's Hospital, Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Chi Liu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
| |
Collapse
|
5
|
Huo R, Yang Y, Huo X, Meng D, Huang R, Yang Y, Lin J, Huang Y, Zhu X, Wei C, Huang X. Potential of resveratrol in the treatment of systemic lupus erythematosus (Review). Mol Med Rep 2024; 30:182. [PMID: 39155862 PMCID: PMC11350626 DOI: 10.3892/mmr.2024.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi‑system chronic autoimmune disease with a complex occurrence and development process, associated with immune disorders, uncertain prognosis, and treatment modalities which vary by patient and disease activity. At present, the clinical treatment of SLE mainly focuses on hormones and immunosuppressants. In recent years, the research on new treatment strategies for SLE has been booming, and strong preclinical results and clinical research have promoted the development of numerous drugs (such as rituximab and orencia), but numerous of these drugs have failed to achieve effectiveness in clinical trials, and there are some adverse reactions. Recent evidence suggests that resveratrol (RSV) has the effect of ameliorating immune disorders by inhibiting overactivation of immune cells. In the present review, advances in research on the protective effects and potential mechanisms of RSV against SLE are summarized and the potential potency of RSV and its use as a promising therapeutic option for the treatment of SLE are highlighted.
Collapse
Affiliation(s)
- Rongxiu Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yanting Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xiaocong Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Danli Meng
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Rongjun Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Jinying Lin
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yijia Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xia Zhu
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Chengcheng Wei
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xinxiang Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| |
Collapse
|
6
|
Cruciani C, Gatto M, Iaccarino L, Doria A, Zen M. Monoclonal antibodies targeting interleukins for systemic lupus erythematosus: updates in early clinical drug development. Expert Opin Investig Drugs 2024; 33:801-814. [PMID: 38958085 DOI: 10.1080/13543784.2024.2376566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION The advent of biological therapies has already revolutionized treatment strategies and disease course of several rheumatologic conditions, and monoclonal antibodies (mAbs) targeting cytokines and interleukins represent a considerable portion of this family of drugs. In systemic lupus erythematosus (SLE) dysregulation of different cytokine and interleukin-related pathways have been linked to disease development and perpetration, offering palatable therapeutic targets addressable via such mAbs. AREAS COVERED In this review, we provide an overview of the different biological therapies under development targeting cytokines and interleukins, with a focus on mAbs, while providing the rationale behind their choice as therapeutic targets and analyzing the scientific evidence linking them to SLE pathogenesis. EXPERT OPINION An unprecedented number of clinical trials on biological drugs targeting different immunological pathways are ongoing in SLE. Their success might allow us to tackle present challenges of SLE management, including the overuse of glucocorticoids in daily clinical practice, as well as SLE heterogenicity in treatment response among different individuals, hopefully paving the way toward precision medicine.
Collapse
Affiliation(s)
- Claudio Cruciani
- Rheumatology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Mariele Gatto
- Rheumatology Unit, Department of Clinical and Biological Sciences, University of Turin and Turin Mauriziano Hospital, Turin, Italy
| | - Luca Iaccarino
- Rheumatology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Margherita Zen
- Rheumatology Unit, Department of Medicine, University of Padua, Padova, Italy
| |
Collapse
|
7
|
Gribonika I, Strömberg A, Chandode RK, Schön K, Lahl K, Bemark M, Lycke N. Migratory CD103 +CD11b + cDC2s in Peyer's patches are critical for gut IgA responses following oral immunization. Mucosal Immunol 2024; 17:509-523. [PMID: 38492746 DOI: 10.1016/j.mucimm.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Induction and regulation of specific intestinal immunoglobulin (Ig)A responses critically depend on dendritic cell (DC) subsets and the T cells they activate in the Peyer's patches (PP). We found that oral immunization with cholera toxin (CT) as an adjuvant resulted in migration-dependent changes in the composition and localization of PP DC subsets with increased numbers of cluster of differentiation (CD)103- conventional DC (cDC)2s and lysozyme-expressing DC (LysoDCs) in the subepithelial dome and of CD103+ cDC2s that expressed CD101 in the T cell zones, while oral ovalbumin (OVA) tolerization was instead associated with greater accumulation of cDC1s and peripherally induced regulatory T cells (pTregs) in this area. Decreased IgA responses were observed after CT-adjuvanted immunization in huCD207DTA mice lacking CD103+ cDC2s, while oral OVA tolerization was inefficient in cDC1-deficient Batf3-/- mice. Using OVA transgenic T cell receptor CD4 T cell adoptive transfer models, we found that co-transferred endogenous wildtype CD4 T cells can hinder the induction of OVA-specific IgA responses through secretion of interleukin-10. CT could overcome this blocking effect, apparently through a modulating effect on pTregs while promoting an expansion of follicular helper T cells. The data support a model where cDC1-induced pTreg normally suppresses PP responses for any given antigen and where CT's oral adjuvanticity effect is dependent on promoting follicular helper T cell responses through induction of CD103+ cDC2s.
Collapse
Affiliation(s)
- Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | - Anneli Strömberg
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rakesh K Chandode
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Katharina Lahl
- Immunology Section, Lund University, Lund, Sweden; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Translational Medicine - Human Immunology, Lund University, Malmö, Sweden.
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Papachristodoulou E, Kyttaris VC. New and emerging therapies for systemic lupus erythematosus. Clin Immunol 2024; 263:110200. [PMID: 38582250 DOI: 10.1016/j.clim.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Systemic Lupus Erythematosus (SLE) and lupus nephritis treatment is still based on non-specific immune suppression despite the first biological therapy for the disease having been approved more than a decade ago. Intense basic and translational research has uncovered a multitude of pathways that are actively being evaluated as treatment targets in SLE and lupus nephritis, with two new medications receiving FDA approval in the last 3 years. Herein we provide an overview of targeted therapies for SLE including medications targeting the B lymphocyte compartment, intracellular signaling, co-stimulation, and finally the interferons and other cytokines.
Collapse
Affiliation(s)
- Eleni Papachristodoulou
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Kaneko Y, Sato H, Wakamatsu A, Kobayashi D, Sato K, Kurosawa Y, Hasegawa E, Nakatsue T, Kuroda T, Narita I. Pathogenetic associations of anti-ribosomal P protein antibody titres and their subclasses in patients with systemic lupus erythematosus. Rheumatology (Oxford) 2024; 63:1411-1421. [PMID: 37572300 DOI: 10.1093/rheumatology/kead402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023] Open
Abstract
OBJECTIVES We evaluated the association between anti-ribosomal P antibody (anti-RibP) titres and disease activity in Japanese SLE patients. METHODS Eighty patients admitted and treated in Niigata University Hospital for new-onset or flare-up of SLE were included in this retrospective cross-sectional study. Clinical data were obtained from medical records at admission. The anti-RibP index, and cytokine and tryptophan metabolite levels were determined by ELISA. RESULTS Of the 80 SLE patients, 30 had anti-RibP. Anti-RibP presence was associated with a greater prevalence of skin rash and more severe inflammatory responses, demonstrated by higher inflammatory cytokine levels, hypocomplementemia, and accelerated tryptophan metabolism, in younger patients. The serum anti-RibP index was correlated with age at diagnosis, clinical indicators, initial prednisolone dose, and cytokines and tryptophan metabolite levels in univariate analysis. Multivariate analysis showed that the anti-RibP index was independently associated with the initial prednisolone dose and the prevalence of skin rash. The anti-RibP IgGs were mainly the IgG2 and IgG3 subclasses, and anti-RibP IgG3 was associated with hypocomplementemia, higher DAS, accelerated kynurenine pathway activity, and higher proinflammatory cytokine production. The coexistence of anti-dsDNA IgG and anti-RibP IgG2 or IgG3 accompanied higher IL-10 and IFN-α2 levels; furthermore, anti-RibP IgG3 coexistence with anti-dsDNA antibody contributed to the requirement for higher initial prednisolone doses and accelerated kynurenine pathway activity. CONCLUSION Anti-RibP was associated with clinical manifestations and parameters in SLE, and its index might be a useful indicator of disease severity. Anti-RibP IgG3 was the IgG subclass most strongly associated with the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yoshikatsu Kaneko
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroe Sato
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Health Administration Center, Niigata University, Niigata, Japan
| | - Ayako Wakamatsu
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daisuke Kobayashi
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaho Sato
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoichi Kurosawa
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Eriko Hasegawa
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeshi Nakatsue
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeshi Kuroda
- Health Administration Center, Niigata University, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
10
|
Choi SC, Park YP, Roach T, Jimenez D, Fisher A, Zadeh M, Ma L, Sobel ES, Ge Y, Mohamadzadeh M, Morel L. Lupus susceptibility gene Pbx1 controls the development, stability, and function of regulatory T cells via Rtkn2 expression. SCIENCE ADVANCES 2024; 10:eadi4310. [PMID: 38536923 PMCID: PMC10971436 DOI: 10.1126/sciadv.adi4310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
The maintenance of regulatory T (Treg) cells critically prevents autoimmunity. Pre-B cell leukemia transcription factor 1 (Pbx1) variants are associated with lupus susceptibility, particularly through the expression of a dominant negative isoform Pbx1-d in CD4+ T cells. Pbx1-d overexpression impaired Treg cell homeostasis and promoted inflammatory CD4+ T cells. Here, we showed a high expression of Pbx1 in human and murine Treg cells, which is decreased in lupus patients and mice. Pbx1 deficiency or Pbx1-d overexpression reduced the number, stability, and suppressive activity of Treg cells, which increased murine responses to immunization and autoimmune induction. Mechanistically, Pbx1 deficiency altered the expression of genes implicated in cell cycle and apoptosis in Treg cells. Intriguingly, Rtkn2, a Rho-GTPase previously associated with Treg homeostasis, was directly transactivated by Pbx1. Our results suggest that the maintenance of Treg cell homeostasis and stability by Pbx1 through cell cycle progression prevent the expansion of inflammatory T cells that otherwise exacerbates lupus progression in the hosts.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Yuk Pheel Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Tracoyia Roach
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Damian Jimenez
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Amanda Fisher
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Mojgan Zadeh
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Longhuan Ma
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Eric S. Sobel
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yong Ge
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| |
Collapse
|
11
|
He J, Li J, Lin Q, Ni H, Huang S, Cheng H, Ding X, Huang Y, Yu H, Xu Y, Nie H. Anti-CD20 treatment attenuates Th2 cell responses: implications for the role of lung follicular mature B cells in the asthmatic mice. Inflamm Res 2024; 73:433-446. [PMID: 38345634 DOI: 10.1007/s00011-023-01847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND B cells were believed to act as antigen-presenting cells (APCs) to promote T helper type 2 (Th2) cell responses. However, the role of lung B cells and its subpopulations in Th2 cell responses in asthma remains unclear. OBJECTIVE We leveraged an anti-CD20 monoclonal antibody (mAb) treatment that has been shown to selectively deplete B cells in mice and investigated whether this treatment modulates Th2 cell responses and this modulation is related to lung follicular mature (FM) B cells in a murine model of asthma. METHODS AND RESULTS We used a house dust mite (HDM)-induced asthma mouse model and found that anti-CD20 mAb treatment attenuates Th2 cell responses. Meanwhile, anti-CD20 mAb treatment did dramatically reduce the number of B cells, especially FM B cells in the lungs, but did not impact the frequency of other immune cell types, including lung T cells, dendritic cells, natural killer cells, and regulatory T cells in wild-type mice. Moreover, we found that the suppressive effect of anti-CD20 mAb treatment on Th2 cell responses could be reversed upon adoptive transfer of lung FM B cells, but not lung CD19+ B cells without FM B cells in asthmatic mice. CONCLUSIONS These findings reveal that anti-CD20 mAb treatment alleviates Th2 cell responses, possibly by depleting lung FM B cells in a Th2-driven asthma model. This implies a potential therapeutic approach for asthma treatment through the targeting of lung FM B cells.
Collapse
Affiliation(s)
- Jilong He
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Jingling Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Qibin Lin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Haiyang Ni
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Sisi Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xuhong Ding
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Yi Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hongying Yu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Yaqing Xu
- Department of Geriatric Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
12
|
Jabri B, Abadie V. Restoring tolerance with antigen delivery. Science 2024; 383:30-32. [PMID: 38175899 DOI: 10.1126/science.adg7505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Strategies that modulate antigen delivery are being tested to reverse autoimmunity.
Collapse
Affiliation(s)
- Bana Jabri
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Department of Medicine, Chicago, IL, USA
- University of Chicago Celiac Disease Center, Chicago, IL, USA
- University of Chicago Committee on Immunology, Chicago, IL, USA
- University of Chicago Department of Pathology, Chicago, IL, USA
| | - Valérie Abadie
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Department of Medicine, Chicago, IL, USA
- University of Chicago Celiac Disease Center, Chicago, IL, USA
- University of Chicago Committee on Immunology, Chicago, IL, USA
| |
Collapse
|
13
|
Ni C, Han Y, Wang Y, Ma T, Sha D, Xu Y, Cao W, Gao S. Human HLA prolongs the host inflammatory response in Streptococcus suis serotype 2 infection compared to mouse H2 molecules. Front Cell Infect Microbiol 2023; 13:1285055. [PMID: 38035330 PMCID: PMC10682707 DOI: 10.3389/fcimb.2023.1285055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Streptococcus suis (S. suis) is widely acknowledged as a significant zoonotic pathogen in Southeast Asia and China, which has led to a substantial number of fatalities in both swine and humans. Despite the prevalent use of mice as the primary animal model to study S. suis pathogenesis, the substantial differences in the major histocompatibility complex (MHC) between humans and mice underscore the ongoing exploration for a more suitable and effective animal model. In this study, humanized transgenic HLA-A11/DR1 genotypes mice were used to evaluate the differences between humanized HLA and murine H2 in S. suis infection. Following intravenous administration of S. suis suspensions, we investigated bacterial load, cytokine profiles, pathological alterations, and immune cell recruitment in both Wild-type (WT) and humanized mice across different post-infection time points. Relative to WT mice, humanized mice exhibited heightened pro-inflammatory cytokines, exacerbated tissue damage, increased granulocyte recruitment with impaired resolution, notably more pronounced during the late infection stage. Additionally, our examination of bacterial clearance rates suggests that HLA-A11/DR1 primarily influences cell recruitment and mitochondrial reactive oxygen species (ROS) production, which affects the bacterial killing capacity of macrophages in the late stage of infection. The reduced IL-10 production and lower levels of regulatory T cells in humanized mice could underlie their compromised resolution ability. Intervention with IL-10 promotes bacterial clearance and inflammatory regression in the late stages of infection in transgenic mice. Our findings underscore the heightened sensitivity of HLA-A11/DR1 mice with impaired resolution to S. suis infection, effectively mirroring the immune response seen in humans during infection. The humanized HLA-A11/DR1 mice could serve as an optimal animal model for investigating the pathogenic and therapeutic mechanisms associated with sepsis and other infectious diseases.
Collapse
Affiliation(s)
- Chengpei Ni
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yi Han
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yajing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Ting Ma
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dan Sha
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yanan Xu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wenting Cao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Song Gao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
14
|
Zhao X, Duan L, Cui D, Xie J. Exploration of biomarkers for systemic lupus erythematosus by machine-learning analysis. BMC Immunol 2023; 24:44. [PMID: 37950194 PMCID: PMC10638835 DOI: 10.1186/s12865-023-00581-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND In recent years, research on the pathogenesis of systemic lupus erythematosus (SLE) has made great progress. However, the prognosis of the disease remains poor, and high sensitivity and accurate biomarkers are particularly important for the early diagnosis of SLE. METHODS SLE patient information was acquired from three Gene Expression Omnibus (GEO) databases and used for differential gene expression analysis, such as weighted gene coexpression network (WGCNA) and functional enrichment analysis. Subsequently, three algorithms, random forest (RF), support vector machine-recursive feature elimination (SVM-REF) and least absolute shrinkage and selection operation (LASSO), were used to analyze the above key genes. Furthermore, the expression levels of the final core genes in peripheral blood from SLE patients were confirmed by real-time quantitative polymerase chain reaction (RT-qPCR) assay. RESULTS Five key genes (ABCB1, CD247, DSC1, KIR2DL3 and MX2) were found in this study. Moreover, these key genes had good reliability and validity, which were further confirmed by clinical samples from SLE patients. The receiver operating characteristic curves (ROC) of the five genes also revealed that they had critical roles in the pathogenesis of SLE. CONCLUSION In summary, five key genes were obtained and validated through machine-learning analysis, offering a new perspective for the molecular mechanism and potential therapeutic targets for SLE.
Collapse
Affiliation(s)
- Xingyun Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lishuang Duan
- Department of Anesthesia, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Rahmé Z, Franco C, Cruciani C, Pettorossi F, Zaramella A, Realdon S, Iaccarino L, Frontini G, Moroni G, Doria A, Ghirardello A, Gatto M. Characterization of Serum Cytokine Profiles of Patients with Active Lupus Nephritis. Int J Mol Sci 2023; 24:14883. [PMID: 37834330 PMCID: PMC10573765 DOI: 10.3390/ijms241914883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Cytokines contribute to the pathogenesis of lupus nephritis (LN), yet their value as prognostic biomarkers is still debated. We aimed to describe the serum cytokines' profiles and prospectively assess correlations with disease features and renal response in a multicentric cohort of consecutive adult patients with biopsy-proven active LN. Cytokine associations with clinical and serological data were performed at LN diagnosis (T0), and at 3 (T3) and 6 months (T6) of follow up. Renal response according to EULAR definition was assessed at T3, T6 and T12. BAFF and interleukin (IL)-37 were measured by ELISA; IL-2, IL-10, IL-17A and IL-18 by a bead-based multiplex cytokine assay (Luminex). Thirty-nine patients with active LN (age 40.5 ± 15.6 years; F 71.8%; 84.6% proliferative LN) were enrolled, of whom twenty-nine displayed complete longitudinal records. At T0, we observed higher levels of IL-37 and IL-17 in proliferative vs. non-proliferative LN (IL-37: 0.0510 (0.0110-0.2300) vs. 0.0000 (0.0000-0.0397) ng/mL, p = 0.0441; IL-17: 2.0920 (0.5125-17.9400) vs. 0.0000 (0.0000-0.6025) pg/mL, p = 0.0026, respectively), and positive correlations between IL-10 and 24 h proteinuria (r = 0.416, p = 0.0249) and anti-dsDNA levels (r = 0.639, p = 0.0003). BAFF was higher in patients with low complement (p < 0.0001). We observed a sustained correlation between BAFF and IL-10 throughout T6 (r = 0.654, p = 0.0210). Higher baseline IL-37 and BAFF levels were associated with renal response at T3 and T6, respectively, while baseline IL-18 levels were higher in patients achieving response at T12. Our study highlights the complexity of the cytokine network and its potential value as a marker of active LN and renal response.
Collapse
Affiliation(s)
- Zahrà Rahmé
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Chiara Franco
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Claudio Cruciani
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Federico Pettorossi
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35128 Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Stefano Realdon
- Oncology Referral Center of Aviano (CRO)-IRCCS, 33081 Aviano, Italy;
| | - Luca Iaccarino
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Giulia Frontini
- Nephrology and Dialysis Unit, San Paolo Hospital, 20153 Milan, Italy;
| | - Gabriella Moroni
- Nephrology and Dialysis Division, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Andrea Doria
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Anna Ghirardello
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Mariele Gatto
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
- Unit of Rheumatology, Department of Clinical and Biological Sciences, University of Turin, 10124 Torino, Italy
| |
Collapse
|
16
|
Valeff NJ, Ventimiglia MS, Diao L, Jensen F. Lupus and recurrent pregnancy loss: the role of female sex hormones and B cells. Front Endocrinol (Lausanne) 2023; 14:1233883. [PMID: 37859991 PMCID: PMC10584304 DOI: 10.3389/fendo.2023.1233883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
Systemic lupus erythematosus is a debilitating autoimmune disease characterized by uncontrolled activation of adaptive immunity, particularly B cells, which predominantly affects women in a 9 to 1 ratio compared to men. This stark sex disparity strongly suggests a role for female sex hormones in the disease's onset and progression. Indeed, it is widely recognized that estradiol not only enhances the survival of autoreactive B cells but also stimulates the production of autoantibodies associated with systemic lupus erythematosus, such as anti-nuclear antibodies and anti-dsDNA antibodies. Clinical manifestations of systemic lupus erythematosus typically emerge after puberty and persist throughout reproductive life. Furthermore, symptoms often exacerbate during the premenstrual period and pregnancy, as increased levels of estradiol can contribute to disease flares. Despite being fertile, women with lupus face a heightened risk of pregnancy-related complications, including pregnancy loss and stillbirth, which significantly surpass the rates observed in the healthy population. Therefore, this review aims to summarize and discuss the existing literature on the influence of female sex hormones on B-cell activation in patients with systemic lupus erythematosus, with a particular emphasis on their impact on pregnancy loss.
Collapse
Affiliation(s)
- Natalin Jimena Valeff
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Medical Faculty, Buenos Aires University, Buenos Aires, Argentina
| | - Maria Silvia Ventimiglia
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Medical Faculty, Buenos Aires University, Buenos Aires, Argentina
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Federico Jensen
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Medical Faculty, Buenos Aires University, Buenos Aires, Argentina
- Centro Integrativo de Biología Y Química Aplicada. Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
17
|
P. Singh R, S. Bischoff D, S Singh S, H. Hahn B. Peptide-based immunotherapy in lupus: Where are we now? RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:139-149. [PMID: 37781681 PMCID: PMC10538607 DOI: 10.2478/rir-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/01/2023] [Indexed: 10/03/2023]
Abstract
In autoimmune rheumatic diseases, immune hyperactivity and chronic inflammation associate with immune dysregulation and the breakdown of immune self-tolerance. A continued, unresolved imbalance between effector and regulatory immune responses further exacerbates inflammation that ultimately causes tissue and organ damage. Many treatment modalities have been developed to restore the immune tolerance and immmunoregulatory balance in autoimmune rheumatic diseases, including the use of peptide-based therapeutics or the use of nanoparticles-based nanotechnology. This review summarizes the state-of-the-art therapeutic use of peptide-based therapies in autoimmune rheumatic diseases, with a specific focus on lupus.
Collapse
Affiliation(s)
- Ram P. Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, 90073 CA, USA
| | - David S. Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, 90073 CA, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, 90095 CA, USA
| | | | - Bevra H. Hahn
- Department of Medicine, University of California, Los Angeles, Los Angeles, 90095 CA, USA
| |
Collapse
|
18
|
Grk M, Miskovic R, Jeremic I, Basaric M, Dusanovic Pjevic M, Jekic B, Miljanovic D, Lazarevic I, Despotovic A, Cirkovic A, Banko A. Association of IL10RA, IL10RB, and IL22RA Polymorphisms/Haplotypes with Susceptibility to and Clinical Manifestations of SLE. Int J Mol Sci 2023; 24:11292. [PMID: 37511050 PMCID: PMC10379357 DOI: 10.3390/ijms241411292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by an imbalance between proinflammatory and anti-inflammatory mediators. Single-nucleotide polymorphisms (SNPs) in genes coding IL10RA, IL10RB, and IL22RA could affect their expression or function and disrupt immune homeostasis. We aimed to analyze the associations of IL10RA, IL10RB, and IL22RA polymorphisms/haplotypes with patients' susceptibility to and clinical manifestations of SLE. Our study included 103 SLE patients and 99 healthy controls. The genotypes of the selected polymorphisms within IL10RA (rs10892202, rs4252270, rs3135932, rs2228055, rs2229113, and rs9610), IL10RB (rs999788, rs2834167, and rs1058867), and IL22RA (rs3795299 and rs16829204) genes were determined by TaqMan® Assays. IL10RB rs1058867 G allele carriers were significantly more frequent among the controls than among the SLE patients (76.8% vs. 61.2%; p = 0.017, OR = 0.477, 95% CI: 0.258-0.879). The IL10RB CAA haplotype was more frequent among the SLE patients than in the control group (42.7% vs. 30.7%; p = 0.027). The IL22RA rs3795299 C allele and rs16829204 CC genotype were associated with Hashimoto thyroiditis in the SLE patients (n = 103; p = 0.002 and p = 0.026, respectively), and in all the included participants (n = 202, p < 0.000 and p = 0.007, respectively), and the IL22RA CC haplotype was more frequent in the SLE patients with Hashimoto thyroiditis (p = 0.047) and in the overall participants with Hashimoto thyroiditis (n = 32, p = 0.004). The IL10RA, IL10RB, and IL22RA polymorphisms/haplotypes could be associated with SLE susceptibility and various clinical manifestations, and the IL22RA CC haplotype could be associated with Hashimoto thyroiditis.
Collapse
Affiliation(s)
- Milka Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Rada Miskovic
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Internal Medicine Department, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivica Jeremic
- Internal Medicine Department, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute of Rheumatology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Basaric
- Institute of Rheumatology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Dusanovic Pjevic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Biljana Jekic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Miljanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksa Despotovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
19
|
Liu H, Zhang P, Li F, Xiao X, Zhang Y, Li N, Du L, Yang P. Identification of the immune-related biomarkers in Behcet's disease by plasma proteomic analysis. Arthritis Res Ther 2023; 25:92. [PMID: 37264476 DOI: 10.1186/s13075-023-03074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND This study aimed to investigate the expression profile of immune response-related proteins of Behcet's disease (BD) patients and identify potential biomarkers for this disease. METHODS Plasma was collected from BD patients and healthy controls (HC). Immune response-related proteins were measured using the Olink Immune Response Panel. Differentially expressed proteins (DEPs) were used to construct prediction models via five machine learning algorithms: naive Bayes, support vector machine, extreme gradient boosting, random forest, and neural network. The prediction performance of the five models was assessed using the area under the curve (AUC) value, recall (sensitivity), specificity, precision, accuracy, F1 score, and residual distribution. Subtype analysis of BD was performed using the consensus clustering method. RESULTS Proteomics results showed 43 DEPs between BD patients and HC (P < 0.05). These DEPs were mainly involved in the Toll-like receptor 9 and NF-κB signaling pathways. Five models were constructed using DEPs [interleukin 10 (IL10), Fc receptor like 3 (FCRL3), Mannan-binding lectin serine peptidase 1 (MASP1), NF2, moesin-ezrin-radixin like (MERLIN) tumor suppressor (NF2), FAM3 metabolism regulating signaling molecule B (FAM3B), and O-6-methylguanine-DNA methyltransferase (MGMT)]. Among these models, the neural network model showed the best performance (AUC = 0.856, recall: 0.692, specificity: 0.857, precision: 0.900, accuracy: 0.750, F1 score: 0.783). BD patients were divided into two subtypes according to the consensus clustering method: one with high disease activity in association with higher expression of tripartite motif-containing 5 (TRIM5), SH2 domain-containing 1A (SH2D1A), phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), hematopoietic cell-specific Lyn substrate 1 (HCLS1), and DNA fragmentation factor subunit alpha (DFFA) and the other with low disease activity in association with higher expression of C-C motif chemokine ligand 11 (CCL11). CONCLUSIONS Our study not only revealed a distinctive immune response-related protein profile for BD but also showed that IL10, FCRL3, MASP1, NF2, FAM3B, and MGMT could serve as potential immune biomarkers for this disease. Additionally, a novel molecular disease classification model was constructed to identify subsets of BD.
Collapse
Affiliation(s)
- Huan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Panpan Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Fuzhen Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Xiao Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Yinan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Na Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Peizeng Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China.
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Youyi Road 1, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
20
|
Tian F, Huang S, Xu W, Xie G, Gan Y, Huang F, Fan Y, Bao J. Fasudil compensates podocyte injury via CaMK4/Rho GTPases signal and actin cytoskeleton-dependent activation of YAP in MRL/lpr mice. Int Immunopharmacol 2023; 119:110199. [PMID: 37094544 DOI: 10.1016/j.intimp.2023.110199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Deposition of immune complexes in the glomerulus leads to irreversible renal damage in lupus nephritis (LN), of which podocyte malfunction arises earlier. Fasudil, the only Rho GTPases inhibitor approved in clinical settings, possesses well-established renoprotective actions; yet, no studies addressed the amelioration derived from fasudil in LN. To clarify, we investigated whether fasudil exerted renal remission in lupus-prone mice. In this study, fasudil (20 mg/kg) was intraperitoneally administered to female MRL/lpr mice for 10 weeks. We report that fasudil administration swept antibodies (anti-dsDNA) and attenuated systemic inflammatory response in MRL/lpr mice, accompanied by preserving podocyte ultrastructure and averting immune complex deposition. Mechanistically, it repressed the expression of CaMK4 in glomerulopathy by preserving nephrin and synaptopodin expression. And fasudil further blocked cytoskeletal breakage in the Rho GTPases-dependent action. Further analyses showed that beneficial actions of fasudil on the podocytes required intra-nuclear YAP activation underlying actin dynamics. In addition, in vitro assays revealed that fasudil normalized the motile imbalance by suppressing intracellular calcium enrichment, thereby contributing to the resistance of apoptosis in podocytes. Altogether, our findings suggest that the precise manners of crosstalks between cytoskeletal assembly and YAP activation underlying the upstream CaMK4/Rho GTPases signal in podocytes is a reliable target for podocytopathies treatment, and fasudil might serve as a promising therapeutic agent to compensate for the podocyte injury in LN.
Collapse
Affiliation(s)
- Fengyuan Tian
- General Practice, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, PR China
| | - Shuo Huang
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wangda Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Guanqun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yihong Gan
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Fugang Huang
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yongsheng Fan
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Jie Bao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
21
|
Teodoro AGF, Rodrigues WF, Farnesi-de-Assunção TS, Borges AVBE, Obata MMS, Neto JRDC, da Silva DAA, Andrade-Silva LE, Desidério CS, Costa-Madeira JC, Barbosa RM, Cunha ACCH, Pereira LQ, de Vito FB, Vaz Tanaka SCS, Helmo FR, Lemes MR, Barbosa LM, Trevisan RO, Mundim FV, Oliveira-Scussel ACM, Junior PRR, Monteiro IB, Ferreira YM, Machado GH, Ferreira-Paim K, Moraes-Souza H, de Oliveira CJF, Rodrigues Júnior V, Silva MVD. Inflammatory Response and Activation of Coagulation after COVID-19 Infection. Viruses 2023; 15:v15040938. [PMID: 37112918 PMCID: PMC10145373 DOI: 10.3390/v15040938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
SARS-CoV-2 (COVID-19) infection is responsible for causing a disease with a wide spectrum of clinical presentations. Predisposition to thromboembolic disease due to excessive inflammation is also attributed to the disease. The objective of this study was to characterize the clinical and laboratory aspects of hospitalized patients, in addition to studying the pattern of serum cytokines, and associate them with the occurrence of thromboembolic events. METHODOLOGY A retrospective cohort study with 97 COVID-19 patients hospitalized from April to August 2020 in the Triângulo Mineiro macro-region was carried out. A review of medical records was conducted to evaluate the clinical and laboratory aspects and the frequency of thrombosis, as well as the measurement of cytokines, in the groups that presented or did not present a thrombotic event. RESULTS There were seven confirmed cases of thrombotic occurrence in the cohort. A reduction in the time of prothrombin activity was observed in the group with thrombosis. Further, 27.8% of all patients had thrombocytopenia. In the group that had thrombotic events, the levels of IL1b, IL-10, and IL2 were higher (p < 0.05). CONCLUSIONS In the studied sample, there was an increase in the inflammatory response in patients with thrombotic events, confirmed by the increase in cytokines. Furthermore, in this cohort, a link was observed between the IL-10 percentage and an increased chance of a thrombotic event.
Collapse
Affiliation(s)
- Anna Glória Fonseca Teodoro
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Wellington Francisco Rodrigues
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | | | - Anna V Bernardes E Borges
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Malu Mateus Santos Obata
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Djalma A Alves da Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Leonardo E Andrade-Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Chamberttan S Desidério
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Juliana C Costa-Madeira
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Rafaela M Barbosa
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Andrezza C C Hortolani Cunha
- Postgraduate Program in Physiological Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-200, Brazil
| | - Loren Q Pereira
- Laboratory of Hematological Research of the Federal University of Triângulo Mineiro and Regional Blood Center of Uberaba-Hemominas Foundation, Uberaba 38025-440, Brazil
| | - Fernanda Bernadelli de Vito
- Laboratory of Hematological Research of the Federal University of Triângulo Mineiro and Regional Blood Center of Uberaba-Hemominas Foundation, Uberaba 38025-440, Brazil
| | - Sarah Cristina Sato Vaz Tanaka
- Laboratory of Hematological Research of the Federal University of Triângulo Mineiro and Regional Blood Center of Uberaba-Hemominas Foundation, Uberaba 38025-440, Brazil
| | - Fernanda R Helmo
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Marcela Rezende Lemes
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Laís M Barbosa
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Rafael O Trevisan
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Fabiano V Mundim
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | | | - Paulo Roberto Resende Junior
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Ivan B Monteiro
- UNIMED São Domingos Hospital, Uberaba 38025-110, Brazil
- José Alencar Gomes da Silva Regional Hospital, Uberaba 38060-200, Brazil
| | - Yulsef M Ferreira
- José Alencar Gomes da Silva Regional Hospital, Uberaba 38060-200, Brazil
| | | | - Kennio Ferreira-Paim
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Hélio Moraes-Souza
- Laboratory of Hematological Research of the Federal University of Triângulo Mineiro and Regional Blood Center of Uberaba-Hemominas Foundation, Uberaba 38025-440, Brazil
| | - Carlo José Freire de Oliveira
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Virmondes Rodrigues Júnior
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| | - Marcos Vinicius da Silva
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-350, Brazil
| |
Collapse
|
22
|
Watanabe R, Kadoba K, Tamamoto A, Murata K, Murakami K, Onizawa H, Fujii T, Onishi A, Tanaka M, Ito H, Morinobu A, Hashimoto M. CD8 + Regulatory T Cell Deficiency in Elderly-Onset Rheumatoid Arthritis. J Clin Med 2023; 12:2342. [PMID: 36983342 PMCID: PMC10054757 DOI: 10.3390/jcm12062342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Elderly-onset rheumatoid arthritis (EORA) is associated with higher disease activity and accelerated joint destruction compared with young-onset RA (YORA). However, the underlying immunological mechanism remains unclear. Regulatory T cells (Tregs) are an immunosuppressive T cell subset, and CD4+ Tregs are deficient and/or dysfunctional in RA; however, CD8+ Tregs have not been fully examined in RA. Here, we aimed to determine the role of CD8+ Tregs, particularly in EORA. A total of 40 patients (EORA, n = 17; YORA, n = 23) were cross-sectionally enrolled. Current disease activity and treatment were comparable between the two groups; however, levels of multiple cytokines, including IL-1β, TNFα, interferon (IFN)-γ, IL-2, and IL-10, were significantly increased in EORA. The number of CD4+ Tregs did not differ between the groups (p = 0.37), but those of CD8+ Tregs were significantly decreased in EORA (p = 0.0033). The number of CD8+ Tregs were inversely correlated with plasma matrix metalloprotease (MMP)-3 levels (r = -0.3331, p = 0.036). Our study results revealed an intrinsic deficiency of CD8+ Tregs in patients with EORA, which leaves synovitis unchecked with excessive MMP-3 release. A therapeutic approach to restore CD8+ Tregs may provide a new avenue for the treatment of EORA.
Collapse
Affiliation(s)
- Ryu Watanabe
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Keiichiro Kadoba
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Atsuko Tamamoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Koichi Murata
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kosaku Murakami
- Center for Cancer Immunotherapy and Immunobiology, Division of Clinical Immunology and Cancer Immunotherapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Fujii
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Onishi
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kurashiki Central Hospital, Kurashiki 710-8602, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Motomu Hashimoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|